

1 *Type of the Paper (Article, Review, Communication, etc.)*

2 **Are Green Infrastructure Strategies Suitable in Arid 3 Climates? A Design Feasibility Study from Jeddah 4 City, Saudi Arabia**

5 **Abdulmueen Bogis^{1*}, Dean Bork² and Patrick Miller²**

6 ¹ Ph.D. Student in Architecture and Design Research – Virginia Tech, MLA, BLA, Teacher Assistant Landscape Architecture
7 Department King Abdulaziz University; bogis@vt.edu;

8 ² Associate Professor, Landscape Architecture Program - Virginia Tech; drbork@vt.edu

9 * Ph.D., FASLA, FCEL A Professor of Landscape Architecture and Associate Dean for Graduate Studies and Outreach College of
10 Architecture and Urban Studies -Virginia Tech: pmiller@vt.edu

11

12 **Abstract:** This paper describes the feasibility and probable benefits associated with greening
13 the Tahliyah Channel, a concrete drainage channel that was originally built to relieve urban
14 flooding in Jeddah City, Saudi Arabia. It includes an estimation of irrigation needs for channel
15 greening based on a standardized planting specification. The study also demonstrates alternative
16 strategies for meeting the required irrigation demand, including water harvesting and graywater
17 reuse on a residential scale. The study shows that greening Tahliyah Channel is possible relying
18 mainly on graywater reuse from the surrounding buildings. Also, the study shows that rainwater
19 harvesting is not a reliable source for irrigation. Rather, it can cover only part of the irrigation needs
20 (6%) and so can be used as a secondary supporting source. The positive results of this case study
21 will be of interest to those in arid countries who are looking to upgrade and replace traditional,
22 single function drainage infrastructure with more sustainable, green infrastructure systems.
23 More specifically, the objectives of the study are consistent with the goals of the Saudi
24 government's ongoing initiative that advocates for more resilient and sustainable cities. (Vision 2030
25 year).

26 **Keywords:** green infrastructure, riparian restoration, green corridor, drainageway, urban valley,
27 stormwater management, flooding, arid landscape, sustainability, urban ecosystem.

29 **1. Introduction**

30 Within the first half of the twenty-first century, the world's urban population is expected to increase
31 by 2.5 billion. As a consequence, big cities will struggle to fulfill the economic hopes and dreams of
32 those migrating from rural areas in hopes of a better quality of life. Many cities in developing
33 nations are already struggling to provide minimum public services and infrastructure required for
34 healthy living.

35 Research shows that, beyond basic needs, urban quality of life is improved when people have
36 access to adequate public open spaces. For example, the World Health Organization (WHO)
37 recommends that every city should have a minimum of 9 square meters of green space per person
38 [1]. There seems to be an obvious conflict between the demands for economic growth and
39 expansion of adequate housing on the one hand, and the need for public and open spaces that
40 promote a physically and socially healthy societies on the other. Providing adequate space for both
41 public greenways and concrete stormwater drainageways to these new residents will only heighten
42 the challenge. However, combining these uses into multiple use green infrastructure could help
43 meet this challenge.

In temperate climate regions, green infrastructure (GI) is becoming an increasingly popular alternative to traditional gray infrastructure. Presumably, cities are adopting and implementing green infrastructure plans because they foresee multiple quality of life benefits for their citizens [2]. One strategy for implementing such a plan is to replace conventional single function gray infrastructure with new forms of multifunctional public or green open spaces. Prominent projects of this type are occurring around the world. Some notable examples include Buffalo Bayou Promenade, Houston, Texas, Cheonggyecheon Stream, Seoul, South Korea, and Bishan-Ang Mo Kio Park, Singapore. However, is this possible in more arid regions of the world?

52 This paper answers this question by examining the potential of green infrastructure strategies on a
53 concrete drainage channel located in an arid part of the world, Jeddah City, Saudi Arabia. The
54 study demonstrates the possibility of greening concrete drainage channels, by examining a channel
55 in Jeddah City, Saudi Arabia that was designed and constructed with a fairly narrow set of
56 purposes. The objective is to design and evaluate a plan to increase public open spaces within an
57 urban arid environment. The lessons learned from this case study will enhance our understanding
58 of the application of green infrastructure principles to arid urban environments. The article begins
59 by examining the context of Jeddah City in terms of its water resources. The article then examines a
60 feasible scenario to convert the existing channel to a green channel. This done by examining four
61 critical elements of a green channel in an arid climate. These are the plants (types and numbers)
62 needed for a green the channel; the irrigation needs (volume of water and type of efficient irrigation
63 system); the possible sources of water and the reliability of the source of water. The article ends
64 with a discussion of the feasibility of green channels in arid climates.

