

Review

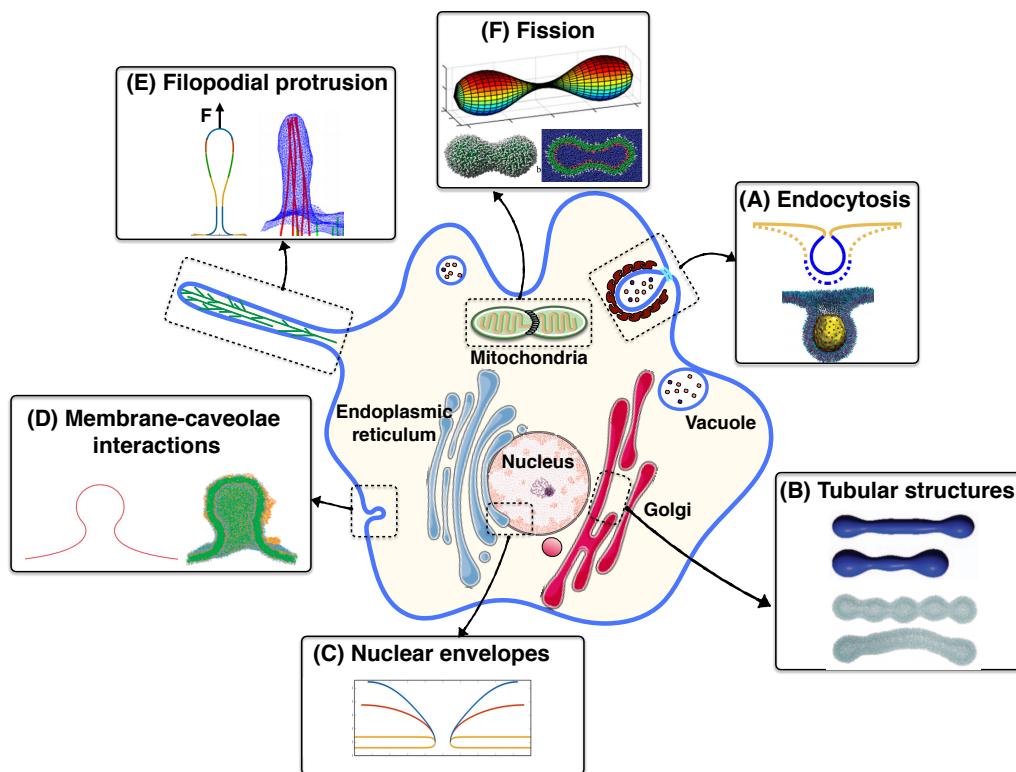
Modeling membrane-protein interactions

Haleh Alimohamadi and Padmini Rangamani*

Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA

* Correspondence: prangamani@ucsd.edu; Tel.: +1-858-534-4734

Abstract: In order to alter and adjust the shape of the membrane, cells harness various mechanisms of curvature generation. Many of these curvature generation mechanisms rely on the interactions between peripheral membrane proteins, integral membrane proteins, and lipids in the bilayer membrane. One of the challenges in modeling these processes is identifying the suitable constitutive relationships that describe the membrane free energy that includes protein distribution and curvature generation capability. Here, we review some of the commonly used continuum elastic membrane models that have been developed for this purpose and discuss their applications. Finally, we address some fundamental challenges that future theoretical methods need to overcome in order to push the boundaries of current model applications.


Keywords: Plasma membrane; Spontaneous curvature; Helfrich energy; Area difference elastic model; Protein crowding; Deviatoric curvature

1. Introduction

The ability of cellular membranes to bend and adapt their configurations is critical for a variety of cellular functions including membrane trafficking processes [1,2], fission [3,4], fusion [5,6], differentiation [7], cell motility [8,9], and signal transduction [10–12]. In order to dynamically reshape the membrane, cells rely on a variety of molecular mechanisms from forces exerted by the cytoskeleton [13–15] and membrane-protein interactions [16–19]. Each mechanism induces unique surface stresses on the membrane and these surface stresses can be mapped onto the shape to understand the mechanical aspects of membrane deformation [20–23].

