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Abstract: Over the past two decades, persistent occurrences of harmful algal blooms (HAB; Karenia 
brevis) have been reported in Charlotte County, southwestern Florida. We developed data-driven 
models that rely on spatiotemporal remote sensing and field data to identify factors controlling HAB 
propagation, provide a same-day distribution (nowcasting), and forecast their occurrences up to 
three days in advance. We constructed multivariate regression models using historical HAB 
occurrences (213 events reported from January 2010 to October 2017) compiled by the Florida Fish 
and Wildlife Conservation Commission and validated the models against a subset (20%) of the 
reported historical events. The models were designed to specifically capture the onset of the HABs 
instead of those that developed days earlier and continued thereafter. A prototype of an early 
warning system was developed through a threefold exercise. The first step involved the automatic 
downloading and processing of daily Moderate Resolution Imaging Spectroradiometer (MODIS) 
Aqua products using SeaDAS ocean color processing software to extract temporal and spatial 
variations of remote sensing-based variables over the study area. The second step involved the 
development of a multivariate regression model for same-day mapping of HABs and similar 
subsequent models for forecasting HAB occurrences one, two, and three days in advance. Eleven 
remote sensing variables and two non-remote sensing variables were used as inputs for the 
generated models. In the third and final step, model outputs (same-day and forecasted distribution 
of HABs) were posted automatically on a web-based GIS 
(http://www.esrs.wmich.edu/webmap/bloom/). Our findings include the following: (1) the 
variables most indicative of the timing of bloom propagation are bathymetry, euphotic depth, wind 
direction, SST, chlorophyll-a [OC3M] and distance from the river mouth, and (2) the model 
predictions were 90% successful for same-day mapping and 65%, 72% and 71% for the one-, two- 
and three-day advance predictions, respectively. The adopted methodologies are reliable, 
dependent on readily available remote sensing data sets, and cost-effective and thus could 
potentially be used to map and forecast algal bloom occurrences in data-scarce regions.  

Keywords: Karenia brevis, harmful algal bloom (HAB), moderate resolution imaging 
Spectroradiometer (MODIS), prediction, chlorophyll, multivariate regression  

1. Introduction 

An increase in agricultural activities introduces nutrients into water bodies and may adversely 
affect the biodiversity and habitats of aquatic ecosystems. One of the major sources of such nutrients 
are nitrogen-based fertilizers [1] that are widely used to increase agricultural productivity. These 
nonpoint sources of nitrogen through fertilization were found to be the predominant sources of 
overall nitrogen quantities in the Gulf of Mexico [2], where the study area (Charlotte County) is 
located. The introduction of nutrients increases the productivity of aquatic systems and enhances the 
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growth of harmful algal blooms (HABs) which, in turn, produce toxins causing detrimental health 
effects [3] to humans and ecosystems [4]. Karenia brevis (K. brevis), formerly known as Gymnodinium 
breve and Ptychodiscus brevis, is the most predominant HAB species in the Gulf of Mexico [5–7], and 
its adverse socioeconomic impacts on the region have been investigated in previous studies [8]. These 
impacts include but are not limited to adverse effects to human health, marine life, tourism, and 
recreational activities. 

Earlier efforts to map or forecast HAB occurrences examined the distribution of HABs in relation 
to a wide range of related and/or causal parameters, such as wind-driven water exchanges [9], 
temperature [10], the relative abundance of protozoans that feed on algae, e.g., Mesodinium species 
[11], cell distribution and oceanic currents [12], and hydrodynamic variables, e.g., current pathways, 
rate and volume of flow, upwelling and downwelling pulses [13]. Such parameters were 
subsequently used to conduct same-day mappings of bloom occurrences, to model onsets of blooms 
[14–16] and to forecast seasonal algal bloom occurrences [12]. These investigations and mapping 
efforts provided the basis for the development of early warning systems based on (1) solid-phase 
adsorption toxin tracking [17], (2) real-time field monitoring of chlorophyll and dissolved oxygen 
[18], and (3) Moderate Resolution Imaging Spectroradiometer (MODIS)-derived fluorescence data to 
detect and monitor algal blooms [19–21]. The latter (fluorescence) was found to be sensitive to 
chlorophyll-a concentrations [22–25]. The development and operation of the overwhelming majority 
of these monitoring and forecasting systems require continuous current and archival field data (e.g., 
nutrient concentration in surface water). Unfortunately, such datasets are not present for many of the 
coastal areas where HAB monitoring and/or forecasting systems are needed. This study addresses 
this potential problem. Although our methodology does require continuous records of present and 
archival data, it instead utilizes readily available, global remote sensing datasets in the public 
domain. Additionally, limited field data, where available, are utilized.  

