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Abstract: We study the existence or absence of non-Shannon inequalities for variables that are related
by functional dependencies. Although the power-set on four variables is the smallest Boolean lattice
with non-Shannon inequalities there exist lattices with many more variables without non-Shannon
inequalities. We search for conditions that excludes the existence of non-Shannon inequalities. It is
demonstrated that planar modular lattices cannot have non-Shannon inequalities. The existence of
non-Shannon inequalities is related to the question of whether a lattice is isomorphic to a lattice of
subgroups of a group.
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1. Introduction

The existence of non-Shannon inequalities has received a lot of attention since the first inequality
of this type was discovered by Z. Zhang and R. W. Yeung [1]. The basic observation is that any four
random variables X, Y, Z, and W satisfy the following inequality

2I (Z; W) ≤ I (X; Y) + I (X; Z ⊎W) + 3I (Z; W ∣ X) + I (Z; W ∣ Y) . (1)

Here C⊎D here denotes the random variable that takes values of the form (c, d) where c = C and d = D.
As usual I (⋅; ⋅) and I (⋅; ⋅ ∣ ⋅) denote mutual information and conditional mutual information given by

I (X; Y) =H (X) + H (Y) − H (X ⊎Y) , (2)

I (X; Y ∣ Z) =H (X ⊎ Z) + H (Y ⊎ Z) − H (X ⊎Y ⊎ Z) − H (Z) . (3)

where H denotes the Shannon entropy. The inequality (1) is non-Shannon in the sense that it cannot be
deduced from positivity, monotonicity, and submodularity of the entropy function on the variables
X, Y, Z, and their joins, i.e. satisfaction of the following inequalities

Positivity H (X) ≥ 0, (4)

Monotonicity H (X ⊎Y) ≥ H (X) , (5)

Submodularity H (X ⊎ Z) + H (Y ⊎ Z) ≥ H (X ⊎Y ⊎ Z) + H (Z) , (6)

Positivity and monotonicity were recognized by Shannon [2] while submodularity was first observed
by McGill [3]. It is easy to show that any inequality involving only three variables rather than four can
be deduced from Shannon’s inequalities [4]. The power set of four variables is a Boolean algebra with
16 elements and any smaller Boolean algebra corresponds to a smaller number of variables, so in a
trivial sense the Boolean algebra with 16 elements is the smallest Boolean algebra with non-Shannon
inequalities.

In the literature on non-Shannon inequalities all inequalities are expressed in terms of sets of
variables and their joins. Another way to formulate this is that the inequalities are stated for the
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free ∪-semi-lattice generated by a finite number of variables. In this paper we will also consider
intersections of sets of variables. We note that for sets of variables we have the inequality

I (X; Y ∣ Z) ≥ H (X ∩Y ∣ Z) . (7)

Inequality (7) has even inspired some authors to use I (⋅ ∧ ⋅) as notation for mutual information.
Although non-Shannon inequalities have been known for two decades they have found

remarkable few applications compared with the Shannon inequalities. One of the reasons is that
there exists much larger lattices than the Boolean algebra with 16 elements for which the Shannon
inequalities are sufficient. The simplest examples are the Markov chains

X1 → X2 → X3 → ⋅ ⋅ ⋅ → Xn (8)

where any variable Xj is determined by its predecessor, i.e. the conditional entropies H (Xj+1 ∣ Xj) are
zero for j = 1, 2, . . . , n − 1. For such a chain one has

H (X1) ≥ H (X2) ≥ H (X3) ≥ ⋅ ⋅ ⋅ ≥ H (Xn) ≥ 0. (9)

The inequalities (9) are all instances of the entropy function being monotone, and it is quite clear
that these inequalities are sufficient in the sense that for any sequence of values that satisfies these
inequalities there exists random variables related by a deterministic Markov chain with these values as
entropies.

In this paper we look at entropy inequalities for random variables that are related by functional
dependencies. Functional dependencies give an ordering of sets of variables into a lattice. Such
functional dependence lattices have many applications in information theory, but in this paper we
will focus on determining whether a lattice of functionally related variables can have non-Shannon
inequalities. In order to achieve interesting results we have to restrict our attention to special classes of
lattices.

Non-Shannon inequalities have been studied using matroid theory, but finite matroids are given
by geometric lattices, i.e. atomistic semimodular lattices (see the textbook of Stern [5] for definitions).
For the study of non-Shannon inequalities it is more natural to look at general lattices rather than
geometric lattices because many important applications involve lattices that are not atomistic or not
semimodular. For instance, a deterministic Markov chain gives a lattice that is not atomistic. It is
known that a function is entropic if and only if it is (approximately) equal to the logarithm of the index
of a subgroup in a group [6]. Therefore it is natural to study entropic functions on lattices and their
relations to subgroup lattices.

Some of the results presented in this paper have been published in preliminary form and without
proof [7,8], but since then most of the results have now been strengthened or reformulated. In this
paper all proof details will be given.

In this paper we bridge lattice theory, database theory and the theory of conditional independence,
but sometimes the terminology in these fields do not match. In such cases we give preference to
lattice theory over database theory and preference to database theory over the theory of conditional
independence. Conflicting terminology are commented in footnotes.

2. Lattices of functional dependence

In this section we shall briefly describe functional dependencies and their relation to lattice theory.
The relation between functional dependence and lattices has previously been studied [7,9–13]. This is
also closely related to minimal sets of Shannon-type Inequalities [14,15]. Relations between functional
dependencies and Bayesian networks have also been described [8,16]. Many problems in information
theory and cryptography can be formulated in terms of functional dependencies.
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Example 1. Consider a group consisting of n agents. One might be interested in giving each agent in the group
part of a password in such a way that no single agent can recover the whole password, but any two agents are
able to recover the password. Here the password should be a function of the variables known by any two agents,
but must not be a function of a variable hold by any single agent. The functional dependence structure is a lattice
illustrated in the Hasse diagram Figure 1. The node in the top illustrates the password. Each of the intermediate
nodes prepresents the knowledge of an agent. The bottom node represents no knowledge.