The interplay between cellular membrane and membrane proteins is one of the major sources of curvature production in live cells. Membrane protein interactions result not only from those proteins that are integral to the membrane but also from those proteins, such as scaffolding molecules or GTPases that can attach and detach from the membrane surface locally in response to signaling events. [17,18,24–27]. Many different mechanisms have been proposed for how proteins can generate curvature of the membrane; for the purposes of theoretical modeling and capturing the key physical principles, the broadly accepted mechanisms can be grouped into two main categories; (*i*) the hydrophobic insertion mechanism, and (*ii*) coat proteins with hydrophilic domains [18,28,29]. In the hydrophobic insertion mechanism, membrane bending occurs due to the change in the relative area of the two membrane leaflets, which happens due to partially embedded amphipathic

27 helices of the protein domains [30,31]. In contrast, when proteins are thought to coat the membrane, there is no insertion
 28 into lipid bilayer and proteins simply oligomerize along the membrane surface [32,33]. In this case, it has been suggested
 29 that the steric pressure generated due to protein crowding and scaffolding drive the membrane deformation [34–36].
 30 There are various methods to visualize membrane curvatures *in situ* or in reconstituted systems such as X-ray crystallography
 31 [48,49], nuclear magnetic resonance spectroscopy (NMR) [50,51], fluorescence microscopy [52,53], and electron

Figure 1. Membrane curvature generation in cells and associated modeling approaches. (A) Membrane budding in endocytosis, continuum approach [37] (top), molecular dynamics approach [38] (bottom). (B) Formation and stabilization of tubular membrane structures in the Golgi, continuum approach [39] (top), molecular dynamic approach [40] (bottom). (C) Change in the topology of nuclear envelopes, continuum approach [41]. (D) Membrane invagination in caveolae, continuum approach [42] (left), molecular dynamic approach [43] (right). (E) Actin force driven filopodia protrusion, continuum approach [44] (left), molecular dynamics approach [45] (right). (F) Mitochondrial fission, continuum approach [46] (top), molecular dynamics approach [47] (bottom).

40 In this review article, we mainly focus on continuum models for incorporating the effects of membrane proteins on lipid
41 bilayers and cell membranes. In section 2, we briefly introduce the basic components of biological membranes and highlight
42 their structure and functions. Next, in section 3 we present the two different computational approaches for modeling
43 membrane-protein interaction – molecular dynamics versus continuum models. In section 4, we provide an overview of
44 some of the popular continuum models for describing the constitutive relationships of the plasma membranes in contact
45 with proteins. We conclude the review with a discussion on the challenges and possible future directions of the theoretical
46 methods in section 5.

