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Abstract: In order to alter and adjust the shape of the membrane, cells harness various mechanisms of curvature 
generation. Many of these curvature generation mechanisms rely on the interactions between peripheral membrane 
proteins, integral membrane proteins, and lipids in the bilayer membrane. One of the challenges in modeling these 
processes is identifying the suitable constitutive relationships that describe the membrane free energy that includes 
protein distribution and curvature generation capability. Here, we review some of the commonly used continuum elastic 
membrane models that have been developed for this purpose and discuss their applications. Finally, we address some 
fundamental challenges that future theoretical methods need to overcome in order to push the boundaries of current model 
applications.
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1. Introduction11

The ability of cellular membranes to bend and adapt their configurations is critical for a variety of cellular functions12

including membrane trafficking processes [1,2], fission [3,4], fusion [5,6], differentiation [7], cell motility [8,9], and signal13

transduction [10–12]. In order to dynamically reshape the membrane, cells rely on a variety of molecular mechanisms from14

forces exerted by the cytoskeleton [13–15] and membrane-protein interactions [16–19]. Each mechanism induces unique15

surface stresses on the membrane and these surface stresses can be mapped onto the shape to understand the mechanical16

aspects of membrane deformation [20–23].17

18

The interplay between cellular membrane and membrane proteins is one of the major sources of curvature production in19

live cells. Membrane protein interactions result not only from those proteins that are integral to the membrane but also20

from those proteins, such as scaffolding molecules or GTPases that can attach and detach from the membrane surface21

locally in response to signaling events. [17,18,24–27]. Many different mechanisms have been proposed for how proteins22

can generate curvature of the membrane; for the purposes of theoretical modeling and capturing the key physical principles,23

the broadly accepted mechanisms can be grouped into two main categories; (i) the hydrophobic insertion mechanism, and24

(ii) coat proteins with hydrophilic domains [18,28,29]. In the hydrophobic insertion mechanism, membrane bending occurs25

due to the change in the relative area of the two membrane leaflets, which happens due to partially embedded amphipathic26
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helices of the protein domains [30,31]. In contrast, when proteins are thought to coat the membrane, there is no insertion27

into lipid bilayer and proteins simply oligomerize along the membrane surface [32,33]. In this case, it has been suggested28

that the steric pressure generated due to protein crowding and scaffolding drive the membrane deformation [34–36].29

There are various methods to visualize membrane curvatures in situ or in reconstituted systems such as X-ray crystallography30

[48,49], nuclear magnetic resonance spectroscopy (NMR) [50,51], fluorescence microscopy [52,53], and electron31

microscopy (EM) [54,55]. Use of these provide an opportunity for scientists to decipher vast amounts of information32

about the molecular machinery underlying the membrane shape transformations at high resolution. However, taking high33

resolution images is expensive and biological systems are very dynamic making it challenging to experimentally quantify the34

role of a specific component, e.g., membrane-protein interaction, in biological phenomena [56–58]. The use of theoretical35

and computational approaches have became popular as complementary techniques to explore the mechanochemical aspects36

of membrane curvature generating mechanisms and enable us to identify some of the key underlying physics [59–65].37

In Fig. 1, some results from theoretical simulations of membrane deformation in endocytosis [37,38], tubular structures38

[39,40], nuclear envelopes [41], caveolae [42,43], filopodial protrusion [44,45], and fission [46,47] are represented.39

(A) Endocytosis

(B) Tubular structures

F
(E) Filopodial protrusion

(C) Nuclear envelopes

(D) Membrane-caveolae
 interactions

(F) Fission

Nucleus

Golgi

Endoplasmic
reticulum

Mitochondria

Vacuole

Figure 1. Membrane curvature generation in cells and associated modeling approaches. (A) Membrane budding in
endocytosis, continuum approach [37] (top), molecular dynamics approach [38] (bottom). (B) Formation and stabilization of
tubular membrane structures in the Golgi, continuum approach [39] (top), molecular dynamic approach [40] (bottom). (C)
Change in the topology of nuclear envelopes, continuum approach [41], (D) Membrane invagination in caveolae, continuum
approach [42] (left), molecular dynamic approach [43] (right). (E) Actin force driven filopodia protrusion, continuum
approach [44] (left), molecular dynamics approach [45] (right). (F) Mitochondrial fission, continuum approach [46] (top),
molecular dynamics approach [47] (bottom).
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In this review article, we mainly focus on continuum models for incorporating the effects of membrane proteins on lipid40

