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Abstract: In hospitals and smart nursing homes, ambient-intelligent care rooms are equipped with
many sensors. They can monitor environmental and body parameters, and detect wearable devices
of patients and nurses. Hence, they continuously produce data streams. This offers the opportunity
to collect, integrate and interpret this data in a context-aware manner, with a focus on reactivity and
autonomy. However, doing this in real-time on huge data streams is a challenging task. In this context,
cascading reasoning is an emerging research approach that exploits the trade-off between reasoning
complexity and data velocity by constructing a processing hierarchy of reasoners. Therefore, a
cascading reasoning framework is proposed in this paper. A generic architecture is presented
allowing to create a pipeline of reasoning components hosted locally, in the edge of the network,
and in the cloud. The architecture is implemented on a pervasive health use case, where medically
diagnosed patients are constantly monitored, and alarming situations can be detected and reacted
upon in a context-aware manner. A performance evaluation shows that the total system latency is
mostly lower than 5 seconds, allowing for responsive intervention by a nurse in alarming situations.
Using the evaluation results, the benefits of cascading reasoning for healthcare are analyzed.

Keywords: pervasive healthcare; cascading reasoning; fog computing; stream reasoning

1. Background

1.1. Introduction

The ultimate ambient-intelligent care rooms of the future in smart hospitals or smart nursing
homes consist of a wide range of Internet of Things (IoT) enabled devices equipped with a plethora
of sensors, which constantly generate data [1,2]. Wireless Sensor Networks (WSNs) can be used to
monitor environmental parameters, such as light intensity and sound, and Body Area Networks
(BANs) can monitor vital body parameters, such as heart rate, blood pressure or body temperature.
Other IoT-enabled devices allow to perform indoor positioning, to detect when doors or windows
are opened, or to discover if a patient is lying in bed or sitting in a couch. Intelligent smart home IoT
devices can be used to take control of and automate the lighting, window blindings, heating, ventilation
and air conditioning (HVAC), and more. Moreover, domain and background knowledge contains
information on diseases, medical symptoms, the patients’ Electronic Health Record (EHR), and much
more. The advantage of the IoT is that the data streams originating from the various sensors and
devices can be combined with this knowledge to derive new knowledge about the environment and
the patient’s current condition [3]. This enables devices to achieve situation- and context-awareness,
and enables better support of the nursing staff in their activities [4,5].

Consider the example of a pervasive health context in which a patient suffers from a concussion.
Medical domain knowledge states that concussion patients are sensitive to light and sound. This
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knowledge can be combined with data streams coming from the light and sound sensors in the
patient’s room, to derive when an alarming situation occurs, i.e., when the patient is in his room and
certain light or sound thresholds are crossed. When such an alarming situation is detected, automatic
action can be taken, such as autonomously dimming the lights or alerting a caregiver. This can help to
increase the comfort of both the patients and nurses, and help nurses to operate more efficiently.

By 2020, 20 to 30 billion IoT devices are forecasted to be in use worldwide within healthcare [6].
The data streams generated by these IoT devices are not only voluminous, but are also a heterogeneous,
possibly noisy and incomplete set of time-varying data events [7]. As such, it is a challenging task to
integrate, interpret and analyze the data streams on the fly to derive actionable insights.

Semantically enriching the data facilitates the consolidation of these data streams [8]. It imposes a
common, machine-interpretable data representation. It also makes the properties of the device and
the context in which the data was gathered explicit [8]. Moreover, it enables the integration of these
streams with the domain and background knowledge.

Semantic Web technologies, such as RDF and OWL, allow to achieve this semantic enrichment
by using ontologies [8]. An ontology is a semantic model that formally describes the concepts in a
particular domain, their relationships and attributes [9]. Using an ontology, heterogeneous data can
be modeled in a uniform way. Recently, ontologies for the IoT have emerged, such as the Semantic
Sensor Network (SSN) ontology [10], which facilitate the enrichment of IoT data. Moreover, prevalent
healthcare ontologies exist, such as SNOMED1 and FHIR2, which model a lot of medical domain
knowledge. By using the Linked Data approach [11], the semantic IoT data can then easily be linked to
such domain knowledge and resources described by these and other models. Semantic reasoners, e.g.,
FaCT++ [12], Hermit [13], Pellet [14] and RDFox [15], have been designed to interpret this semantic
interconnected data in order to derive useful knowledge [16], i.e., additional new implicit knowledge
that can be useful for applications. For example, in the case of the concussion patient, a semantic
reasoner can automatically derive that the patient is sensitive to light and sound, and that light and
sound sensors in the patient’s room should be monitored. Based on the definitions of alarming
situations in the ontology, the reasoner can infer from the data streams when such a situation occurs.

The complexity of semantic reasoning depends on the expressivity of the underlying semantic
language, i.e., the expressivity of the ontology [17]. Different sublanguages exist, ranging from
RDFS, which supports only simple statements, e.g., class inheritance, to OWL 2 DL, which supports
expressive reasoning, e.g., cardinality restrictions on properties of classes3. Other profiles, such as
OWL 2 RL, OWL 2 QL and OWL 2 EL, are situated in between, trading off reasoning expressivity and
capabilities. More expressive reasoning allows to derive more interesting information from the streams
and transforms it to actionable insights. In healthcare, high expressivity of the reasoner is required.
In the example of the concussion patient, alarming situations can have complex definitions, making
it impossible for less expressive reasoners to infer their occurrence. For example, an RDFS reasoner
would not be able to infer that a patient with a concussion is sensitive to light and sound.

Semantic reasoning over large or complex ontologies is computationally intensive and slow.
Hence, it cannot keep up with the velocity of large data streams generated in healthcare to derive
real-time knowledge [16]. However, in healthcare, making decisions often is time-critical. For example,
alarming situations for a patient should be reacted upon in a responsive manner. In addition, available
resources are limited, making the computational complexity of expressive reasoning for healthcare
even a bigger issue. Moreover, when constructing a solution for these problems, privacy management
of the patient data is an important consideration [18].

1 https://www.snomed.org/snomed-ct
2 http://hl7.org/fhir/index.html
3 This means defining a restriction on the amount of object property relations for a class individual. For example, it can be

defined that an instance of a Car class has at least 2 doors, at most 1 trunk and exactly 1 owner.
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To tackle the issue with performing real-time analysis, two research trends have emerged, being
stream reasoning and cascading reasoning. Stream reasoning [19] tries to incorporate semantic
reasoning techniques in stream processing techniques. Cascading reasoning [20] exploits the trade-off
between reasoning complexity and data stream velocity by constructing a processing hierarchy of
reasoning components. Hence, there is the need for a platform using these techniques to solve the
issues in smart healthcare.

1.2. Objective & paper organization

The objective of this paper is the realization of a generic cascading reasoning platform, and the
study of its applicability to solve the aforementioned smart healthcare issues. The cascading reasoning
platform is implemented in an open flexible way, to make it easily extensible and applicable to different
use cases. A Proof-of-Concept (PoC) application is implemented on a use case situated in pervasive
healthcare. Using the PoC implementation, the performance of the framework is evaluated, and its
advantages and disadvantages are discussed.

The remainder of this paper is organized as follows. Section 2 discusses the related work. In
Section 3, the general architecture of the proposed cascading reasoning platform is described. Section 4
addresses the use case for the PoC and its implementation using the architecture components. Section 5
then describes the evaluation set-up, including the different evaluation scenarios and hardware set-up.
Results of this evaluation are presented in Section 6. In Section 7, the evaluation results, advantages
and disadvantages of the platform for the PoC use case, are further discussed. Finally, Section 8
concludes the main findings and highlights future work.

2. Related work

2.1. Stream reasoning

Data Stream Management Systems (DSMS) and Complex Event Processing (CEP) systems allow
to query homogeneous streaming data structured according to a fixed data model [21]. However, in
contrast to Semantic Web reasoners, DSMS and CEP systems are not able to deal with heterogeneous
data sources and lack support for the integration of domain knowledge in a standardized fashion.

Therefore, stream reasoning [16,19] has emerged as a challenging research area that focuses
on the adoption of semantic reasoning techniques for streaming data. The first prototypes of RDF
Stream Processing (RSP) engines [22] mainly focus on stream processing. Stream reasoning however
tries to incorporate reasoning techniques in stream processing. The most well-known examples of
RSP engines are C-SPARQL [23] and CQELS [24], but others also exist, such as EP-SPARQL [25] and
SPARQLStream [26]. Because a data stream has no defined beginning or ending, a window is placed
on top of the data stream. A continuous query is registered once and produces results continuously
over time as the streaming data passes through the window. As such, these RSP engines can filter and
query a continuous flow of data and can provide real-time answers to the registered queries. Each of
these engines has different semantics and is tailored towards different use cases. Other solutions, e.g.,
Sparkwave [27] and INSTANS [28], use extensions of the RETE algorithm [29] for pattern matching.
Queries are translated into a RETE network through which the data flows. The resulting network
consists of a set of nodes that can memorize partial pattern matches in the streaming data.

As shown in Table 1, all considered RSP engines, except INSTANS, support integration of domain
knowledge in the querying process. However, their reasoning capabilities are limited. None of the
proposed systems is able to efficiently perform expressive OWL 2 DL reasoning on streaming data,
which is often required for complex application domains such as healthcare.

Other techniques [30] allow reasoning over the stream by rewriting the continuous query and
incorporating partial complexity in the query. This is done by exploiting the knowledge in the
knowledge base during the rewriting phase. However, the reasoning complexity is bounded by the
rewriting capabilities, which are currently limited. Hence, more complex reasoning is not possible.
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Table 1. Reasoning support in state of the art RSP engines

Background knowledge Reasoning capabilities

C-SPARQL Yes RDFS
SPARQLStream Yes None

EP-SPARQL Yes RDFS (in Prolog)
CQELS Yes None

Sparkwave Yes RDFS subset
INSTANS No None

DL

Raw stream processing

RDF streams

Logic programs

Reasoning

Complexity

Rewriting

Abstraction

Selection

Interpretation

Querying

Change frequency

PTIME

2NEXPTIME 1 Hz

104 Hz

Complexity vs. dynamics & scale

Figure 1. Cascading reasoning and the trade-off between complexity of reasoning and velocity of the
data stream [20]

To enable complex reasoning on streams, incremental reasoning is often used. It incrementally
maintains the materialization of the knowledge base. Materialization precomputes key sets of implicit
assertions in the knowledge base. It is often employed by semantic query and reasoning engines
to improve query performance. By only considering the data that is subject to change, incremental
reasoning tries to avoid re-materializing the complete knowledge base. IMaRS [31], TrOWL [32] and
RDFox [15] are notable contributions towards incremental stream reasoning. IMaRS is developed on
top of C-SPARQL, and and only supports RDFS reasoning. TrOWL supports OWL 2 DL reasoning, but
targets use cases with dynamic updates to the knowledge base, and not real streaming applications.
RDFox is a triple store supporting highly efficient OWL 2 RL reasoning.