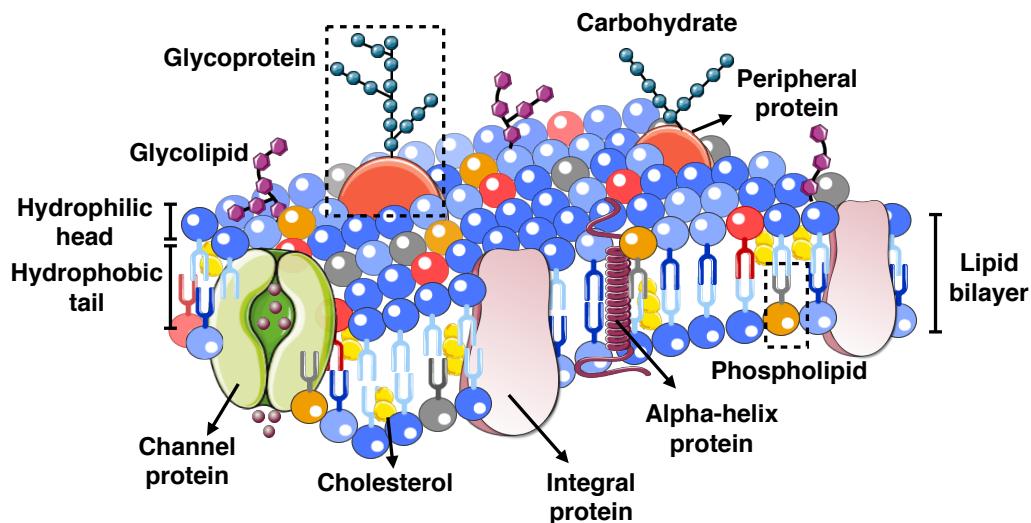
47 **2. Membrane-protein interactions**

48 *2.1. Biological membranes*

49 Biological membranes (BMs) are fundamental architectures that form the outer boundary of living cells or compartments
50 inside the cell. BMs act as semi-impermeable barriers that separate the cell contents from the extracellular environment
51 while they also allow the vital materials to pass into or out of the cell [66,67]. The main component of all biological
52 membranes is a lipid bilayer. The lipid bilayer thickness is about 5-10 nm and is made of three primary lipids: phospholipids,
53 cholesterol, and glycolipid molecules (see Fig. 2) [67–69]. Proteins are the second major component of cell membranes in
54 which the weight ratio of the lipids to membrane proteins can vary from 20% to 70%, depending on the cell type [67,70,71].
55 Proteins in cell membranes are classified into two categories; integral and peripheral proteins [72,73] (see Fig. 2). The third
56 major component of BMs is carbohydrate molecules, which are found on the extracellular side of cell membranes. [74,75].
57 Carbohydrates are usually short and branched chains consisting of plain sugars, amino sugars, and acidic sugars. We briefly
58 survey the different classes of membrane proteins, their functions, and their structures in cell membranes in what follows.

59 *2.2. Integral proteins*

60 Integral proteins are embedded permanently in the membrane by hydrophobic, electrostatic, and other non-covalent
61 interactions [76,77]. Therefore, removing integral proteins from lipid bilayer is only possible by the use of detergents or
62 nonpolar solvents that break down the strong membrane-protein interactions. The most common type of integral proteins
63 are transmembrane proteins, which span across the lipid bilayer such that one end contacts the cell interior and the other
64 end touches the exterior. When proteins cross the lipid bilayer, they usually adopt an α -helical configuration (Fig. 2)
65 [73,78]. Single-pass membrane proteins cross the membrane only once, while the multiple-pass membrane proteins are
66 crossing the membrane several times. Many of the integral membrane proteins function as ion channels or transporters,
67 regulating the influx of ions/molecules between the extracellular and intracellular spaces. Cell surface receptors, linkers,
68 enzymatic proteins, and proteins responsible for cell adhesion [66] are all classes of integral membrane proteins and
69 hormone receptors, Band3, rhodopsin, histocompatibility antigens, glycophorin, and Na^+ and K^+ channels are some
70 examples of integral proteins in a cell membrane. Recent studies have shown that activity of these proteins depends on the
71 lipid composition and membrane-protein interactions more so than previously thought [79,80], highlight the role of lipids
72 in the activity of these molecules fundamental for biological information transfer [81–83].


73 *2.3. Peripheral proteins*

74 Peripheral proteins temporarily bind to the surface of the membrane with weak interactions [76,84]. This means that
75 unlike integral proteins, peripheral proteins can be easily separated from lipid bilayer by either altering the pH or the
76 salt concentration of the cell culture medium [67]. A peripheral protein can have different structures, but there are

77 two key aspects that each structure should have. First, peripheral protein have a unique amino acid sequence which
 78 allows them to bind and congregate on the surface of the membrane [85,86]. Second, there is no hydrophobic region of
 79 amino acids in peripheral proteins structure, therefore they can attach to membrane surface without being locked onto it
 80 [85,86]. Classic examples of peripheral proteins include Cytochrome c, spectrin in erythrocytes, myelin basic protein, and
 81 acetylcholinesterase in electroplax membranes [87,88]. The primary role of peripheral proteins is to provide a point of
 82 attachment for other components to the cell membrane. For instance, both membrane cytoskeleton and components of
 83 extracellular matrix are linked to the cell membrane through peripheral proteins, thus they help the cell to maintain its
 84 shape while the membrane remains flexible to bend based on the cellular functions [89]. Besides the structural supports,
 85 peripheral proteins are involved in various other functions including cell communication, energy transduction, and molecule
 86 transfer across the membrane [89].