Context of Jeddah City

66 Jeddah City is a rapidly growing urban region located along the arid west coast of Saudi Arabia
67 (See Figure 1). Jeddah lies on a coastal plain between the Hijaz mountain range and the Red Sea.
68 The city is subject to serious seasonal flooding as water rushes from the mountains through the city
69 on its way to the sea. More than fifteen valleys, with watersheds of various sizes, pose flooding
70 threats to Jeddah. In 2009 and 2010, Jeddah witnessed the greatest urban floods in the history of the
71 city. These floods killed hundreds of people and destroyed properties [3].

72 A network of concrete drainage channels covering almost eighty-two million acres (81,937,673
73 acres) and fourteen dams were constructed in an effort to alleviate the threat of these regional
74 flooding events. While this network is effective in conveying stormwater through the city, the
75 channels do not eliminate all urban flooding or the associated property damage and loss of life (See
76 [Figure 2](#)). Residual flooding still occurs because the city's stormwater infrastructure was never
77 adequately adapted to allow for the positive drainage of the runoff that is generated by the city
78 itself.

79 Jeddah currently provides an average of 2m² per capita of public space in comparison to the 9 m²
80 recommended by the WHO—yet, the majority of the city's districts have less than 1m² per capita
81 [4] (See Figure 3). Currently, the channels in Jeddah do not support many outdoor activities.
82 According to Jan Gehl, in Life Between Buildings [5], communal activities in these places should
83 include “children at play, greetings and conversations, communal activities of various kinds, and
84 finally – as the most widespread social activity – passive contacts, that is, simply seeing and hearing
85 other people” [5] (p.12). Conversely, the concrete channels in Jeddah have a tendency to become
86 sites for unwelcome social behaviors (See Figure 4). A working definition of anti-social behavior is
87 provided by law enforcement officials in the U. K. Behaviors that result in harm to individuals, the
88 community, or the environment are included [6]. An example of anti-social behavior associated
89 with the drainage channels in Jeddah is illegal dumping of raw sewage, among other crimes. As a
90 solution, this study develops a strategy to improve the quality of the physical environment and
91 provide good contact with urban green spaces. For instance, by turning these channels into linear

92 parks, not only can Jeddah protect the environment by preventing the dumping of harmful waste
93 into these channels, but also protect marine life and public health as a result.

94 Greening these channels may also help improve water management in Jeddah for one of many
95 reasons. First, encouraging more rainwater harvesting from rooftops¹ using Low Impact
96 Development (LID) and green infrastructure practices,² which can be implemented in the channels
97 and the surrounding neighborhoods. This will help reduce the impact of urban flooding and the
98 amount of discharged water in the sea—thereby protecting marine life. Moreover, reducing surface
99 runoff will reduce subsequent infrastructure damage and impact.³ Second, turning these channels
100 into green channels will encourage local wastewater recycling. This can be done by separating
101 blackwater from graywater from the surrounding buildings in order to reuse it for irrigation of the
102 green channels.

103 Currently, desalination is the only reliable source of water for Jeddah and many other cities in the
104 Kingdom. Desalination provides Jeddah with the daily water needs of 972,400,000 L/day
105 (256,880,904 gallons) for 3.4 million residents. The cost to the government in Saudi Arabian Riyals
106 (SAR) for the desalination processes is 7 SAR/m³ (US\$0.007/gal) at a total daily cost of 6,806,800
107 SAR. This is heavily subsidized. Only 142,800 SAR (2% of the total cost) is paid by the users for the
108 entire daily desalination cost, at a rate of 0.15 SAR/m³ (US\$0.04/m³) [7]. Moreover, approximately
109 45% of the population is served by the main sanitary sewer system, but only 70,000 m³/day
110 (18,492,044 gal/day) of the treated wastewater of Jeddah is recycled for irrigation [8].

111 Therefore, in the following sections, this article explores the feasibility of greening these channels
112 by relying on graywater⁴ from the surrounding buildings to irrigate the plants in the channels.
113 Moreover, this study also considers the feasibility of collecting rainwater from the surrounding
114 buildings and within the channels to support any deficiency in the irrigation needs—and also to
115 support part of the potable uses per household.

116 **2. Materials and Method: The Feasibility of Greening the Channel**

117 In order to test the feasibility, the Northern Channel (known as the Tahliah Channel) was selected
118 among the other channels (Eastern, Airport, Northern and Southern Channels) because it is
119 surrounded by highly populated districts, has a low amount of open spaces per capita (2m²/person),
120 is located near a number of graywater sources (e.g., districts, schools, mosques, houses, etc.), and is
121 close to one of the most active shopping mall streets (Tahliah Street). The future vision of the
122 Municipality of Jeddah is to turn this channel into a green open space as reported in the Open Space
123 and Leisure report [4] by the Municipality; however, a plan for this has not yet been prepared.