Finally, StreamRule [33] is a 2-tier approach, combining stream processing with rule-based
non-monotonic incremental Answer Set Programming (ASP) to enable reasoning over data streams.
However, ASP is not standardized, meaning no existing healthcare vocabularies can be exploited, in
contrast to OWL.

Summarizing, stream reasoning tries to adopt semantic reasoning techniques for streaming data,
but still lacks the possibility to support real-time and expressive reasoning at the same time. The
existing available RSP engines aim at filtering and querying of streaming data, but they lack support for
complex reasoning. To perform such complex reasoning, traditional (incremental) semantic reasoners
need to be used. However, this complex reasoning is computationally intensive and not capable of
handling streaming data with a too high frequency.

2.2. Cascading reasoning

The concept of cascading reasoning [20] was proposed to exploit the trade-off between the
complexity of the reasoning and the velocity of the data stream, which is illustrated in Figure 1. The
aim is to construct a processing hierarchy of reasoners. At lower levels, high frequency data streams are
filtered with little or no reasoning, to reduce the volume and rate of the data. At a higher level, simple
local reasoning can already be performed. At the top, more complex reasoning is possible, as the
change frequency has been further reduced. This approach avoids feeding high frequency streaming
data directly to complex reasoning algorithms. In the generalized vision of cascading reasoning,
streams are first fed to one or more RSP engines, and then to more expressive semantic reasoners.
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Figure 2. High-level architecture of the proposed cascading reasoning framework. The blocks represent
the several components, the arrows indicate how the data flows through these components. The dotted
arrows indicate possible feedback loops to preceding components.

The concept of cascading reasoners fits nicely with the current trend in IoT architectures towards
Fog computing [34], where the edge is introduced as an intermediate layer between data acquisition
and the cloud-based processing layer. The edge allows filtering and aggregation of data, resulting in
reduced network congestions, less latency and improved scalability. In addition, it enables to process
the data close to its source, which in turn can improve the response time, as it allows to rapidly act
on events occurring in the environment. As such, fast and possibly less accurate derivations and
actions can be made at the edge of the network. These intermediate results can then be combined and
forwarded to the cloud for further, more complex and less time-stringent processing. In this way, more
privacy is also enabled. For example, these intermediate results can filter out sensitive data, to avoid
sending it over the network.

The cascading reasoning and fog computing approaches offer interesting perspectives, but up
to today, no generic framework for cascading reasoning is available that can be applied to healthcare
use cases, given the smart healthcare requirements addressed in Section 1.1. Semantic frameworks for
healthcare exist [35–39], but to the authors’ knowledge, no stream or cascading reasoning was tackled
by these frameworks. Therefore, in this paper, a generic cascading reasoning framework is proposed,
which targets to solve these issues.

3. Architecture of the cascading reasoning framework

The architecture of the generic cascading reasoning framework consists of four main components:
an Observation Unit (OBU), an RSP Service (RSPS), a Local Reasoning Service (LRS) and a Back-end
Reasoning Service (BRS). Furthermore, a central knowledge base is available. An overview of this
architecture is given in Figure 2.

The central knowledge base contains the domain ontologies and static context information.
For example, in healthcare, the knowledge base includes information on existing medical domain
knowledge and a semantic version of the EHR of patients. The information in the knowledge base can
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be managed in a centralized database system, which can be an RDF triple store. In this case, the triple
store contains mappings of the existing data architecture to the supported ontological formats. Besides,
the information can also be managed in a regular database system that supports ontology-based data
access (OBDA) [40].

The OBU refers to the infrastructure used to monitor the given environment. This infrastructure
can consist of WSNs, BANs and other sensor platforms. The task of the OBU is threefold: (i) capture the
raw sensor observations, (ii) semantically annotate these observations and (iii) publish the resulting set
of RDF triples on its corresponding output RDF data stream. This set of RDF triples should consist of a
reference to the sensor producing the observation, the observed value and an associated timestamp.

The RSPS, LRS and BRS components are the stream processing and reasoning components. By
configuration, only the relevant parts of the central knowledge base are available on each RSPS and
LRS component, as these components typically do not need to know all domain knowledge and/or
context information of the full system. On each BRS component, the full central knowledge base is
available. Updates to the knowledge bases are coordinated from the BRS component(s).

The RSPS is situated locally and contains an RSP engine. The input of this engine consists of the
RDF data streams produced by the OBU, or another RSPS. The task of the RSP engine is to perform
some initial local processing of these input data streams, by aggregating and filtering the data according
to its relevance. On the RSPS, little to no reasoning is done on the data, depending on the use case.
The output of the RSP engine is one or more RDF streams of much lower frequency, containing the
interesting and relevant data that is considered for further processing and reasoning.

The LRS is situated in the edge of the network. Here, a local reasoner is running that is capable of
performing more expressive reasoning, e.g., OWL 2 RL or OWL 2 DL reasoning. It takes as input the
output RDF stream(s) of the RSPS, or another LRS. As the velocity of these streams is typically lower
than the original stream, computation time of the reasoning can be reduced. The service has two main
responsibilities. First, it can publish reasoning results and/or data patterns to another LRS, or a BRS in
the cloud, for further processing. Again, the output stream typically is of lower frequency than the
input streams. Second, it can also publish results to one or more other external components that are
capable of performing some first local actions. This allows for fast intervention, before the results are
further processed deeper in the network.

The BRS is situated in the cloud. It also consists of an expressive reasoner that has access to the full
central knowledge base. Typically, a small number of BRS components exist in the system, compared
to several LRS and even more RSPS components. The reasoning performed by the BRS can be much
more complex, as is it is working on data streams of much lower frequency compared to the local and
edge components. This enables to derive and define intelligent and useful insights and actions. These
insights and action commands can be forwarded to other BRS or external components, which can then
act upon the received information or commands.

In some use cases, it might be useful to provide feedback to preceding components in the chain.
This is possible in the current architecture, by the use of feedback loops. This feedback can be seen as
messages, e.g., events or queries, in the opposite direction of the normal data flow.

When deploying the architecture, each component in the system should be configured. To this end,
the observer concept is used: each component, including external components, can register itself as an
observer to an output stream of another component. In this way, the system components can be linked
in any possible way. Hence, using the generic architecture, an arbitrary network of the components
can be constructed and configured. Figure 3 shows a potential deployment of this architecture in a
hospital setting. In this example, there is one OBU and RSPS per patient, one LRS per room, one BRS
per department, and another BRS for the full hospital.
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Figure 3. Potential deployment of the architecture of the cascading reasoning platform in a hospital
setting. A network of components can be constructed. In this example, there is one OBU and RSPS per
patient, one LRS per room, one BRS per department, and another BRS for the full hospital. Potential
external components are omitted from this figure.

4. PoC implementation

A PoC has been developed for a use case situated in pervasive healthcare. In this section, this
use case is described in detail, followed by a discussion of how the PoC has been implemented using
the architecture described in Section 3. This includes a discussion of the designed continuous care
ontology, the data sources and the implementation of the different architecture components.

4.1. Pervasive health use case description

Consider a use case where a patient Bob is suffering from a concussion and is therefore being
hospitalized. The EHR of Bob states that he suffers from a concussion, meaning that direct exposure to
light and sound must be avoided. Both Bob’s EHR and this medical domain knowledge are available
in the knowledge base. Based on this data, an acceptable level for both light intensity and sound
level to which Bob may be exposed to (one of none, low, moderate, normal or high) can automatically
be suggested and added to the knowledge base. These personalized levels can then be adjusted by a
doctor or the nursing staff, if required. For Bob, the acceptable level of both light intensity and sound
is low. For each property, a mapping between the acceptance levels and absolute threshold values is
also part of the medical domain knowledge. For example, a moderate light intensity level is mapped to
a light intensity threshold of 360 lumen, meaning that 360 lumen is the maximum light intensity that
a patient with this acceptance level may be exposed to. In Bob’s case, the threshold values for light
intensity and sound are 180 lumen and 30 decibels respectively.

The hospital room where patient Bob is accommodated, is equipped with an OBU. This OBU
has multiple sensors, among which a light and sound sensor. The OBU can also detect the presence
of people in the room through the presence of a Bluetooth Low Energy (BLE) sensor (beacon). As
all patients and nurses in the hospital are wearing a BLE bracelet containing a personal BLE tag, the
system is able to discover all relevant people present in the room.

When the observed light intensity or sound values in Bob’s room exceed the thresholds related to
the acceptance levels found in his EHR, a possibly unpleasant situation for Bob is detected. This situation
is called a symptom. Possibly unpleasant means that the situation should be further investigated. When
the situation also is an actual alarming situation for patient Bob, it is called a fault. When a fault is
detected, (a) certain action(s) can/should be taken by the system to try to solve the fault. Whether or
not a symptom implies a fault and thus requires action, depends on information regarding the actual
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context. For this use case, this is only true if the patient who is accommodated in the room where the
threshold is crossed, is sensitive to the measured property, e.g., light intensity or sound.

Once a fault is detected, the system will try to solve it by taking one or more actions. An action
can be static, or it can depend on other data. For this use case, the action taken depends on the presence
of a nurse in the patient room at the time of the fault detection. When a nurse, who is responsible for
that patient, is present in the room, the fault is considered less severe. In such a situation, it is likely to
assume that the nurse knows how to treat the patient and that precautions have been taken to shield
the patient from direct light and sound exposure. However, it might be useful to warn the nurse of the
exceeded threshold by means of a message on an information display or on a mobile device. When
no nurse is present in the room, the fault is much more severe. Actions should be taken to resolve
the fault: a nurse should be called by the system to go on site and check the situation in the room.
Awaiting the arrival of the nurse, local action can already be taken. For example, in case the fault is
caused by a high light intensity observation, the light level can already be automatically reduced to a
more acceptable level, e.g., by dimming the lights or closing the window blindings. Again, a warning
can be displayed on an information display to make people in the room aware of what is happening.

4.2. Architectural use case set-up

To implement the use case, the architecture presented in Section 3 is used. An overview of the
architectural set-up for this use case is shown in Figure 4.

To map the architecture, a few assumptions about the hospital and its rooms are made. The
hospital consists of multiple departments. On each department, multiple nurses are working. In each
department, several hospital rooms are located, both single-person and multi-person rooms. In each
room, there exists exactly one OBU and RSPS per bed, i.e., if accommodated, per patient. There is one
LRS per room, independent of the amount of patients. Over the full hospital, only one BRS exists4.