Figure 1. Hasse diagram of the lattice Mn for n = 5.

A ∧-semilattice is a set equipped with a binary operator ∧ that satisfies the following properties:

Commutativity X ∧Y = Y ∧X , (10)

Associativity (X ∧Y) ∧ Z = X ∧ (Y ∧ Z) , (11)

Idempotens X ∧X = X . (12)

For a ∧-semilattice the relation X ∧Y = X defines a preordering that we will denote X ≤ Y. In this paper
we will assume that all semlittices and all lattices are finite. If a ∧-semilattice (L,∧) has a maximal
element then a binary operator ∨ can be defined as

X ∨Y = ⋀
Z≥X
Z≥Y

Z (13)

and then (L,∧,∨) is a lattice.
Let (L,≤) denote a lattice withM as a sub-semilattice, i.e. a subset that is closed under the ∧

operation and with the same maximal element as L. Then a unary operator cl ∶ L → L can be defined
by

cl (X) = ⋀
Z≥X
Z∈M

Z (14)

The operator cl is a closure operator [17], i.e. it satisfies:

Extensivity X ≤ cl (X) , (15)

Monotonicity X ≤ Y implies cl (X) ≤ cl (Y) , (16)

Idempotens cl (cl (X)) = cl (X) . (17)

For any closure operator cl the element X is said to be closed if cl (X) = X. If X and Y are closed then
X ∧Y is closed [18, Lemma 28] so the closed elements of a lattice under a closure operator form a
∧-semilattice.

Proposition 1. Let (L,≤) denote a finite lattice. Assume that a subsetM ofL is closed under the meet operation
and has the same maximal element as L. ThenM is a lattice under the ordering ≤ with lattice operations inM
are given by X ∧M Y = X ∧Y and X ∨M Y = cl (X ∨Y).
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Let (L,≤) denote a lattice. Let ↓ X = {Y ∈ L ∣ Y ≤ X}. Then ↓ (X ∧Y) = (↓ X) ∩ (↓ Y). Therefore we
can identify any finite lattice with a ∩-semilattice in a powerset. Since we will normally identify the
lattice elements with sets of variables we will often use ⊆ and ∩ to denote the ordering and the meet
operation. Then the join operation is cl→ (X ∪Y) and this operation will be denoted by X ⊎Y.

Example 2. If G is a group then a subgroup is defined as a subset that is closed under the group operations. The
closure of a subset of G is the subgroup generated by the subset. The lattice of subgroups form a ∩-semilattice
in the lattice of all subsets of the group. Let G denote a finite group. For any subgroup G̃ ⊆ G we associate the
variable XG̃ that map an element g ∈ G into the left coset gG̃. Then the subgropu lattice of G is mapped into a
lattice of variables where the subset ordering of subgroups is equivalent to functional dependences between the
corresponding variables.

Proposition 2. If cl is a closure operator on a lattice then the relation X → Y defined by cl(X) ⊇ Y satisfies the
following properties.

Extensivity X → Y implies X → X ⊎Y , (18)

Monotonicity1 X ⊇ Y implies X → Y , (19)

Transitivity If X → Y and Y → Z, then X → Z . (20)

If the properties (18-20) are satisfied we say that the relation→ satisfies Armstrong’s axioms [19] 2.

Proof. To prove extensivity (18) assume that cl(X) ⊇ Y. Using extensivity (15) we also get cl(X) ⊇ X.
Combining these two ineqalities gives cl(X) ⊇ X ⊎Y as desired.

To prove monotonicity (19) assume that X ⊇ Y. Extensivity (15) gives cl (X) ⊇ X and transitivty of
⊇ then implies cl (X) ⊇ Y.

To prove transitivity (20) assume that cl(X) ⊇ Y and cl(Y) ⊇ Z. Using monocity (16) gives
cl (cl(X)) ⊇ cl(Y). Idempotence (17) implies cl (X) ⊇ cl (Y). Transitivity of ⊇ gives cl (X) ⊇ Z.

If L is a lattice with a relation → that satisfies Armstrong’s axioms then we say that a lattice
element X is →closed if X → Y implies that X ⊇ Y.

Theorem 1. Let L be finite lattice with a relation → that satisfies Armstrong’s axioms. Then the set of→closed
elements form a lattice with the same maximal element as L. The relation X → Y holds if and only if cl (X) ⊇ Y
where cl denotes the closure operator with respect to the semilattice.

Proof. Assume that X1 and X2 are closed and that X1 ∩X2 → Y. Monotonicity (19) implies Xi → X1 ∩X2

and then transitivity (20) implies that Xi → Y. Since Xi is closed we have Xi ⊇ Y. Since this holds for
both i = 1 and i = 2 we have X1 ∩X2 ⊇ Y implying that X1 ∩X2 is closed. Monotony (19) also implies
that the maximal element of L is closed so that the set of closed elementsM form a ∩-semilattice with
a closure operator clM.

Let cl denote the closure with respect toM. We will prove that X → cl (X). Let X1 = X. Assume
that X1 is not →closed. Then there exists Y1 such that X1 → Y1 and X1 ⊉ Y1. Using extensivity (18) we
get X1 → X1 ⊎Y2. Define X2 = X1 ⊎Y1. Then X1 → X2 and X1 ⊂ X2. Iterate this construction so that

X1 → X2 → ⋅ ⋅ ⋅ → Xn , (21)

X1 ⊂ X2 ⊂ ⋅ ⋅ ⋅ ⊂ Xn . (22)

1 Monotonicity of→ is called reflexivity in the literature on databases. We reserve the notion of reflexivity to the relation X → X
in accordance with the terminology for ordered sets. In database theory the property X → X is called self determination.

2 In the literature on databases extensivity (18) is replaced by an appearently stronger property called augmentation, but in a
finite lattice augmentation can be proved from extensivity, monotonicity, and transitivity. See Appendix A for details.
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Since the lattice is finite the construction must terminate and when it terminates Xn is closed. Using
transitivity we get X → Xn and X ⊆ Xn. Since cl (X) is the smallest closed element greater than X we
have X → cl (X).