bilayers and cell membranes. In section 2, we briefly introduce the basic components of biological membranes and highlight41

their structure and functions. Next, in section 3 we present the two different computational approaches for modeling42

membrane-protein interaction – molecular dynamics versus continuum models. In section 4, we provide an overview of43

some of the popular continuum models for describing the constitutive relationships of the plasma membranes in contact44

with proteins. We conclude the review with a discussion on the challenges and possible future directions of the theoretical45

methods in section 5.46

2. Membrane-protein interactions47

2.1. Biological membranes48

Biological membranes (BMs) are fundamental architectures that form the outer boundary of living cells or compartments49

inside the cell. BMs act as semi-impermeable barriers that separate the cell contents from the extracellular environment50

while they also allow the vital materials to pass into or out of the cell [66,67]. The main component of all biological51

membranes is a lipid bilayer. The lipid bilayer thickness is about 5-10 nm and is made of three primary lipids: phospholipids,52

cholesterol, and glycolipid molecules (see Fig. 2) [67–69]. Proteins are the second major component of cell membranes in53

which the weight ratio of the lipids to membrane proteins can vary from 20% to 70%, depending on the cell type [67,70,71].54

Proteins in cell membranes are classified into two categories; integral and peripheral proteins [72,73] (see Fig. 2). The third55

major component of BMs is carbohydrate molecules, which are found on the extracellular side of cell membranes. [74,75].56

Carbohydrates are usually short and branched chains consisting of plain sugars, amino sugars, and acidic sugars. We briefly57

survey the different classes of membrane proteins, their functions, and their structures in cell membranes in what follows.58

2.2. Integral proteins59

Integral proteins are embedded permanently in the membrane by hydrophobic, electrostatic, and other non-covalent60

interactions [76,77]. Therefore, removing integral proteins from lipid bilayer is only possible by the use of detergents or61

nonpolar solvents that break down the strong membrane-protein interactions. The most common type of integral proteins62

are transmembrane proteins, which span across the lipid bilayer such that one end contacts the cell interior and the other63

end touches the exterior. When proteins cross the lipid bilayer, they usually adopt an α-helical configuration ( Fig. 2)64

[73,78]. Single-pass membrane proteins cross the membrane only once, while the multiple-pass membrane proteins are65

crossing the membrane several times. Many of the integral membrane proteins function as ion channels or transporters,66

regulating the influx of ions/molecules between the extracellular and intracellular spaces. Cell surface receptors, linkers,67

enzymatic proteins, and proteins responsible for cell adhesion [66] are all classes of integral membrane proteins and68

hormone receptors, Band3, rhodopsin, histocompatibility antigens, glycophorin, and Na+ and K+ channels are some69

examples of integral proteins in a cell membrane. Recent studies have shown that activity of these proteins depends on the70

lipid composition and membrane-protein interactions more so than previously thought [79,80], highlight the role of lipids71

in the activity of these molecules fundamental for biological information transfer [81–83].72

2.3. Peripheral proteins73

Peripheral proteins temporarily bind to the surface of the membrane with weak interactions [76,84]. This means that74

unlike integral proteins, peripheral proteins can be easily separated from lipid bilayer by either altering the pH or the75

salt concentration of the cell culture medium [67]. A peripheral protein can have different structures, but there are76
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two key aspects that each structure should have. First, peripheral protein have a unique amino acid sequence which77

allows them to bind and congregate on the surface of the membrane [85,86]. Second, there is no hydrophobic region of78

amino acids in peripheral proteins structure, therefore they can attach to membrane surface without being locked onto it79

[85,86]. Classic examples of peripheral proteins include Cytochrome c, spectrin in erythrocytes, myelin basic protein, and80

acetylcholinesterase in electroplax membranes [87,88]. The primary role of peripheral proteins is to provide a point of81

attachment for other components to the cell membrane. For instance, both membrane cytoskeleton and components of82

extracellular matrix are linked to the cell membrane through peripheral proteins, thus they help the cell to maintain its83

shape while the membrane remains flexible to bend based on the cellular functions [89]. Besides the structural supports,84

peripheral proteins are involved in various other functions including cell communication, energy transduction, and molecule85

transfer across the membrane [89].86

2.4. Glycoproteins87

Glycoproteins are a class of proteins which have carbohydrate chains (in the form of oligosaccharides) covalently attach88

to the main protein body [90,91]. The presence of carbohydrate chains can dramatically alter the intrinsic properties89

of a glycoprotein such as the size, charge, solubility, structure, and accessibility [92]. Depending on how and where90

carbohydrate chains attach to the protein, the glycoproteins are classified into three categories; N-linked glycoproteins,91