In each room, the OBU consists of a BLE sensor, and multiple environmental and/or body sensors.
For the concussion diagnosis and corresponding sensitiveness to light intensity and sound, a light and
sound sensor are sufficient. Of course, in a real-life use case, the available medical domain knowledge
will consist of multiple diagnoses. Accordingly, the OBU will then also consist of potentially other
sensors. For the system to work correctly, accuracy of the sensors is required. For example, the range
of the BLE beacon should be correctly configured, such that it does not detect BLE devices that are
nearby, but in another room.

4.3. Continuous care ontology

A continuous care ontology has been designed to describe existing medical domain knowledge, to
enable the semantic annotation of the sensor observations, and to allow modeling all available context
information. For PoC purposes, a new ontology has been designed for this. However, to link it with
existing medical ontologies, a mapping to the SNOMED ontology has been added to the ontology.

The starting point for this ontology was the ACCIO5 ontology. This is an OWL 2 DL ontology
designed to represent different aspects of patient care in continuous care settings [41]. For this use case,
this includes the representation of hospital departments, rooms, sensors, BLE bracelets, observations,
nurses, patients, actions, nurse calls etc. These concepts can be represented, as well as the relations
between them. Moreover, the ontology contains some concepts for this use case that allow the inference
of certain situations and hence easier query writing. An example is NursePresentObservation, which
is defined as a BLE tag observation of a bracelet owned by a nurse:

4 For this implementation, a simple set-up with only one BRS for the full hospital is considered. However, in a real-life set-up,
there will typically be more than one BRS component in the system, e.g., an extra BRS per department, as indicated on
Figure 3.

5 Available at https://github.com/IBCNServices/Accio-Ontology/tree/gh-pages
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Figure 4. Architectural set-up for the PoC use case. Each hospital room contains one LRS, and one
OBU and RSPS per patient. There is only one BRS in the hospital. Patient Bob is accommodated in
room 101 of department A, which is supervised by nurses Susan, Mary and Jane.

NursePresentObservation ≡
(hasResult some (

observedDevice some (
BLEBracelet and (deviceOwnedBy some (

Person and (hasRole some StaffMemberRole))))))
and (madeBySensor some BLEBeacon)

The existing ACCIO ontology has been further extended for this work with some key concepts and
relations specific for the current use case. This extension is the CareRoomMonitoring.owl6 ontology.
Here, all possible medical symptoms, diagnoses, symptoms and faults are defined. For this use case,
the Concussion class is defined as being equivalent to a Diagnosis that has two medical symptoms,
being light sensitiveness and sound sensitiveness:

Concussion ⊆ Diagnosis
and (hasMedicalSymptom some SensitiveToLight)
and (hasMedicalSymptom some SensitiveToSound)

Moreover, the SoundAboveThresholdFault class is defined as:
SoundAboveThresholdFault ≡

(hasSymptom some SoundAboveThresholdSymptom)
and (madeBySensor some (

isSubsystemOf some (
hasLocation some (

isLocationOf some (
(hasDiagnosis some (hasMedicalSymptom some SensitiveToSound))
and (hasRole some PatientRole))))))

Two conditions need to be fulfilled for an Observation individual to also be a
SoundAboveThresholdFault individual. First, it needs to have a SoundAboveThresholdSymptom,
indicating the possibly unpleasant situation. Second, the observation needs to be made by a sensor
system situated at the same location as a sound sensitive patient, i.e., a patient with a diagnosis that
implies sound sensitiveness. If that is also the case, the possibly unpleasant situation is alarming. For
this use case, the definition of LightIntensityAboveThresholdFault is completely similar.

The approach of using medical symptoms, diagnoses, symptoms and faults, allows complete
separation of diagnosis registration and fault detection. For an observation to be a fault, the exact
diagnosis of the patient located at the corresponding room is unimportant; only the medical symptom,
e.g., sensitiveness to light or sound, needs to be known. Vice versa, a patient’s sensitiveness to light

6 Available at http://ibcnservices.github.io/Accio-Ontology/CareRoomMonitoring.owl
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sosa:Observation

SSNiot:hasSymptom

SSNiot:Symptom

SSNiot:isSymptomOf

SSNiot:hasSolution

SSNiot:isSolutionOf

DUL:Action

SSNiot:requiresAction

SSNiot:isActionOf

SSNiot:Fault SSNiot:Solution

SSNiot:LightIntensity
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CareRoomMonitoring:

LightIntensityAbove

ThresholdSymptom
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ThresholdFault
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CallNurseAction
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WarnNurseAction

is a
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Figure 5. Overview of the most important ontology patterns and related classes of the PoC use case.
The example for light intensity is given; the classes and patterns for sound are similar.

Listing 1: Prefixes used in the figures and listings of this paper
@prefix obs: <http :// occs.intec.ugent.be/ontology/observations#> .
x@prefix DUL: <http :// IBCNServices.github.io/Accio -Ontology/ontologies/DUL.owl#> .
x@prefix SSNiot: <http :// IBCNServices.github.io/Accio -Ontology/SSNiot.owl#> .
x@prefix General: <http :// IBCNServices.github.io/Accio -Ontology/General.owl#> .
x@prefix SAREFiot: <http :// IBCNServices.github.io/Accio -Ontology/SAREFiot.owl#> .
@prefix NurseCall: <http :// IBCNServices.github.io/Accio -Ontology/NurseCall.owl#> .
@prefix TaskAccio: <http :// IBCNServices.github.io/Accio -Ontology/TaskAccio.owl#> .
x@prefix RoleCompetenceAccio: <http :// IBCNServices.github.io/Accio -Ontology/RoleCompetenceAccio.owl#> .
x@prefix CareRoomMonitoring: <http :// IBCNServices.github.io/Accio -Ontology/CareRoomMonitoring.owl#> .

x@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#> .
x@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
x@prefix xsd: <http ://www.w3.org /2001/ XMLSchema#> .
x@prefix sosa: <http ://www.w3.org/ns/sosa/> .

and sound, or any other medical symptom, does not need to be explicitly registered in the system;
registering the diagnosis is sufficient. Because the diagnosis is already defined in the system according
to medical domain knowledge, its corresponding medical symptoms are implicitly known.

By design, the ACCIO ontology contains different patterns to represent the logic related to this
use case. For example, a Fault is an Observation that needs a Solution through hasSolution, and
a Solution requires an Action via requiresAction. Each such Action has exactly one Status via
hasStatus, indicating the status in the life cycle of the action. To this end, a general overview of the
most important ontology patterns and classes is presented in Figure 5. An overview of the prefixes
used in this figure, and in the remainder of this paper, is given in Listing 1.

4.4. Data sources

As can be seen on Figure 2, each RSPS, LRS and BRS component of the system works with two
data sources: the knowledge base and streaming data. Both are use case specific.

4.4.1. Knowledge base

For this use case, the knowledge base consists of the continuous care ontology, described in
Section 4.3, and available context data. As explained, this information can be managed in a centralized
database system, which can be an RDF triple store, or a regular database system that supports
OBDA [40]. Examples of OBDA systems are Ontop [42] and Stardog7. By configuration, only the
relevant parts of the knowledge base are available on each LRS and BRS. On the BRS, the full knowledge
base is available.

7 https://www.stardog.com
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Context data can be considered as static data: although it can change over time, the number of
updates is low compared to the number of times a query evaluation is performed on the data before it
changes. For this PoC, the context data includes information about the hospital layout, patients and
nurses, the OBU and connected sensors, and BLE wearables. Changes to this context data are less
frequent, but do occur. For example, a newly diagnosed person is being accommodated in a room,
or a new nurse starts working at a department. In these cases, the knowledge base of each relevant
component needs to be updated. This is coordinated from the central knowledge base at the BRS.

On each RSPS and LRS component, only the information about the current department and
room is known. For the nurses, context data related to all hospital nurses of the own department is
available on each RSPS and LRS. On each RSPS, only the patient information of its associated patients
is available. Similarly, patient data of all patients in the room is present in the knowledge base of
each LRS. Consequently, on the RSPS and LRS of Bob’s room, four persons are defined: patient Bob,
who is introduced in the use case description in Section 4.1, and three nurses, Susan, Mary and Jane.
Bob is lying in room R101 of DepartmentA. According to the diagnosis modeled by the hasDiagnosis
property, he is suffering from a concussion. For both light intensity and sound, the threshold values of
180 lumen and 30 decibels are modeled using the hasThreshold property. As for the nursing staff, the
nursing role of Susan, Mary and Jane is modeled through a StaffMemberRole individual. Moreover,
each person is assigned a BLEBracelet.

The OBU is defined as an instance of the System class and is uniquely identifiable by its MAC
address. The OBU is located in room R101. Three sensors are connected to the OBU: a sound sensor, a
light sensor and a BLE beacon. Each sensor has a unique identifier composed of the MAC address of
the OBU and a sensor ID which is unique on a single OBU.

Moreover, a threshold value is modeled for the light and sound sensor. These thresholds are
identical to the corresponding threshold values of Bob for exposure to light intensity and sound, i.e.,
180 lumen and 30 decibels respectively. Directly linking these thresholds to the sensors themselves is
crucial for the filtering at the RSP engine, as will be explained in Section 4.6. The process of mapping
the thresholds of a person, related to a received medical diagnosis, to thresholds of the sensors of
the patient’s OBU, needs to happen when a (new) diagnosis is made. This is achieved by running an
appropriate query, inserting the sensor thresholds into the different knowledge bases.

Similarly to the patient data, only the associated OBU data is available in the knowledge base of
an RSPS. On each LRS, all OBU data of the associated room is known.

4.4.2. Streaming data

Streaming data is considered as highly dynamic data. An RDF data stream consists of an infinite
flow of RDF data fragments, which are produced constantly and annotated with a timestamp. Data
generated by sensors is a typical example of streaming data.

For this use case, the streaming data is produced, semantically annotated and published in
different streams by an OBU. The semantic annotation, i.e., the mapping of the raw sensor observations
to RDF format, is an important task. In this mapping process, the observations are modeled according to
the continuous care ontology. Each observation is modeled as an instantiation of the sosa:Observation
class and consists of different triples describing the observation properties.

Listing 2 shows the template of an RDF observation message for a sound observation. In the
template of Listing 2, (A) denotes the sensor identifier, (B) the observation timestamp expressed in
milliseconds, (C) the observation timestamp in xsd:dateTime format, (D) the observed value, and (E)
the corresponding unit. For a light intensity observation, the template is identical except that the object
of the sosa:observedProperty property is of type SSNiot:LightIntensity.