If cl (X) ⊇ Y then cl (X) → Y by monotonicity (19) and then X → Y by transitivity (20). If X → Y
then cl (X) → Y. Using that cl (X) is →closed we get cl (X) ⊇ Y.

We will look at functional dependencies in databases. Assume that a set of records are labeled
by elements in a set A. In statistics the records are the individual elements of a sample. For each
record a ∈ A the database contain the values of various attributes given by a number of functions
from A to a the set of possible attributes. Sets of such functions will be denoted by capital letters
and these will be our variables. We say that X determines Y and write X → Y if there exists some
function f such that Y(a) = f (X(a)) for any record a ∈ A. Then → gives a relation that satisfies
Armstrong’s axioms. Armstrong proved that these axioms form a complete set of inference rules [19].
That means that if a set A of functional dependencies is given and a certain functional dependence
X → Y holds in any database where all the functional dependencies in A hold, then X → Y holds in that
database. Therefore, for any functional dependence X → Y that cannot be deduced using Armstrong’s
axioms, there exists a database where the functional dependence is violated [20,21]. As a consequence,
there exists a database where a functional dependence holds if and only if it can be deduced from
Armstrong’s axioms. Using the result that Armstrong’s axioms are equivalent to that the closed sets
form a lattice this result is easy to prove.

Theorem 2. For any finite lattice L there exist a database with a set of related variables such that the elements
of the lattice corresponds to closed sets under functional dependence.

Proof. As set of records we take the elements of the lattice L. To each Y ∈ L we associate a function
fY ∶ L → L given by fY (X) = Y ∩X. If Y1 ⊇ Y2 then

fY2 (X) = Y2 ∩X

= Y2 ∩ (Y1 ∩X)
= fY2 ( fY1 (X))

(23)

so that fY2 = fY2 ○ fY1 . Therefore fY1 → fY2 .
Assume that fY1 → fY2 . Let X1 = Y1 and X2 = Y1 ⊎ Y2. Then fY1 (X1) = fY1 (X2) = Y1 while

fY2 (X1) = Y1 ∩Y2 and fY2 (X2) = Y2. Using that fY1 → fY2 we get Y1 ∩Y2 = Y2 so that Y1 ⊇ Y2.

We have seen that to a subgroup lattice of a group there exists a lattice of functional dependence.
The opposite is also true. To each database with attributed related by functional dependence there is a
group. The construction is as follows. Let A denote a set of records. Let G = Sym(A) the symmetric
group consisting of permutations of the records. If X is a function on A then we define the stabilizer
grou GX as the set of permutations that leave X invariant, i.e. permutations π ∈ Sym(A) such that
X(π(a)) = X(a) for all a ∈ A. Then X → Y if and only if GX ⊆ GY. In this way the lattice of functional
dependence lattice of a database can be mapped into a lattice of subgroups of a group.

Combining Theorem 2 with the stabilizers subgroups of the symmetric group of a database we
get the following result that was first proved by Whitman in 1946 [22]

Corollary 1. Any finite lattice can be represented as a functional dependence lattice generated by subgroups of
a group.
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3. Polymatroid functions and separoids

Definition 1. On a lattice submodularity of a function h is defined via the inequality h (X) + h (Y) ≥
h (X ⊎Y) + h (X ∩Y). If the submodular inequality holds with equality we say that function is modular. A
polymatroid function on a lattice is a function that is non-negative, increasing, and sub-modular.

Example 3. Let L be finite atomistic lattice with a ranking function r ∶ L → R. Then L is a geometric lattice if
and only if the function r is polymatroid [5, Cor. 1.9.10].

For a polymatroid function h on a lattice one may introduce a function Ih (⋅; ⋅ ∣ ⋅) that corresponds
to conditional mutual information by

Ih (X; Y ∣ Z) = h (X ⊎ Z) + h (Y ⊎ Z) − h (X ⊎Y ⊎ Z) − h (Z) . (24)

One can rewrite Ih (⋅; ⋅ ∣ ⋅) as

Ih (X; Y ∣ Z) = h (X ⊎ Z) + h (Y ⊎ Z) − h (X ⊎Y ⊎ Z) − h ((X ⊎ Z) ∩ (Y ⊎ Z))
+ h ((X ⊎ Z) ∩ (Y ⊎ Z)) − h (Z) . (25)

Since h is monotone and submodular

Positivity Ih (X; Y ∣ Z) ≥ 0. (26)

It is straight forward to verify that

Symmetry Ih (X; Y ∣ Z) = Ih (Y; X ∣ Z) , (27)

Chain rule Ih (X; Y ⊎ Z ∣ W) = Ih (X; Y ∣ W) + Ih (X; Z ∣ Y ⊎W) . (28)

We will say that a function I(⋅; ⋅ ∣ ⋅) that satisfies positivity (26), symmetry (27) and the chain rule (28) is
a separoid function.

Proposition 3. If I (⋅, ⋅ ∣ ⋅) is a separoid function then the following property is satisfied.

Monotonicity Y ⊆ Z impliesI (X; Y ∣ Z) = 0 . (29)

Proof. Assume that Y ⊆ Z. We can use the chain rule (28) to get

I (X; Y ∣ Z) = I (X; Y ⊎Y ∣ Z)
= I (X; Y ∣ Z) + I (X; Y ∣ Y ⊎ Z)
= 2 ⋅ I (X; Y ∣ Z) .

(30)

Hence monotonicity (29) is satisfied.