O-linked glycoproteins, and non-enzymatic glycosylated glycoproteins [90,93]. In N-linked glycoproteins, the carbohydrate92

chains are attached to the the nitrogen atoms of the amino acid asparagine. In O-linked glycoproteins, the carbohydrate93

chains are linked to the hydroxyl side chain of amino acids serine or threonine. In the third group, unlike the two others,94

the non-enzymatic glycosylated glycoproteins are synthesized by chemical addition of carbohydrate chains to polypeptides95

[73,90]. In terms of functionality, glycoproteins are almost found in all living organisms and serve a number of important96

roles as structural molecules, immunologic molecules, transport molecules, receptors, enzymes, and hormones [90,94]. For97

instance, the glycoproteins on the membrane surface form bonds with the extracellular matrix, helping the cell stabilize98

Integral 
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Glycolipid
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Channel 
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Hydrophobic
tail

Hydrophilic
head
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Figure 2. Schematic depiction of the composition of a cellular membrane. There are two layers of amphipathic lipid
molecules that self-assemble to form the bilayaer. In each layer, the hydrophilic head groups form the outer surface and
the hydrophobic tails face toward each other in the interior region. The distribution and organization of lipids and different
proteins can vary from cell to cell. The cell membrane is decorated with many different molecules including peripheral
proteins, integral proteins, and carbohydrate molecules.
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its membrane structure. In addition to that, the glycoproteins receptors and antigens facilitate cell-cell recognition and99

interaction which are a key factor for immune system functionality [94].100

3. Theoretical models of biological membranes101

3.1. Mechanical viewpoint102

Theoretical approaches are complementary techniques that have been developed in the last few decades to how cells103

regulate their function through geometry, mechanics, and signaling. [11,58,95–97]. In general, theoretical approaches104

can be classified into discrete and continuum models. In discrete models, the equations describe atoms’ motion with in105

interaction with each other, through a set of bonded and non-bonded potentials, are solved by Molecular Dynamics (MD) or106

Coarse-Grained (CG) simulation techniques [98,99]. Tracing all atoms in a system makes this model suitable for exploring107

the nature of the biological process at the molecular level such as the biochemistry underlying the lipid-lipid or lipid-protein108

interactions, which are typically very difficult to detect experimentally. However, the high computational cost of MD or CG109

simulations limit the applications of discrete models just to phenomena at nanoscopic length and time scales [95,100,101].110

On the other hand, there is a continuum approach that deals with the membrane as a continuous surface with average111

properties [95]. Indeed, the small length scale of the membrane constituents (∼ 3-6 nm) compared to the length scales112

of biological phenomena (∼ 100 nm-µm) allows us to define the complex membrane as a single continuum surface [95].113

The most popular and widely used model in continuum framework is the Helfrich model that was proposed in 1973 [102].114

In this model, the membrane is considered as a thin elastic shell that can bend such that at all the times the lipids remain115

aligned and normal to the membrane surface. In addition, this model presumes that the curvature of the membrane is much116

larger than the thickness of the bilayer [102]. Under these assumptions, Helfrich proposed an energy function for the117

membrane system that depends only on the mean and Gaussian curvatures of the membrane as [102]118

WBending =
∫

ω
2κH2 + κGKdA, (1)

where W is total strain energy of the membrane due to bending, H is the membrane mean curvature, K is the membrane119

Gaussian curvature, and κ and κG are the membrane properties which are called the bending and Gaussian modulii120

respectively. The integration in Eq. 1 is over the entire membrane surface area ω and dA is the area element. We describe121

the geometrical concepts of membrane curvature in Box. A.122

3.2. Simulation techniques123

From a mechanical perspective, cell membrane deformation can be characterized by balance laws for mass and momentum.124