We developed statistical models to detect and forecast HABs up to three days in advance in 
Charlotte County, Florida. The study area incorporates the county’s coastal areas (width: 15 to 30 km) 
and nearby estuaries (Figure 1). The statistical models were developed using reported historical HAB 
occurrences and archival satellite images. This monitoring and early warning system for HABs could 
provide benefits, both in Charlotte County and elsewhere, to the general public, policy makers, and 
the scientific community and could assist local agencies in developing solutions and plans to mitigate 
HABs.  
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Figure 1. Figure showing the study area, which covers coastal waters (width: 15-30 km) surrounding 

Charlotte County in Florida. The study area also covers the brackish water within the estuarine systems 

where fresh and sea water mix. 

2. Materials and Methods  

The primary goals of this study involved identifying the factor(s) controlling HAB occurrences 
in the study area, developing predictive models for HAB occurrences by utilizing daily remote 
sensing data, disseminating our findings, and automating the process. We accomplished these goals 
by developing multivariate regression statistical models, distributing our findings via a web-based 
interface and utilizing a GIS framework for automation purposes. Data-driven models that rely on 
historical remote sensing and corresponding field data were developed to identify factors controlling 
the algal blooms and to forecast their occurrences. An inventory was compiled for the reported (dates 
and locations) HABs in the coastal waters surrounding Charlotte County by the Florida Fish and 
Wildlife Conservation Commission’s Fish and Wildlife Research Institute (FWRI:  
http://myfwc.com/research/redtide/monitoring/database/), and a database was generated for remote 
sensing datasets that were acquired during the reported HAB occurrences. The compiled satellite and 
field data covered the period between January 2010 and October 2017 in which 213 HAB events were 
reported. The workflow involved three major steps: (1) downloading and processing of daily MODIS 
data, (2) developing multivariate regression models based on historical HAB occurrences, and (3) 
using the model for same-day mapping and forecasting HAB, automating the process, and 
publishing the findings (Figure 2). 
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Figure 2. Three-step workflow established for HAB mapping and forecasting 

2.1. Step 1 
The first step involved the identification of temporal ocean color products and spatial variables 

that could control, or correlate with, the distribution of algal blooms in general and/or the HAB in 
the study area (in our case K. brevis). The selection of these variables was largely based on reported 
findings from similar settings elsewhere and, to a lesser extent, on our observations.  

This step involved automatic downloading and processing of daily ocean color data products 
acquired by the National Aeronautics and Space Administration (NASA) MODIS Aqua satellite. 
NASA’s ocean color processing website (https://oceancolor.gsfc.nasa.gov/) provides an option for 
periodical data downloads for specified regions via a free data subscription service. We specified 
southwestern Florida as the study area, Aqua MODIS data as the data type, and a daily data 
download for frequency. The automatic data download was scheduled using the task scheduling 
programs available within the Linux environment. The downloaded Level 0 product was processed 
to Level 1 and later to Level 2 using NASA’s SeaDAS 7.4 software to extract relevant temporal 
variables. A total of 13 ocean color data products were downloaded and processed. These products 
include euphotic depth, the ocean chlorophyll three-band algorithm for MODIS (chlorophyll-a 
OC3M), chlorophyll-a Generalized Inherent Optical Property (GIOP), chlorophyll-a Garver-Siegel- 
Maritorena (GSM), fluorescence line height (Flh), a diffused attenuation coefficient for downwelling 
irradiance at 490 nm (Kd_490), a particulate backscattering coefficient at 547 nm (bbp_547_giop), 
turbidity index, sea surface temperature (SST), wind direction, wind speed, colored dissolved organic 
material (CDOM) [26] and Secchi disk depth (Zsd morel) [27]. Additional spatially relevant variables 
were considered, as well. Our preliminary inspection of these products revealed large and rapid 
variations in chlorophyll-a content, SST, the attenuation coefficient, and euphotic depth in proximity 
to the shoreline and to the freshwater outlets (river mouth; Figure 3), thus suggesting that bathymetry 
and distance from the river mouth should be incorporated in the model’s development.  

The collected ocean color data products were later checked for consistency and significance. 
Discontinuous data were not considered. For example, the data for colored dissolved organic matter 
(CDOM) concentration was found to be discontinuous and patchy over the investigated period (2010 
to 2017) and was thus omitted from the list of potential variables considered for model development.  

