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Abstract: Genetic testing has expanded out of the research laboratory into medical practice and the 10 
direct-to-consumer market, and rapid analysis of the resulting genotype data can now have 11 
significant impact. We present a method for summarizing personal genotypes as ‘genotype 12 
fingerprints’ that meet these needs. Genotype fingerprints can be derived from any single 13 
nucleotide polymorphism (SNP)-based assay, and remain comparable as chip designs evolve to 14 
higher marker densities. We demonstrate that they support distinguishing types of relationships 15 
among closely related individuals and closely related individuals from individuals from the same 16 
background population, as well as high-throughput identification of identical genotypes, 17 
individuals in known background populations, and de novo separation of subpopulations within 18 
a large cohort through extremely rapid comparisons. While fingerprints do not preserve 19 
anonymity, they provide a useful degree of privacy by summarizing a genotype in a way that 20 
prevents reconstruction of individual marker states. Genotype fingerprints are therefore well-21 
suited as a format for public aggregation of genetic information to support ancestry and 22 
relatedness determination without revealing personal health risk status. 23 

Keywords: computational genomics, genome comparison, algorithms, genetic testing, privacy, 24 
direct-to-consumer, study design, population genetics 25 

 26 

1. Introduction 27 

A very large number of genotypes have been produced by DNA hybridization, employing a 28 
variety of array designs [1]. The low cost of hybridization assays relative to sequencing, including 29 
whole-genome sequencing (WGS), exome sequencing, and other forms of targeted sequencing, has 30 
led to the commoditization of array-based genotyping and has enabled commercial companies 31 
(including 23andMe, AncestryDNA, Family Tree DNA, and others [2]) to offer this service directly 32 
to consumers (DTC). DTC services typically yield results with high concordance [3] and low no-call 33 
rates [4]. Nevertheless, genotyping the same individual using different array designs can yield 34 
slightly different results, as each technology has its own biases. Even when using the same 35 
technology, genotype reference version and variant encoding format, genotyping the same 36 
individual repeatedly can give slightly different results due to the stochastic nature of genome 37 
processing and analysis, batch effects, or differences in the computational pipelines used. Some 38 
companies regularly reanalyze the raw data for all customers, refining the results over time; as a 39 
result, customers who download their genotype data repeatedly over the years may have slightly 40 
differing results even from the same sample. In addition to relatedness applications, array-based 41 
genotyping is also used as a quality-control step prior to WGS when comprehensive variant 42 
information is desired. 43 
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Many methods exist for comparing genome-wide genotypes in order to infer relatedness, with 44 
varying degrees of accuracy [5]. Most methods are computationally demanding and require full 45 
access to the genotype data of the individuals to be compared, potentially precluding their 46 
application to the study of samples with restricted access, or direct use of these methods by non-47 
specialists interested in exploring their ancestry and genealogy. 48 

A genotype determined by DNA hybridization enumerates all observed alleles for a 49 
predefined set of variants of interest, typically common single-nucleotide polymorphisms (SNPs). 50 
In this format, each SNP is identified by its identifier (‘rsid’, reference SNP identifier) in the dbSNP 51 
database [6]. For each rsid, the observed genotype of the individual is stated, including those for 52 
which the individual is homozygous for the reference allele. The chromosome and coordinate of the 53 
SNP, relative to a version of the reference that is (hopefully) stated in the ‘header’ of the genotype 54 
file, is implied by the rsid and not recorded in the genotype file. 55 

We have recently published a method for converting personal whole genome sequence data 56 
into ‘genome fingerprints’ that facilitate (and greatly accelerate) their comparison [7]. Our method 57 
encodes the characteristics of pairs of consecutive single nucleotide variants (SNVs) relative to a 58 
reference, as represented in variant call format (VCF) files or structurally equivalent formats. In 59 
contrast to the format of genotyping results, WGS results in VCF format typically encode only 60 
differences from the reference; genomic locations in which the individual is homozygous for the 61 
reference allele are typically not stated, achieving a more compact representation. 62 

We present here an analogous method for summarizing personal genotypes, yielding 63 
‘genotype fingerprints’ that can be readily compared to estimate relatedness. The genotype 64 
fingerprints can be computed starting from any of several chip array designs, with genome 65 
coordinates expressed relative to any reference version; the resulting fingerprints are directly 66 
comparable without further conversion. Computation on the genotype fingerprints is fast and 67 
requires little memory, enabling comparison of large sets of genomes. No individual variants or 68 
other detailed features of the personal genome can be reconstructed from the fingerprint, thereby 69 
allowing private information to be more closely guarded and protected and decoupling genome 70 
comparison from genome interpretation. Fingerprints of different sizes allow balancing the speed 71 
and accuracy of the comparisons. Due to the high value of estimating relatedness, the potential 72 
applications of genotype fingerprinting range from basic science (study design, population studies) 73 
to personalized medicine, forensics, and data privacy.  74 

2. Materials and Methods  75 

Methodology overview. We fingerprint genotypes in four stages. First we summarize a genotype 76 
as a tally of biallelic SNPs, stratified by observed alleles, by variant identifiers, and accounting for 77 
allele frequencies (‘raw’ fingerprint, Figure 1). We then normalize the raw fingerprint to account for 78 
systematic methodological patterns. The resulting ‘normalized’ fingerprint preserves differences 79 
between individuals from different groups (populations), and are appropriate for clustering 80 
individuals by population. Whether individuals are assigned to populations a priori or via 81 
clustering, we average the normalized fingerprints of the individuals in a population to produce a 82 
‘population’ fingerprint, which characterizes the population rather than an individual. To improve 83 
detection of relationships within a population, we derive a ‘population-adjusted’ fingerprint from 84 
an individual’s normalized fingerprint by subtracting the associated population fingerprint. 85 
Documentation, code, and sample datasets are available at [8]. 86 
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 87 
Figure 1. Overview of method. SNPs in the input genotype file are encoded into a table (raw) 88 

by observed alleles and rsid numerical value, taking allele frequencies into account; this can 89 
optionally be approximated by subtracting allele counts estimated from a simple model of an 90 
observed cohort (dashed arrows). The raw fingerprint is then normalized and may be adjusted to 91 
represent deviation from the center of the closest population. Rectangles and ellipses pertain to 92 
individual genotypes or to multiple genotypes, respectively; darker gray denotes the flow of 93 
information for one genotype, from the input file to the normalized and adjusted fingerprints. 94 

Raw fingerprints. A ‘raw’ fingerprint is a 4 row by L column table of SNP allele counts, where L 95 
is the main parameter of the method and determines the information content of the fingerprint; by 96 
default L=1000. The four rows correspond to the permitted alleles of binary SNPs (A, C, G and T); 97 
variants with other possible alleles (including insertions, deletions, and multi-nucleotide variants) 98 
are ignored, partly because binary SNPs are so abundant but also because other variant classes are 99 
subject to more variation in how each observable allele is reported. We tally all observed alleles for 100 
each SNP (reference and alternate). Each SNP is tallied in a column determined from its rsid, its 101 
reference number in the dbSNP database [6]. The full process is as follows: 102 

1. Filter out all variants that are not autosomal, biallelic SNPs with reference and 103 
alternate alleles limited to A, C, G, and T. Optionally, include only SNPs in a 104 
preselected set, e.g., 23andMe V2 and V3. 105 
 106 
The remaining steps are applied to each retained SNP. 107 

2. Determine a fingerprint column as the rsid modulo L (when L=1000, SNP rs1801133 108 
will be recorded in column 133). 109 

3. For each SNP, count observations of each nucleotide: nA is the count of A alleles (0, 1, 110 
or 2), nC is the count of C alleles, etc., with nN = nA+nC+nG+nT = 2. 111 

4. Determine the expected count eX = nN fX for each nucleotide X from a set of known 112 
allele frequencies fA+fC+fG+fT = 1. Depending on the context, these frequencies may be 113 
specific to each SNP (e.g. for human data, extracted from dbSNP), or without reference 114 
to external data, may be computed per column from all SNPs contributing to the 115 
column among an observed cohort of genotypes (detailed below). 116 