Simplifying these mass and momentum governing equations in continuum framework results in partial differential equations125

(PDEs) [103]. To solve the PDEs, first step we need to define the constitutive relationship for membrane deformation such126

as Helfrich bending energy (Eq. 1). Other forms of suggested constitutive equations including the effects of proteins are127

presented in Sec. 4.128

Besides the need for a constitutive equation, the derived PDEs from cell mechanics are usually higher order and highly129

nonlinear differential equations. Therefore, in most cases, analytical solution are not possible and the equations are often130

solved numerically. Over the last few decades, various computational approaches have been developed to solve the set of131

governing PDEs including the boundary value problem for axisymmetric coordinates [21,37,44,104,105], different finite132
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element methods [106–108], Monte Carlo methods [109–111], finite difference methods [112,113], and the phase field133

representation of the surface [114–116]. Each of these methods has its own advantage and disadvantage and depending on134

the complexity of the problem, one or more of them can be implemented.135

A major challenge in modeling membrane protein interactions is identifying a constitutive relationship that captures the136

different levels of complexities associated with membrane protein interactions. In what follows, we discuss some of the137

popular models used for such purposes along with their applications. We then discuss where new constitutive relationships138

relationships are needed and how these can be experimentally parameterized.139

4. Continuum elastic energy models of membrane-protein interaction140

4.1. Spontaneous curvature model141

In the spontaneous curvature (SC) model, it has been suggested that the interaction between proteins and surrounding142

lipids changes the local membrane properties particularly the preferred – called spontaneous – curvature of the membrane143

[18,117–119]. In this case, the induced spontaneous curvature is a parameter that reflects a possible asymmetry between144

the two leaflets of the bilayer. This can be the result of any membrane bending mechanisms such as phase separation of145

membrane proteins into distinct domains, amphipathic helix or conically shaped transmembrane protein insertion, protein146

scaffolding, or protein crowding ( Fig. 5A). In reality, a combination of all these mechanisms can occur simultaneously and147

the local value of spontaneous curvature can then be interpreted as a single measure of the curvature-generating capability148

of the membrane-protein interaction [17,18]. In a continuum framework, the most common model for induced spontaneous149

curvature is the modified version of Helfrich energy (Eq. 1), given by [44,118,120,121]150

WSC =
∫

ω
2κ(H − C)2 + κGKdA, (2)

where C is the spontaneous curvature and its effective strength depends on the membrane composition, temperature, the151

membrane thickness, the protein density, and the membrane area coverage by proteins [102,122].152

Modeling the net effect of membrane-protein interaction as an induced spontaneous curvature (Eq. 2) has provided great153

insight into various aspects of membrane deformation, from vesiculation in caveolae and endosomal sorting complexes154

to cylindrical shapes of membrane endoplasmic reticulum (ER) [123–125]. By using the SC model, recent studies have155

shown for example how a line tension at a lipid phase boundary could drive scission in yeast endocytosis [21,126,127],156

or how a snapthrough transition from open U-shaped buds to closed Ω-shaped buds in Clathrin Mediated Endocytosis157

(CME) is regulated by membrane tension [37,44]. Furthermore, the experimentally observed change in membrane tension158

(spontaneous tension) in response to protein adsorption [128–130], can be explained in the context of the SC model159

[104,120,122]. The SC model has also been used to elucidate the role of varying membrane tension due to spontaneous160

curvature papers [104,120,122]. While the SC model has been very effective in capturing large scale deformations of the161

membrane, it doesn’t take into account the protein density or the curvature induced by each protein.162
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Box A. Curvatures of surfaces

n

P

κ 1
=

1/
R

1

κ
2
=

1/R
2

Figure A3. Principal curvatures of a
surface.