For a BLE tag observation, the sosa:observedProperty is of type SSNiot:BLETag. The
object of the sosa:hasResult property is of type SSNiot:TagObservationValue instead of
SSNiot:QuantityObservationValue. The DUL:hasDataValue property has an object of type
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Listing 2: Template of a semantically annotated sound sensor observation
obs:Observation_(A)-(B) rdf:type sosa:Observation ;

General:hasId [ General:hasID "(A)-(B)"^^xsd:string ] ;
sosa:observedProperty [ rdf:type SSNiot:Sound ] ;
sosa:madeBySensor [ General:hasId [ General:hasID "(A)"^^xsd:string ] ] ;
sosa:resultTime "(C)"^^ xsd:dateTime ;
sosa:hasResult [ rdf:type SSNiot:QuantityObservationValue ;

DUL:hasDataValue "(D)"^^xsd:float ; SSNiot:hasUnit "(E)"^^xsd:string ] .

xsd:string, containing the ID of the observed device. Moreover, the SSNiot:hasUnit property is
omitted, and the SAREFiot:observedDevice property is added, linking to the observed BLEBracelet.

The name of each observation is unique due to the observation identifier. For a sound and
light intensity observation, this identifier is a combination of the sensor identifier, which is unique
among all OBUs, and the timestamp of the observation, expressed in milliseconds. For example,
the name of an observation made by the sound sensor with identifier 40-a5-ef-05-a4-a6-A0 at
2018-04-28T16:09:33.307Z will be obs:Observation_40-a5-ef-05-a4-a6-A0-1524924573307. For
a BLE tag observation, the combination of sensor identifier and observation timestamp is not necessarily
unique, because the same BLE beacon can observe multiple devices at the same timestamp. Therefore,
the ID of the observed device is added to the observation ID.

The next sections will go into detail on the PoC implementation on each of the four main
architecture components of the cascading reasoning framework presented in Section 3. Figure 6
gives an overview of the main components of the PoC. It shows the inputs and outputs of each
component, which are all events containing RDF triples, as well as the queries that are being executed
on each RSPS, LRS and BRS component.

4.5. OBU

In every hospital room, one OBU per patient is present to monitor the environment. For this PoC,
the single-person room of patient Bob is considered, where one OBU is installed. As explained in
Section 4.4.1, this OBU consists of three sensors: a light sensor, a sound sensor and a BLE beacon. In a
realistic system, the light and sound sensors can be part of a sensor board, such as a GrovePi+. As a
BLE beacon is a different type of sensor, it is not part of this board. Therefore, for the implementation
of this PoC, the OBU publishes the sensor observations in two separate RDF data streams: one stream
(http://rspc1.intec.ugent.be/grove) containing the sensor board observations, i.e., those of the
light and sound sensors, and one stream (http://rspc1.intec.ugent.be/ble) containing the BLE
tag observations, i.e., the BLE devices detected by the BLE beacon.

OBU

FilterLightIntensity

FilterSound

Observation 

with SymptomObservation

ConstructCallNurseAction

ConstructWarnNurseAction
ConstructNurseCall

SelectNurse

RSPS LRS BRS

Fault with Solution 

with CallNurseAction

EX Cz

Fault with Solution 

with WarnNurseAction

EY

Fault with Solution 

with CallNurseAction
Nurse,

Room, 

Fault

Figure 6. Overview of the components of the PoC. The inputs and outputs of each main component are
shown in italic, as well as the queries executed on each RSPS, LRS and BRS. The additional components
EX and EY represent the components taking local action. CZ represents the component taking care of
the actual nurse call. Feedback loops are omitted from the overview.
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4.6. RSPS

As explained in Section 3, the RSPS is situated locally, and consists of an RSP engine. In the
given use case, locally means within the hospital room. In concrete, there is one RSPS component per
OBU, i.e., per patient. Therefore, for this PoC, one RSPS component is deployed and running in Bob’s
single-person room.

For the RSPS, the used RSP engine is C-SPARQL [23], because of its support for static context
data [22]. Both input and output of the RSP engine are RDF streams. It is used together with the RSP
Service Interface for C-SPARQL8, which offers a simple RESTful interface to interact with C-SPARQL.
In terms of reasoning capabilities, C-SPARQL incorporates the possibility to perform RDFS reasoning.
However, reasoning is time-consuming and may take too much time when fast reevaluation of the
continuous queries is required. Therefore, for this use case, no reasoning is performed by C-SPARQL.

Looking at the cascading reasoning approach, RSP engines are used to filter the data streams in
such a way that the change frequency of the resulting data stream is much lower. In concrete, only
interesting information is retained. This allows to take some local actions and enables more complex
reasoning in the subsequent components. Therefore, appropriate continuous queries are constructed
that intelligently aggregate and filter the data streams for the use case at hand.

For this use case, two similar C-SPARQL queries are running on the RSPS component:
FilterSound and FilterLightIntensity. These CONSTRUCT queries try to filter sound and light
intensity sensor observations coming from the associated OBU. As explained before, a window needs
to be placed on top of the continuous data streams. For these queries, a logical window is used, which
is a window extracting all triples occurring during a certain time interval. In concrete, both queries
are executed every 5 seconds, on a logical sliding window containing all light, sound and BLE tag
observations of the previous 6 seconds9. The triples constructed by the query are sent as RDF messages
to the event stream of the LRS. Listing 3 shows the FilterSound query, which is discussed in the next
paragraphs. The FilterLightIntensity query and its motivation are completely similar.

Lines 13-15 of the FilterSound query definition in Listing 3 define its inputs: the stream with
sensor board observations (including sound observations), the stream with BLE tag observations, and
the context data available in the local knowledge base.

The WHERE clause of the query consists of two large parts (lines 17-39 and lines 41-50). Considering
the first part, its first section (lines 18-24) extracts any sound sensor observation in the input window10.
The second part, i.e., the OPTIONAL clause (lines 26-36), contains an optional pattern that looks at BLE
tag observations in the window corresponding to the BLE bracelet of a nurse. If this is the case, these
observations will be retained as well. Note that this pattern only matches BLE tag observations of
nurses that are working on the department the hospital room belongs to. This is because context
information about the BLE bracelets of other nurses is not available in the local knowledge base. Hence,
the triple pattern in the OPTIONAL clause will not give any results for other nurses. The rationale for
this is that it is assumed that nurses of other departments know too little about the patients of the
current department. Hence, their presence in the room should not affect the outcome of the query.

Line 38 of the query contains an important filter. It checks for each sound observation whether
the observed sound value is is higher than the threshold of the sound sensor that measured the value.
As explained in Section 4.4.1, this sensor threshold exactly corresponds to the patient’s sound exposure

8 https://github.com/streamreasoning/rsp-services-csparql/
9 The window size of 6 seconds is chosen as such to avoid situations where certain observations fall between two windows.

Theoretically, this should not be possible when the window size and sliding step are both equal, but in practice, a real
implementation of the system may exhibit a lag of a few milliseconds between two query executions.

10 Note here for example that the query matches any observation made by a sound sensor. Specifically checking which sensor
is not required, because the local knowledge base only contains information about the corresponding sound sensor of the
OBU. Hence, if a sensor matching the pattern is locally known, it is implicitly ensured that this is the correct sensor.
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threshold defined in the patient’s EHR11. Only if this threshold is crossed, the observation is retained,
as this might imply a possibly unpleasant situation, i.e., a symptom.

The second part of the WHERE clause consists of a second filter clause (lines 41-50). This filter will
ensure that the WHERE clause will only yield a result pattern, if there currently is a BLE tag observation
present in the input window, that corresponds to a BLE bracelet of a patient. If this is not the case, no
relevant patient is currently present in the hospital room. This means that the crossed sound threshold
is not a problem. Note that if the presence of a patient is detected, this automatically is the patient lying
in the bed corresponding to the RSPS. This is again a consequence of the fact that the local knowledge
base of the RSPS only contains patient information about its corresponding bed.

Lines 52-53 of the query sort the results of the WHERE clause according to the observation timestamp
in descending order, and only retain the first result. In this way, if there are multiple sound observations
above the sensor threshold, only the most recent observed sound value is retained in the query result12.

If the query yields a result, new triple patterns are constructed by the CONSTRUCT part (lines 2-11).
The high sound observation, which crossed its sensor’s threshold, will be given a newly created
SoundAboveThresholdSymptom. Other information on the particular observation is copied as well,
together with any BLE tag observation of a nurse’s bracelet, detected through the OPTIONAL clause.
Hence, each non-empty query result of the FilterSound query contains exactly one observation with
an associated symptom, potentially complemented by an observation of a BLE bracelet associated to a
nurse.

4.7. LRS

The LRS is situated in the edge of the network, as discussed in Section 3. In this use case, this
again corresponds to the hospital room. Therefore, in this PoC, there is one LRS per hospital room.

4.7.1. Reasoning service

To implement the LRS, and also the BRS addressed in Section 4.8, a reasoning service component
is implemented. In this reasoning service, the OWL 2 RL reasoner RDFox [15] is used. It was chosen
over other, more expressive reasoners such as HermiT, because of its highly efficient reasoning [15].

The continuous care ontology presented in Section 4.3 is an OWL 2 DL ontology, whereas RDFox
is an OWL 2 RL reasoner. The OWL 2 RL profile is designed to implement reasoning systems
using rule-based reasoning engines, as explained in the W3C specification13. Therefore, certain
restrictions are present. One restriction is that an OWL 2 RL reasoner cannot infer the existence of
individuals that are not explicitly present in the knowledge base. For example, according to the OWL
2 DL definition of Concussion presented in Section 4.3, for each Concussion individual p, an OWL
2 DL reasoner will create new triples p rdf:type Diagnosis, p hasMedicalSymptom [ rdf:type
SensitiveToLight ] and p hasMedicalSymptom [ rdf:type SensitiveToSound ]14. An OWL 2
RL reasoner cannot infer the second and third triple, which forms a problem, as their existence is
used in the SoundAboveThresholdFault definition. Therefore, such triples are explicitly added to the
ontology for a single Concussion individual. This individual is then used to model the diagnosis
of a person. In concrete, say _Concussion is the individual of the Concussion class, the triple “Bob
hasDiagnosis [ rdf:type Concussion ]” in the knowledge base is replaced by “Bob hasDiagnosis
_Concussion”. In this way, faults can be correctly inferred by RDFox. For this use case, it is sufficient to

11 This is of course assuming that a patient is accommodated in the bed corresponding to the RSPS. If this is not the case,
the sound sensor threshold will be (re)set to a static value at the moment the patient accommodation information in the
knowledge bases is updated.

12 This query assumes that only one nurse is in the room an should be warned. Indeed, as a consequence of this filter, at most
one BLE observation of a nurse’s bracelet will be sent to the LRS. Of course, this can easily be changed.