5. Tally differences nX-eX from expectation in each row and column: add nA-eA to the row 117 
for A, nC-eC to the row for C, etc., in the column corresponding to the rsid.  118 

 119 
Retrieving the allele frequencies for each observed rsid requires prior knowledge and can incur 120 

significant computational costs. A more efficient variant involves computing expected frequencies 121 
for each row and column directly from a cohort of genotypes of a common type (determined with 122 
the same assay, array design, etc.) as follows: 123 
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1. Tally allele counts separately for each individual as above, except in step 5 increment 124 
the value in the [4 x L] matrix by one for each observed allele. (In case of 125 
homozygosity, incrementing twice results in an increment by two.) These tallies result 126 
in summed NA, NC, NG, and NT values in each column, with column total NN = 127 
NA+NC+NG+NT = 2k, twice the number of SNPs assigned to the column. The steps 128 
below do not require reprocessing the full genotypes, only these 4 x L tallies per 129 
individual. 130 

2. Compute cohort average frequencies by summing the tallied allele counts in each 131 
column across all individuals and dividing by the column total. This produces four 132 
allele frequencies FX for each column. 133 

3. Finish computing each entry in each individual’s raw fingerprint by subtracting the 134 
expected count eX = NN FX. 135 

 136 
Fingerprint normalization. In this step, we account for unequal assortment of genotype 137 

information within the fingerprint. This imbalance is due to a methodological aspect of the 138 
fingerprinting process (grouping of variants by rsid), not a source of information about the 139 
fingerprinted individuals.  140 

1. We subtract the mean and divide by the standard deviation of each column, which 141 
mitigates differences between columns in the types of nucleotide substitutions 142 
(transitions and transversions), which derive from the set of rsids assigned to each 143 
column. 144 

2. We then subtract the mean and divide by the standard deviation of each row. This 145 
further mitigates methodological differences between values within the fingerprint, 146 
which primarily reflect the genotyping methodology rather than variation between 147 
individuals. 148 

 149 
Population fingerprints. We compute a population fingerprint as the average of the normalized 150 

fingerprints from the individuals in the population. Note that genotype fingerprints are only 151 
directly comparable when computed using the same format parameter L; different values of L cause 152 
rsids to be grouped into columns differently. However, different versions of a genotype array 153 
design contain substantial overlaps in the set of SNPs the array contains, and rsids will be grouped 154 
in the same manner for a given value of L regardless of array design. Thus, genotypes from the 155 
same population on slightly different variants of the same array design may be mixed in computing 156 
the population fingerprint. 157 

 158 
Adjusting fingerprints for population. We then compute a population-adjusted fingerprint for an 159 

individual by subtracting a population fingerprint from the normalized fingerprint of that 160 
individual. These individual fingerprints and the population fingerprint must have been computed 161 
using the same parameters L. 162 

 163 
Fingerprint comparison. To compare two fingerprints, concatenate the rows of each fingerprint 164 

matrix into a vector and compute the Spearman correlation between the two vectors. This same 165 
procedure is appropriate for comparing two normalized fingerprints or two population-adjusted 166 
fingerprints, whether adjusted to the same or different populations. 167 

 168 
Family analysis. We obtained 23andMe SNP chip genotype data for a family of five [9], 169 

including Mother, Father, Son, Daughter and Aunt. Son is 23andMe V2 data and the rest of the 170 
family are 23andMe V3 data. We computed normalized genotype fingerprints (L=5000) for the five 171 
individuals and performed all pairwise comparisons. We also extracted from these samples the lists 172 
of rsids observed in V2 and V3, for use in further analyses below. 173 

 174 
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Population structure analysis. Principal Components Analysis is a standard method for 175 
characterizing population structure prior to genome-wide association studies (GWAS). We 176 
therefore compared well-characterized population structures within data from the 1000 Genomes 177 
Project (release 20130502, 178 
ALL.chrNN.phase3_shapeit2_mvncall_integrated_v5.20130502.genotypes.vcf.gz). As a genomic 179 
method, we identified SNPs with a minor allele frequency of 5% or more, removed SNPs in 180 
complete linkage disequilibrium with a SNP to the left (i.e., a smaller chromosomal position), 181 
retained 5% at random (298,454 SNPs) and counted occurrences of the minor allele (0, 1, or 2) in 182 
each genome to form a 2504 x 298,454 genotype matrix M. 183 

