Preprint
Article

Multi-Spectral Ship Detection using Optical, Hyperspectral, and Microwave SAR Remote Sensing for Sustainability of the Coastal Region

Altmetrics

Downloads

750

Views

376

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

29 August 2018

Posted:

29 August 2018

You are already at the latest version

Alerts
Abstract
As human activities of the countries in the East Asia have been remarkably expanding over recent decades, various problems in relation to ships, such as oil spill and many other coastal marine pollution, are continuously occurring in the coastal region. In order to conserve marine resources and prepare for possible ship accidents in advance, the need for efficient ship management is increasing over time. Multi-satellite, multi-sensor, multi-wavelength or multi-frequency observations make it possible to monitor a variety of vessels in the coastal region. This study presents the results of ship detection methodology applied to multi-spectral satellite images in the seas around Korean Peninsula based on optical, hyperspectral, and microwave remote sensing. To detect ships from hyperspectral images with a few hundreds of spectral channels, spectral matching algorithms are used to investigate similarity between the spectra and in-situ measurements. In the case of SAR (Synthetic Aperture Radar) images, the Constant False Alarm Rate (CFAR) algorithm is used to discriminate the vessels from backscattering coefficients of Sentinel-1 SAR and ALOS-2 PALSAR2 images. The present ship detection methods can be extensively utilized for optical, hyperspectral, and SAR images for comprehensive coastal management purposes toward perpetual sustainability in the future.
Keywords: 
Subject: Environmental and Earth Sciences  -   Oceanography
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated