

1 *Type of the Paper: Article*

2 **Analysis of the environmental and productive** 3 **performance of a lean supply chain through** 4 **simulation scenarios**

5 **José Alfredo Jiménez ^{1*}, Salvador Hernández ¹, Edgar Augusto Ruelas ², Roberto Baheza ³, Pedro**
6 **Yáñez ⁴, José Martín Medina ⁵ and Sandra Téllez ⁶, Vicente Figueroa ¹**

7 ¹ National Technology of Mexico in Celaya, Department of Industrial Engineering; Av. García Cubas 1200,
8 Esquina Ignacio Borunda, Celaya, Gto. México. Tel: +52-461-611-7575; alfredo.jimenez@itcelaya.edu.mx (J.
9 A. J.); salvador.hernandez@itcelaya.edu.mx (S. H.), vicente.figueroa@itcelaya.edu.mx (V. F.)

10 ² National Technology of Mexico in Irapuato, Department of Industrial Engineering, Carretera Irapuato -
11 Silao km 12.5 Colonia El Copal, Tel.: +52-462-606-7900, Irapuato, Guanajuato; edruelas@itesi.edu.mx

12 ³ University of Guanajuato at Department of Management Technologies Master Industrial Engineering,
13 Ph.D.. CIATEC, México.; r.baeza@ugto.mx

14 ⁴ Polytechnic University of Guanajuato, Metrology, Av. Universidad Sur 1001, Comunidad Juan Alonso,
15 38483 Cortazar, Gto. México. Teléfono: +52-461-441-4300; pyanez@upgto.edu.mx

16 ⁵ National Technology of Mexico in Celaya, Department of Mechanical Engineering; Av. García Cubas 1200,
17 Esquina Ignacio Borunda, Celaya, Gto. México. Tel.: +52-461-611-7575; martin.medina@itcelaya.edu.mx

18 ⁵ Polytechnic University of Guanajuato, Logistic, Av. Universidad Sur 1001, Comunidad Juan Alonso, 38483
19 Cortazar, Gto. México. Tel.: +52-461-441-4300; stellez@upgto.edu.mx

20 * Correspondence: alfredo.jimenez@itcelaya.edu.mx; Tel.: +52-461-327-5880

21

22 **Abstract:** This article aims to serve as a guide for the construction of supply chain simulation models
23 designed with a lean approach, using Promodel software. To achieve this, a supply chain was
24 designed for a fictitious company located in the City of Celaya, Guanajuato and a set of suppliers
25 located in different cities within the same State. It was used as a google tool to define the distances
26 between each of the companies. As a final result, a representative model of a supply chain was
27 obtained, as well as a methodology that allows the construction of lean supply chains regardless of
28 the number of companies that comprise it. The effect of the variability in the delivery times between
29 suppliers was incorporated into the simulation model, as well as an equation that calculates the
30 pollution emissions of the vehicles that integrate the network that moves the products between the
31 companies. With this work it is possible to represent networks of supply chains of real world
32 companies, where the variability and contamination factor is included, to facilitate the decision
33 making regarding the number of vehicles, inventory levels, quantities to be shipped, frequency in
34 the shipments, etc. with the purpose of contaminating as little as possible and at the same time
35 preventing interruptions in the supply chain using the least amount of resources possible.

36 **Keywords:** Supply chains; simulation model; contamination

37 **1. Introduction**

38 The increase of the competitiveness in all the industrial sectors due to the globalization of the
39 economies is a source of pressure so that the companies must optimize their processes; the foregoing
40 also generates new forms of collaboration between companies that are part of the supply chain. To
41 achieve this, techniques and information technologies are needed to support decision-making; One
42 of these tools is the simulation of systems. The simulation models allow analysis of the type What
43 happens if ...?, To evaluate and quantify the benefits derived from the collaboration of all companies
44 in the supply chain [1].

45 Ramanathan in [2] proposed a simulation model to understand the performance of a supply
46 chain; This highlights the importance of collaboration between companies that belong to the chain.

47 Chatfield in [3] developed a simulator for the integration of the operation of the supply chain;
48 generating a robust and flexible tool that allows to design and analyze supply chain models. This tool
49 measures five important characteristics of the models: the storage model, the architecture of the
50 system, the ease of use, the depth of the model and the characteristics of the outputs.

51 A supply chain faces changes that contribute to increasing its complexity and vulnerability to
52 shocks; a supply chain must resist changes in the environment to survive. Through the simulation
53 alternative supply chains can be evaluated to improve the capacity of recovery to a disturbance [4].
54 There are numerous simulation models built for the design, evaluation and optimization of the
55 supply chain [5].

56 Discrete events simulation is a widely used approach as a support tool in logistics and for the
57 analysis of supply chains since it is a tool that allows to emulate the behavior of this kind of systems
58 [6]. It should be noted that in the supply chains the factor that is always taken into consideration in
59 the design phases is the transportation of the goods; there are three ways to transport goods: land
60 transport, air transport and maritime transport.

61 Based on the above, an 18-step methodology is proposed that facilitates the construction and
62 analysis of supply chain models; and that helps professionals make decisions; the methodology is
63 based on the Promodel package.

64 Mexico is seeking to establish a global leadership in relation to the care of the environment.
65 Recently it has committed to establish 2026 as the peak year of its greenhouse gas (GHG) emissions;
66 as of that year, said emissions should be reduced.

67 The Mexican government has proposed a road map which has been described as a "detailed
68 climate change plan that is the first of its kind among developing nations" [7].

69 At a global level, the fight against climate change has become one of the main topics of
70 international debate [8]. As an example, the following pair of reports is mentioned: Young, Min,
71 young and Jinsoo in [9] measured the CO₂ emissions that are generated internationally due to
72 globalization; on the other hand, Yee et al., in [10] made a detailed analysis of greenhouse gas
73 emissions due to the transport of goods; focusing mainly on the measurement of CO₂. It should be
74 noted that this article considers the CO₂ measurement of the supply chain and also; to achieve an
75 optimal design; tools such as lean manufacturing, simulation and design of experiments are applied.