As a fingerprint-based method, we extracted observed genotypes for each of 2504 genomes 184 
twice, once for each rsid in the 23andMe V2 SNP list and once using the V3 SNP list. We then 185 
computed genotype fingerprints from these extracted genotypes using L=500, 1000, and 5000, 186 
resulting in fingerprint data matrices of 2504 x 2000, 2504 x 4000, and 2504 x 20,000 entries, 187 
respectively. We performed Standard PCA separately on the six resulting matrices (V2 or V3 and 188 
L=500, 1000, or 5000) using the R function call prcomp(M,center=TRUE,scale.=TRUE). 189 
 190 

Evaluation of “nearest population fingerprint” for population assignment. We computed a 191 
population fingerprint for each of the 26 populations selected for study in the 1000 Genomes 192 
Project. We then re-classified each individual via fingerprint comparison against the 26 population 193 
fingerprints, as described above for comparing individual fingerprints. Each individual was 194 
considered classified as belonging to the population with the closest population fingerprint. To 195 
avoid overfitting, we excluded each individual from the computation of their own population 196 
fingerprint in leave-one-out fashion.  197 

3. Results 198 

3.1. A method for encoding genotyping data 199 

We developed a locality sensitive hashing [10] algorithm for computing ‘fingerprints’ from 200 
genotype data, including data produced by direct-to-consumer (DTC) genetics companies (e.g., 201 
23andMe, AncestryDNA). These genotype fingerprints meet the characteristics of genotype data: 202 
they can be rapidly computed starting from any of several chip array designs, with genome 203 
coordinates expressed relative to any reference version, and the resulting fingerprints are directly 204 
comparable so long as the same fingerprint length L is used. We describe fingerprints generated 205 
using SNP lists derived from two array designs used by 23andMe: V2, based on Illumina 206 
HumanHap550 Genotyping BeadChip (~550,000 SNPs) and V3, based on Illumina OmniExpress 207 
Genotyping BeadChip (~960,000 SNPs). The fingerprints are a reduced representation of the 208 
genotype data computed once per individual, and can be efficiently databased and compared to 209 
determine whether two genotypes represent the same individual, closely related individuals, or 210 
unrelated individuals. As with our previously reported genome fingerprints [7], individual alleles 211 
cannot be reconstructed from the genotype fingerprint beyond what is predictable from detectable 212 
population and family relationships, enabling sharing of fingerprints for comparison when privacy 213 
concerns prevent sharing the full genotype file itself. 214 

The main parameter of our algorithm, L, determines the size and SNP groupings of the 215 
fingerprint. Smaller fingerprints (e.g., L=100) average variants over fewer bins and are useful for 216 
extremely fast, low-resolution comparisons e.g. to determine identity, while larger fingerprints 217 
(L=1000 or 5000) are higher resolution and better support detailed analyses, including population 218 
reconstruction. 219 

3.2. Computation on genotype fingerprints is fast 220 

Generation of raw genotype fingerprints is quite simple, and its speed is limited by the time 221 
taken to read the file rather than the fingerprint size L; on our workstations, it requires 10-15 s per 222 
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500,000-960,000 SNP genotype. For higher speeds, each raw fingerprint is independent and the 223 
process is readily parallelized. In our population studies, population fingerprints for all 26 224 
populations of the 1000 Genomes cohort required less than 60 s, fingerprint normalization averaged 225 
0.13 s per genotype, and serializing the 2504 fingerprints for efficient comparison took only 37 s. 226 
The 3,133,756 “all-against-all” comparisons for this data set took 15 CPU seconds for L=1000 (4.8 227 
microseconds per comparison) and 79 CPU seconds for L=5000 (25.2 microseconds per comparison). 228 
Although parallelization was not required for this cohort, it is straightforward and may be helpful 229 
for all-against-all comparisons of cohorts of tens to hundreds of thousands of genotypes. 230 