An exploratory regression was conducted to identify the determinant and significant variables, 
as well as the optimum combination of the variables. The significance of the variables was 
investigated using the p-value and R-square value. Variables that were found to be highly correlated 
(redundant) and insignificant were omitted. The variables that contributed to the multicollinearity 
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(redundant variables) were identified using the extracted Variance Inflation Factor (VIF) [28] values. 
A variable with a VIF value exceeding 7.5 was considered redundant with the second highest VIF 
value. In cases where multiple variables were identified as being redundant, the significant variables 
were retained and the insignificant ones were omitted. Using water clarity measurements as an 
example, Secchi disk depth was found to be redundant with euphotic depth, and the former was 
found to be less significant and was dropped. Following the omission of redundant variables, the 
multivariate regression was run again to make sure the R-square value and model’s significance did 
not decrease. The overall target of this iterative exercise was to obtain the highest R-square value with 
a minimal number of significant variables. Only13 of the initial 15 variables were considered for 
model construction. The spatial and temporal variables included in the model are explained below.   
 
2.1.1. Euphotic Depth (m) 

The euphotic depth represents the depth at which 1% of the light incident on the ocean’s surface 
can reach [29–31]. This depth provides a measure of the depth where light penetrates, nutrients and 
algae diminish, and productivity decreases [32]. Water bodies with low euphotic depths generally 
have a high nutrient content, are more productive and eutrophic [33], and provide favorable 
conditions for HAB development [34]. The euphotic depth was calculated using the technique 
documented in a previous study [30]. 
 
2.1.2. Wind direction (degrees) and wind speed (m/s) 

The wind direction and speed can affect the distribution of algal blooms in three major ways: (1) 
prevailing wind directions create ocean currents and water exchanges that transport HAB cells [35,9] 
or their biotoxins [9],  (2) wind combined with ocean bathymetry controls the locations where 
nutrient upwelling occurs; HABs feed on and concentrate around these nutrient upwelling sites [13], 
and (3) winds can also transfer the aerosols on the sea surface [21] that were shown as promoting the 
growth of toxic phytoplankton [36]. The wind direction and wind speed were calculated using a 
reflectance model based on the Cox-Mux wave-slope distribution [37].  
 
2.1.3. Chlorophyll-a (mg/m3) 

The concentration of chlorophyll-a provides direct measurements of the growth of the algae in 
aquatic environments [38]. Three different types of algorithms were used to compute the chlorophyll-
a content: chlorophyll-a OC3M (ocean chlorophyll three-band algorithm for MODIS, [39]), 
chlorophyll-a GSM (Garver-Siegel- Maritorena, [40]) and chlorophyll-a GIOP (Generalized Inherent 
Optical Property, [41]). These algorithms provide estimates for phytoplankton biomass [42] in coastal 
waters and have been validated for consistency and accuracy with field observations in different 
parts of the world [43–46]. An increased chlorophyll-a concentration has been taken as a strong 
indicator of HAB distribution [47,48], and chlorophyll-a OC3M data has been used for detecting HAB 
along the west coast of Florida [20]. All three types of chlorophyll-a measurements were considered 
in this study as they were found to be correlated with algal cell count during the exploratory 
multivariate regression.  
 
2.1.4. Diffuse Attenuation Coefficient 

The Diffuse Attenuation Coefficient for downwelling irradiance at 490 nm (Kd_490; m-1) 
measures the attenuation of the light (blue to green) for turbid water [49,50]. A study in the Bohai Sea 
[51] showed that the attenuation coefficient can be used as a proxy for the growth of phytoplankton 
in turbid coastal waters given that the blue to green light attenuation positively correlates with 
scattering particles (e.g., HABs). A high correlation between chlorophyll-a concentration and diffuse 
attenuation coefficient was observed under harmful red tide conditions in the Persian Gulf using 
MODIS data [52]. In another study done in the coastal waters of India, HABs were detected using 
satellite derived chlorophyll and diffuse attenuation coefficient images and were also validated 
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through in situ measurement [53]. The diffuse attenuation coefficient was calculated using the 
technique described in a previous study [50].     

 
2.1.5. Turbidity Index 

The turbidity index provides a measure for the clarity of the water through the scattering of light 
caused by suspended particles [54,55]. Spatial and temporal variations of turbidity in water bodies 
has been successfully used to identify phytoplankton blooms [56,57]. Although a turbidity index is 
not a direct indicator of HAB occurrences, it has been successfully used to estimate the severity of a 
HAB once it was independently detected [58]. The turbidity index was calculated using procedures 
described in a previous study [59]. 
 