76 In this document, the design of experiments is applied to identify the factors that significantly
77 affect the response variables as well as to define the optimal operating conditions [11]; in our case,
78 the aim is to reduce delivery time, reduce inventory levels, reduce CO₂ pollution rates and reduce the
79 percentage of leisure in companies due to untimely delivery.

80 Finally, it should be mentioned that variability is considered within the analysis; this factor is
81 presented in a supply chain in the cycle times of every company in its process [12].

82 **2. Model description**

83 According to García in [13], few people dedicate themselves to the art of modeling systems
84 because it is not an easy subject to understand; in this work a simple but valuable system is proposed
85 for the generation of ideas on how to simulate a slender supply chain with an ecological approach.

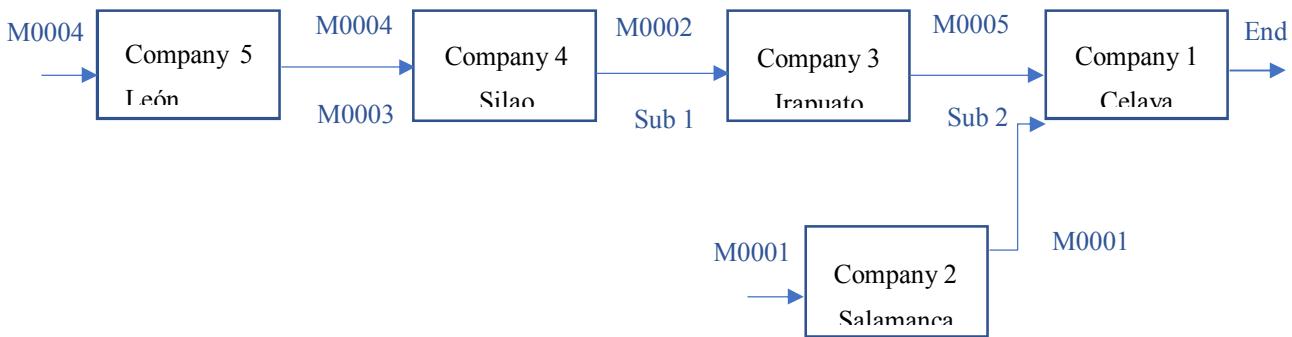
86 Consider a supply chain composed of 5 companies located in different cities of the State of
87 Guanajuato, Mexico (Table 1). Each company was assigned a number from 1 to 5; each company has
88 a geographical location. Table 1 also shows the part numbers that enter and leave each company, the
89 cycle time to produce a single piece and the company to which they will allocate their product.

90
91
92
93
94
95
96
97

98

Table 1. Supply chain description.

i	City	Assembly description	Part	Cycle time	Customer
1	Celaya	M0005, Sub 2	End product	1 min	Final client
2	Salamanca	M0001	M0001	2 min	Company 1
3	Irapuato	M0002, Sub 1	Sub 2	1.5 min	Company 1
4	Silao	M0003,	Sub 1	2.5 min	Company 3
5	León	M0004	M0004	1 min	Company 4


99

100 This section may be divided by subheadings. It should provide a concise and precise description
 101 of the experimental results, their interpretation as well as the experimental conclusions that can be
 102 drawn.

103 To facilitate the analysis, Google maps were used to calculate the distances between the cities;
 104 however, in a real case, the geographical position of each company must be exactly located.

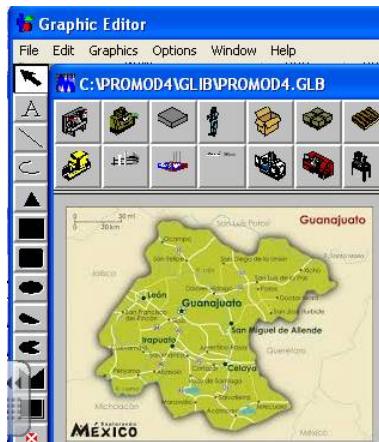
105 According to the data in Table 1, the supply chain operates as follows: Company 5 located in
 106 León city processes and supplies part number M0004 to company 4 located in Silao city. In company
 107 4 the part number M0003 and the part number M0004 are assembled to form sub 1. Part Sub 1 is sent
 108 to company 3 located in Irapuato city; there the number of part M0002 is taken and it is assembled
 109 with the sub 1; the result is the sub 2 assembly that is sent to company 1 located in Celaya city. In
 110 company 2 the part number M0001 is processed and sent to company 1. In company 1 the part
 111 number M0005 is taken and assembled with M0001 and Sub 2 to form a product as desired by the
 112 final consumer.

113 Figure 1 shows the supply chain with its companies, the material that enters and leaves each
 114 company and the flow that each of the products in the supply chain follows until the finished product
 115 is obtained and delivered to the consumer.

Figure 1. The supply chain and its inputs and outputs.

127 3. Materials and Methods

128 In this section we propose a methodology of 18 steps for the construction of simulation models
 129 of supply chains to obtain measures of productive and environmental performance; this
 130 methodology was applied to the system proposed in the previous section; it should be noted that this
 131 methodology can be applied to any supply chain regardless of its size. Below are the steps using the
 132 proposed example:


133 1. Identify the companies that are part of the supply chain and collect data.

134 In this case, there are 5 companies located in the cities of Celaya, Salamanca, Irapuato, Silao and
 135 León. The necessary data are: number of part that supplies each company, batch sizes of the
 136 shipments, frequency of the shipments, cycle time for the elaboration of the individual products,
 137 time in making the shipment, speed of the transport vehicle full and empty, material download
 138 time.

139 2. Use a map to geographically locate each of the companies.