3.3. Rapid relationship detection 231 

Here we illustrate the use of genotype fingerprints for characterizing family relationships 232 
within a family of five [4], who had previously made their 23andMe genotype results publicly 233 
available. Comparisons of these fingerprints resulted in similarity scores (Spearman’s rho values) 234 
that are consistent with the known family relationship types (Figure 2). Rho values for full sibling 235 
pairs (Aunt and Mother .420, Daughter and Son .352) and parent-offspring pairs (.481, .467, .359, 236 
.347) are higher than for avuncular relationships (Aunt and Daughter .246, Aunt and Son .190), 237 
which in turn are higher than unrelated pairs (Aunt and Father .097, Mother and Father .100). The 238 
correlations between the Son and the other family members was reduced, as expected for 239 
comparisons across SNP lists (V2 for Son, V3 for all others) with both substantial overlap and 240 
differences. 241 

 242 
Figure 2. Comparison within a family of five. A: Aunt (deceased); M: Mother; F: Father; D: 243 

Daughter; S: Son. Dashed lines represent family relationships; thin lines denote comparison 244 
between individuals assayed on different versions of the genotyping platform. 245 

3.4. Rapid analysis of population structure 246 

We tested the utility of genotype fingerprints for population studies. We extracted “genotypes” 247 
for all 2504 individuals of the 1000 Genomes Project cohort from their VCF-format genomes using 248 
the 23andMe V3 SNP list, fingerprinted each extracted genotype, and used PCA to reconstruct the 249 
known population structure (Figure 3). This entire process took a fraction of the time and memory 250 
required to perform the same task using a more standard approach (see Methods). As expected, the 251 
quality of the reconstruction depended on fingerprint resolution (L): fingerprints with L=5000 252 
yielded excellent population structure reconstruction, comparable to the results of population 253 
reconstruction using high-resolution genome fingerprints (compare Fig. 3, Fig. 5 from [7]). 254 
Genotype fingerprints with smaller values of L yielded progressively lower-resolution results at 255 
proportionally higher speeds (seconds rather than more than an hour, Figure 3). Thus, genotype 256 
fingerprints allow a suitable balance between resolution and speed to be achieved, and supports 257 
scaling of population structure studies to whole population-scale genotype data, without requiring 258 
analysis of linkage disequilibrium and other complications prior to analysis. 259 
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 260 
Figure 3. Estimates of population structure in the 1000 Genomes Project data set at different 261 

resolutions. Individuals are color coded according to their population as per the key to the right. 262 
EAS, SAS, EUR, AMR and AFR: East Asian, South Asian, European, Admixed American, and 263 
African, respectively. (A) Principal components analysis (PCA) of the 2504 individuals using 264 
~300,000 SNPs. (B) PCA on genotype fingerprints with L=5000. (C) PCA on genotype fingerprints 265 
with L=1000. (D) PCA on genotype fingerprints with L=500. 266 

3.5. Rapid population assignment 267 

We computed “population fingerprints” in the 1000 Genomes data set by averaging genotype 268 
fingerprints (V3 set, L=5000) of the individuals in each population. To determine each individual’s 269 
population of origin, we then compute the correlation between the fingerprint of a query genome 270 
and the fingerprint of each population (Figure 4), and classified each individual as belonging to the 271 
population with the strongest fingerprint correlation. We evaluated this classification method by 272 
“leave one out” cross-validation. The annotated population had the highest correlation for 2027 of 273 
2504 samples (81%), or among the top 2 (92.9%) or top 3 (96.1%) most correlated. The only 274 
misclassifications to a population from another continent involved the Admixed American 275 
populations (AMR); excluding these populations increased correct classifications to 85.7% (best 276 
match), 97.8% (top 2) and 99.2% (top 3). In general, misclassifications both between and within 277 
continental groups were between historically or geographically associated population pairs (ASW, 278 
ACB with Nigerian populations ESN and YRI; Latin American populations MXL, CLM, and PUR 279 
with Mediterranean populations IBS, TSI; northern and southern Han Chinese populations CHB, 280 
CHS; south Indian populations ITU, STU), suggesting that admixture was the principal source of 281 
misclassification. Even for very closely related population pairs (e.g. CEU, GBR), individuals were 282 
more often correctly classified than misclassified. 283 
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 284 
Figure 4. Correlations between the genotype fingerprints of the 2504 individuals (rows) and 285 

the average fingerprints of the 26 populations (columns) in the 1000 Genomes Project. Population 286 
codes and colors as in Figure 3. Numbers in gold, white and black denote population assignments: 287 
to the same annotated population, to the same continent but different population, or to a different 288 
continent, respectively. 289 