87 **2.4. Glycoproteins**

88 Glycoproteins are a class of proteins which have carbohydrate chains (in the form of oligosaccharides) covalently attach
 89 to the main protein body [90,91]. The presence of carbohydrate chains can dramatically alter the intrinsic properties
 90 of a glycoprotein such as the size, charge, solubility, structure, and accessibility [92]. Depending on how and where
 91 carbohydrate chains attach to the protein, the glycoproteins are classified into three categories; N-linked glycoproteins,
 92 O-linked glycoproteins, and non-enzymatic glycosylated glycoproteins [90,93]. In N-linked glycoproteins, the carbohydrate
 93 chains are attached to the the nitrogen atoms of the amino acid asparagine. In O-linked glycoproteins, the carbohydrate
 94 chains are linked to the hydroxyl side chain of amino acids serine or threonine. In the third group, unlike the two others,
 95 the non-enzymatic glycosylated glycoproteins are synthesized by chemical addition of carbohydrate chains to polypeptides
 96 [73,90]. In terms of functionality, glycoproteins are almost found in all living organisms and serve a number of important
 97 roles as structural molecules, immunologic molecules, transport molecules, receptors, enzymes, and hormones [90,94]. For
 98 instance, the glycoproteins on the membrane surface form bonds with the extracellular matrix, helping the cell stabilize

Figure 2. Schematic depiction of the composition of a cellular membrane. There are two layers of amphipathic lipid molecules that self-assemble to form the bilayer. In each layer, the hydrophilic head groups form the outer surface and the hydrophobic tails face toward each other in the interior region. The distribution and organization of lipids and different proteins can vary from cell to cell. The cell membrane is decorated with many different molecules including peripheral proteins, integral proteins, and carbohydrate molecules.

99 its membrane structure. In addition to that, the glycoproteins receptors and antigens facilitate cell-cell recognition and
100 interaction which are a key factor for immune system functionality [94].

101 **3. Theoretical models of biological membranes**

102 *3.1. Mechanical viewpoint*

103 Theoretical approaches are complementary techniques that have been developed in the last few decades to how cells
104 regulate their function through geometry, mechanics, and signaling. [11,58,95–97]. In general, theoretical approaches
105 can be classified into discrete and continuum models. In discrete models, the equations describe atoms' motion with in
106 interaction with each other, through a set of bonded and non-bonded potentials, are solved by Molecular Dynamics (MD) or
107 Coarse-Grained (CG) simulation techniques [98,99]. Tracing all atoms in a system makes this model suitable for exploring
108 the nature of the biological process at the molecular level such as the biochemistry underlying the lipid-lipid or lipid-protein
109 interactions, which are typically very difficult to detect experimentally. However, the high computational cost of MD or CG
110 simulations limit the applications of discrete models just to phenomena at nanoscopic length and time scales [95,100,101].

111 On the other hand, there is a continuum approach that deals with the membrane as a continuous surface with average
112 properties [95]. Indeed, the small length scale of the membrane constituents ($\sim 3\text{-}6\text{ nm}$) compared to the length scales
113 of biological phenomena ($\sim 100\text{ nm}\text{-}\mu\text{m}$) allows us to define the complex membrane as a single continuum surface [95].
114 The most popular and widely used model in continuum framework is the Helfrich model that was proposed in 1973 [102].
115 In this model, the membrane is considered as a thin elastic shell that can bend such that at all the times the lipids remain
116 aligned and normal to the membrane surface. In addition, this model presumes that the curvature of the membrane is much
117 larger than the thickness of the bilayer [102]. Under these assumptions, Helfrich proposed an energy function for the
118 membrane system that depends only on the mean and Gaussian curvatures of the membrane as [102]

$$W_{\text{Bending}} = \int_{\omega} 2\kappa H^2 + \kappa_G K dA, \quad (1)$$

119 where W is total strain energy of the membrane due to bending, H is the membrane mean curvature, K is the membrane
120 Gaussian curvature, and κ and κ_G are the membrane properties which are called the bending and Gaussian modulii
121 respectively. The integration in Eq. 1 is over the entire membrane surface area ω and dA is the area element. We describe
122 the geometrical concepts of membrane curvature in Box. A.