Let us consider the membrane as a two dimensional surface in a three
dimensional Euclidean space (Fig. A3). At each point on the surface, there
are two curvatures, κ1 and κ2, which characterize the shape of the surface
[131,132]. These two curvatures are called principal curvatures and by the
definition their values are the reciprocal of the radius of the osculating circle
at the point (P) (κ1 = 1/R1 and κ2 = 1/R2 in Fig. A3) [131,132]. The
values of these curvatures can be positive or negative. The curvature is
positive if the curve turns in a same direction as normal vector to the surface
(n), otherwise it is negative [131,132]. The average and the product of two
principal curvatures give the mean (H) and the Gaussian (K) curvatures as
[131,132]

H =
κ1 + κ2

2
and K = κ1κ2. (A.1)

For a rotationally symmetric surface as shown in Fig. A4, we can define the
position of each point on the surface as a function of arc length (s) such as

r

z

n

as

θ

ψ

s
n

as

r

z

ψ

θ

s

r

z

n

as

ψ

s

θ

Figure A4. Axisymmetric coordinates with
z as the axis of rotation.

r(s) = r(s)er(θ) + z(s)k, (A.2)

where r(s) is the radius from axis of revolution, z(s) is the elevation from
a base plane, and (er, eθ, k) forms the coordinate basis. Since r2(s) +
z2(s) = 1, we can define the angle ψ such that (Fig. A4)

as = cos(ψ)er + sin(ψ)k and n = − sin(ψ)er + cos(ψ)k, (A.3)

where as and n are the unit tangent and normal vectors to the surface as
shown in Fig. A4. We now can define the two principal curvatures as

κ1 = ψ′ and κ2 =
sin(ψ)

r
, (A.4)

where (·)′ = d(·)/ds is the partial derivative with respect to the arc length.
With having the two principal curvatures, the curvature deviator (D) in
anisotropic condition is given by

D =
1
2
(

sin(ψ)
r
− ψ′). (A.5)
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4.2. Bilayer couple model163

In order to go beyond an idealized single manifold description of a membrane, the Bilayer Couple model (BC) was164

proposed by Sheetz and Singer in 1974 [133]. The basic idea in this model is that each lipid molecule has a fixed area and165

there is no lipid exchange between the two leaflets of the bilayer. Thus, any asymmetrical protein insertions into the inner166

and outer surfaces of the membrane causes an area mismatch between the two leaflets. This mismatch creates in-plane167

compression in one leaflet and extension in the other, resulting in membrane deformation to release the induced stress (Fig.168

5B) [18,134]. For a thin lipid bilayer with thickness (d), the area difference between the leaflets (∆A) can be expressed in169

terms of the mean curvature (H) as170

∆A = 2d
∫

ω
HdA. (3)

Here, instead of having a spontaneous curvature term in energy, a “hard" constraint on the area difference between the171

leaflets (Eq. 3) regulates the membrane curvature. This difference in the mechanism of curvature generation of SC and BC172

models distinguishes their predictions for the same membrane deformation [134]. For example, in membrane budding173

transition due to thermal expansion, the prediction of the SC model is that the shape transformation is discontinuous,174

while based on the BC model, there are pear-shaped structures that appear as intermediates and the transition of shapes is175

continuous [134].176

4.3. Area difference elasticity model177

In 1980, the Area Difference Elasticity (ADE) model was developed by Svetina et.al, [135,136] to combine both SC and178

BC models including the missing macroscopic details of membrane bending phenomena. To better explain the physics179

underlying this model, we consider a flat membrane that bends downward due to different protein concentrations on two180

sides of the membrane (Fig. 5C). This bending, based on the single sheet descriptions of the membrane in SC model, gives181

rise to the spontaneous curvature term in the energy equation (Eq. 2). However, if we treat each leaflet as an independent182

elastic plate – as was suggested in the BC model – we can then see that besides the curvature, the area of each monolayer183

will also change. For example, in Fig. 5C, the outer monolayer is stretched and the inner one is compressed. The energy184

associated with the membrane bending and this relative change in the monolayers areas is given by [134,137,138]185

WADE =
∫

ω
2κ(H − C)2 + κGKdA︸ ︷︷ ︸

Bending energy

+
κr

2Ad2 (∆A− ∆A0)
2︸ ︷︷ ︸

Elastic stretching energy

, (4)

where κr is called the nonlocal membrane bending modulus, and A is the total surface area of the neutral plane. ∆A0 and186

∆A are the relaxed (initial) and the bent area differences between the membrane leaflets respectively (∆A0 = A0,out− A0,in187

and ∆A = Aout − Ain, in which Aout is the area of the outer layer and Ain is the area of the inner layer). In Eq. 4, κ and188