13 https://www.w3.org/TR/owl2-profiles/#OWL_2_RL
14 Prefixes of the ontology concepts are omitted in this paragraph.
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Listing 3: FilterSound query running on the RSPS component
1 CONSTRUCT {
2 _:sym rdf:type CareRoomMonitoring:SoundAboveThresholdSymptom ;
3 General:hasId [ General:hasID ?o_id ] .
4 ?m_o SSNiot:hasSymptom _:sym ; rdf:type sosa:Observation ;
5 General:hasId [ General:hasID ?o_id ] ; sosa:hasResult ?m_r .
6 ?m_r DUL:hasDataValue ?m_v ; SSNiot:hasUnit ?u .
7 ?m_o sosa:resultTime ?m_t ; sosa:madeBySensor ?s .
8

9 ?ble_ob1 rdf:type sosa:Observation ; sosa:madeBySensor ?ble_s1 ;
10 sosa:resultTime ?ble_ob1_time ; sosa:hasResult ?ble_r1 .
11 ?ble_r1 rdf:type SSNiot:TagObservationValue ; SAREFiot:observedDevice ?ble_b1_id .
12 }
13 FROM STREAM <http :// rspc1.intec.ugent.be/grove > [RANGE 6s STEP 5s]
14 FROM STREAM <http :// rspc1.intec.ugent.be/ble > [RANGE 6s STEP 5s]
15 FROM <http :// localhost :8181/ context.ttl >
16 WHERE {
17 {
18 ?m_o rdf:type sosa:Observation ; sosa:hasResult ?m_r ;
19 sosa:madeBySensor [ General:hasId [ General:hasID ?s_id ] ] ;
20 General:hasId ?o_id_ent ; sosa:resultTime ?m_t .
21 ?o_id_ent General:hasID ?o_id . ?m_r DUL:hasDataValue ?m_v .
22 OPTIONAL { ?m_r SSNiot:hasUnit ?u } .
23 ?s rdf:type SSNiot:LightSensor; General:hasId [ General:hasID ?s_id ] ;
24 SSNiot:hasThreshold [ DUL:hasDataValue ?th ] .
25

26 OPTIONAL {
27 ?ble_ob1 rdf:type sosa:Observation ;
28 sosa:madeBySensor [ General:hasId [ General:hasID ?ble_s1_id ] ] ;
29 sosa:resultTime ?ble_ob1_time ; sosa:hasResult ?ble_r1 .
30 ?ble_r1 rdf:type SSNiot:TagObservationValue ;
31 SAREFiot:observedDevice [ General:hasId [ General:hasID ?ble_b1_id ] ] .
32 ?ble_s1 rdf:type SSNiot:BLEBeacon ; General:hasId [ General:hasID ?ble_s1_id ] .
33 ?ble_b1 rdf:type SAREFiot:BLEBracelet ; General:hasId [ General:hasID ?ble_b1_id ] .
34 ?p1 rdf:type DUL:Person ; SAREFiot:ownsDevice ?ble_b1 ;
35 DUL:hasRole [ rdf:type RoleCompetenceAccio:StaffMemberRole ]
36 }
37

38 FILTER (xsd:float(?m_v) > xsd:float(?th))
39 }
40

41 FILTER (EXISTS {
42 ?ble_ob2 rdf:type sosa:Observation ; sosa:hasResult ?ble_r2 ;
43 sosa:madeBySensor [ General:hasId [ General:hasID ?ble_s2_id ] ] .
44 ?ble_r2 rdf:type SSNiot:TagObservationValue ;
45 SAREFiot:observedDevice [ General:hasId [ General:hasID ?ble_b2_id ] ] .
46 ?ble_s2 rdf:type SSNiot:BLEBeacon ; General:hasId [ General:hasID ?ble_s2_id ] .
47 ?ble_b2 rdf:type SAREFiot:BLEBracelet ; General:hasId [ General:hasID ?ble_b2_id ] .
48 ?p2 rdf:type DUL:Person ; SAREFiot:ownsDevice ?ble_b2 ;
49 DUL:hasRole [ rdf:type RoleCompetenceAccio:PatientRole ] .
50 })
51 }
52 ORDER BY DESC(?m_t)
53 LIMIT 1
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Figure 7. Overview of the functionality of the implemented reasoning service, used by the LRS & BRS

only model individuals of each medical symptom and each diagnosis, like described in this paragraph.
Other classes are not involved in existential rules that infer triples required for the use case.

By configuration, the reasoning service has a number of predefined event-based processing
SPARQL queries. SELECT, CONSTRUCT and UPDATE queries (containing DELETE and/or INSERT clauses)
are supported. Importantly, these queries can be ordered in the component’s configuration file. This
is required because they can depend on each other: an UPDATE query may for example work on new
triples constructed by a CONSTRUCT query.

For a CONSTRUCT and SELECT query, one or more observers can be defined to which the resulting
triples need to be sent. These observers are endpoints, such as streams, that can consume incoming
HTTP messages. For example, in the LRS, the triples constructed by a CONSTRUCT query can be sent to
the event stream of the BRS. Variable bindings outputted by SELECT queries can also be sent to other
components added to the system, for further processing. For a CONSTRUCT query, it can also be defined
whether the constructed triples should be added to the local triple store. UPDATE queries automatically
only update the triples in the local triple store. After every addition or removal of triples to/from the
triple store, incremental OWL 2 RL reasoning is performed.

In Figure 7, an overview of the functionality of the reasoning service is given. The main running
thread of the reasoning service component works with a single queue of incoming data events and
feedback queries. This means that data events and feedback queries can be sent to the system, where
they are added to the queue and sequentially processed in order of arrival.

In this use case, a data event is an RDF message that is arriving from the RSPS component. When
the event is removed from the queue by the main running thread, i.e., when the processing starts,
the event triples are temporarily added to the triple store. Next, incremental OWL 2 RL reasoning is
performed, generating all inferred triples. Each predefined query is then sequentially executed in the
defined order. When finished, the event triples are again removed from the triple store, after which a
final incremental reasoning step is executed.

Besides the event-based processing queries that are executed on every event, in some cases, it
might be interesting to execute a specific query once on the triples of the triple store, e.g., when the
status of an action needs to be updated. Such feedback queries can also be sent to the system. When a
feedback query is processed by the main running thread of the reasoning service, this query is simply
executed on the local triple store as such. Because these feedback queries are straightforward for this
use case, they are not further discussed.

4.7.2. Event-based processing queries

For this use case, incoming events at the LRS are RDF messages containing the triples constructed
by the FilterSound (Listing 3) and FilterLightIntensity queries running on the RSPS. These events
contain light and sound observations that are possibly unpleasant, i.e., that have a symptom. To
process such an incoming RDF message, the following queries are sequentially run on the LRS when
an event is being processed:
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• ConstructCallNurseAction (Listing 4): This CONSTRUCT query looks for an instance of a
DetectedFault (lines 10-12), i.e., it analyzes whether any fault is detected by the system. Recall
that an observation is a fault if given conditions are fulfilled. For each fault, these conditions are
integrated in the specification of the fault in the ontology. In this way, when the conditions are
fulfilled, the fault has been inferred by the reasoner after the addition of the event triples.

If a fault is detected – assuming the three filter clauses, addressed in the following paragraph,
are passed – new triples are constructed (lines 2-6). A solution for the fault is created. Each
solution requires a corresponding action, in this case a CallNurseAction. This action implies
that a nurse should be called to go on site to check the room. A CallNurseAction individual has
four statuses in its life cycle: New, when the action is created but not handled yet; Active, when a
component has activated the action and is starting the nurse selection process; Assigned, when a
specific nurse has been selected and notified to come to the room; and Finished, when the nurse
has arrived at the room.

Three FILTER NOT EXISTS patterns are added to the query’s WHERE clause. Only if they are
passed, a solution is created. The first filter (lines 15) ensures that no NursePresentObservation
is present. Recall from Section 4.3 that this is a BLE tag observation that is associated to the
BLE bracelet of a nurse. If this information is available in the event, this means the RSPS has
detected the presence of a nurse in the room. Obviously, no nurse should be called in this
case; another action is then taken by the ConstructWarnNurseAction query. The second filter
(lines 17-19) ensures that not more than one solution is created for a fault, i.e., an observation,
with the same ID. If a solution already exists, a new one should not be created. The third filter
(lines 21-27) clause avoids that a CallNurseAction is created when there is already another
CallNurseAction that is being processed or still needs to be processed, i.e., that has still status
New, Active or Assigned15. This means that a fault has been previously detected by the same
LRS, i.e., in the same room, and a nurse has then been called (or will soon be called), but has not
arrived yet. In that case, it makes no sense to call a nurse for the second time. Note that this
only holds if the existing CallNurseAction is part of a solution to a fault of the same type, i.e.,
SoundAboveThresholdFault in this case. The rationale for this is that a nurse is called to a room
with the fault type being the reason for the call. Therefore, a new call to the same room, but for
another reason, gives new information to a nurse that he/she can for example take into account
when deciding how urgent the call is.

The triples constructed by the ConstructCallNurseAction are sent to the event stream of the
BRS, because this component will decide how to handle the CallNurseAction. To keep track of
the status of the action, and to perform collect filtering in later executions of the query, the triples
are also added to the local triple store.

• ConstructWarnNurseAction (Listing 5): This CONSTRUCT query is complementary to the
ConstructCallNurseAction query in Listing 4. Hence, most parts are very similar.

The CONSTRUCT part of the query (lines 2-7) is identical, except for the fact that a WarnNurseAction
is created instead of a CallNurseAction. In other words, a solution for the fault is constructed,
where a specific nurse p1 should be warned, instead of calling a nurse to the room. This
particular nurse – added to the action via the hasContext property – will be present in the room
at the time of the fault generation, i.e., at the time of the threshold crossing. By definition, a
WarnNurseAction can only have status New, Active or Finished.

To only construct this particular solution when a nurse is present, the WHERE class of the query is
extended with the pattern in lines 15-16. This extension ensures that a NursePresentObservation

15 Note that the concept NewOrActiveOrAssignedAction is used for this. This concept is defined as a subclass of Action that
has one of these three statuses.
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Listing 4: ConstructCallNurseAction query running on the LRS component
1 CONSTRUCT {
2 _:f rdf:type ?t1 ; General:hasId [ General:hasID ?id ] ; sosa:madeBySensor ?sen ;
3 SSNiot:hasSolution [
4 rdf:type SSNiot:Solution ;
5 SSNiot:requiresAction [
6 rdf:type NurseCall:CallNurseAction ; General:hasStatus TaskAccio:New ] ] .
7 }
8 WHERE {
9 {

10 ?f1 rdf:type ?t1 ; General:hasId ?idobj ; sosa:madeBySensor ?sen .
11 ?idobj General:hasID ?id . ?sen SSNiot:isSubsystemOf ?sys .
12 ?t1 rdfs:subClassOf SSNiot:DetectedFault .
13 }
14

15 FILTER NOT EXISTS { ?ble_ob1 rdf:type NurseCall:NursePresentObservation . }
16

17 FILTER NOT EXISTS {
18 ?f3 SSNiot:hasSolution ?s1 ; General:hasId ?f3_idobj . ?f3_idobj General:hasID ?id .
19 }
20

21 FILTER NOT EXISTS {
22 {
23 ?f2 rdf:type ?t1 ; SSNiot:hasSolution ?s2 . ?s2 SSNiot:requiresAction ?a2 .
24 ?a2 rdf:type NurseCall:CallNurseAction , TaskAccio:NewOrActiveOrAssignedAction .
25 }
26 FILTER (?f1 != ?f2)
27 }
28 }

is present, and retrieves the associated nurse. The two filters of the query are similar to the
second and third filter of the CallNurseAction query. The second16 filter (lines 23-30) has
however one extra triple in the graph pattern: ?a2 DUL:hasContext ?p1. In this way, no new
WarnNurseAction is created if that particular nurse is currently being warned already. Hence,
each nurse present in the room will only be warned at most one time per fault type.