The relation Ih (X; X ∣ Z) = 0 is equivalent to h (X ⊎ Z) = h (Z), and this relation will be denoted
X →h Z. The relation →h satisfies Armstrong’s axioms and the most instructive way to see this is via
separoid relations.
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If h is a polymatroid function then the relation Ih (X, Y ∣ Z) = 0 ill be denoted X áh Y ∣ Z. Following
Dawid et. al. [23,24] we say that a relation (⋅ á ⋅ ∣ ⋅) on a lattice (L,∩,⊎) is a separoid relation, if it has the
following properties:

Monotonicity3 Y ⊆ Z implies X á Y ∣ Z , (31)

Symmetry X á Y ∣ Z implies Y á X ∣ Z , (32)

Chain rule X á Y ⊎ Z ∣ W, if and only if X á Y ∣ W and X á Z ∣ Y ⊎W . (33)

With this definition we see that áh is a separoid relation. The properties (31-33) should hold for all
X, Y, Z, W ∈ L. In this paper we are particularly interested in the case where the subsets are not disjoint.
In the literature on Bayesian networks and similar graphical models the focus has been on disjoint sets
where only the last two properties (32-33) are used to define a semi-graphoid relation [26]. See also [27,
Remark 2.5] where it is noted that semi-graphoid relations can be defined on join semi-lattices.

A long list of properties for the notion of independence was given by Paolini [25], but Studený
has proved that one cannot deduce all properties of statistical conditional independence from a finite
list of axioms [27,28].

Proposition 4. A separoid relation (⋅ á ⋅ ∣ ⋅) on a lattice satisfies the following properties.

Extensivity4 X á Y ∣ Z implies X á Y ⊎ Z ∣ Z , (34)

Transitivity If X á Y ∣ W and X á Z ∣ Y ⊎W, then X á Z ∣ W . (35)

Proof. To prove extensivity (34) assume that X á Y ∣ Z, which is equivalent to X á Y ∣ Z ⊎ Z.
Monotonicity (31) gives X á Z ∣ Z. The conclusion X á Y ⊎ Z ∣ Z can be obtained by the chain rule (33).

To prove transitivity (35) assume that X á Y ∣ W and X á Z ∣ Y ⊎W. The chain rule (33) applied
twice gives X á Y ⊎ Z ∣ W and X á Z ∣ W.

In a set of random variables we note that if Y is independent of Y given X, then Y is a function of
X almost surely. If Y á Y ∣ X we write X →á Y.

Theorem 3. If (L,∩,⊎) is a lattice with a separoid relation (⋅ á ⋅ ∣ ⋅) then the relation →á satisfies Armstrong’s
axioms. The relation (⋅ á ⋅ ∣ ⋅) restricted to the lattice of closed lattice elements is separoid.

Proof. Extensivity (18) of→á follows directly from extensivity (34) of á.
Monotonicity (19) follows directly from monotonicity (31).
To prove transitivity of →á assume that X →á Y and Y →á Z. Monotonicity (31) implies that

Z á X ∣ Z ⊎Y, which by the chain rule (33) implies Z á Z ⊎ X ∣ Y. By the chain rule (33) we have
Z á Z ∣ Y ⊎X. Monotonicity (31) also gives Z á Y ∣ Y ⊎X, which together with X →á Y together imply
that Z á Y ∣ X by transivity (35). Transitivity (35) then implies Z á Z ∣ X.

To prove that the relation (⋅ á ⋅ ∣ ⋅) restricted to the lattice of closed lattice elements is separoid one
just has to prove that X á Y ∣ Z if and only if X á clá (Y) ∣ Z if and only if X á Y ∣ clá (Z). This follows
from Armstrong’s results.

The significance of this theorem is that if we start with a separoid relation on a lattice then this
separoid relation is also separoid when restricted to elements that are closed under the relation→á.

3 The term monotonicity was used for a different concept by Paolini [25]. In [23,24] a weaker condition than monotonicity
was used but their condition together with the chain rule implies monotonicty.

4 The property that we call extensivity (34) was called normality by Paolini [25].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 September 2018                   doi:10.20944/preprints201809.0035.v1

http://dx.doi.org/10.20944/preprints201809.0035.v1


8 of 26

Theorem 4. Any finite lattice can be represented as a closure system of an separoid relation defined on a
power-set.

Proof. For any finite lattice L one identify the elements with subgroups of a group G. If the group
G is assigned a uniform distribution, then the variable corresponding to a subgroup will also have a
uniform distribution. With this distribution a variable is independent of itself given another variable if
and only if the other variable determines the first variable. Therefore statistical independence with
respect to the uniform distribution on G gives a separoid relation for which the closure is the original
lattice.

Assume that X and Y are →h closed. Then

h (cl→h (X ⊎Y)) + h (X ∩Y) = h (X ⊎Y) + h (X ∩Y)
≤ h (X) + h (Y) .

(36)

Therefore h restricted to the→h closed elements is polymatroid. We may summarize these observations
in the following proposition.

Proposition 5. If h is a polymatroid function defined on the lattice (L,⊆) then the relation →h satisfies
Armstrong’s axioms. The function h restricted to the lattice of→h closed elements is polymatroid.

We recall that a pair of point (Y, Z) is said to be a modular pair and we write YMZ if Y ∩Z ⊆ X ⊆ Z
implies that

(X ⊎Y) ∩ Z = X . (37)

If all pairs are modular we say that the lattice is modular and we have

The modular law X ⊎ (Y ∩ Z) = (X ⊎Y) ∩ Z . (38)

when X ⊆ Z.

Proposition 6. If (⋅ á ⋅ ∣ ⋅) is a serapoid relation on a lattice and

Y á Z ∣ Y ∩ Z (39)

then YMZ in the lattice of closed elements. In particular, if h is a polymatroid function on a lattice and

h(Y) + h(Z) = h(Y ∩ Z) + h(Y ⊎ Z), (40)

then YMZ in the lattice of closed elements.

Proof. If Y ∩ Z ⊆ X ⊆ Z then we have the following sequence of implications.