124 *2.1 The Water Resources in Jeddah City*

125 After the 2009 and 2010 flood events, the US-based Architecture and Engineering Company
126 (AECOM)—in cooperation with Jeddah Stormwater Drainage Program Department—was tasked
127 with resolving this urgent problem. As a result, the total number of constructed dams in Jeddah is

1 This will help reduce the water volume discharged into the drainage channels and reduce urban flooding. Reusing rainwater helps cut the percentage of daily water needs in Jeddah, which means cost reduction in desalination.

2 For example, detention ponds, cisterns, raingarden, bioretention, etc.

3 Examples include: damaging road and walkways, mixing sewage water with rainwater, and slowing the flow of traffic in the city thus, affecting the economy.

4 Separating blackwater and graywater from the surrounding buildings can create an opportunity to bio-treat the graywater locally and reuse it to cover irrigation needs for the proposed landscape at these channels. As a result, the total cost of sewage treatment plants will be reduced.

128 now fourteen and includes four main and other sub-concrete channels. According to Zack Isnasious
129 [9] (personal communication, January 1, 2014), former director of design and engineering of the
130 Jeddah Stormwater Drainage Program and AECOM, "The dams were designed to control a 100-
131 year storm with a storm length of eight to fifteen days. The dams were not designed to harvest
132 water, because of the unreliable precipitation patterns and potential evaporation rates" (See Table
133 1&2).

134 Historically, however, the old city of Jeddah (now referred to as the Al-Balad District) actively
135 harvested rainwater for its population. Originally, many of the ancient buildings in the old city
136 were provided with underground cisterns to store rainwater harvested from the top of the roofs
137 during Ottoman rule (between the fifteenth and nineteenth centuries) [10] (See Figure 5).

138 Figure 6 illustrates a possible model of rainwater harvesting per rooftops stored in separate
139 tank from the graywater and blackwater. This to make it easier to use each type of water for
140 the purpose for which it is stored (i.e., rainwater for potable uses or additional source of
141 irrigation, graywater for irrigation, blackwater to send it to treatment plants).

142 *First: What are the suggested plants to green Tahliyah Channel?*

143 This section answers the question how much water will be needed to irrigate the plants suggested
144 for the green channel. A model was developed to calculate the daily irrigation needs year-round,
145 including a prototypical specification of plants with known irrigation needs. The suggested types of
146 planting specification are generated from the "Water requirements for most of the aesthetic plants"
147 manual that is used by the municipality of Jeddah. As previously mentioned, it includes 4 local
148 palms, 4 trees, and 20 shrubs (See Table 2). In order to cover both sides of the selected channel (the
149 Tahliyah Channel) and achieve at least 50% greenery, 666 of the planting specifications of plants
150 would be required to implement a green design for the channel's total area of 346,429 m² (85.60447
151 acres). This number (666 planting specification) was calculated by dividing the channels into 18
152 segments, each segment including 37 planting specifications, and each planting specification will be
153 irrigated by each house or building in front of it. The size of each planting specification is estimated
154 based on the required distance between the palms and trees to green 50% of Tahliyah Channel (See
155 Figure 7). Table 2 illustrates the required daily irrigation needs for each plant type used in the
156 planting specification, varied in volume depending on the time of year (i.e. month). The total
157 annual irrigation needs for each planting specification is 76,180 gallons and the total annual
158 irrigation needs for the 666 planting specification is 50,735,880 gallons. The next section
159 demonstrates the available water sources (rainwater harvesting or graywater) to irrigate the 666
160 planting specifications. It reinforces the authors' claims that these are reliable sources of water to
161 irrigate each planting specification.

162 *Second: What are the economically feasible water sources near the Tahliyah Channel?*

163 This section presents the water sources available to irrigate the 666 planting specifications, and also
164 illustrates the cost of desalination, and the cost savings when harvesting rainwater and recycling
165 graywater are implemented. The calculation of the economic feasibility here is based on the
166 reduction in the overall cost of water provision from the desalination (for potable use) and the
167 blackwater treatment (for irrigation) by rainwater harvesting and graywater reuse per house.