2.1.6. Particulate Backscattering Coefficient at 547 nm 
This is the backscattering coefficient of particles at 547 nm. The backscattering coefficient as 

determined by satellite sensors and in situ measurements has been used in the past to identify the 
distribution of HABs. A research study [60] employed satellite-based and underwater glider 
measurements of the backscattering coefficient at 547 nm to detect K. brevis blooms in the Gulf of 
Mexico and verified their findings by in situ observations. A backscattering coefficient at 551 nm 
extracted from a Visible Infrared Imaging Radiometer Suite (VIIRS) sensor, which is analogous to the 
MODIS backscattering coefficient at 547 nm, was used in conjunction with fluorescence data to detect 
the K. brevis bloom at the West Florida shelf [61]. In the same area, in situ measurements of the 
backscattering coefficient at 551 nm and chlorophyll data were successfully used to detect a K. brevis 
bloom [62]. The backscatter coefficient of particles at 547 nm was calculated using an algorithm 
available in the literature [63,64].  

 

2.1.7. Sea Surface Temperature (°C) 
SST influences phytoplankton productivity in multiple ways: (1) individual biological species 

including algal blooms thrive under different and specific temperature regimes, and (2) the 
availability and solubility of many biochemical materials needed for their growth and development 
is temperature dependent [65,35]. Many studies have shown a correlation between SST and algal 
bloom distributions in the Mediterranean Basin [66], Kuwait Bay [67,68] and on a global scale [69]. 
The productivity of K. brevis increases in the fall and early spring at the west Florida shelf primarily 
because of the ideal temperature conditions during these time periods [19]. Increased SST was found 
to be conducive to HAB development in the coastal waters of Oman [70] and in Gulf of Mexico [71].  
 
2.1.8. Fluorescence Line Height (FLH) 

The fluorescence line height (FLH) is a relative measure of the amount of radiance leaving the 
sea surface in the chlorophyll fluorescence emission band [72]. FLH has been successfully used in the 
detection of chlorophyll in several studies [22,23,25]. Similarly, FLH was used in a study [19] to detect 
chlorophyll-a concentration in the coastal waters of southwestern Florida. A review of previous 
studies showed a positive correlation between the MODIS-derived fluorescence and chlorophyll-a 
concentration in ocean waters with algal blooms [72]. More recently, an in situ measurement of FLH 
was used in conjunction with the backscattering coefficient to map the distribution of K. brevis in the 
Gulf of Mexico [60]. Similarly, FLH derived from VIIRS was used to detect K. brevis blooms at the 
West Florida Shelf [61]. A normalized FLH chlorophyll-related radiance (mW cm-2 µm-1 sr-1) was 
generated using a previously established algorithm [73].  

 
2.1.9. Bathymetry (m) 

 Shelf properties, including bottom topography, influence the distribution of HAB in many 
ways [74]. For example, water stratification, which is controlled in part by bottom topography, 
inhibits productivity [75], whereas the vertical mixing and added nutrient supply in shallow waters 
can enhance the primary productivity in coastal ecosystems [75]. Our study site, and the continental 
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shelf systems and coastal areas in general, are considered to be vulnerable to HAB occurrences due 
to the accumulation of biomass [76]. Bathymetric data acquired from USGS 
(https://coastal.er.usgs.gov/flash/bathy-entireFLSH.html) were used as one of the spatial variables.  
 
2.1.10. Distance from the river mouth (m) 

 Riverine organics are major sources of nutrients for the West Florida Shelf of the Gulf of Mexico 
[77]. The riverine discharge provides high nutrient loads [78] that largely control the phytoplankton 
population and eutrophication around the river discharge locations and adjoining estuarine systems 
[79,80]. The distance from the mouth of the river was computed using the Euclidean Distance function 
in ArcGIS.  

 

 

Figure 3. Mean values for the significant variables including chlorophyll-a (OC3M), SST, diffuse attenuation 

coefficient, and euphotic depth calculated from MODIS products acquired throughout the period 2010 to 

2017 over the study area. The distance from river mouth and bathymetry data are also shown.   

 

2.2. Step 2 
The logarithm of K. brevis cell counts (base 10) in samples as analyzed by FWRI was used as the 

response variable because the growth of the algae takes place exponentially. Measurements were 
largely performed in response to reported K. brevis blooms around Charlotte County, Lee County to 
the south, and Sarasota County to the north.  During the investigated period (2010 to 2017), 128 
blooms were reported with cell counts higher than 300 per liter. Each of the input variables was 
normalized to the −1 to +1 range because the inputs displayed large variations in range and 
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magnitude. Such variations, if not accounted for, could affect model outputs. For each inventoried 
location, we extracted the values of the normalized input variables. 