κr are both in order of Kad2, where Ka is the area stretching modulus of the bilayer [134,138,139]. This means that in189

any membrane deformation, both the terms, the bending and the elastic stretching energies, are comparable and must be190

considered. Using the ADE model, researchers for the first time could numerically simulate the shape transformations of191

the human red blood cell from stomatocyte to discocyte and to echinocyte [139–142]. Also, using the ADE model the192

experimentally observed vesicles were mapped into a theoretical phase diagram, enabling theoreticians to predict in what193

regions or range of parameters, the vesicles may become unstable [134,137]. These predictions have been very useful for194

detecting unstable shapes, which is challenging to do experimentally.195
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(A) Spontaneous curvature model

s

(B) Bilayer couple model
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(C) Area difference elastic model
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(D) Deviatoric curvature model

(E) Protein aggregation model
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Figure 5. The mechanisms of membrane curvature generation due to protein interactions in different continuum elastic
models. (A) Local protein interactions with membrane produces a spontaneous curvature filed. (B) The asymmetric insertion
of conical proteins on one side of the membrane results in the expansion of the upper leaflet and compression of the lower
leaflet. (C) The are of each membrane leaflet changes due to membrane bending. (D) Rotationally non-symmetric proteins
generates anisotropic curvature. (E) Aggregated proteins on the membrane surface creates a spontaneous curvature filed and
also have entropic interactions with the membrane. Here φ represents the relative density of the accumulated proteins. (F)
The induced pressure (p) by crowding proteins drives membrane bending. a is the surface area occupied by one protein.

4.4. Deviatoric curvature model196

In the SC model, the induced spontaneous curvature was assumed to be isotropic, same in both directions (see Box. A).197

However, not all proteins are rotationally symmetric and have intrinsically anisotropic structures such as banana shaped198

BIN-amphiphysin-Rvs (BAR) proteins (Fig. 5D) [143–145]. These proteins can produce different curvatures in different199

directions and this difference is required for the formation of nonspherical structures such as membrane tubular protrusions200

[146,146,147]. In order to take into account the anisotropic contribution of protein coats or inclusions in the continuum201

approach, Kralj-Iglic et. al proposed a Deviatoric Elasticity (DE) model [148]. In this model, each complex protein202

structure is simplified as a one-dimensional curve that lies on the membrane. The orientation and the position of the203

proteins in the plane of the membrane are important factors since an extra term is needed in the for adjusting the actual204

local curvature of the membrane to the intrinsic curvatures of the proteins [148,149]. The membrane-free energy that was205

suggested by the DE model is given as [148,150]206
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WDE =
∫

ω
2κ(H − C)2 + κGK︸ ︷︷ ︸

Bending energy

+ 2κ(D− D0)
2︸ ︷︷ ︸

Deviatoric mismatch

dA, (5)

where D is the membrane curvature deviator and D0 is the spontaneous membrane curvature deviator. Since the DE207

model was proposed, there have been many modeling efforts to explain how BAR proteins accumulation in membrane208

necks stabilize membrane tubular protrusions without any cytoskeleton supports [151–154]. Effectively, derivation of the209

Euler-Lagrange governing equations by a variational approach [155], provides a platform to systematically explore the210

impact of the induced stresses by anisotropic curvatures on the morphology of tubular structures [21].211

4.5. Protein aggregation model212

Aggregation of cytosolic proteins on the membrane surface or phase separation of bilayer proteins into specific domains213

have been observed in many biological processes [156–159]. This aggregation of proteins not only creates a concentration214

field on the membrane surface but also results in additional contributions to the membrane energy due to compositional215

heterogeneity and the entropic interactions of bulk proteins with the lipid bilayer (Fig. 5E) [160–162]. While the exact216

form of the free energy is still a matter of debate and has not been verified experimentally yet, a simple model based on217

thermodynamic arguments is given as [160,161,163],218

WAggregation =
∫

ω
2κ(H − C)2 + κGK︸ ︷︷ ︸

Bending energy

+
T
a2 (φ ln φ + (1− φ) ln(1− φ))︸ ︷︷ ︸

Entropic energy

+
J

2a2 φ(1− φ)︸ ︷︷ ︸
Energy due to protein

aggregation

+
J
4
(∇φ)2︸ ︷︷ ︸

Energy penalty due
to compositional

heterogeneity

dA,

(6)

where T is the environment temperature, a is the surface area occupied by one protein, φ is the relative density of the219