168 In this case, there are three feasible sources of water for irrigation: desalination, graywater, and
169 rainwater. First, desalinating sea water is currently considered the main source of water for the city.
170 More than 250 million gallons per day are desalinated to cope with the daily need of 3.4 million
171 residents at a cost of \$1,815,146 per day. Moreover, the stations that supply the current daily need of
172 water are run by petroleum oil. This makes this source very expensive and undesirable for non-
173 potable water uses (irrigation). The second possible source is graywater. Following the high cost of

174 desalination and high rate of water consumption per person (75 gal/person/day), an excessive daily
175 waste of a valuable source of the municipal water that is dumped into the sea without pretreatment
176 or reuse because of the low capacity of the existing wastewater plant. An approximate 45% of the
177 population is served by the main sanitary sewerage, but only 18,492,044 gal/day of the treated
178 wastewater of Jeddah is recycled for irrigation (Municipality, 2014b). With an average of 6.4
179 members in each Saudi household and a consumption of 75.5 gallons per person per day, 173,952
180 gallons of gray water can be generated per year, per household. This surpasses the irrigation needs
181 (76,180 gal/year) of an individual planting specification by more than two-fold (112%).⁵ While the
182 total irrigation needs to irrigate the 666 planting specifications is 50,735,880 gallons, the Tahliyah
183 Channel is surrounded by eight districts (Alandalus, Alaziziyah, Alfaisaliyah, Assafa, Assamer,
184 Arrawdah, Arrihab, and Alwaha), with a total approximate population of more than 527,010 who
185 can generate about 14,324,131,800 gallons of wastewater per year—which is 282 times more than the
186 need to irrigate the 666 planting specifications. This confirms that these 8 districts alone can
187 provide enough grey water to irrigate a channel the size of Tahliyah Channel. While this is going to
188 save money from desalination it will cost money to install storage tanks and infrastructure for
189 grey water. While there will be some significant up-front costs there should be long term savings.
190 A final source is rainwater harvesting per house. The total average mean of rainfall per year
191 is 45mm (1.77 in) (calculated from the table 1). The potential for harvesting rainwater in Jeddah
192 is discussed in more detail in the section below.

193 *Third: What is a feasible rainwater harvesting system for households and the watershed within the boundary*
194 *of the selected channel?*

195 In this section we test whether this source is reliable for irrigation or can be used as a back
196 up source. As a rainwater harvesting source, we used the following equation from the
197 book Harvesting Rainwater for Landscape Use by Waterfall [11] (p. 20):

198 The potential rainwater harvesting volume (Supply) using the following equation:

199 (1) *Harvested Water (HW) (in Gallons) = P (inches) × Area (ft²) × C × 0.623*

200 Where *P* is the average annual rainfall that falls in Jeddah City. The parameter *C* is a runoff
201 coefficient based on the Rational Method. The conversion factor 0.623 is used to measure the supply
202 in US gallons.

203 The average household or villa area size around Tahliyah Channel is 4305.56 ft² (400 m²) [12, 13] (P.
204 1825) (Al-Hathloul and Rahman, 2011; Cited by Guizani, 2016, P. 1825). Therefore, the
205 average potential of rainwater harvesting is 4,747.7 gallons per roof per year. This amount can
206 covers about 6% of the irrigation requirements of an individual planting specification. The
207 possible volume of rainwater harvesting can at least cover 9.7% (84,556.8 gal/year) of all
208 household members' (6.4/house) needs (for flushing, bathing, laundry, food & drink, cooking
209 faucets)⁶ [14] every year if we did not use it for irrigation (see calculations below).

210 Rainwater alone will not satisfy requirements in the dry months and therefore
211 harvesting graywater (173,952 gal./year/household) is only reliable source year around as long as
212 the production of potable water meets the needs of the city. Therefore, for more efficient
213 reliable irrigation sources and lower possible cost to install storage tanks and infrastructure,
214 this study suggests: 1) the size of tank for the harvested rainwater should cope with the average

⁵ This means even with half of this assumed volume the system should have no irrigation need issue.

⁶ The daily water usage of a Saudi person per household breaks down to: 25 gal for flushing, 20 gal for bathing), 10 gal for laundry, 2.9 gal for food & drink, 2.9 gal for cooking, and 2.9 gal for faucets (Ashraq Al-Awsat Newspaper, 2005).

215 yearly potential harvesting to use it as an alternative source for irrigation or potable uses; 2) the
216 graywater tank must cope with the yearly possible graywater production per household.