Y á Z ∣ Y ∩ Z (41)

Y á X ⊎ Z ∣ Y ∩ Z (42)

Y á Z ∣ X ⊎ (Y ∩ Z) (43)

Y á Z ∣ X (44)

X ⊎Y á Z ∣ X (45)

(X ⊎Y) ∩ Z á (X ⊎Y) ∩ Z ∣ X (46)

(47)

Hence X →á (X ⊎Y) ∩ Z and cl (X) = cl ((X ⊎Y) ∩ Z) .
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If á is separoid then according to extensivity (34) the relation X á Y ∣ Z implies

X ⊎ Z á Y ⊎ Z ∣ Z (48)

so that Z ⊇á (X ⊎ Z) ∩ (Y ⊎ Z) ⊇á Z. We define the relation X áM Y ∣ Z by

Z = (X ⊎ Z) ∩ (Y ⊎ Z) . (49)

Theorem 5. If a polymatroid function h on a lattice is modular then the lattice of→h closed elements is modular.
If the lattice is modular then X áh Y ∣ Z if and only X áM Y ∣ Z in the lattice of closed elements.

Proof. If the function h is modular then all pairs of elements are modular in the lattice of h-closed
elements so the lattice of closed elements is modular. In a modular lattice

Ih (X, Y ∣ Z) = h ((X ⊎ Z) ∩ (Y ⊎ Z)) − h (Z) (50)

so that X áh Y ∣ Z holds when Z →h (X ⊎ Z) ∩ (Y ⊎ Z) .

The following result appear in [23] with a longer proof.

Corollary 2. For a lattice the relation X áM Y ∣ Z is separoid if and only if the lattice is modular.

Proof. Assume that the lattice is modular. Then the ranking function r is modular and X →r Y if and
only if X ⊇ Y. Therefore X áM Y ∣ Z is equivalent to the serapoid relation Ir (X, Y ∣ Z) = 0.

Assume that the relation áM is separoid. Since X áM Y ∣ X ∩Y we have that XMY. Since all pairs
are modular the lattice is modular.

4. Entropy in functional dependence lattices

Let L denote a lattice with maximal element m. Let Γ (L) denote the set of polymatroid functions
on L. The set Γ (L) is polyhedral and often we may normalize the polymatroid functions by by
replacing h (⋅) by h (⋅) /h (m). In this way we obtain a polytop that we will denote Γ1 (L).

Definition 2. A function h ∈ Γ (L) is said to be entropic if there exists a function f from L into a set of random
variables such that h (X) = H ( f (X)) for any element X in the lattice.

Let Γ∗1 (L) denote the set of normalized entropic functions on L and let Γ̄∗1 (L) denote the closure
of Γ∗ (L) .

Definition 3. A lattice is said to be a Shannon lattice if any polymatroid function can be realized approximately
by random variables, i.e. Γ1 (L) = Γ̄∗1 (L) .

One may then check whether a lattice is a Shannon lattice by checking that the extreme
polymatroid functions are entropic or can be approximated by entropic functions.

Example 4. Let G denote a finite group. For any subgroup G̃ ⊆ G we associate the variable XG̃ that map an
element g ∈ G into the left coset gG̃. The number of possible values of XG̃ is ∣G ∶ G̃∣ = ∣G∣∣G̃∣ . Assume that the

subgroups are given a functional dependence structure where where a variable X is given by a function A →B. If
A has n elements then the groups of permutations G has n! elements. The subgroup that leaves X invariant has

Πb∈B (n ⋅ P (X = b))! (51)
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element. Therefore

ln (∣G ∶ GX ∣) = ln( n
Πb∈B (n ⋅ P (X = b))!

)

≈ −n ⋅ ∑
b∈B

P (X = b) ln (P (X = b))

= n ⋅ H (X) .

(52)

If U is the uniform distribution on the finite group G then the distribution of XG̃ is uniform and the entropy
is H (XG̃) = ln (∣G∣) − ln (∣G̃∣) . It has been proved that set of entropic functions generated Therefore the
polymatroid functions generated by groups has Γ̄∗ (L) as closure [4].

From Definition 3 we immediately get the following result.

Proposition 7. If L is a Shannon lattice and M is a subset that is a ∩-semi-lattice then M is a Shannon lattice.
In particular all sub-lattices of a Shannon lattice are Shannon lattices.

Proof. Assume that L is a Shannon lattice and that M is a sub-lattice. Let h ∶ M → R denote a
polymatroid function. For ` ∈ L let ˜̀ denote the m ∈ M that minimize h (m) under the constraint
that m ⊇ `. Define the function h̃ (`) = h ( ˜̀) . Now h̃ is an extension of h and with this definition h̃ is
non-negative and increasing. For x, y ∈ Lwe have

h̃ (X) + h̃ (Y) = h (X̃) + h (Ỹ)
≥ h (X̃ ⊎ Ỹ) + h (X̃ ∩ Ỹ)
≥ h̃ (X ⊎Y) + h̃ (X ∩Y)

(53)

because X̃ ⊎ Ỹ ≥ X ⊎Y and X̃ ∩ Ỹ ≥ X ∩Y. Hence h̃ is submodular. By the assumption h̃ is entropic so
the restriction of h̃ to M is also entropic.

With these results at hand we can start hunting non-Shannon lattices. We take a lattice that may or
may not be a Shannon lattice. We find the extreme normalized polymatroid functions. These extreme
polymatroid functions can be found either by hand or by using some suitable software that can find
extreme points of a convex polytope specified by a finite set of inequalities. For instance the R program
with package rcdd can find all extreme points of a polytope. For each extreme point we determine
the lattice of closed elements using Proposition 5. These lattices of closed sets will often have a much
simpler structure than the original lattice and the goal is to check if these lattices are Shannon lattices
or not. It turns out that there are quite few of these reduced lattices and they could be considered as
the building blocks for larger lattices.

We recall that an element i is ⊎-irreducible if i = X ⊎Y implies that i = X or i = Y. An ∩-irreducible
element is defined similarly. An element is double irreducible if it is both ⊎-irreducible and ∩-irreducible.
The lattice denoted Mn is a modular lattice with a smallest element, a largest element and n double
irreducible elements arranged in-between.

Theorem 6. For any n the lattice Mn is a Shannon lattice.

Proof. The proof is essentially the same as the solution to the cryptographic problem stated in the
beginning of Section 3. The idea is that one should look for groups with a subgroup lattice Mn and
then check that the subgroups of such group have the right cardinality.