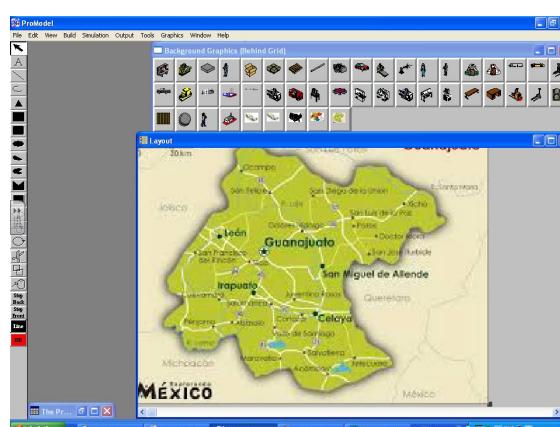
140 The map of the State of Guanajuato was downloaded and added to the Promodel figures library.
 141 To use the image, Promodel has a tool called Graphic Editor. The sequence to load the map is
 142 Tool - Graphic Editor. Copy and paste the image in the layout of the graphic editor. Close the
 143 graphic editor; when the software asks if you want to save the changes, select accept. The map or
 144 image will be available as an icon in the model (Figure 2).

145

146

Figure 2. Graphic editor.

147


148

149

150 3. Use the map image in the layout, declare as background figure.

151 Use the map image in the layout, declare as background figure. The sequence is: Build -
 152 Background of graphics - Behind of grid. (Figure 3)

153

154

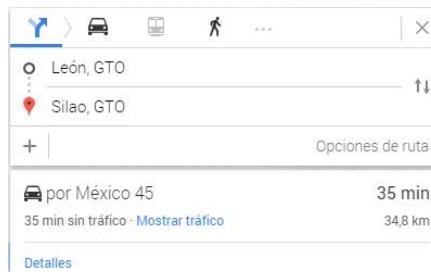
Figure 3. Example with the map of the State of Guanajuato, México.

155

156

157 4. Define the level of each company in the chain: tier 1, tier 2, tier 3, ..., tier n.

158 For the developed example, companies 2 and 3 correspond to Tier 1, Company 4 is Tier 2 and
 159 Company 5 corresponds to Tier 3.


160 5. Define the sequence of the flow of materials through companies from tier n to tier 1.

161 In Figure 1, the sequence of flow of materials through the chain is clearly seen from the previous
 162 section.

163 6. Determine the distances between each of the companies that make up the supply chain and build
 164 a network.

165 It is recommended to use Google maps.

166

167

168

Figure 4. Defining distances in Promodel.

169

170

Figure 4 shows the example of how to calculate the distance between the city of León Gto. and Silao Gto., where the calculated distance is 34.8 km.

171

Table 2 shows the summary of the distances between the cities involved in the supply chain.

172

173

Table 2. Distance between locations.

Source	Target	Distance (KM)
León	Silao	34.8
Silao	Irapuato	37.1
Irapuato	Celaya	64.1
Salamanca	Celaya	43.7

174

7. Define the locations.

175

176

177

178

179

180

181

182

Each location corresponds to a company. The locations must be declared on the map loaded in step 3. The locations will represent each of the companies in the supply chain. Each company will have a warehouse of raw material to allow the arrival of raw materials from its suppliers; and a warehouse of finished product to temporarily store the final product until the quantity requested by the client is met and then the shipment is made. Figure 5 shows the companies and stores of each company.

183

184

185

Figure 5. Location of the cities on the map.

186 8. Define the entities that will move through the supply chain.
187 In the example, there are 8 entities, enough to exemplify the design of a supply chain consisting
188 of 5 companies. The entities are: M0001, M0002, M0003, M0004, M0005, Sub 1, Sub 2 and Final
189 product.
190 9. Define the arrivals.
191 It is assumed that each company already has raw materials in its warehouses. Since each
192 company already has its raw material (M0001, M0002, M0003, M0004, M0005); only arrivals must
193 be declared for entities M0001 to M0005. Otherwise, one more link in the supply chain that would
194 correspond to the supplier of the companies should be declared.
195 10. Define the process according to the sequence followed by the materials, from company 5 to
196 company 1.
197 To build simulation models, basic software knowledge is required.
198 11. Define the network. The network represents the road where the truck moves.
199 The lengths of the segments between nodes represent the distance between cities, for this example
200 the distances are taken from Table 2. To define "meters" as the unit of distance measurement, the
201 following sequence is followed in Promodel: Build - General Information - meters. For example,
202 the distance between the cities of León and Silao is 34.8 km; in Promodel you must enter 34800
203 meters. When defining the network, the interfaces must also be declared; It is recommended that
204 these be from each of the nodes to the stores of entry and exit of each company. In total there will
205 be 5 nodes, one for each company.
206 12. Define the resource (truck).
207 A resource called a truck was defined, which will be responsible for transporting the materials
208 from one company to another. Part of the experimentation consists in evaluating the number of
209 trucks required. In the resource the user must specify the network through which the resource
210 must move. In this case a network called "truck network" was declared. In addition, it is necessary
211 to specify the speeds of the resource; for this example, it is assumed that a full truck moves at a
212 speed of 80 km / hr; however, the software requires that the speed be entered in meters per minute
213 (mpm), therefore a speed of 1333 mpm was specified; the speed when traveling empty was set at
214 95 km / hr or 1583 mpm. The time for the loading operation of a truck was set at 10 minutes and
215 to unload it was set at 15 minutes; the model requires the times in seconds: 600 and 900 seconds
216 respectively. In the experimentation, the variability of loading and unloading times was
217 included; later, the three levels considered are shown.
218 13. Verify the model.
219 First, a visual inspection of the operation of the model was carried out by executing a test run.
220 You must ensure that the movements of the truck follow a logical sequence, trucks with material
221 must arrive at their destination to make the delivery in the entry locations of each company; the
222 finished products of each company must be picked up by the trucks at the collection points and
223 must be delivered to the company to which it supplies.
224 14. Validate the model.
225 There are different ways to validate a model; the most advisable is to compare the statistics of the
226 real data against the statistics of the outputs of the simulation model. Nevertheless, in this
227 example, the test is omitted for the moment given that it is an illustrative example.
228 15. Determine the stabilization period (warm up).
229 In this case it is assumed that the steady state is reached when the first batch of finished product
230 comes out. The stabilization period is different for each case of batch size to be produced.
231 16. Experiment.
232 The application of the experimental design methodology is proposed; the variables are: the size
233 of the lots to be transported, the number of trucks to be used and the variability; with respect to
234 the lots, sizes of 20, 40 and 80 pieces were defined; for trucks the levels are 1, 2 or 3 trucks; for the
235 variability three levels were defined: low, moderate and high. In total there are three variables
236 with three levels each, so we have a design 33. To solve the problem of degrees of freedom for
237 the error, two replicas are proposed per run. In total there are 27 treatments that replicate twice,

238 resulting in 54 experimental runs. The response variables are: the CO₂ pollution indexes, the
239 completion time of a batch requested by a customer, the level of performance of the trucks and
240 the inventory levels in each company.