217 *Given Information:*

218 • Average Saudi family members is 6.4 people/house
219 • Average daily wastewater production per person is 75.5 gallons/person/day
220 (483.2 gal/day/house)
221 • Daily water usage is 63.7 gal (for flushing, bathing, laundry, food & drink, cooking faucets)
222 • Average annual precipitation is 45 mm/year
223 • Average rooftop area in the selected area is 4305.56 ft²
224 • Rooftop coefficient (C) is 1
225 • Annual Evapotranspiration (ET₀) is 5.2 in
226 • Dripping irrigation efficiency is 90%
227 • Plant water requirements in Table 2 (see Methodology section)
228 • Residential concrete cistern cost is \$0.13/gal
229 • Tertiary treatment cost is \$0.005/gallon, and desalination cost is \$0.007/gal
230 • 40% of the channel area is a running stream with a depth of 50 cm (1.6ft), with an average
231 cross-section area of 3.5 m² (37.6 ft²)

232 *Calculations:*

233 (1) Annual Wastewater Production Per House = $6.4 \times 75.5 \text{ (g/person/day)} \times 360 \text{ (days)}$
234 = 173,952 gal/year/house

235 (2) Harvested Water (HW) (in gallons) = $P \text{ (inches)} \times \text{Area (ft}^2\text{)} \times C \times 0.623$
236 = 1.77 (in) $\times 4305.56 \text{ (ft}^2\text{)} \times 1 \times 0.623$
237 = 4,747.7 gal/year/roof (equal to 44% of water needs per
238 person per year for drinking, food, and cooking only)

239 (3) Annual Potential Generated Water Per House = Annual Wastewater + HW
240 = $(173,952 + 4,747.7) = 178,699.7 \text{ gal/year/house}$

241 (4) Annual Irrigation Needs Per Planting Specification Considering the Dripping System Efficiency
242 (90%) = 10% (water loss to dripping irrigation system) + individual planting specification needs =
243 7,618 g/y + 76,180 g/y = 83,798 gal/year. That means only graywater per household can support the
244 annual irrigation needs (of 50% greenery) with 90,154 gal/year extra.

245 3. Results

246 Based on the study, it is feasible to green channels in arid climates relying mainly on reusing locally
247 bio-treated graywater. Moreover, the study shows that not only is it possible to irrigate the 50%
248 greenery of Tahliah Channel, we can actually irrigate a much larger area, but we need to enlarge the
249 tanks capacity. This is only by developing the three separate tanks systems for graywater,
250 blackwater, and rainwater per house unit only from the houses surrounding Tahliah Channel. The
251 question is then, what if this system were to be implemented all over the city?

252 This study shows strong possibility to increase the open space system within Jeddah. This is critical,
253 because of land shortage for public spaces and the challenges of water resources. The recycling
254 process of the suggested model can help reduce the cost of wastewater treatment and the expected
255 rise in the water table due to leakage from existing septic tanks and sanitary pipes, and also the cost
256 of maintaining them. Moreover, an even better solution to this problem is reusing the graywater to
257 green the channels, and not installing more sewer pipe networks, in order to reduce the possibility
258 of a raising water table in Jeddah—whose impact could affect the durability of buildings [15, 16]

259 (Cooke & Ronald, 1982; Cited by Vincent, 2003). This study demonstrates that it is possible to
260 harvest rainwater in each house, which could help reduce the cost of desalination water and the
261 dependency on fossil fuels [17], which may help reduce the impact of Urban Heat Island (UHI)
262 associated with burning fossil fuels for energy.

263 The study proposes only 50% greenery of Tahliah Channel be covered by vegetation with the 666 of
264 the individual planting specification with a very limited number of plant types. However, if the
265 municipality wanted to increase this percentage and increase the ecological performance of these
266 channels it would be possible as long as it remains within the water budget available from the
267 discussed water sources (e.g., RWH and gray water). It is expected that, by implementing more
268 green infrastructure practices surround Tahliah Channel, the amount of non-source pollution can
269 be controlled and treated from the areas that drain to Tahliah Channel as calculated by Bogis [3]
270 (See Figure 8).

271 **4. Discussion and Conclusion**

272 The study answer one of the challenges that may hinder the retrofitting of concrete channels into
273 green channels in one of the most water scarce countries in the world. The study then suggests one
274 of the methodologies to answer whether green infrastructure can be possibly implemented in arid
275 countries or not. That was by testing the relationship between the independent variables (aridity,
276 water resources, and plants irrigation needs) and the dependent variable (increase green spaces).