Let the values in the double irreducible elements be denoted h1, h2, . . . , hn. If n = 1 the extreme
polymatroid functions are h1 = 0 and h1 = 1 and these points are obviously entropic. If n = 2 the
extreme points are (h1, h2) = (0, 1) and (h1, h2) = (1, 0) and (h1, h2) = (1, 1) , which are all entropic.
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Assume n ≥ 3. Then the values should satisfy the inequalities

0 ≤ hi ≤ 1 , (54)

hi + hj ≥ 1 . (55)

If (h1, h2, . . . , hn) is an extreme point then each variables should satisfy one of the inequalities with
equality. Assume hi = 0. Then sub-modularity implies that hj = 1 for j ≠ i. The extreme point
(1, 1, . . . , 1, 0, 1, . . . , 1) is obviously entropic. If hi = 1 this gives no further constraint on the other values,
so it corresponds to an extreme point on a lattice with one less variable. Finally assume that hi + hj = 1
for all i, j. Then hi = 1/2 for all i.

Corollary 3. Any polymatroid function that only takes the values 0, 1/2, and 1 is entropic.

Proof. Assume that the polymatroid function h only takes the values 0, 1/2, and 1. Then h defines a
separoid relation and the closed elements form a lattice isomorphic to Mn for some integer n. The
function h is entropic on Mn so h is also entropic on the original lattice.

Lemma 1. If h is submodular and increasing on ∩-irreducible elements then h is increasing.

Proof. Assume that h is submodular and increasing on ∩-irreducible elements. We have to prove that
if X ⊇ Z then h (X) ≥ h (Z) . In order to obtain a contradiction assume that Z is a maximal element
such that there exist an element X such X ⊇ Z but h (X) < h (Z) . We may assume that X cover Z. Since
h is increasing at ∩-irreducible elements Z cannot be ∩-irreducible. Therefore there exists a maximal
element b such that Y ⊇ Z but Y ⊉ X. Since X cover Z we have X ∩Y = Z. According to the assumptions
h (X) + h (Y) ≥ h (X ⊎Y) + h (X ∩Y) and h (X ⊎Y) ≥ h (Y) because Z is a maximal element that violates
that h is increasing. Therefore h (X) ≥ h (X ∩Y) = h (Z) .

Theorem 7. Any lattice with 7 or fewer elements is a Shannon lattice.

Proof. Up to isomorphism there only exist finitely many lattices with 7 elements or less. These are
listed in the appendix. Each of these lattices has finitely many extreme polymatroid functions. These
extreme polymatroid functions can be found by hand or by using the R program with package rcdd.
All the extreme polymatroid functions on these lattices can be represented by a trivial lattice, or by
2, or by M5, or by M6, or by M7. All these lattices are representable and thereby they are Shannon
lattices.

The number of lattices grow quite fast with the number of elements and the number of elements
is not the best way of comparing lattices.

1

3/4 3/4 3/4 3/4 3/4

1/2 1/2 1/2 1/2

0

Figure 2. The Matúš lattice with a non-entropic polymatroid function.
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The Boolean lattice with four atoms is the smallest non-Shannon Boolean algebra. Nevertheless
there are smaller non-Shannon lattices. Figure 2 illustrates the Matúš lattice5, which is a lattice with
just 11 elements that violates Inequality (1). This corresponds to the fact that the lattice in Figure 2 is
not equivalent to a lattice of subgroups of a finite group. The lattices that are equivalent to lattices of
subgroups of finite groups have been characterized [29], but the characterization is too complicated to
describe here. Using the ideas from [30] one can prove that the Matúš lattice in Figure 2 has infinitely
many non-Shannon inequalities. Therefore any lattice that contains the Matúš lattice as a ∩-semilattice
also has infintely many non-Shannon inequalities. We conjecture that if a lattice does not contain the
Matúš lattice as a ∩-semilattice then it is a Shannon lattice.

The result of Matúš has recently found a parallel in matroid theory. An infinite set of inequalities
is needed in order to characterize presentable matroids [31–33].

5. The skeleton of a lattice

In this section we will develop a cutting-and-gluing technique that can be used to handle many
lattices, but it is especially useful for planar lattices. We present the notion of tolerance. Further details
about this concept can be found in the literature [5,34]

Definition 4. A symmetric and reflexive relation Θ on a lattice is called a tolerance relation if X1ΘX2 and
Y1ΘY2 implies

(X1 ∩X2)Θ (Y1 ∩Y2) (56)

and

(X1 ⊎X2)Θ (Y1 ⊎Y2) . (57)

If Θ is a tolerance relation then for any X the set {Y ∈ L ∣ XΘY} is an interval in the lattice. These
intervals are called the blocks of Θ and the blocks will be denoted [X]Θ . For a tolerance relation the
blocks may be considered as elements of the factor L/Θ and this factor has a natural structure as a
lattice. Congruence relations are special cases of tolerance relations, but in general the blocks of a
tolerance relation may overlap. We note that if the intersection of two blocks is non-empty then the
intersection is a sublattice. If X ∈ L/Θ then LX will denote the block in L determined by X. We defined
a glued tolerance relation as a tolerance relation where X cover Y in L/Θ implies that LX ∩LY ≠ ∅.

A tolerance relation can be identified with a subset of L×L so tolerance relations are ordered
by subset ordering. The trivial tolerance relation is the one where xΘy holds for all x, y ∈ L and this
tolerance relation is the greatest tolerance relation. A glued tolerance relation contain any covering
pair and glued tolerance relations are characterized by this property. Therefore the intersection of two
glued tolerance relations is a glued tolerance relation. Therefore the set of glued tolerance relations
form a lattice. The smallest glued tolerance relation is denoted Σ (L) and is called the skeleton of the
lattice.

Lemma 2. Let L be a lattice with a increasing function h. If the function h satisfies

h (X) + h (Y) ≥ h (X ∩Y) + h (X ⊎Y) (58)

for all X, Y where X ∩Y is covered by X and Y, then the function h is submodular on L.