241 To determine CO₂ emissions, it was considered a practical guide for the calculation of greenhouse
242 gas (GHG) emissions. March 2011 version, proposed by the Interdepartmental Commission on
243 Climate Change [14]. The automotive vehicle proposed for this investigation is the Ford vehicle,
244 sub-brand Transit, version 2/4/5 doors, model 2018, manual transmission, diesel, 4 cylinders, with
245 a power of 125 HP, a 2.2 Liter engine.

246 So that in the final results of each experimental run, the Promodel software was capable of
247 throwing CO₂ measurements, it was necessary to enter 6 variables, the first 5 serve to control the
248 number of trips made from one plant to another and from this way to calculate the total distance
249 covered by the entire fleet, as observed in equation 1.

$$250 \text{ DIST TOTAL} = (34.8 \times \text{DIST 1}) + (37.1 \times \text{DIST 2}) + (64.1 \times \text{DIST 3}) + (43.7 \times \text{DIST 4}), \quad \text{Ec. (1)}$$

251 Where:

252 DIST TOTAL = Total distance covered by the entire fleet

253 DIST 1 = Number of trips from León to Silao

254 DIST 2 = Number of trips from Silao to Irapuato

255 DIST 3 = Number of trips from Irapuato to Celaya

256 DIST 4 = Number of trips from Salamanca to Celaya

257 The sixth variable was used to calculate the CO₂ emitted. For this purpose, the information
258 provided by the government of Mexico was used in the link www.ecovehiculos.gob.mx, where
259 it is possible to determine the CO₂ emitted by any vehicle and vehicle model. In this case,
260 according to the vehicle proposed in this article, there is a CO₂ emission of 270 gr / Km.

261 According to the above, the variable CO₂ that is programmed in the Promodel software is stable
262 through equation 2.

$$263 \text{ CO2} = [(270 \times \text{DISTTOTAL}) \times 2] / 1000 \quad \text{Ec. (2)}$$

264 Where:

265 CO2 = Emission of CO₂, by trucks and all trips made, in kilograms.

266 The reason to multiply by 2 the product of DIST TOTAL and 270, is to consider when the
267 vehicles return empty. The division between 1000 is because the final result of CO2 will be
268 expressed in kilograms instead of grams.

270 17. Document results.

271 The results of all the experimental runs were recorded and analyzed in detail in the following
272 section entitled analysis of results.

273 18. Determine the best conditions of the supply chain and obtain the conclusions.

274 Based on the results observed and the detailed analysis, the conditions of the supply chain that
275 optimize the response variables defined are established. The details of this step are presented in
276 the following section.

277 3. Results

278 The model was constructed according to the steps suggested in the methodology, it was run
279 according to the experiments proposed, where 54 experimental runs were found. In the model, the
280 different factors were included, such as lot size: lots of size 20, 40 and 80; the number of trucks: 1, 2
281 and 3 trucks and the level of variation: low, medium and high. To consider the effect of the variation,
282 it was established that the average cycle times of the processes of each of the companies are
283 distributed according to a normal distribution with the average time and standard deviation, as
284 shown in Table 3.

285

286

287

288

289

Table 3. Distance between locations.

i	City	Cycle time	Cycle time with Variation		
			Low	Half	High
1	Celaya	1 min	N(1,0.5)	N(1,1)	N(1,2)
2	Salamanca	2 min	N(2,0.5)	N(2,1)	N(2,2)
3	Irapuato	1.5 min	N(1.5,0.5)	N(1.5,1)	N(1.5,2)
4	Silao	2.5 min	N(2.5,0.5)	N(2.5,1)	N(2.5,2)
5	León	1 min	N(1,0.5)	N(1,1)	N(1,2)