277 This study will be of interest to those in arid countries who are looking to upgrade and replace
278 traditional, single function drainage infrastructure with more sustainable, green infrastructure
279 systems. More specifically, the recommendations of the study are consistent with the goals the
280 Saudi government's ongoing initiative that advocates for more resilient and sustainable cities.
281 (Vision 2030 year). These recommendations include: 1) implementing cisterns to harvest rainwater
282 per house to reduce the cost of desalination of seawater; 2) implementing separate gray and
283 blackwater systems per house to reduce the required infrastructure and facility and the
284 maintenance for treating wastewater; 3) retrofitting the current concrete channels into green
285 channels to increase the percentage of public open spaces per capita (one of Jeddah City's plans),
286 attract investment, increase walkability, increase biodiversity, and improve the quality of life of the
287 adjacent neighborhoods of the four channels by reducing the reliance on cars, the gas emission
288 effect, and the urban heat island effect, and obesity rates, among others; 4) fostering a healthy
289 relationship with academic and scientific researchers. Universities in return will be encouraged to
290 support scholars and students to establish environmental, social, and economic research that are
291 related to the future redevelopment of these channels to help the Municipality to improve its plans;
292 performing a pre-prediction study of the impact of gentrification and provide a plan to organize
293 and control real estate prices from unreasonable increases that could exacerbate current housing
294 issues in Jeddah and surround the channels; 5) involving landscape architects at the decision table
295 and especially those with the proper knowledge of green infrastructure stormwater management
296 practices (i.e. Low Impact Development LID) and ways of implementation; leveraging the new
297 vision of the country and become one of the first municipalities to promote effective actions that
298 implement sustainability and resiliency in these projects.

299 *3.2. Figures, Tables and Schemes*

300

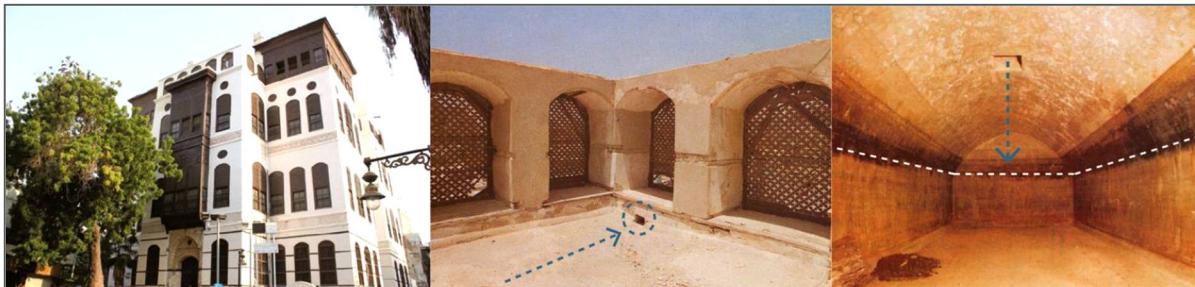
301 **Figure 1.** Location of Jeddah City. (Source: reproduced by Abdalmueen Bogis from google earth maps)

302

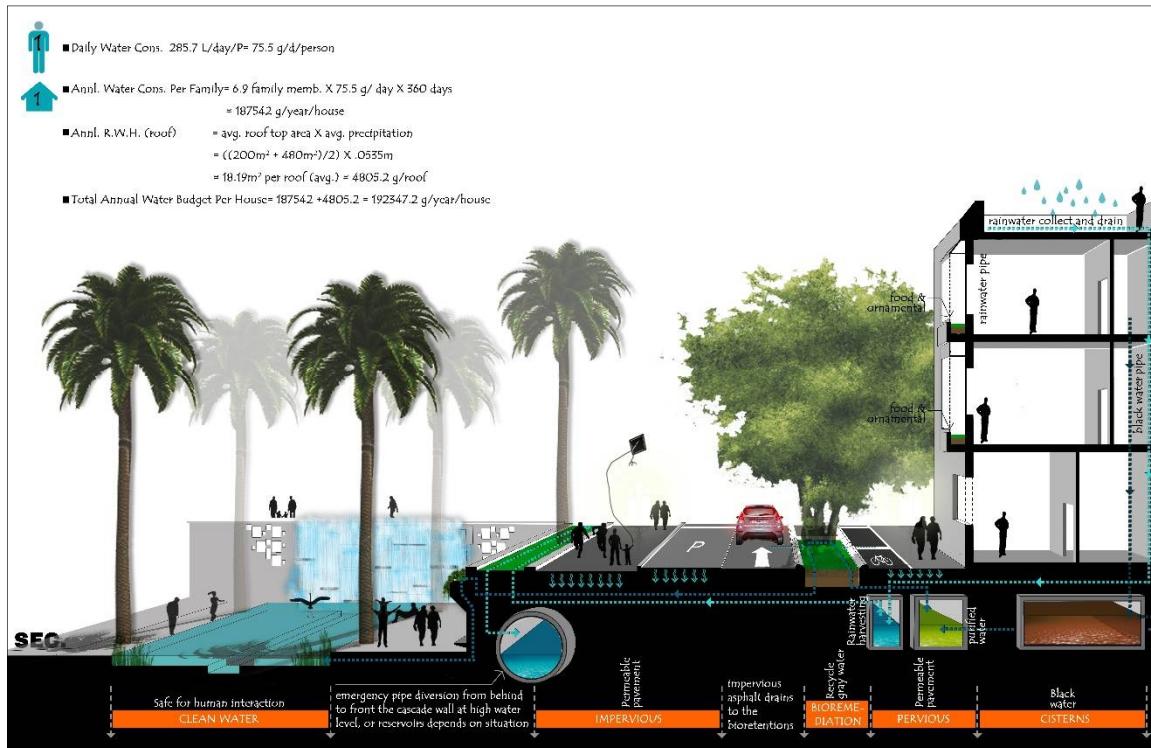
303 **Figure 2.** The engineered stormwater infrastructure fails to cope and adapt to excessive rain rates.
304 (Source: Almadina News Paper)