5 The lattice is named in honor of František Matúš who passed away shortly before the submission of this manuscript.
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Figure 3. A planar modular lattice that has a skeleton illustrated in Figure 4.

Figure 4. The skeleton of the lattice in Figure 3. It consist of four blocks glued together by the factor
lattice illustrated to the right.

Proof. First we prove that if the function h satisfies

h (X) + h (Y) ≥ h (X ∩Y) + h (X ⊎Y) (59)

for all X, Y where X ∩Y is covered by X, then the function h is submodular on L.
Let A and A denote two lattice elements. Define sequences X1 ⊆ X2 ⋅ ⋅ ⋅ ⊆ Xn = A and Y1 ⊆ Y2 ⋅ ⋅ ⋅ ⊆

Yn = A ⊎ B by first defining X1 = A ∩ B and Y1 = B. Assume that X1 is an element that covers A ∩ B and
such that X1 ≤ A. Let Xi+1 ⊆ A be a cover of A ∩Yi and let Yi+1 = Xi+1 ⊎Yi. Then

h (Xi+1) + h (Yi) ≥ h (Yi+1) + h (Xi+1 ∩Yi) . (60)

Adding all these inequalities leads to

h (A) + h (B) ≥ h (A ⊎ B) + h (A ∩ B) +
n−1
∑
i=0

(h (Xi+1 ∩Yi) − h (Xi)) (61)

and the inequality is obtained because h is increasing to that h (Xi+1 ∩Yi) − h (Xi) ≥ 0 and because
Xi+1 ∩Yi ⊇ Xi by construction of the sequences.
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To see that we just need to check submodularity when B covers A ∩ B is proved in the same
way.

Proposition 8. Let L be a lattice with a tolerance relations Θ and let h ∶ L → R denote some function. Then h
is polymatroid if and only if the restriction of h to any block Lx is polymatroid.

If h is entropic then the restriction to each block is entropic. To characterize the blocks of a lattice
has been done for certain classes of lattices but here we shall only mention a single result.

Theorem 8 ([35]). The blocks of a modular lattice are the maximal atomistic intervals.

In particular the skeleton of a modular lattice consists of blocks that are geometric lattices.

6. Results for planar lattices

In this section we will restrict our attention to planar lattices. There are several reasons for this
restriction. First of all: any poset with a planar Hasse diagram is a lattice if and only if it has a least
element and a greatest element [36]. As a consequence any ∩-semilattice of a planar lattice is also
a planar lattice. Certain cut-and-glue techniques are also very efficient for planar lattices. Finally
both planar distributive lattices and planar modular lattices have nice representations that will play a
central role in our proofs.

Theorem 9. Let h denote a polymatroid function on a planar lattice L. Then h has an entropic representation if
and only if the restriction to each block of Σ (L) has an entropic representation.

Proof. The proof is via induction over the number of elements in the lattice. For a trivial lattice there
is nothing to prove. Assume that the theorem has been proved for all lattices with fewer elements than
the number of elements of L. Assume that h is a polymatroid. Since the lattice is planar it has a left
boundary chain ∅ ⊂ L1 ⊂ L2 ⋅ ⋅ ⋅ ⊂ Lm and a right boundary chain ∅ ⊂ R1 ⊂ R2 ⋅ ⋅ ⋅ ⊂ Rn where Lm = Rn

is the maximal element of L. Let Rk be the minimal element of the right boundary chain such that
L1 ⊆ Rk. We note that Rk = L1 ⊎ Rk−1. Let Lj denote the largest element in the left boundary chain such
that Lj ⊆ Rk. Then there is a chain from Lj to Rk and we have a glued tolerance relation with two blocks
L0 = {X ∈ L ∣ X ⊆ Rk} and L1 = {X ∈ L ∣ X ⊇ Lj} and with the two chain lattice 2 as factor lattice. These
two blocks are glued together along a chain Lj = y1 ⊂ y2 ⊂ ⋅ ⋅ ⋅ ⊂ yt = Rk that L1 and L0 share. There are
two cases. Either Rk ⊂ Rn or Rk = Rn.

Assume that Rk ⊂ Rn. Then the glued tolerance relation is non-trivial. Since h restricted
to {X ∈ L ∣ X ⊇ Lj} and {X ∈ L ∣ X ⊆ Rk} are probabilistically representable we may without loss of
generality assume that there exists two groups G1 and G0 such that to X ∈ Li there is a subgroup
Gi (X) ⊆ Gi such that h (X) = ln ∣Gi ∶ Gi (X)∣ . We associate the variable XGi(X) that maps an element
g ∈ G into the left coset gGi (X) . The goal is to find a joint distribution to a set of variables associated to
each X ∈ L. We note that all variables in L0 are functions of rk so if we map XG1(rk) into XG0(rk) all other
variables in L2 are determined. In particular the chain y1 ⊂ y2 ⊂ . . . yt is determined by rk = yt. The
sequences XG1(yi) is mapped into the sequence XG0(yi) recursively starting with mapping XG1(y1) into
XG0(y1). This is possible since XG1(y1) and XG2(y1) are uniform distributions on sets of the same size.
Now there are equality many values of XG1(y2) and XG0(y2) that maps into the same values of XG1(y1)
and XG0(y1) so the the values of XG1(y2) and XG0(y2) can be mapped into each other. We continue like
that until all the random variables along the chain y1 ⊂ y2 ⊂ . . . yt have been identified.

If rk = rn then we make a similar construction with the role of the left chain and the right chain
reversed. If this leads to a non-trivial glued tolerance relation we glue representations together as we
did above.
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If both the left chain and the right chain lead to trivial glued tolerance relations then L1 ⊎ r1 is the
maximal element of L and the whole lattice consists of a single block in Σ (L) . In this case the content
of the theorem is trivial.

Theorem 10. All planar modular lattices are Shannon lattices.

Proof. Without loss of generality we may assume that the lattice consist of just one block for the
tolerance relation Σ (L) . A modular block is atomistic, but if a modular planar lattice is atomistic it is
equivalent to the trivial lattice or to the lattice 2 or to the lattice 2× 2 or to one of the lattices Mn.