Four regression models were constructed: (i) same-day, (ii) one day in advance, (iii) two days in 
advance, and (iv) three days in advance. For each of the models, data were divided into training (80%) 
and testing (20%) datasets. The training data were used to develop the regression, and the accuracy 
assessment was done on the testing datasets. For the same-day model, the regression was conducted 
on 80% of the reported HABs occurrences (102 unique-day bloom events) against the variables on 
bloom days (days when blooms were reported). For the one day in advance model, the regression 
was conducted for the response versus the variables acquired one day in advance of the bloom day. 
Similarly, for the two-day and three-day in advance models, the response was regressed against the 
variables acquired two and three days in advance, respectively. Each of the four models had its 
individual datasets (response and variables) for regression and validation. Predictive models (ii, iii, 
and iv) were designed to capture the onset of the HABs in contrast to those that developed days 
earlier and continued in the following days. To this end, a bloom reported on dayn was excluded from 
the one-day advance dataset if another was reported in the same location in dayn-1. Similarly, a bloom 
reported on dayn was excluded from the two-day dataset if another was reported in the same location 
in dayn-1 or dayn-2 and from the three-day dataset if a bloom was reported on dayn-1, dayn-2 or daysn-3. 
The cell count responses from the models were lumped into three groups: (i) no bloom (cell count ≤ 
300 per/liter), (ii) low concentration (cell count > 300 and < 10,000 per liter) and (iii) high concentration 
(cell count ≥10,000 per liter). We adopted the threshold values used by the Harmful Algal Bloom 
Observation System (https://habsos.noaa.gov/) in categorizing cell counts for consistency purposes 
and to facilitate comparisons with NOAA’s observations. The multivariate regression model was 
developed for each group of the data. For any new satellite data for any specific day, a respective 
regression was used to predict the HAB on the same day and 1, 2 and three days in advance of the 
potential HAB occurrence.  
 
2.3. Step 3 

The generated regression equations were utilized for same-day mapping and one-, two- and 
three-day advance predictions of HAB. The regression models were developed for three bloom lag 
periods and applied to the collective set of variables. The results (same-day mapping and one-, two- 
and three-day advance prediction of HAB) are published on our website 
(http://www.esrs.wmich.edu/webmap/bloom/) using the ArcGIS server and ArcGIS API for 
JavaScript. The MODIS data for every day is acquired at ~4 pm, is made available for download on 
NASA’s website at ~5 pm, and is processed for HAB occurrences and published on our website at 
~10 pm. This process was coded in Python 2.7 to allow the program to run automatically at the same 
time every day.  

3. Results and Discussions 

The prediction was done in two phases: (a) nowcasting and (b) one, two and three days in 
advance forecasting. The model outputs are provided in Tables 1 and 2. Table 1 lists the selected 
variables with their relative significance (in percentage) for the same-day and the one-, two- and 
three-day predictions. Table 2 provides the multivariate regression coefficients for each of the 
selected variables for the same-day and the one-, two- and three-day predictions. The sign (+/-) in 
front of the coefficient for each variable indicates the nature (positive/negative) of the relationship 
between the variable in question and the response. The logarithm (base 10) of cell count was used as 
the response variable. A cell count exceeding 300 per liter was considered to indicate the presence of 
a HAB.   

The information provided in Tables 1 and 2 can be used to interpret the nature of the relationship 
between HAB occurrences and the individual variables, determine the directionality (negative or 
positive) of the relationship, and evaluate the comparative significance of these relationships.  

For same-day mapping (or nowcasting), the bathymetry, euphotic depth, wind direction, 
chlorophyll-a (OC3M0, and wind speed were found to have a 78% contribution to the response 
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variable as presented in Table 1. For the one-day forecasting, bathymetry, SST, wind direction, 
chlorophyll-a (OC3M), and diffused attenuation coefficient (KD_490) were found to have a 65% 
contribution to the response variable. For the two-day forecasting, euphotic depth, chlorophyll-a 
(OC3M), distance to river mouth, diffused attenuation coefficient (KD_490) and SST were found to 
have 69% contribution to the response variables. The euphotic depth, distance to river mouth, 
chlorophyll-a (OC3M), wind direction and SST had a 67% contribution to the response variable for 
the three-day forecasting.  