3.6. Robustness to SNP list 290 

We evaluated whether genotype fingerprints can be compared across chip array designs. We 291 
fingerprinted genotypes for each individual in the 1000 Genomes Project data set extracted using 292 
the 23andMe V2 and V3 SNP lists (548,911 and 902,448 SNPs, respectively), yielding a mixed set of 293 
5008 fingerprints (V2 and V3 fingerprints for each of 2504 individuals). We studied this joint set 294 
using PCA (Figure 5A) and observed that the first two principal components reconstruct the known 295 
population structure (Figure 3). PC3 separates between fingerprints computed on V2 and V3 296 
versions (Figure 5B). Furthermore, the correlations between the two versions of each individual 297 
(self, Figure 5C) are always higher than those between related individuals (PO, FS), which are in 298 
turn higher than those between unrelated individuals. Thus, while fingerprints derived using 299 
different versions of the same chip design are distinguishable, comparisons between them are still 300 
useful for detecting identical individuals, family analysis, and population analysis.  301 
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 302 
Figure 5. Comparison of genotype fingerprints relative to different SNP lists. We deduced 303 

normalized genotype fingerprints (L=5000) for the 1000 Genomes Project cohort using the 23andMe 304 
V2 (red) and V3 (blue) SNP lists. (A) First two principal components, showing population structure. 305 
(B) Third and fourth principal components, showing separation between the two SNP lists. (C) 306 
Distribution of cross-correlations between the two sets of genotype fingerprints (all possible pairs of 307 
V2 vs. V3). Comparisons between the two genotype fingerprints for the same individual (self) and 308 
comparisons between parent/offspring and full-sibling pairs (PO, FS) formed distinct, high-309 
correlation subsets. 310 

3.7. Fast detection of close relationships 311 

Based on our work with genome fingerprints, we reasoned that using population fingerprints 312 
to cancel out correlations due to information shared among a population, therefore allowing close 313 
relationships to be distinguished from shared population background. We therefore adjusted the 314 
L=5000 V3-type fingerprints (see 3.6 above) for their annotated population of origin and performed 315 
all pairwise comparisons of these adjusted fingerprints. We compared the fingerprint correlations 316 
with kinship coefficients computed using KING [11] and with previously reported relationships 317 
[12] computed using RELPAIR [13] (Figure 6). As expected, the correlation between individuals 318 
from the same annotated population (Figure 4), but not related within a few generations, is 319 
removed by adjustment to the population average (Figure 6), and population-adjusted fingerprints 320 
for unrelated individuals were essentially uncorrelated. Comparison of population-adjusted 321 
genotype fingerprints therefore supports the detection of individuals in the 1000 Genomes cohort 322 
previously reported as closely related [12]. The highly-correlated pairs correspond to relationships 323 
of degrees varying from full siblings to cousins; for these pairs, fingerprint correlations show a  324 
linear relationship with kinship coefficients computed by KING (Figure 6, colored points). 325 
Parent/offspring and full sibling relationships, which have the same expected KING kinship 326 
coefficient (0.25) but different variance from that expected value, produced equivalent high 327 
fingerprint correlations (around 0.4). 328 
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 329 
Figure 6. Identification of close relationships in the 1000 Genomes Project. Comparison 330 

between the correlations of population-adjusted genotype fingerprints (V3 set, L=5000) and the 331 
kinship coefficient as computed using KING, highlighting close relationships identified using 332 
RELPAIR. FS: full siblings (red). PO: parent/offspring (blue). HS: half siblings (magenta). AV: 333 
avuncular (black). CO: cousins (green). All other pairs in gray. One FS pair (HG03873 and HG03998, 334 
with maximal kinship, in gray) was not identified by RELPAIR. 335 