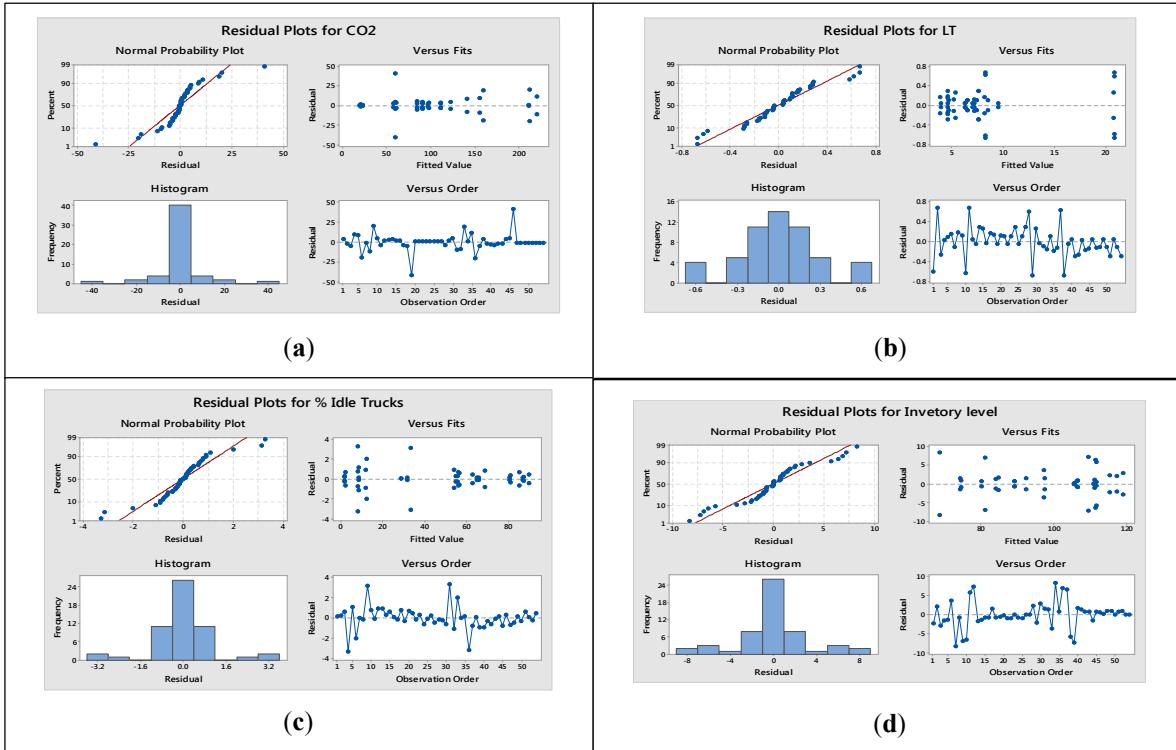
290

291 In accordance with the above, the results shown in Table 4 were obtained. The model was run
 292 until the production of a batch of 80 pieces was achieved, assuming that this is the amount required
 293 by the final customer.

294

Table 4. Results of the 54 runs.

Run	Factors			response variable			
	Lot Size	Trucks	Variation	CO ₂ (Kg)	LT (Hr)	% Idle Trucks	Inventory level
1	20	1	Low	115.28	20.28	1.79	113.19
2	20	1	Half	109.42	21.56	1.92	119.43
3	20	1	High	117.54	20.57	2.73	116.17
4	20	2	Low	165.35	7.24	5.02	90.97
5	20	2	Half	150.37	7.59	9.74	96.06
6	20	2	High	141.23	8.33	10.29	100.96
7	20	3	Low	210.57	4.6	28.78	60.49
8	20	3	Half	209.86	4.8	31.56	79.51
9	20	3	High	232.84	5.3	36.61	74.26
10	40	1	Low	64.71	7.68	8.93	105.12
11	40	1	Half	56.89	9	8.44	117.5
12	40	1	High	60.07	9.59	12.66	116.82
13	40	2	Low	93.49	4.57	54.88	83.18
14	40	2	Half	94.62	4.92	56.10	82.79
15	40	2	High	87.11	5.6	57.31	88.42
16	40	3	Low	98.57	3.94	65.26	73.71
17	40	3	Half	94.10	4.07	65.9	75.86
18	40	3	High	79.21	4.76	69.59	88.42
19	80	1	Low	18.97	6.99	54.73	111.13
20	80	1	Half	19.84	7.31	56.76	110.83
21	80	1	High	21.87	8.62	63.31	110.16
22	80	2	Low	21.08	6.29	80.41	105.71
23	80	2	Half	21.93	6.61	81.38	105.63
24	80	2	High	23.8	7.92	84.45	105.71
25	80	3	Low	21.08	6.29	86.94	105.71
26	80	3	Half	21.93	6.61	87.58	105.71
27	80	3	High	23.8	7.92	89.63	105.63
28	20	1	Low	107.93	21.46	1.44	117.64
29	20	1	Half	114.02	20.22	1.41	115.14
30	20	1	High	127.14	21.2	1.46	121.76
31	20	2	Low	146.4	7.17	11.59	93.86
32	20	2	Half	132.87	7.40	7.53	98.85
33	20	2	High	179.29	8.01	14.34	93.73
34	20	3	Low	212.06	4.82	28.78	77.04
35	20	3	Half	232.36	4.44	31.83	81
36	20	3	High	192.11	5.07	30.32	88.1
37	40	1	Low	55.09	8.93	7.37	117.97
38	40	1	Half	64.14	7.66	8.65	105.95
39	40	1	High	55.41	9.51	10.85	120.4
40	40	2	Low	87.97	4.66	53.07	86.45
41	40	2	Half	86.33	4.34	55.48	85.3
42	40	2	High	82.43	5.08	56.08	89.78


43	40	3	Low	94.89	4.01	65.04	75.34
44	40	3	Half	101.13	3.72	66.17	72.74
45	40	3	High	89.41	4.47	68	89.79
46	80	1	Low	101.13	7.07	55.30	112.3
47	80	1	Half	18.58	7.08	55.37	111.04
48	80	1	High	19.69	8.42	62.44	112.14
49	80	2	Low	19.83	6.39	80.68	107.6
50	80	2	Half	20.63	6.39	80.71	105.68
51	80	2	High	22.54	7.35	85.74	107.06
52	80	3	Low	19.83	6.37	87.12	107.6
53	80	3	Half	20.61	6.39	87.14	105.71
54	80	3	High	22.54	7.35	90.49	105.68

295

296 The results of the runs were introduced to the Minitab 17 software to perform the statistical
 297 analysis of the experiments through the analysis of variance (ANOVA). Before presenting the
 298 ANOVA for each of the response variables, an analysis is presented of the assumptions that must be
 299 met for residuals such as normality, constant variance and independence [15], which can be seen in
 300 figures 6 (a), 6 (b), 6 (c) and 6 (d).

301

302

312 **Figure 6.** Verification of assumptions.
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323

324

325

326

327 In each of the figures 6 (a) to 6 (d) it can be seen in the upper left corner that the blue points
 328 (Residuals) approach the red diagonal line, with which it can be concluded that the assumption of
 329 Normality is met. You can also observe the fulfillment of this assumption through each of the
 330 histograms. The assumption of constant variance can be verified by observing the figure located in
 331 the upper right corner, where it can be seen that the residuals do not have a funnel shape. Finally, in
 332 the lower right corner it can be seen that the order of the residuals has a completely random behavior,
 333 so the assumption of independence is also fulfilled.

334

335

336

337 Once the assumptions have been verified, the next step is to study each of the ANOVAS to
 338 determine which factors have a significant effect on the response variable. The first ANOVA observed
 339 in Figure 7 corresponds to the CO₂ response variable.