The triples constructed by this query are not sent to the BRS, because each WarnNurseAction is
completely handled locally. However, the triples are again added to the local triple store.

4.7.3. Taking local action

The ConstructWarnNurseAction query running on the LRS creates a WarnNurseAction with
status New when a nurse is in the room and should be warned of a fault. As explained, this action is
handled locally and avoids involving the BRS. This again avoids unnecessary communication with the
back-end in situations where the LRS knows perfectly what to do, i.e., in this case, warning the nurse. To
do so, an external component should be involved that is capable of communicating with the wearables,
i.e., that can transfer the triples constructed by the query into a real notification on the nurse’s wearable.
This component should therefore be registered as observer of the ConstructWarnNurseAction query.
It is also the task of this component to correctly update the status of the WarnNurseAction individual.
This can be done by sending appropriate UPDATE queries to the LRS to delete and insert the correct
triples in the local knowledge base. In Figure 6, this component is shown as component EX .

An example of a system that could be used for this additional component is DYAMAND [43]. This
is a framework that acts as a middleware layer between applications and discoverable or controllable
devices. It aims to provide the necessary tools to overcome the interoperability gaps that exist between
devices from the same and other domains.

For the ConstructCallNurseAction query, the situation is different compared to the
ConstructWarnNurseAction query. Constructed CallNurseAction individuals are sent to the BRS,

16 Note that this filter also checks whether the existing action is a NewOrActiveOrAssignedAction. The status of a
WarnNurseAction will however never be Assigned, but this extra check forms no problem as the goal is to ensure the action
is not finished yet.
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Listing 5: ConstructWarnNurseAction query running on the LRS component
1 CONSTRUCT {
2 _:f rdf:type ?t1 ; General:hasId [ General:hasID ?id ] ; sosa:madeBySensor ?sen ;
3 SSNiot:hasSolution [
4 rdf:type SSNiot:Solution ;
5 SSNiot:requiresAction [
6 rdf:type NurseCall:WarnNurseAction ;
7 DUL:hasContext ?p1 ; General:hasStatus TaskAccio:New ] ] .
8 }
9 WHERE {

10 {
11 ?f1 rdf:type ?t1 ; General:hasId ?idobj ; sosa:madeBySensor ?sen .
12 ?idobj General:hasID ?id . ?sen SSNiot:isSubsystemOf ?sys .
13 ?t1 rdfs:subClassOf SSNiot:DetectedFault .
14

15 ?ble_ob1 rdf:type NurseCall:NursePresentObservation ; sosa:hasResult ?ble_r1 .
16 ?ble_r1 SAREFiot:observedDevice ?ble_b1 . ?p1 SAREFiot:ownsDevice ?ble_b1 .
17 }
18

19 FILTER NOT EXISTS {
20 ?f3 SSNiot:hasSolution ?s1 ; General:hasId ?f3_idobj . ?f3_idobj General:hasID ?id .
21 }
22

23 FILTER NOT EXISTS {
24 {
25 ?f2 rdf:type ?t1 ; SSNiot:hasSolution ?s2 . ?s2 SSNiot:requiresAction ?a2 .
26 ?a2 rdf:type NurseCall:WarnNurseAction , TaskAccio:NewOrActiveOrAssignedAction ;
27 DUL:hasContext ?p1
28 }
29 FILTER (?f1 != ?f2)
30 }
31 }

where they are handled further. This means that the BRS, or another component interacting with
the BRS, is responsible for updating the status of each CallNurseAction in the local knowledge base.
Nevertheless, this does not mean that the LRS cannot take local action. Again, a component such as
DYAMAND can be registered as observer to the ConstructCallNurseAction query. Based on the fault
associated to an incoming CallNurseAction, it can already take some first local action. For example,
in case of a LightIntensityAboveThresholdFault, the component can check whether the lights are
switched off and the window blindings are closed. If not, this can then automatically be done. In
Figure 6, this component is shown as component EY.

4.8. BRS

As addressed in Section 3, the BRS is running in the cloud of the network. This means that only
one BRS is available for the entire hospital, compared to one LRS per room. The BRS has access to the
full central knowledge base. This includes all information on the hospital lay-out, all patients and
nurses, and all medical domain knowledge.

In the BRS, an ontology-based nurse call system (oNCS), similar to the one presented by Ongenae
et al. [44], should be deployed. This includes complex probabilistic reasoning algorithms that determine
the priority of a nurse call, based on the risk factors of the patient.

For this PoC, incoming events on the BRS are the triples created by the
ConstructCallNurseAction query (lines 2-7 in Listing 4). The following queries are sequentially run
each time an event is processed:

• ConstructNurseCall (Listing 6): This CONSTRUCT query handles any CallNurseAction with
status New, that has been created as solution for a detected fault. It transforms the scheduled
action into an actual nurse call by constructing a ContextCall. The query extracts the sensor
system that caused the fault, i.e., the system containing the sensor that crossed its threshold. This
system is set to have made the call. The reason for the call is the fault that the solution and action
were created for. The triples constructed by this query are only added to the local triple store.
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Listing 6: ConstructNurseCall query running on the BRS component
CONSTRUCT {

_:c rdf:type NurseCall:ContextCall ;
NurseCall:callMadeBy ?sys ; General:hasStatus TaskAccio:New ;
General:hasId [ General:hasID ?f_id ] ; TaskAccio:hasReason [ rdf:type ?t ] .

}
WHERE {

?f rdf:type ?t ; General:hasId ?f_idobj ; SSNiot:hasSolution ?sol ; sosa:madeBySensor ?s .
?t rdfs:subClassOf SSNiot:DetectedFault . ?s SSNiot:isSubsystemOf ?sys .
?f_idobj General:hasID ?f_id . ?sol SSNiot:requiresAction ?act .
?act rdf:type NurseCall:CallNurseAction ; General:hasStatus TaskAccio:New .

}

• SelectNurse (not listed): This query represents the complex nurse selection process of the oNCS.
For every ContextCall constructed by the previous query, it should select a free nurse and
assign this nurse to the call. Again, a separate component – observing the results of this query,
and using a system such as DYAMAND – can be used to actually show the call to the nurse on
his/her wearable. Important information for the nurse includes the room, patient and reason for
the call, i.e., the fault. In Figure 6, this additional component is shown as component CZ.

Note that the BRS is also responsible for keeping the status of each CallNurseAction at the
corresponding LRS up to date. When starting the selection process of the nurse, the status becomes
Active. Once a nurse is assigned, the status is Assigned. When the nurse has arrived, the action
receives the status Finished. Similarly, the status of each ContextCall also needs to be updated.

4.9. Platform configuration

In this section, it has been described how the generic architecture of the cascading reasoning
framework, presented in Section 3, is implemented for the described PoC use case. On the RSPS,
the C-SPARQL RSP engine is running, and on both the LRS and BRS, an event-based reasoning
service is running using the OWL 2 RL reasoner RDFox. To adopt the platform implementation for
a specific use case, a number of things should be configured, like it has been described for the PoC
use case in this section. First, the network of components should be defined. The domain ontologies
and context information should be described, and it should be configured which parts are relevant
for which components. Moreover, the OBU should be configured to map its observations to RDF
messages. Furthermore, for each RSPS component, the continuous queries should be defined. Similarly,
appropriate event-based processing queries should be configured for the LRS and BRS service. For
each component, its inputs should be defined by selecting the queries of other components to observe,
or the output stream of an OBU. Potential use case specific feedback loops and external components
to perform any actions should additionally be added. By configuring the aforementioned things, the
implementation of the framework can be applied to other use cases with minimal effort.

5. Evaluation set-up

To demonstrate the functionality and evaluate the performance of the presented cascading
reasoning framework, evaluation scenarios have been executed on the PoC implementation presented
in Section 4. Instead of using real sensors configured by the OBU, realistic scenarios have been created
and simulated.

5.1. Evaluation goals

The first goal of the evaluation is to verify the correct working of the system in multiple scenarios.
In particular, it is interesting to look how the system behaves in three distinct cases: one case where no
fault occurs, one case where a fault is handled locally, and one case where a fault is handled globally.

The second evaluation goal is to verify the global performance of the cascading reasoning platform.
According to legal stipulations in some countries, a nurse should have arrived at the correct location
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at most 5 minutes after a fault has occurred. Given this condition, according to the manufacturer
cooperating with the research group, i.e., Televic NV, each nurse call assignment should be completed
within 5 seconds after the fault occurrence, i.e., after the observation that crossed the threshold. This
leaves ample time for the nurse to move to the room after receiving the alert.

Related to the second goal, the third evaluation goal is to get insight into the component-level
performance of the cascading reasoning platform. This includes looking at the processing time and
latency on each component, network latency etc.

5.2. Evaluation scenarios

As indicated in the evaluation goals, three distinct scenarios are evaluated. Each scenario considers
the use case and implementation of the PoC described in Section 4. For these scenarios, a few
assumptions are made.

• The evaluation scenarios consider the architectural use case set-up presented in Figure 4. The
scenarios only consider the single-person room 101 of department A, where patient Bob is
accommodated. Bob is diagnosed with a concussion. When referring to the OBU, RSPS and LRS
in this section, these are the components in Bob’s room.

• The OBU in Bob’s room consists of exactly three sensors: a light sensor, a sound sensor, and
a BLE beacon. All three sensors are actively running. The light sensor and sound sensor are
producing one observation every second. The BLE sensor produces one or more observations
every 5 seconds.

• All three nurses Susan, Mary and Jane of department A have a work shift at the hospital
comprising the whole period of the scenario.

• The domain knowledge in the knowledge base of each component consists of
CareRoomMonitoring.owl and NurseCall.owl of the ACCIO ontology. At the time of writing,
the medical domain knowledge in CareRoomMonitoring.owl only contains one diagnosis, being
concussion, and two medical symptoms, being sensitiveness to light and sound.

• The static context data in the local knowledge base of the RSPS and LRS exactly matches the
context data described in Section 4.4.1. On the BRS, the knowledge base also contains similar
context data about other rooms and patients. For this evaluation, it is assumed the hospital has 2
departments with 10 single-person rooms each. In each room, one OBU is present containing a
light, sound and BLE sensor. Each room contains one diagnosed patient. On each department,
three nurses are working during the current shift.