4. Discussion 336 

We have presented a method for computing ‘fingerprints’ of genomewide SNP array 337 
genotypes as reported by DTC genetics companies, using 23andMe data as an example. Like our 338 
previously reported fingerprints from whole-genome resequencing data, genotype fingerprints 339 
retain sufficient information to enable ultrafast comparison of genotypes, without retaining the 340 
sensitive, individual SNP data necessary to predict phenotypes; genotype fingerprints are therefore 341 
suitable for databasing and sharing for ancestry and close relationship determination without 342 
exposing more sensitive, health-related information. 343 

We demonstrated the utility of genotype fingerprints for rapid versions of common tasks: 344 
identifying genotypes from the same individual, from closely related individuals, or from a known 345 
population, and de novo clustering of individuals into subpopulations. Comparing fingerprints 346 
derived from two different SNP lists (23andMe V2 and V3), our genotype fingerprints were robust 347 
to differences in the number of SNPs assayed for detecting identity, detecting close relationships, 348 
and for delineating populations. 349 

Conceptually, genotype fingerprints are an adaptation of our genome fingerprinting method 350 
[7] to more widely available, more standardized, but lower-resolution genotype data. While 351 
genome fingerprints facilitate comparison of data across different reference sequence versions by 352 
encoding consecutive SNV pairs, genotype fingerprints achieve a similar interoperability by 353 
encoding individual SNPs using annotated rsids, alleles, and allele frequencies. SNPs are simply 354 
SNVs with high population frequency, but this frequency difference has practical consequences. 355 
While whole genome sequencing is expected to reveal an increasing number of rare SNVs, the vast 356 
majority of SNPs have already been identified, evaluated for linkage, assigned stable identifiers 357 
(rsids), and incorporated into high-throughput assays. In contrast, many SNVs either lack 358 
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identifiers or have been assigned preliminary identifiers still subject to change (e.g., by merging 359 
with a different identifier representing the same variant). Stable identifiers facilitate matching 360 
variants across genome reference versions and assays, enabling the desired robustness to a 361 
changing reference genome using the simpler encoding method presented here. 362 

Insertions and deletions have also been assigned standard representations in genotype files 363 
(symbols I and D, respectively), but are much less abundant in the genome than SNPs, are not as 364 
widely assayed, and require normalization prior to extraction as genotypes from WGS or exome 365 
data [14]. For simplicity and consistency, we therefore chose to exclude them from analysis, as we 366 
did for computing genome fingerprints from VCF files. We also chose to exclude SNPs on the sex 367 
chromosomes, which vary in count between males and females and may lead to distorted similarity 368 
values. 369 

Sharing genetic information raises privacy considerations of several kinds. Much attention has 370 
been paid to the risk of re-identification of de-identified samples [15], even when querying genetic 371 
data sets via bandwidth-limiting interfaces like the GA4GH beacons. These concerns have given rise 372 
to privacy preservation strategies such as obscuring rare variants and budgeting queries [16]. While 373 
enabling an important and powerful query - namely, “has this allele been seen before?” [17] - these 374 
strategies for preventing re-identification preclude multiple other potential applications, thus 375 
limiting the utility of genome data sharing. There are however genetic data sharing scenarios in 376 
which anonymity is not an issue, but phenotype prediction is. For example, an individual may wish 377 
to compare their genotype (obtained via a DTC genetic testing company) to the genotypes of other 378 
individuals for ancestry and relationship determination, but without revealing whether their 379 
genome harbors alleles associated with a specific phenotype, e.g., Alzheimer’s disease - both 380 
currently known alleles, and ones whose significance may be discovered in the future. Like genome 381 
fingerprints, genotype fingerprints decouple genotype comparison from genotype interpretation, 382 
supporting the identification of closely related individuals without exposing individual variant 383 
states. 384 

At present, the number of private individuals who have used DTC genetics services to 385 
ascertain their own genotype vastly exceeds the number of individuals with full genome data. We 386 
expect genotype fingerprints to have immediate applicability for facilitating genotype comparisons, 387 
empowering citizen science without concomitantly revealing sensitive private genetic information. 388 
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