A 1:1 correspondence in the ranking and significance of variables in the four models should not 
be expected given that the variables could have varying lag time effects on HAB development. For 
example, a study [81] found a positive correlation between algal bloom events and nitrate and 
ammonium concentrations as early as five days prior to the bloom. Similarly, a study [82] found a 
positive correlation between HAB occurrences and temperature and aerosols particle distribution, 
which are the air-borne sources of phosphate, iron and trace elements in the East China Sea. Higher 
concentrations of phosphorous and iron above the threshold did not correlate with the HAB events 
because these are limiting nutrients for HAB growth. The increase in concentration of nitrogen, 
however, correlated with the HAB concentration. The lag time between the spike in the nitrogen 
concentration in the aerosols and HAB event was two days. Similarly, in the coastal waters of 
Charlotte County, one can attribute the significance and high ranking of some variables (distance to 
river mouth, and chlorophyll-a) in our two- and three-day predictive models to the presence of a two 
day lag time for nutrients in rivers to reach the coastal waters and induce HABs.   

An inspection of Tables 1 and 2 reveals differences in the rankings and significance of the 
variables between the four solutions. However, there are multiple variables that appear to be 
significant (≥ significance 5%) for three or more of the four solutions. These include chlorophyll-a (4 
models: 6 to 15%), Euphotic depth (same-day: significance [S] 22.1%, rank [R]2nd; two-days: S 25%, R 
1st; three-days: S 16.6%, R 1st), SST (one-day: S 15.5%, R 2nd; two-days: S 7.7%, R 5th; three-days: S 9.3%, 
R 5th); wind direction (same-day: S 7.1%, R 3rd; one-day: S 13.4%, R 3rd; two-days: S 6.4%, R 6th; three-
days: S 10%, R 4th), Chlorophyll-a OC3M (same-day: S 6.7%, R 4th; one-day: S 10.3%, R 4th; two-days: 
S 14.2%, R 2nd; three-days: S 15.1%, R 3rd), distance to river mouth (same-day: S 5.5%, R 6th; one-day: 
S 9.1%, R 6th; two-days: S 14%, R 3rd; three-days: S 16.1%, R 2nd) and turbidity index (one-day: S 7.1%, 
R 8th; two-days: S 5.4%, R 8th; three-days: S 7%, R 7th). Other variables appear to be consistently less 
important (significance <5%) in 3 or more of the model outputs. These include bathymetry, wind 
speed, chlorophyll-a GIOP, fluorescence line height, diffused attenuation coefficient (Kd_490), 
chlorophyll-a GSM and particulate backscattering coefficient (bbp_547_giop).   

Shallow bathymetry seems to be a significant factor for same-day predictions (S 35.9%; R 1st; 
Table 1), but its significance correlates negatively with the prediction period (one-day: S 16.1%, rank: 
1st; two-days: S 4.8%, R 9th; three-days: S 2.8%, R 11th, Table 1). The association of HABs with shallow 
bathymetry was inferred from the –ve sign of the coefficient for the bathymetry variable for the same 
day. Similarly, the association of HABs with increasing euphotic depth and turbidity is inferred from 
the +ve sign for the coefficient for these two variables (euphotic depth and turbidity index) in each of 
the four models. The chlorophyll-a (OC3M) content shows a positive correlation with bloom 
occurrences and a positive correlation with prediction periods (same-day: S: 6.7%, coefficient= -
0.2662; one-day: S: 10.3%, coefficient: 0.0609; two-days: S: 14.2%; coefficient=0.0874; and three-days: 
S: 15.1%, coefficient: 0.1326). A positive correlation is observed for the bloom occurrences with wind 
direction for all lag times, but the significance and rank varies for the investigated models (S: 13.4% 
to 6.4%; R: 3rd to 6th). The diffused attenuation coefficient seems to have a positive correlation 
coefficient (same-day: 2.6613; one-day: 5.2936; two-days: 6.2945; and three-days: 1.0121) and an 
increasing significance and/or higher rank going from the same day (S 3.1%, R 9th) to one-day (S 9.9%; 
R 5th), and two-days (S 8.9%, R 4th), but its effect diminishes in three days (S 1.3%, R 13th). SST seems 
to be less significant on the day of the bloom (S 0.8%; R 13th) compared to the one-day (S 15.5%, R 2nd), 
two-days (S 7.7%, R 5th) and three-days (S 9.3%, R 5th) advanced predictions. Blooms occur at cooler 
SST as indicated by the –ve coefficients (coefficients: same-day: -0.0188; one-day: -0.2164; two-days: -
0.1514; three-days: -0.2002). For same-day predictions, the shorter the distance from the river mouth, 
the more likely HABs will develop as evidenced by the –ve coefficient value (Table 2). 
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Table 1. Selected variables with their relative significance (in percentage) for same-day nowcasting, and one-, 

two- and three-day predictions.  