305

306 **Figure 3.** The crowd of the Northern Corniche during weekends & large land occupation by stormwater
307 channels. (Source: Al-Madinah Newspaper <http://www.al-madina.com/article/198670/>, and Asharq Al-
308 Awsat Newspaper
309 <http://archive.aawsat.com/details.asp?section=43&article=651604&issueno=12051#.WkFh79-nFPY>)


310

311 **Figure 4.** Dumping black-water & solid waste at the drainage channel of Prince Fawaz district, Jeddah City.
312 (Source: Al-Madinah Newspaper, 2010)


313 **Table 1.** Average precipitation in Jeddah from 1981 to 2011 and Evapotranspiration (ETo) data (Source:
 314 Ministry of Defense and Aviation-National Meteorology and Environment Center of Saudi Arabia, and
 315 Ricks, 1992)

Month	Precipitation (inch)			Evapotranspiration		Total (inch)	
	Average	Extreme	Year	inch	Average	Extreme	
Jan	0.42	2.98	2011	0.32	0.1	2.66	
Feb	0.12	1.77	1995	0.4	0	1.37	
Mar	0.09	1.0	1998	0.42	0	0.58	
Apr	0.09	1.7	2005	0.47	0	1.23	
May	0.007	0.17	1987	0.49	0	0	
Jun	0	0	1981-2011	0.49	0	0	
Jul	0.007	0.28	2010	0.5	0	0	
Aug	0.01	0.39	1998	0.51	0	0	
Sep	0.003	0.08	2010	0.49	0	0	
Oct	0.03	1.0	1997	0.42	0	0.58	
Nov	0.87	11.2	1996	0.38	0.49	10.82	
Dec	0.43	2.58	2010	0.31	0.12	2.27	
Total Average Annual Precipitations					0.71	19.51	

316 **Table 2.** The individual water requirements for plant materials contained in the planting specification. The
 317 Annual Irrigation (g) counted the additional 10% water lost in the dripping system. (Source: modified by
 318 author from Jeddah's Municipality Irrigation Guide)

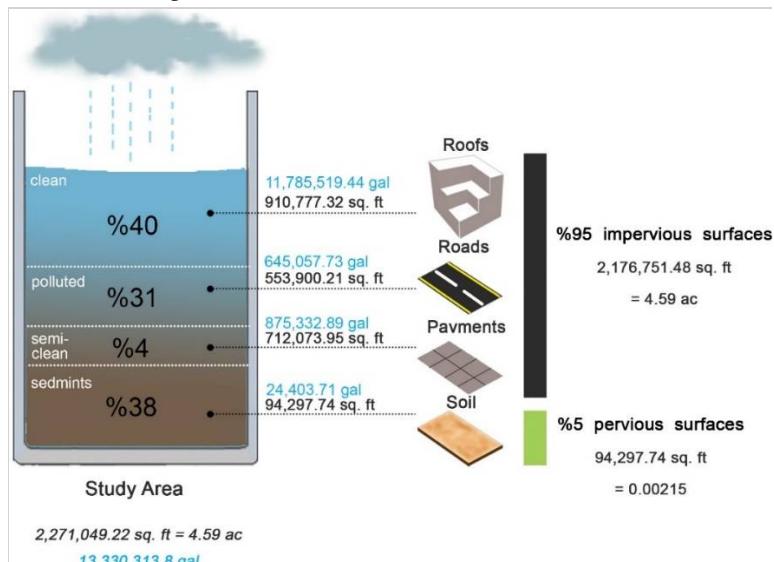
319 **Figure 5.** Traditional rooftop rainwater harvesting with underground cistern (Image of Nasif House, Source:
 320 The National Center for Research and Documentation at Jeddah City)

322

323 **Figure 6.** A model of rainwater harvesting (RWH) collecting from roofs and other surfaces, bio-treatment
 324 planters for gray water, and daily deposit of clean water in the suggested stream per house. (Source:
 325 Abdulkueen Bogis)