Our construction actually tells us more. If the lattice is distributive it is glued together of blocks
that are either equivalent to 2 or to the lattice 2×2. Therefore the lattice is a sublattice of a product of two
chains as illustrated in Figure 5. This result was first proved by Dilworth [37]. Other characterizations
of planar distributive lattices can be found in the literature [38]. Since the extreme polymatroid
functions on the lattices 2 and the lattice 2 × 2 only take the values 0 and 1 the same is true for any
planar distributive lattice.

Figure 5. A product of two chains.

A modular planar lattice will also contain blocks of the type Mn. Therefore a modular planar
lattice can be obtained from a distributive planar lattice by adding double irreducible elements [39] as
illustrated in Figure 6.

Since Mn has extreme polymatroid functions that takes the values 0, 1/2 and 1 the extreme functions
are modular. Gluing such modular functions together leads to extreme polymatroid functions that are
modular. Therefore all extreme polymatroid functions on a planar modular lattice can be represented
by a planar modular lattice with a modular function. Therefore the independence structure is given by
(X á Y ∣ Z) when Z = (X ⊎ Z) ∩ (Y ⊎ Z) .

The extreme polymatroid functions on a planar modular lattice can be represented as follows. Let
X1, X2, . . . Xm, Y1, Y2, . . . , Yn denote independent random variables uniformly distributed over Zp for
some large value of p. Let Zij denote the random variable

⊎
`≤i

X` ⊎⊎
`≤j

Y`. (62)

and let Zijk denote the random variable

⊎
`≤i

X` ⊎⊎
`≤j

Y` ⊎ (Xi+1 + k ⋅Yj+1) (63)
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for k > 0. The way to index the variables can be seen in Figure 7. Then the entropy is proportional to
the ranking function. A polymatroid function h that has a representation given by an Abelian group
satisfies the Ingleton inequalities [40], i.e. Inequalities of the form

h(X) + h(Y) + h(X ⊎Y ⊎V) + h(X ⊎Y ⊎W) + h(V ⊎W) ≤
h(X ⊎Y) + h(X ⊎V) + h(X ⊎W) + h(Y ⊎V) + h(Y ⊎W). (64)

Therefore the Shannon inequalities imply the Ingleton inequalities as long as the polymatroid function
is defined on a planar modular lattice. Paajanen [41] has proved that under some conditions the
entropy function of a nilpotent p-group can be represented by an Abelian group. The core of the proof
was that the subgroup lattice of a nilpotent p-group is also the subgroup lattice of an Abelian group.
Many of these lattices are planar and in these cases the results by Paajanen [41] follow from our results
on planar graphs.
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Appendix Augmentation

In database theory extensivity (18) is replaced by the following property.

Augmentation X → Y implies X ⊎ Z → Y ⊎ Z . (A1)

If Z = X augmentation (A1) reduces to extensitivy (18). In a finite lattice extensivity (18) together
with the other Armstrong axioms imply augmentation (A1). To see this, first we observe that in a
finite lattice extensivity (18), monotonicity (19), and transitivity (20) imply that X → Y is equivalent
to cl (X) ⊇ Y. Monotonicity (16) gives cl(X ⊎ Z) ≥ Y. Using monotonicity (16) and extensivity (15) we
also get cl(X ⊎ Z) ≥ cl(Z) ≥ Z. Combining these two ineqalities gives cl(X ⊎ Z) ≥ Y ⊎ Z as desired.

The condition in Theorem 1 that the lattice is finite can be relaxed to the ascending chain condition,
because this is essentially what is used to conclude that the chain (22) must stop. The observation that
augmentation can be relaxed to extensivity could be used to simplify some algorithms for database
normalization.

Appendix Lattices of size 1 to 7

Here we give a complete list of the Hasse diagrams of lattices with 7 or fewer elements.

Appendix B.1 Lattice of sice 1

The trivial lattice is the only lattice of size 1.

1

Appendix B.2 Lattice of size 2

The two element chain 2 is the only lattice of size 2.

1

0

Appendix B.3 Lattices of size 3

The three element chain 3 is only one lattice of size 3 and and it is distributive. The extreme
polymatroid functions can be represented by the lattice 2.

Appendix B.4 Lattices of size 4

There are two lattices of size 4 and they are both distributive. Their extreme polymatroid functions
can be represented by the lattice 2.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 September 2018                   doi:10.20944/preprints201809.0035.v1

http://dx.doi.org/10.20944/preprints201809.0035.v1


20 of 26

2 × 2

Appendix B.5 Lattices of size 5

The lattice M5 is modular but not distributive. It has a a new non-trivial polymatroid function as
extreme point. The other extreme points can be represented by M3 and the lattice 2.

M3 1

1/2 1/2 1/2

0

N5

Appendix B.6 Lattices of size 6

The lattice M6 has a new non-trivial polymatroid extreme point. The other extreme points can be
represented by M3 and the lattice 2.

M4 1

1/2 1/2 1/2 1/2

0
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The next five lattices have extreme points that can be represented by M5 or the lattice 2. The first two
lattices are modular but not distributive. The next three are not modular.

V1 L4 L5

The extreme points of the last nine lattices are all represented by the lattice 2. The first four are
not modular.
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The last five are distributive.

Appendix B.7 Lattices of size 7

The lattice M5 has a new polymatroid extreme point. The other extreme points can be represented
by M4, M3 , and the lattice 2.

M5 1

1/2 1/2 1/2 1/2 1/2

0

The next seven lattices have extreme points that can be represented by M4, M3, or the lattice 2.
The first two lattices are modular. The last five lattices are not modular.
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The following lattices have extreme polymatroid functions that can be represented by M3 or the
lattice 2. The first five lattices are modular.

The next lattices are not modular.
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S7 S∗7
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The last 22 lattices of size seven only have trivial extreme points. The first 14 lattices are not
modular.

L3
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The last eight lattices are distributive.
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