 Same-day 

nowcasting 

Forecasting 

  one day in advance two days in advance three days in advance 

1 Bathymetry 

(35.9%) 

Bathymetry (16.1%) Euphotic Depth (25%) Euphotic Depth 

(16.6%) 

2 Euphotic depth 

(22.1%) 

SST (15.5%) Chlorophyll-a 

(OC3M) (14.2%) 

Distance to river 

mouth (16.1%) 

3 Wind direction 

(7.1%) 

Wind direction 

(13.4%) 

Distance to river 

mouth (14%) 

Chlorophyll-a 

(OC3M) (15.1%) 

4 Chlorophyll-a 

(OC3M) (6.7%) 

Chlorophyll-a 

(OC3M) (10.3%) 

Diffused attenuation 

coefficient (Kd_490) 

(8.9%) 

Wind direction (10%) 

5 Wind speed 

(5.8%) 

Diffused attenuation 

coefficient (Kd_490) 

(9.9%) 

SST (7.7%)  SST (9.3%) 

6 Distance to river 

mouth (5.5%) 

Distance to river 

mouth (9.1%) 

Wind direction (6.4%) Chlorophyll-a (GSM) 

(7.9%) 

7 Chlorophyll-a 

(GIOP) (3.4%) 

Wind speed (7.6%) Fluorescence line 

height (5.4%) 

Turbidity Index (7%) 

8 Fluorescence 

line height 

(3.2%) 

Turbidity index 

(7.1%) 

Turbidity Index 

(5.4%) 

Particulate 

backscattering 

coefficient 

(bbp_547_giop) 

(4.6%) 

9 Diffused 

attenuation 

coefficient 

(Kd_490) (3.1%) 

Particulate 

backscattering 

coefficient 

(bbp_547_giop) 

(5.2%) 

Bathymetry (4.8%) Fluorescence line 

height (4.5%) 

10 Chlorophyll-a 

(GSM) (2.4%) 

Chlorophyll-a (GSM) 

(3.2) 

Chlorophyll-a (GSM) 

(3.3%) 

Wind speed (3%) 

11 Turbidity index 

(2.4%) 

Euphotic depth 

(1.9%) 

Chlorophyll-a (GIOP) 

(2.4%) 

Bathymetry (2.8%) 

12 Particulate 

backscattering 

coefficient 

(bbp_547_giop) 

(1.4%) 

Chlorophyll-a (GIOP) 

(0.5%)  

Wind speed (1.5%) Chlorophyll-a (GIOP) 

(1.9%) 
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13  SST (0.8%) Fluorescence line 

height (0.2%) 

Particulate 

backscattering 

coefficient 

(bbp_547_giop) 

(0.7%) 

Diffused attenuation 

coefficient (Kd_490) 

(1.3%) 

 

Table 2. Multivariate regression coefficients for each variable in predicting HABs for same-day mapping, and 

one-, two- and three-day advanced predictions.  

Variables Coefficients 

  Same-day 
one day in 
advance 

two days in 
advance 

three days 
in advance 

Bathymetry (m) -0.2662 0.0609 0.0874 0.1326 

Euphotic Depth (m) 0.0296 0.0022 0.0231 0.0189 

Wind Direction (degrees) 216.5790 270.1179 162.3239 287.9521 

Chlorophyll-a (OC3M) (mg/m3) 0.5120 0.5418 0.9005 1.0869 

Wind Speed (m/s) -250.5957 214.0178 53.2687 119.2459 

Distance to Mouth of River (m) -0.1593 0.0001 0.0001 0.0001 

Chlorophyll-a GIOP (mg/m3) 0.2617 0.0044 0.1549 -0.1380 

Normalized Fluorescence Line Height 
(mWcm-2 um-1 sr-1) 

-395.2367 0.0001 -551.1232 -514.3536 

Diffused Attenuation Coefficient (m-1) 2.6613 5.2936 6.2945 1.0121 

Chlorophyll-a GSM (mg/m3) 0.1845 0.1417 0.2116 0.5693 

Turbidity Index  73.0929 143.0333 135.8686 202.1670 

Particulate Backscattering Coefficient (m-1)  4287.9827 
-

12551.1376 
-1854.9512 -3779.3400 

SST (°C) -0.0188 -0.2164 -0.1514 -0.2002 

Intercept  2.6629 1.1849 -0.1563 -0.5590 
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The assessment of the performance of the four models is presented in Table 3. The accuracy of 
the same day was the highest (90.5%), and the accuracies of the one-day, two-day, and three-day 
prediction models were assessed at 65.6%, 72.1%, and 71.9%, respectively.  