326

327 **Table 2.** The individual water requirements for plant materials contained in the planting specification. The
 328 Annual Irrigation (g) counted the additional 10% water lost in the dripping system (Source: modified by
 329 Abdulkueen Bogis from Jeddah's Municipality Irrigation Guide)


Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual (g)/plant	NO. of Plants	Annual Irrigation (g)
Palms g/day	13.2	13.2	17	17	17	26.4	26.4	26.4	17	17	17	13.2	6727.8	x4	29871
Big Trees g/day (cover>65ft ²)	10.5	10.5	13.2	13.2	13.2	21	21	21	13.2	13.2	13.2	10.5	5292.6	x4	23499
Small Shrubs g/day	2	2	2.64	2.64	2.64	3.96	3.96	3.96	2.64	2.64	2.64	2	1027/44	x20	22809
Total Gallons	884	884	1130	1130	1130	1767	1767	1767	1130	1130	1130	884	13,048		76,180

330

331
332
333

Figure 7. From left to right, the number of possible segments (18) multiplied by (37) units to green 50% of Tahliyah Channel. (Source: Abdulkueen Bogis)

334
335
336
337

Figure 8. The required water quality treatment volume based on different catchment surfaces in the selected area that is shown in **Figure 8** (Source: Abdulkueen Bogis)

338 **References**

339 1. Morar, T.; Radoslav, R., Spiridon, L. C., Păcurar, L. Assessing pedestrian accessibility to green space
340 using GIS. *Transylvanian Review of Administrative Sciences* **2014**, 10(42), 116–139.

341 2. EPA-US. Available online:
342 https://www.epa.gov/sites/production/files/201510/documents/greeninfrastructure_collaborative2014_0.pdf (Accessed on 12/15/2017).

344 3. Bogis, A. M. The cultural-social benefits of developing green channels: Case studies and demonstration in
345 Jeddah City, Saudi Arabia. Master Thesis, Virginia Tech, Blacksburg, Virginia, 5/7/2015

346 4. Jeddah Municipality. Open Space and Leisure: Supply, Location and Distribution section 2014a. Online
347 report. (Accessed on 1/6/2014).

348 5. Gehl, J. *Life between buildings: using public space*; Island Press: Washington, DC 2011; pp. 12, ISBN-13: 978-
349 1-59726-827-1.

350 6. Police-UK. Available online: <https://www.police.uk/crime-prevention-advice/anti-social-behaviour/>
351 (Accessed on 10/5/2017).

352 7. [Al-Ekhbariah TV Channel]. (2012, Sep 11). (Desalination in
353 Saudi Arabia) [Video File]. Retrieved from <https://www.youtube.com/watch?v=92i8-UQsI30>

354 8. Jeddah Municipality. Jeddah strategic plan: Infrastructure section 2014b. Online report. (Accessed on
355 1/6/2014).

356 9. Isnasious, Z. (AECOM, Jeddah). Personal communication, 2014.

357 10. Burckhardt, J. Comprehending an account of those territories in Hedjaz which the Mohammedans regard
358 as sacred. In *Travels in Arabia*, 2 vols.; Henry Colburn, London, 1829.

359 11. Waterfall, P. *Harvesting rainwater for landscape use*, 2nd ed.; The University of Arizona: Tucson, AZ 2004;
360 pp. 20.

361 12. Al-Hathloul, S. A., & Anis-ur-Rahmaan, S. The evolution of urban and regional planning in Saudi Arabia.
362 *Ekistics* **1985**, 206-212. Rahman (eds) the imperial of urban and regional planning: Concepts and case studies
363 from the developing world, Xlibris Corporation, 359–374

364 13. Guizani, M. Storm water harvesting in Saudi Arabia: A multipurpose water management alternative. *Water
365 Resources Management* **2016**, 30(5), 1819-1833. doi:10.1007/s11269-016-1255-4

366 14. Ashrq Al-Awsat (Riyadh begins
367 today the phase of water drop from desalination plants for 16 days). Available online on:
368 <http://archive.aawsat.com/details.asp?article=282710&issueno=9574#.WiLyUkqnFPY> (Accessed on
369 10/14/2014)

370 15. Cooke, R. U. *Urban geomorphology in drylands*; New York: Published on behalf of the United Nations
371 University by Oxford University Press, 1982.

372 16. Vincent, P. Jeddah's environmental problems. *Geographical Review* **2003**, 93(3), 394-412. doi:10.1111/j.1931-
373 0846.2003.tb00039.x

374 17. Darwish M. A., Al-Najem N. M., & Lior N. Towards sustainable sweater desalting in the gulf area.
375 *Desalination* **2009**, 235:58–87.