337

General Factorial Regression: CO2 versus Lot Size, Trucks, Variation

Factor Information

Factor	Levels	Values
Lot Size	3	20, 40, 80
Trucks	3	1, 2, 3
Variation	3	Low, Half, High

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	26	205065	7887.1	36.50	0.000
Linear	6	182026	30337.7	140.38	0.000
Lot Size	2	166970	83484.8	386.31	0.000
Trucks	2	14815	7407.5	34.28	0.000
Variation	2	241	120.7	0.56	0.579
2-Way Interactions	12	21490	1790.8	8.29	0.000
Lot Size*Trucks	4	20201	5050.2	23.37	0.000
Lot Size*Variation	4	718	179.5	0.83	0.517
Trucks*Variation	4	571	142.7	0.66	0.625
3-Way Interactions	8	1549	193.6	0.90	0.534
Lot Size*Trucks*Variation	8	1549	193.6	0.90	0.534
Error	27	5835	216.1		
Total	53	210900			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
14.7007	97.23%	94.57%	88.93%

338

339

340

341 In Figure 7, it can be seen that the lot size and number of trucks has a significant effect on the
 342 pollution index (CO₂) since its p-value is less than 0.05. This means that depending on the number of
 343 trucks used to move materials between companies and the size of the lot moving between companies,
 344 they will cause the CO₂ that is emitted to the environment to increase or decrease. Later, an analysis
 345 will be carried out to determine the appropriate number of trucks and lot size, to minimize the
 346 contamination index. It can also be observed that the variation factor does not have a significant effect
 347 on CO₂ since its p-value is greater than 0.05, which means that the variability in processing times in
 348 each of the companies does not have an important effect in the CO₂ pollution indexes. Finally, it can
 349 be seen that of the effects of double or triple interaction, the only one that significantly affects CO₂ is
 350 the interaction of lot size and number of trucks. An interesting value obtained is the coefficient of
 351 determination (R²), which is 97.23%, which indicates that the model explains 97.23% of the variability
 352 observed.

353

354

Regarding the lead time variable, the respective ANOVA can be seen in Figure 8.

355

General Factorial Regression: LT versus Lot Size, Trucks, Variation

Factor Information

Factor	Levels	Values
Lot Size	3	20, 40, 80
Trucks	3	1, 2, 3
Variation	3	Low, Half, High

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	26	1233.68	47.449	288.45	0.000
Linear	6	801.41	133.569	811.99	0.000
Lot Size	2	267.44	133.722	812.92	0.000
Trucks	2	524.97	262.486	1595.69	0.000
Variation	2	9.00	4.500	27.35	0.000
2-Way Interactions	12	431.45	35.954	218.57	0.000
Lot Size*Trucks	4	429.89	107.474	653.35	0.000
Lot Size*Variation	4	1.49	0.373	2.27	0.088
Trucks*Variation	4	0.06	0.015	0.09	0.984
3-Way Interactions	8	0.82	0.103	0.62	0.750
Lot Size*Trucks*Variation	8	0.82	0.103	0.62	0.750
Error	27	4.44	0.164		
Total	53	1238.12			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0.405581	99.64%	99.30%	98.57%

356

357

358

359 In Figure 8, it can be seen that the three main factors have a significant effect on the lead time
 360 (LT) since their p-value is less than 0.05. This means that depending on the number of trucks, the lot
 361 size that moves between companies and the variability of each of the companies, will be the lead time
 362 of the batch of 80 pieces to the final customer. From the effects of double or triple interaction, it can

363 be seen that only the interaction between the lot size and the number of trucks is significant.
 364 According to the R^2 , we have that 99.64% of the variability is explained by the model, which means
 365 that the model is able to predict almost perfectly.

366
 367 The ANOVA for the response variable percentage of idle of trucks can be seen in Figure 9.

General Factorial Regression: % Idle Trucks versus Lot Size, Trucks, Variation						
Factor Information						
Factor	Levels	Values				
Lot Size	3	20, 40, 80				
Trucks	3	1, 2, 3				
Variation	3	Low, Half, High				
Analysis of Variance						
Source	DF	Adj SS	Adj MS	F-Value	P-Value	
Model	26	51508.6	1981.1	850.22	0.000	
Linear	6	48757.2	8126.2	3487.48	0.000	
Lot Size	2	34433.8	17216.9	7388.88	0.000	
Trucks	2	14178.4	7089.2	3042.44	0.000	
Variation	2	145.0	72.5	31.11	0.000	
2-Way Interactions	12	2722.4	226.9	97.36	0.000	
Lot Size*Trucks	4	2707.3	676.8	290.46	0.000	
Lot Size*Variation	4	13.2	3.3	1.41	0.256	
Trucks*Variation	4	2.0	0.5	0.21	0.928	
3-Way Interactions	8	28.9	3.6	1.55	0.187	
Lot Size*Trucks*Variation	8	28.9	3.6	1.55	0.187	
Error	27	62.9	2.3			
Total	53	51571.5				
Model Summary						
S	R-sq	R-sq(adj)	R-sq(pred)			
1.52647	99.88%	99.76%	99.51%			

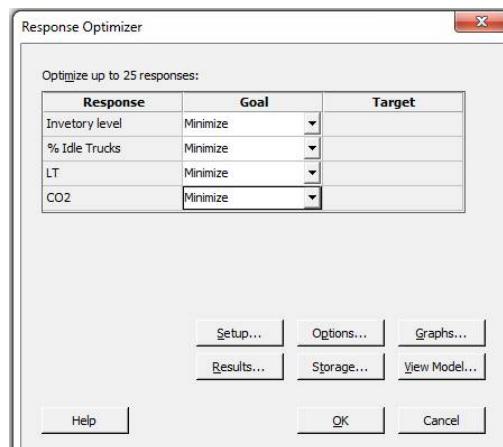
368
 369 Figure 9. ANOVA % Idle of the trucks.
 370