• On each component, the queries as given in Section 4 are running. To focus on the evaluation of
the cascading platform, and not on the specific nurse call algorithm used, no full-fledged oNCS
implementation is used on the BRS. Instead, a more simple version of the SelectNurse query is
running, selecting one nurse of the department to assign to each ContextCall.

• During the scenarios, no background knowledge or context data updates are sent out from the
BRS to the local knowledge bases.

• No real external components are actively present in the evaluation architecture. This is purely
for evaluation purposes, as the goal is to look at the main components. As a consequence, no
actual local actions are taken by real components. However, one mock-up external component
exists, which is registered as an observer to the ConstructWarnNurseAction query on the LRS
and the SelectNurse query on the BRS. In this way, the reasoning services send outgoing events
(query results) to this component, allowing to calculate the latency of the components.

• Action statuses are also not automatically updated by feedback loops. Instead, the evaluation
scripts ensure that after each scenario run, the components are restarted, resetting the knowledge
bases of all components to the pre-scenario state.

For all three scenarios, the preconditions are the same. Patient Bob is the only person present in
hospital room 101. As Bob is recovering from a concussion, measures have been taken to protect him
for direct exposure to light and sound. Therefore, the lights are dimmed, the window blindings are
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Table 2. Overview of the observed values of the light sensor and the BLE sensor at each timestamp,
for scenario 1 & 2. The timestamps are in seconds since the start of the scenario, the light values in
lumen, and for the BLE values, ’B’ represents an observation of the BLE bracelet assigned to Bob, and
’S’ similarly for Susan’s bracelet. Changes to observed values only occur on multiples of 5 seconds.
Note however that the light sensor samples every second, and the BLE sensor every 5 seconds.

time 0 5 10 15 20 25

light 125 125 125 125 125 125
BLE B,S B,S B,S B,S B,S B,S

time 30 35 40 45 50 55

light 400 400 125 125 125 125
BLE B,S B,S B,S B,S B,S B,S

(a) Scenario 1

time 0 5 10 15 20 25 30 35

light 125 125 125 125 125 125 400 400
BLE B B B B B B B B

time 40 45 50 55 60 65 70 75

light 400 400 400 400 400 125 125 125
BLE B B B B B,S B,S B,S B,S

(b) Scenario 2

closed, and the television in the room is switched off. The light intensity is stable at 125 lumen, and the
sound is stable at 10 decibels.

Baseline scenario. During this scenario, the light intensity and sound values remain stable at 125
lumen and 10 decibels, respectively. No threshold is crossed, so that no symptom is created or fault is
inferred. Hence, no nurse should be warned or called.

In both scenario 1 and 2, assume Bob’s wife enters the room after 30 seconds. Upon entering the
room, she turns on the lights. As a result of turning on the lights, observed light intensity values rise
up to 400 lumen.

Scenario 1. Assume nurse Susan is present in Bob’s room at that moment. Normally, Susan should
know Bob’s diagnosis, and hence directly tell Bob’s wife to turn off the lights again. However, assume
the system will notify Susan on her bracelet that Bob is sensitive to light and that there is currently
too much light intensity exposure for him. This happens at the LRS through an extra component, as
explained in Section 4.7. As a consequence, after 10 seconds, the lights are turned off again, and the
observed light intensity values decrease to 125 lumen. The BRS is not involved in this scenario, as no
nurse should be called. After 20 more seconds, Susan leaves the room, and the scenario ends.

Scenario 2. Assume no nurse is present in Bob’s room when his wife enters and turns on the lights.
Hence, a nurse call will be initiated by the system, involving the RSPS, LRS and BRS components. In
the BRS, nurse Susan is selected (scenario 2a). 30 seconds later, Susan arrives at the room, explains
Bob’s wife that she should not turn on the lights, and turns them off. Hence, 5 seconds after Susan’s
arrival, the observed light intensity values decrease to 125 lumen. Within this short time frame, Susan
will receive another warning on her bracelet, triggered by the LRS (scenario 2b). Again, Susan stays
for 20 seconds in the room. Afterwards, she leaves the room, and the scenario ends.

In Table 2, an overview is given of the observed values of the light sensor and the BLE sensor, for
both scenario 1 & 2.

Each scenario has been simulated 50 times. The following metrics are calculated.

• Network latency of an event X from A to B: This is the time between the outgoing event X at
component A and the incoming event X at component B.

• RSPS processing time and RSPS latency: Processing on the RSPS is not event-based, but
window-based, i.e., time-based for the FilterSound and FilterLightIntensity queries. Say
an observation event X arrives at the RSPS at time tX. If this observation leads to a symptom,
one of both queries will construct an output containing a symptom for observation X. Say tY is
the time at which this RSPS query output is sent to its observers. The RSPS processing time for
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that observation is then defined as tY − tX
17. By definition, the RSPS latency equals the RSPS

processing time.

• LRS processing time, LRS latency and LRS queuing time: Processing on the LRS is event-based.
When an event arrives at tin, the event is put in the queue. After the queuing time, the processing
of the event starts at tstart. The event is added to the knowledge base, and queries are executed.
An event can only lead to either a CallNurseAction or WarnNurseAction, but not both, i.e., only
one LRS query can construct a result. If this is the case, say tout is the time at which this outgoing
event is sent to its observers. After all queries are executed, the event is removed from the
knowledge base and processing ends at tend. Given these definitions, the LRS processing time
is defined as tend − tstart; the LRS latency, if an outgoing event is sent, as tout − tin; and the LRS
queuing time as tstart − tin.

• BRS processing time, BRS latency and BRS queuing time: Definitions are similar to the LRS
case. The outgoing event corresponding to the BRS latency always contains the nurse that is
assigned to the ContextCall by the SelectNurse query.

• Total system latency: The total system latency is defined as the total time that an observation is
in the system. For an observation that generates a WarnNurseAction, this is the time until the
WarnNurseAction is created and can be sent to an external component. Hence, it is the sum of
the OBU-RSPS network latency, RSPS latency, RSPS-LRS network latency and LRS latency. For
an observation that generates a CallNurseAction, this is the time until a nurse is assigned on
the BRS, and an external component can actually call the nurse. Hence, the system latency is the
sum of of the OBU-RSPS network latency, RSPS latency, RSPS-LRS network latency, LRS latency,
LRS-BRS network latency and BRS latency.

5.3. Hardware specifications

To perform the evaluation, the architecture components in the evaluation set-up have been
implemented as Docker containers on real hardware components. Hardware specifications of the
device running the OBU container are omitted, because the observations are simulated. Hence, results
do not depend on the performance of this component; the OBU just sends the observations to the RSPS
streams. To host the RSPS, an Intel NUC, model D54250WYKH, is used. This device has a 1300MHz
dual-core Intel Core i5-4250U CPU (turbo frequency 2600MHz) and 8GB DDR3 1600MHz RAM18. The
edge component hosting the LRS also is an Intel NUC with the same model number and specifications.
In the cloud, the BRS is hosted by a node on Virtual Wall 1 of the imec iLab.t testbeds Virtual Wall19.
This node has a 2000MHz dual-core AMD Opteron 2212 CPU and 4GB DDR2 333MHz RAM.

6. Evaluation Results

For each evaluation scenario, Table 3 shows the average amount of incoming RDF events on each
component. These results are now described in detail for each scenario.

In the baseline scenario, on average 131.94 events have come in on the RSPS. Except for three runs,
132 events have arrived over the 60 seconds: 60 light intensity observations, 60 sound observations,
and 12 BLE observations (1 every 5 seconds). No threshold is crossed, so no event is sent to the LRS.
Hence, the LRS and BRS have no incoming events.

In scenario 1, there have been on average 143.86 incoming events on the RSPS. During a
period of 10 seconds, the light intensity threshold is crossed, and the FilterLightIntensity query,
executing every 5 seconds on a window with a size of 6 seconds, generates either 2 or 3 symptoms.

17 Note that by definition, the RSPS processing time is not defined for observations that do not lead to a symptom.
18 https://ark.intel.com/products/81164/Intel-NUC-Kit-D54250WYKH
19 https://doc.ilabt.imec.be/ilabt-documentation/
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Table 3. Average amount of incoming RDF events on the RSPS, LRS and BRS component for each
scenario (averaged over all scenario runs)

scenario RSPS LRS BRS

baseline 131.94 0 0

1 143.86 2.44 0

2 179.68 7.56 1

These symptoms are sent to the LRS. There, only the first incoming event triggers the creation of a
WarnNurseAction. This is handled locally, so no event is sent to the BRS.

In scenario 2, on average 179.68 events have arrived at the RSPS. Now, the light intensity
threshold is crossed during a period of 35 seconds. Hence, 7 or 8 symptoms are generated by the
FilterLightIntensity query. The first incoming event at the LRS generates a CallNurseAction,
which is sent to the BRS. Hence, only 1 event arrives at the BRS. By the time the assigned nurse arrives
at the room, the final 1 or 2 outgoing events at the RSPS also contain a nurse BLE observation, next to
the symptom. Hence, at the LRS, a WarnNurseAction is constructed in addition. Again, by definition,
this is handled locally, so no additional event is sent to the BRS.

Each observation that leads to the construction of an action on the LRS, needs to be handled by
the system. In scenario 1, 1 WarnNurseAction is generated, which is handled locally. In scenario 2, first
a CallNurseAction is sent to the BRS (scenario 2a), and then a local WarnNurseAction is generated
(scenario 2b). In Figure 8, a boxplot of the total system latency is shown for these three situations.
Figure 9 shows the average total system latency for the three cases, split into the different component
and network latencies.

For scenario 1, i.e., the situation with a WarnNurseAction, the total system latency is below the
targeted maximum latency of 5000 ms in more than 90% of the runs. In concrete, it only rises up
to 325 ms above 5000 ms in 3 runs. As observed in Figure 9, the average system latency is 2703 ms.
The two largest parts of this system latency are the RSPS latency and the RSPS-LRS network latency.
Fluctuations in these two latencies cause the large spread in system latency. The LRS processing time
is on average 98 ms, which is slightly larger than the average LRS latency of 69 ms.