Table 3. Assessment of the accuracy of the generated multivariate models (same-day mapping and one-, two- 

and three-day advanced predictions). The relative percentage for each category is presented in parentheses.  

Prediction 

Bloom Presence Bloom Absence 
Total 
incidents 

%  
Accuracy 

True +ve False +ve True -ve False -ve   
same-day 
mapping  

56 
(44.1%)  4(3.1%) 59 (46.5%) 8(6.3%) 127 90.5 

one day in 
advance 21(10.3%) 31(15.2%) 113 (55.4%) 39(19.1%) 204 65.6 

two days in 
advance 17 (7.6%) 49(22%) 144 (64.6%) 13 (5.8%) 223 72.1 

three days in 
advance 23 (11%) 45 (21.4%) 128 (61%) 14 (6.7%) 210 71.9 

 

5. Conclusions, Limitations, and Applications 

The study focused on developing an early warning system for K. brevis-related HABs off the 
coast of South Florida. We used historical field HAB data from 2010 to 2017 to develop a multivariate 
regression and determine the significance of the variables for different prediction scenarios. The 
prediction system involved the same-day nowcasting method and forecasting for one, two and three 
days in advance of the onset of the bloom. The same-day nowcasting provided 90% accuracy, 
whereas the one, two and three days in advance forecasting provided 65, 72 and 71%s accuracies, 
respectively. The investigation took advantage of ocean color data to develop methodologies and 
procedures that may enhance decision making processes, improve citizens’ quality of life, and 
strengthen the local economy. Even though this project focuses on the K. brevis related HAB in 
Charlotte County and its surrounding neighbors, the model can be replicated for other species and 
can be applied in other areas. The prediction system can be utilized to plan uses of coastal waters for 
recreational purposes and other environmental services. Monitoring the extent and intensity of HABs 
could be used to improve the environmental and socioeconomic status of this area and develop long-
term environmental programs and policies.  

There are several limitations with the current use of MODIS data. There can be differences 
between the time a bloom was reported and the time it was captured by satellite imagery, and during 
that time the algae could move laterally and vertically in the water column. Our approach assumes 
that the algae are stationary. Diurnal algae variations are not captured by the MODIS imagery. In 
field controlled and natural environments, a previous study [83] showed a decrease in fluorescence 
before reaching the maximum value under natural photosynthetically available radiation, while 
another study [84] reported diurnal variations in algae populations in the surface and in the mid-
column. Similar diurnal variations were reported for K. brevis in the West Florida Shelf [85]. 

The developed models apply constant lag times of one, two or three days for all of the variables. 
Ideal models should instead apply lag times that produce an optimum target response. These lag 
times will undoubtedly differ from one variable to another, and such an application will enhance the 
predictability of the model. Unfortunately, this enhancement is difficult to achieve as that it requires 
a continuous acquisition of satellite imagery over an extended period, and such daily acquisitions are 
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halted on cloudy days. Due to the weather dependency of the temporal variables, it is difficult to 
develop models that include multiple variables with varying time lags. Additionally, with the coarse 
spatial resolution of MODIS derived variables (e.g., SST: 1000 m; turbidity index: 500), the detection 
of HABs within a small area is limited.  

The developed models lack real time measurements for nutrients in surface and groundwater 
due to the absence of continuous monitoring systems in our study area. Instead, we have proxies 
(e.g., euphotic depth and turbidity indices) that can account for the nutrient content in the aquatic 
system. The predictability of the developed models could be improved with the inclusion of direct 
and daily measurements of nitrate and phosphate in surface water that automatically feed the data 
into the model. The current problem of discontinuous and coarse resolution of the MODIS data could 
be addressed if it was replaced by Unmanned Aerial Vehicles (UAVs) datasets. UAVs acquire high 
resolution images devoid of atmospheric influences. These new data acquisition systems could 
increase the accuracy, predictability and replicability of our model in Charlotte County and 
elsewhere in the world. These methods would enable the construction of robust models that account 
for varying lag times and produce continuous high spatial and temporal resolution prediction maps.  

Supplementary Materials: The website developed for this project is available at: 
http://www.esrs.wmich.edu/webmap/bloom  
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