proteins, and J is the aggregation potential. In Eq. 6, the first term is the conventional Helfrich bending energy with220

induced spontaneous curvature [102]. The second term represents the entropic contribution due to the thermal motion221

of proteins in the membrane [160,164]. The third term gives the aggregation energy, and the last term describes the222

energetic penalty for the spatial membrane composition gradient [160,163,164]. The suggested protein aggregation model223

mainly used for theoretical analysis of dynamic phase transitions of coupled membrane- proteins- cytoskeleton systems in224

membrane protrusions such as microvilli and filopodia [160,165–167]. This model also reveals one interesting fact that in225

addition to the induced deviatoric spontaneous curvature of the BAR domain proteins, the associated energy with their226

aggregation at membrane necks facilitates tubular structures stability. [154,168]. A major open question in the field is the227

relationship between protein density, size, and spontaneous curvature. Although current models use a linear proportionality228

[104,161,169], this choice of functions is critical in determining the energy.229

4.6. Protein crowding230

Protein crowding is a recently discovered curvature generating mechanism that has challenged some conventional paradigms231

about the role of involved molecular machinery in a robust cell shape change [34–36,170–172]. Stachowiak et. al. reported232

that confining a sufficiently high concentration of his-tagged Green Fluorescent Proteins (GFP) to a local region can deform233

the membrane into buds or tubules in the absence of any protein insertion into the lipid bilayer [35,170]. Furthermore,234

Snead et. al. showed that crowding among membrane-bound proteins can also drive membrane fission [34]. This paper235
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raises a controversial prediction that the large disordered domains of BAR domains proteins induce crowding pressure that236

promotes membrane fission instead of stabilizing the membrane [173]. Additionally, another set of experiments reported237

that the induced crowding pressure by a high concentration of cargo proteins on one side of the ER works as an obstacle,238

which opposes membrane bending and inhibits the vesiculation by coat protein complex II (COPII) [174–176].239

The essence of the crowding mechanism is that the lateral collisions between the membrane-bound proteins on one240

side of the membrane generate a steric pressure that causes the membrane to bend away from the bulk proteins (Fig.241

5F)[35,177,178]. As the density, the size or the mobility of the bound proteins increase, the induced steric pressure becomes242

larger, which results in a more significant membrane bending [35,36]. Modeling the free energy associated with protein243

crowding is more difficult because it profoundly depends on the specific composition of the underlying membrane as well244

as the lateral confinement of the membrane-bound proteins [179,180]. However, in a recent paper, a simple 2D hard-sphere245

gas model based on the Carnahan-Starling approximation has been proposed to describe the free energy of the crowding246

mechanism [35,181]. To better visualize it, let us consider a membrane that is crowded with different protein concentration247

on each side as shown in Fig. 5. If we model each protein as a hard-sphere gas particle that exerts certain pressure to the248

membrane surface, the work that is done by this pressure to bend the membrane according to the standard thermodynamics249

is given by [182]250

WCrowding =
∫

pindAin +
∫

poutdAout, (7)

where pin and pout are the induced steric pressure by the crowding proteins on the inner side and the outer side of the251

membrane respectively. This induced pressure (denoted by p here ) for a 2D hard-sphere gas protein can be expressed as252

[180,183,184]253

p =
kBT

a
pR(φ), (8)

where kB is the Boltzmann constant and pR(φ) is the reduced gas pressure depending on the relative density of the protein254

given as [184]255

pR(φ) = φ(1 + 2φ
1− 7

16 φ

(1− φ)2 ). (9)

Eq. 9 is known as a 2D version of the Carnahan-Starling equation. Based on this equation, at low protein density, the256

reduced pressure is simply proportional to φ, but as the gas density increases, the non-linear terms play larger roles and257

should be considered.258

4.7. Hydrophobic mismatch259

Transmembrane proteins embedded in the cell membrane have a hydrophobic region that is in contact with the hydrophobic260

region (lipid acyl chain) of the lipid bilayer. Energetically, it is then favorable that both hydrophobic regions have261

approximately a same thickness in order to prevent the exposure of the hydrophobic surfaces to the hydrophilic environment.262