371 In Figure 9, it can be seen that the three factors, lot size, number of trucks and variation in
 372 processing times in the companies, have a significant effect on the % idle, response variable of the
 373 trucks, since their p-value is less than 0.05. This means that the idle percentage of the trucks can be
 374 increased or decreased depending on the number of trucks that are used, the size of the batch moving
 375 between companies and the variability observed in the processes of each company. Of the effects of
 376 double or triple interaction, it is appreciated that only the double effect between lot size and number
 377 of trucks, has a significant effect on the lead time variable, the rest, does not have a significant effect
 378 since its p-value is greater than 0.05. In relation to R^2 , we have that 99.88% of the variability is
 379 explained by the model.
 380

381 Finally, in Figure 10, you can see the ANOVA for the inventory level response variable

General Factorial Regression: Inventory level versus Lot Size, Trucks, Variation

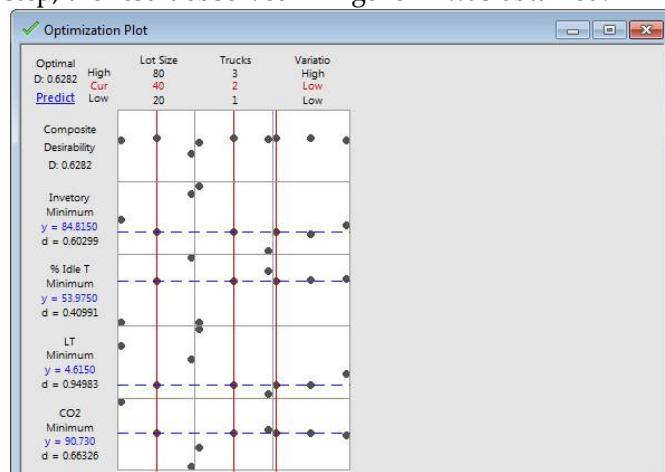
General Factorial Regression: Inventory level versus Lot Size, Trucks, Variation						
Factor Information						
Factor	Levels	Values				
Lot Size	3	20, 40, 80				
Trucks	3	1, 2, 3				
Variation	3	Low, Half, High				
Analysis of Variance						
Source	DF	Adj SS	Adj MS	F-Value	P-Value	
Model	26	11305.4	434.82	20.25	0.000	
Linear	6	8724.8	1454.13	67.73	0.000	
Lot Size	2	2372.6	1186.29	55.25	0.000	
Trucks	2	6206.4	3103.20	144.53	0.000	
Variation	2	145.8	72.90	3.40	0.048	
2-Way Interactions	12	2439.1	203.26	9.47	0.000	
Lot Size*Trucks	4	2163.4	540.84	25.19	0.000	
Lot Size*Variation	4	164.2	41.05	1.91	0.137	
Trucks*Variation	4	111.5	27.87	1.30	0.296	
3-Way Interactions	8	141.6	17.70	0.82	0.589	
Lot Size*Trucks*Variation	8	141.6	17.70	0.82	0.589	
Error	27	579.7	21.47			
Total	53	11885.1				
Model Summary						
S	R-sq	R-sq(adj)	R-sq(pred)			
4.63363	95.12%	90.43%	80.49%			


382
 383 Figure 10. ANOVA % Inventory level.

384 In Figure 10, it can be observed that the three factors, lot size, number of trucks and variation in
 385 the processing times in the companies, has a significant effect on the response variable level of
 386 inventory, since its p-value is less than 0.05. This means that the inventory level can be increased or
 387 decreased depending on the number of trucks that are used, the size of the batch moving between
 388 companies and the variability observed in the processes of each company. It should be mentioned

389 that the p-value of the variability factor was very close to the critical region, since its value was 0.048,
 390 which means that it significantly affects the inventory level variable, but it does so to a lesser extent
 391 than the size of lot and number of trucks. Regarding the effects of double or triple interaction, it is
 392 seen that only the double effect between lot size and number of trucks, has a significant effect on the
 393 level of inventory, the rest, does not have a significant effect since its p value is greater than 0.05. In
 394 relation to R^2 , we have that 95.12% of the variability is explained by the model.

395 The previous analysis in the ANOVAS, serves to determine which factors can affect each of the
 396 response variables defined in this research to then determine the level that each of the factors must
 397 operate in order to operate the system or supply chain in the most efficient way possible. In this sense,
 398 the optimizer of the response variables included in the Minitab 17 software was used. Accordingly,
 399 a criterion must be defined for each response variable, such as between larger better, nominal is better
 400 or smaller better. For example, pollution is a quality feature whose increase is undesirable, so it would
 401 seek to minimize, so it is a variable between smaller better. Delivery time is a very important feature
 402 in a supply chain, whose high values cause breaks in the chains, so you always want to minimize its
 403 value, therefore it has the smallest best feature. With regard to the idle of trucks, according to the
 404 principles of lean thinking, you want to use the least amount of resources, so that idle is desirable to
 405 reduce it. Its characteristic is for this reason, the smaller the better. Finally, for the inventory level
 406 response variable, according to the lean manufacturing philosophy, inventories represent high waste
 407 that must be reduced, for this reason it has a smaller better characteristic and it is necessary to
 408 minimize it.


409 Once the above was clarified, the optimizer of the response variables included in Minitab 17 was
 410 used, as shown in Figure 11.

411
 412
 413
 414

Figure 11. Response optimizer.

After the previous step, the result observed in Figure 12 was obtained.

415
 416

Figure 12. Optimal response.

417

418 According to the result shown by the optimizer, it can be seen that the lot size that must be
419 moved between companies is 40 pieces, 2 trucks must be used for the movement of materials and, as
420 expected, the level of variation in the Process times of the companies, should be at the lowest possible.
421 When establishing the system according to the optimal response, we have the following average
422 answers: Global inventory level, 85 pieces; idle percentage of the entire truck fleet that moves
423 materials between companies, 54%; Average lead time, since the material arrives at the first company
424 until the batch of 80 finished pieces is delivered to the final customer, 4.62 hours and finally; 90.73
425 kilograms of CO₂ emitted by the entire truck fleet to be able to move all the necessary materials
426 between companies to produce a batch of 80 pieces for the final customer.