In scenario 2a, a CallNurseAction is handled by the BRS. The observation needs to pass through
all the main architecture components, causing the largest average system latency of 3142 ms. Again,

Figure 8. Boxplot showing the distribution, over all scenario runs, of the total system latency of
three types of observations: the observation in scenario 1 causing a WarnNurseAction handled locally,
the observation in scenario 2a leading to a CallNurseAction handled by the back-end, and another
observation in scenario 2b that causes the creation of another WarnNurseAction. The red dashed line
indicates the 5000 ms threshold, which is the targeted maximum system latency.
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Figure 9. Bar plot showing the average total system latency of three types of observations, over all
scenario runs: the observation in scenario 1 causing a WarnNurseAction handled locally, the observation
in scenario 2a leading to a CallNurseAction handled by the back-end, and another observation in
scenario 2b that causes the creation of another WarnNurseAction. For each situation, the different
network and component latencies that sum up to the system latency are indicated by the stacked bars.

the RSPS latency and RSPS-LRS network latency make up the largest part. The BRS latency is on
average 384 ms. However, the average BRS processing time is 28413 ms, indicating an additional
processing time after the query executions of approximately 28 seconds on average. By definition, this
large additional processing time does not cause any additional latency.

Scenario 2b involves an additional WarnNurseAction. Here, the average system latency is only
1215 ms. The average RSPS-LRS network latency is significantly smaller compared to the other 2 cases.
The average RSPS latency is slightly smaller, and the other average latency values are comparable.

Finally, note that the queuing time on the LRS and BRS components is negligible for all runs of all
scenarios.

7. Discussion

The results of the performance evaluation described in Section 6 allow to verify the evaluation
goals explained in Section 5.1. As explained in the second evaluation goal, each nurse call assignment
should be completed within 5 seconds after the fault occurrence, i.e., after the observation that crossed
the threshold. Translating this to the evaluation results, this means that the system latency should be
lower than 5 seconds. As can be observed in Figure 8, this was the case in all runs of scenario 2a for the
CallNurseAction. However, one remark should be made concerning the simple SelectNurse query
running on the BRS, instead of a complex oNCS. In fact, the time of a complex nurse call assignment
algorithm should be added to the BRS latency. Considering such a very complex algorithm, such
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an assignment takes around 550 ms [45]. Adding this number, only 3 runs exceed the threshold of
5000 ms, and not by more than 250 ms. Ideally, the decision to warn a nurse is also taken within 5
seconds. Except for 3 runs in scenario 1, this requirement is also met.

A remark should however be made regarding the RSPS latency. This latency is directly dependent
on the chosen query sliding step, i.e., the period between two executions of the query. This period
defines the worst case scenario for the RSPS latency. In the case of the FilterLightIntensity query,
which is similar to the FilterSound query in Listing 3, this sliding step is 5 seconds. The RSPS latency,
equal to the RSPS processing time, is the time between the observation arrival and the start of the
query execution, summed up with the duration of the query execution itself. If a threshold crossing
observation arrives at the RSPS right after the start of the query execution, the first component of this
sum can already be up to 5 seconds. Hence, to have more guarantees that the total system latency
is always below 5 seconds, the frequency of the query execution should be increased. However, for
this PoC, the FilterLightIntensity query creates a symptom for the most recent light intensity
observation above the threshold. It is this observation that propagates through the system, and
the associated observation time is used to calculate the system latency. When a threshold in light
intensity is crossed, this will often be the case for multiple consecutive seconds, as is also the case in
the evaluation scenarios. Hence, in most cases, when a threshold is crossed, this will be the case for
the most recent observation in the window. As light intensity observations arrive at the RSPS every
second, most RSPS processing times are around 1 second. In some cases, the most recent threshold
crossing observation had arrived more than 1 second before the next query execution, explaining the
RSPS processing times that are higher. Summarizing, the system latency is always below 5 seconds
in the performed evaluation, but a few older observations in the window could already have been
crossing the threshold.

Inspecting the breakdown of the total latency into component and network latencies in Figure 9,
and associated numbers presented in Section 6 (evaluation goal 3), some other remarks can be made.
First, the RSPS-LRS network latency is on average quite high in the case of the WarnNurseAction
in scenario 1 and the CallNurseAction in scenario 2a. These actions always correspond to the first
outgoing event of the scenario at the RSPS. As components were restarted after each scenario run in
the evaluation, this was always the first outgoing event at runtime. As can be observed in the case of
the WarnNurseAction in scenario 2b, the RSPS-LRS system latency is way lower on average for the
following outgoing events. In real-life scenarios, components will not be restarted often. Hence, this
network latency will be smaller on average. Second, the additional processing time after the query
executions on the BRS is 28 seconds. This is caused by the removal of the data event and consecutive
incremental reasoning step in RDFox. This large processing time does not affect the BRS latency, but is
nevertheless not ideal. Hence, further research should be done on the reasoning service to decrease this
value. Third, queuing time on the BRS is negligible in the current evaluation set-up. In real scenarios,
other components may also send events to the BRS, causing a longer average and worst case waiting
time. As the amount of events arriving at the BRS is however small in the average situation, the real
impact may be limited. Fourth, as Table 3 indicates, the amount of incoming events on the components
is not equal in each scenario run. In the three scenarios, 132, 144 and 180 events are generated by the
OBU, respectively. Depending on the exact timing of the query executions, the last threshold crossing
observation is present in either 1 or 2 query execution windows. This explains why for scenario 1,
the amount of incoming events of the LRS varies between 2 and 3. Similarly for scenario 2, the LRS
receives either 7 or 8 incoming events. In each run, the amount of incoming events on the BRS is
however the same.

The execution of the evaluation scenarios shows that a cascading reasoning system is well-suited
for the described pervasive health use case. When no alarming situation occurs (baseline scenario),
all events are filtered out by the RSPS. In this case, it is useless to contact the LRS or BRS. In the case
where a potential alarming situation occurs, the RSPS just sends the event to the LRS, as the RSPS
performs no reasoning. The LRS will process the event and reason on the data to infer whether or not
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it is a real alarming situation, i.e., a fault. If a fault is inferred and can be handled locally, it will be
handled locally, and the BRS will also not be contacted (scenario 1). In this use case, this is when a
nurse is present in the room. In that case, the local component knows perfectly what to do without
any additional missing information: it should warn the nurse of the fault. Only if no nurse is present,
the BRS is contacted (scenario 2), as the LRS does not know by itself what nurses are available, where
they currently are, what their current occupation is etc. The BRS does know this information, and is
best-suited to decide on which nurse to call. In real-life situations, the BRS may require additional
information to select and assign a nurse to a call. For example, every BLE observation of any nurse can
be sent via the RSPS and LRS to the BRS, using additional simple queries. In this way, the BRS knows
for each nurse when he/she is in a hospital room.

The concept of cascading reasoning and fog computing has a big advantage with respect to
the amount of events sent to the different components. For the evaluation scenarios, this is clearly
shown in Table 3. These scenarios highlight specific situations. However, it is explicitly interesting
to investigate a real-life situation. Assuming the evaluation set-up of Section 5 with a single-person
room, 7920 observation events are generated per hour by each OBU: 3600 light intensity observations,
3600 sound observations and 720 BLE tag observations, assuming only the patient is present in the
room. Assuming a small hospital with 20 single-person rooms, 158400 events are generated per hour
by all OBUs. In a real-life hospital setting, multiple other sensors will also be producing observations,
making the actual value of events per hour a multiple of this value. In another set-up with only one
BRS component performing all reasoning and processing, all these events will arrive at this BRS. This
puts a high burden on the BRS. In the cascading set-up, the amount of events arriving at the BRS will
be a few orders of magnitude smaller, ranging from a few tens to a few hundreds per hour. At the
LRS, the amount of events will be another order of magnitude larger, but still way smaller than the
original amount of events received by the RSPS. This cascading set-up has many advantages. The
events do not need to be processed any longer by a single component, avoiding a single point of failure.
Events that can be processed locally, will be processed locally, improving the autonomy of the system
components. Moreover, the network traffic is reduced, decreasing the transmission cost and increasing
the available bandwidth. The back-end and network resources are saved for situations with higher
urgency and priority. This all improves the overall responsiveness, throughput and Quality-of-Service
of the system.

The advantages mentioned in the preceding paragraph can all be relevant for several use cases,
inside and outside healthcare. Referring to the smart healthcare requirements addressed in Section 1.1,
the presented cascading reasoning platform offers a solution to them. Personalized decision-making is
possible in a time-critical way, as shown by the performance evaluation results. Given the example
of the presented PoC use case, alarming situations for a patient can be detected locally. While
this detection is processed by the BRS to call a nurse to the room, local and edge components can
already take automatic action to partially solve the alarming situation, e.g., by dimming the lights
for a concussion patient. Moreover, the architecture can cope with a limited amount of resources.
Less expensive hardware should be invested in for local and edge components, while investment in
more expensive high-level devices for the BRS components can be limited. Furthermore, the generic
architecture has a high degree of configurability, allowing for flexible privacy management. For
example, if required, sensitive data can already be processed locally, so that it does not need to be
transmitted over the backbone network to the back-end. By fulfilling these requirements and offering
a solution to many of the issues that exist in ambient-intelligent healthcare, the presented cascading
reasoning platform and architecture have the potential to be incorporated in real-life healthcare
settings.

8. Conclusion & Future work

In this paper, a cascading reasoning framework is proposed, which can be used to support
responsive ambient-intelligent healthcare interventions. A generic cascading architecture is presented
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that allows to construct a pipeline of reasoning components, which can be hosted locally, in the edge
of the network, and in the cloud. The architecture is implemented and evaluated on a pervasive health
use case situated in hospital care, where medically diagnosed patients are constantly monitored. A
performance evaluation has shown that the total system latency is lower than 5 seconds in almost all
cases, allowing for fast intervention by a nurse in case of an alarming situation. It is discussed how
the cascading reasoning platform solves existing issues in smart healthcare, by offering the possibility
to perform personalized time-critical decision-making, by enabling the usage of low-end devices
with limited resources, and by allowing for flexible privacy management. Additional advantages
include reduced network traffic, saving of back-end resources for high priority situations, improved
responsiveness and autonomy, and removal of a single point of failure. Future work consists of a large
scale evaluation of the platform with multiple devices, and with different healthcare scenarios. To this
end, data collection of representative patient profiles and healthcare scenarios is currently ongoing.
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Abbreviations

The following abbreviations are used in this manuscript:

ASP Answer Set Programming
BAN Body Area Network
BLE Bluetooth Low Energy
BRS Back-end Reasoning Service
C-SPARQL Continuous SPARQL
CEP Complex Event Processing
CPU Central Processing Unit
DL Description Logic
DSMS Data Stream Management System
EHR Electronic Health Record
IoT Internet-of-Things
LRS Local Reasoning Service
MHz MegaHertz
OBDA Ontology-Based Data Access
OBU Observation Unit
oNCS ontology-based Nurse Call System
OWL Web Ontology Language
PoC Proof-of-Concept
RAM Random Access Memory
RDF Resource Description Framework
RDFS RDF Schema
RSP RDF Stream Processing
RSPS RDF Stream Processing Service
SPARQL Sparql Protocol And RDF Query Language
SSN Semantic Sensor Network
W3C World Wide Web Consortium
WSN Wireless Sensor Network
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