However, there are various proteins with different lengths in a single membrane [185,186]. On the other hand, one protein263

with a same length can be surrounded by lipid bilayers with different thicknesses [187,188]. This difference between264

thicknesses of hydrophobic regions of a transmembrane protein (dp) and the lipid bilayer (dl) is called hydrophobic265

mismatch. There are different adaptation mechanisms that either the protein or the bilayer can utilize in order to avoid266
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the energy cost of the hydrophobic mismatch [187,189]. For example, for positive (dl < dp) or negative (dl > dp)267

mismatch, the lipid bilayer can be stretched or compressed respectively to adjust the length of hydrophobic regions268

[190,191]. Another possibility is when the hydrophobic part of a transmembrane protein is too thick or too short as269

compared to the hydrophobic bilayer thickness. In this case, protein aggregation on the membrane or protein surface270

localization can efficiently minimize the exposed hydrophobic area [192,193]. Also, for proteins that have helices that are271

too long compared to the thickness of the membrane, helix tilt is one possible mechanism to reduce the protein effective272

hydrophobic length [187,194,195]. Several theoretical approaches have been developed to incorporate the energy cost and273

thermodynamic effects of membrane-protein interactions in term of hydrophobic mismatch [196–199].274

Thus, in addition to the models described above, there are additional considerations to the energy that have been suggested275

by numerous studies such as higher order bending terms [132,200,201], lipid volume constraints [202], the impacts of a276

protein shape on membrane deformation [203], and the electrostatic energy between a membrane and proteins [204–207].277

5. Future perspective and challenges278

Although the models discussed above have provided insight into some fundamental questions about the molecular machinery279

of cell shape regulation, all of them have been developed based on simplifying assumptions that need to be revisited in the280

pursuit of closing the gap between experiment and theory. In order to achieve this goal, multidisciplinary efforts between281

physicists, mathematicians, engineers, and biologists are required to match different pieces of this cell biology puzzle.282

Here, we highlight some current challenges that we believe must be considered in the next generation of continuum models.283

• Membrane deformation is a dynamic process, surrounding fluid flow, thermal fluctuation, and diffusion of proteins284

actively regulate the shape of the membrane at each instance [11,169,208–212]. Currently, the models for membranes285

at mechanical equilibrium are quite well developed but the models for a dynamic process have not been as286

well-developed and the community must invest some effort in this aspect.287

• In vivo, multiple mechanisms coupling membrane deformation and cytoskeletal remodeling are commonplace288

(Fig. 6A). Therefore, the models should be extended to include the dynamic effect and rearrangement of the actin289

cytoskeleton layer underneath of the membrane.290

• Membrane deformation and protein absorption/rearrangement are often considered as two separate processes with291

little to no impact on each other. However, recent studies show that proteins can sense the membrane curvature (Fig.292

6B). Therefore, indeed, there is a feedback loop between the protein distribution and the membrane configuration.293

While some models are discussed in [161,216–219], we still need more quantitative agreements between theory and294

experiment.295

• Cell shape can control signal transduction at the plasma membrane, and on the other hands, intracellular signaling296

changes the membrane tension [220] (Fig. 6C). This coupling between the cell shape and the signaling network297

inside the cell should be further understood in terms of both quantitative experimental and theoretical biology.298

• As discussed above, membrane deformation is a multiscale phenomena that results from the reorientation of lipids to299

large scale change in membrane curvature. This suggests the extension of available models toward multiscale models300

that could represent each biological process over multiple length scales [101,221].301

Despite these challenges, with increasingly quantitative measurement techniques available experimentally, ease of access to302

high throughput computing systems, and interdisciplinary training the next generation of scientist leaders, the future of303

theoretical modeling of biological membranes and cellular membrane processes is brighter than ever.304
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Figure 6. Perspective for the the future of theoretical models for membrane curvature generating mechanisms. (A) The
coupling between membrane shape, membrane curvature, and membrane proteins distribution. The convex proteins (indicated
with red cones) aggregate and flow toward the hill where the membrane curvature is negative (assuming the normal vector to
the surface is outward). On the other hand, the concave proteins (represented by blue cones) accumulate and move toward
the valley where the membrane curvature is large and positive [161]. (B) Various mechanisms are involved in trafficking
including amphipathic helix insertion into the bilayer, protein scaffolding, cargo-receptor crowding, forces from actin
polymerization, and lipid phase separation [213,214]. (C) The coupling between the formation of a filopodial protrusion and
the intracellular signaling inside the cell [215].
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