427

4. Discussion

428 429 430 431 432 433 434 435 436 437

The design of supply chains under a lean and environmental approach is necessary to achieve the objectives of each of the companies that comprise it. In this epoch, it is not only important to worry about the efficiency of the supply chain in terms of economic profitability, but also to think in environmental terms, for this reason it is proposed to integrate several tools, in this article we propose lean manufacturing, simulation and design of experiments. As future research it is proposed to apply the steps suggested in this methodology of construction of supply chains to a real case and document it. Add in the variability factor real data of process times by performing a goodness-of-fit test in the first instance, to determine which is the true probability distribution that the data follow. In addition, other response variables can be added that measure the economic and environmental impact by reducing the CO₂ levels of the supply chain.

438

5. Conclusions

439 440 441 442 443 444 445 446 447 448

In this article we have presented a novel methodology to design supply chains with a lean and ecological approach, based on simulation scenarios and design of experiments. The methodology for a group of fictitious companies was developed, however, it is perfectly applicable for companies that are part of a real-world supply chain. It can be used as software to simulate the Promodel, or any other software that facilitates the discrete event simulation. In this case, the CO₂ pollution index, the lead time, the idle percentage of the trucks and the inventory level were considered as response variables, however, the methodology is not limiting and more response variables can be added, depending on the needs of the company. Likewise, it is possible to add more factors to be analyzed that could affect the response variables, for example, capacities of cargo trucks, type of engine, truck brand, etc. It is proposed as future research to apply the methodology to a real case and document it.

449 450 451 452 453 454

Author Contributions: José Alfredo Jiménez carried out the construction of the simulation model representative of a supply chain and analyzed the results of the simulation scenarios. Salvador Hernández collaborated with the translation and revised the whole paper. Edgar Augusto Ruelas and Roberto Baheza carried out the design of experiments. José Martín Medina proposed the way to measure CO₂ and proposed the equation to introduce it as a variable to Promodel software. Sandra Téllez and Vicente Figueroa designed the fictitious supply chain. Pedro Yáñez revised the results of the design of the experiments.

455 456

Funding: This research received funding from the National Technological Institute of Mexico in Celaya, the authors thank all the support received.

457 458

Acknowledgments: This work was supported by the National Technological Institute of Mexico in Celaya, Project No. 89u5f0 (4204).

459

Conflicts of Interest: The authors declare no conflict of interest.

460

461

462

463

464 **References**

465

466 1. Terzi, S.; Cavalieri S. Simulation in the supply chain context: a survey. *Computers in Industry* **2004**, *53*, 3-16.
467 DOI: 10.1016/S0166-3615(03)00104-0

468 2. Ramanathan, U. Performance of Supply Chain Collaboration—A Simulation Study. *Expert Systems with*
469 *Applications* **2014**, *41*, 210-220. <http://dx.doi.org/10.1016/j.eswa.2013.07.022>

470 3. Dean C.; Chatfield; Terry P. H.; Jack C.; Hayya SISCO: An object-oriented supply chain simulation system
471 *Decision Support Systems* **2006** *42*(1):422-434. <https://doi.org/10.1016/j.dss.2005.02.002>

472 4. Carvalho, H.; Ana, P.; Machado, V.; Acevedo, S.; Macado, V. Supply Chain redesign for resilience using
473 simulation. *Computers and industrial engineering* **2012**. Vol. (62) pp 329 – 341.
474 <https://doi.org/10.1016/j.cie.2011.10.003>

475 5. Young H. L.; Sook H. K. Production-distribution planning in supply chain considering capacity
476 constraints. *Computers & Industrial Engineering* **2002**. Volume 43, Issues 1-2, 1 Pages 169-190.
477 doi.org/10.1016/S0360-8352(02)00063-3

478 6. Antuña A. T.; Stewart R. The application of discrete event simulation and system dynamics in the logistics
479 and supply chain context. *Decision Support Systems* **2012**. Volume 52, Issue 4, Pages 802-815.
480 doi.org/10.1016/j.dss.2011.11.015

481 7. Freeman, L. México marca un hito con su promesa de reducir la contaminación de gases de efecto
482 invernadero. *Scientific American* **2015**, Tomado de ClimateWire con autorización de Environment & Energy
483 Publishing, LLC. www.eenews.net, 202-628-6500

484 8. Montoya, T. J.; Gutiérrez, F. E.; Blanco, E. Conceptual framework for measuring carbon footprint.
485 *Production Planning & Control* **2014**, 37-41. DOI: 10.1080/09537287.2014.894215

486 9. Young, H., Min, K., Seo, J., Yun, B. Supply chain simulation with discrete – continuous combined modeling.
487 *Computers and industrial engineering* **2002**. Vol. (43) pp 375 – 392. 2002. doi.org/10.1016/S0360-8352(02)00080-
488 3

489 10. Yee, V. F.; Simon, P. Jiří, J. K.; Chew, T. L. A review on air emissions assessment: Transportation. *Journal*
490 *of Cleaner Production* **2018**. Volume 194, 1 Pages 673-684 doi.org/10.1016/j.jclepro.2018.05.151 [10]

491 11. Montgomery, D. C. *Diseño y análisis de experimentos* 2nd ed.; Limusa Wiley. México 2005. ISBN 968-18-
492 6156-6

493 12. Taho, Y.; Yiyo, K.; Chao, T. S.; Chia, L. H. (2015). Lean production system design for fishing net
494 manufacturing using lean principles and simulation optimization. *Journal of Manufacturing Systems* **2015**,
495 Volume 34, Pages 66-73 doi.org/10.1016/j.jmsy.2014.11.010

496 13. Eduardo, G. D.; Heriberto, G. R.; Leopoldo, E. C. *Simulación y análisis de sistemas con Promodel*. 2nd ed.;
497 Pearson, México 2013. ISBN 978-607-32-1511-4

498 14. Guía práctica para el cálculo de emisiones de gases de efecto invernadero (GEI). Versión Marzo 2011.
499 Comisión interdepartamental de cambio climático. Catalunya, España.

500 15. Humberto, G. P.; Román, V. S. *Análisis y diseño de experimentos*, 2nd ed.; Mc Grw Hill México, ISBN-10:
501 970-10-6526-3

502

503

504