123 *3.2. Simulation techniques*

124 From a mechanical perspective, cell membrane deformation can be characterized by balance laws for mass and momentum.
125 Simplifying these mass and momentum governing equations in continuum framework results in partial differential equations
126 (PDEs) [103]. To solve the PDEs, first step we need to define the constitutive relationship for membrane deformation such
127 as Helfrich bending energy (Eq. 1). Other forms of suggested constitutive equations including the effects of proteins are
128 presented in Sec. 4.

129 Besides the need for a constitutive equation, the derived PDEs from cell mechanics are usually higher order and highly
130 nonlinear differential equations. Therefore, in most cases, analytical solution are not possible and the equations are often
131 solved numerically. Over the last few decades, various computational approaches have been developed to solve the set of
132 governing PDEs including the boundary value problem for axisymmetric coordinates [21,37,44,104,105], different finite

133 element methods [106–108], Monte Carlo methods [109–111], finite difference methods [112,113], and the phase field
134 representation of the surface [114–116]. Each of these methods has its own advantage and disadvantage and depending on
135 the complexity of the problem, one or more of them can be implemented.

136 A major challenge in modeling membrane protein interactions is identifying a constitutive relationship that captures the
137 different levels of complexities associated with membrane protein interactions. In what follows, we discuss some of the
138 popular models used for such purposes along with their applications. We then discuss where new constitutive relationships
139 relationships are needed and how these can be experimentally parameterized.

140 **4. Continuum elastic energy models of membrane-protein interaction**

141 *4.1. Spontaneous curvature model*

142 In the spontaneous curvature (SC) model, it has been suggested that the interaction between proteins and surrounding
143 lipids changes the local membrane properties particularly the preferred – called spontaneous – curvature of the membrane
144 [18,117–119]. In this case, the induced spontaneous curvature is a parameter that reflects a possible asymmetry between
145 the two leaflets of the bilayer. This can be the result of any membrane bending mechanisms such as phase separation of
146 membrane proteins into distinct domains, amphipathic helix or conically shaped transmembrane protein insertion, protein
147 scaffolding, or protein crowding (Fig. 5A). In reality, a combination of all these mechanisms can occur simultaneously and
148 the local value of spontaneous curvature can then be interpreted as a single measure of the curvature-generating capability
149 of the membrane-protein interaction [17,18]. In a continuum framework, the most common model for induced spontaneous
150 curvature is the modified version of Helfrich energy (Eq. 1), given by [44,118,120,121]

$$W_{SC} = \int_{\omega} 2\kappa(H - C)^2 + \kappa_G K dA, \quad (2)$$

151 where C is the spontaneous curvature and its effective strength depends on the membrane composition, temperature, the
152 membrane thickness, the protein density, and the membrane area coverage by proteins [102,122].

153 Modeling the net effect of membrane-protein interaction as an induced spontaneous curvature (Eq. 2) has provided great
154 insight into various aspects of membrane deformation, from vesiculation in caveolae and endosomal sorting complexes
155 to cylindrical shapes of membrane endoplasmic reticulum (ER) [123–125]. By using the SC model, recent studies have
156 shown for example how a line tension at a lipid phase boundary could drive scission in yeast endocytosis [21,126,127],
157 or how a snapthrough transition from open U-shaped buds to closed Ω -shaped buds in Clathrin Mediated Endocytosis
158 (CME) is regulated by membrane tension [37,44]. Furthermore, the experimentally observed change in membrane tension
159 (spontaneous tension) in response to protein adsorption [128–130], can be explained in the context of the SC model
160 [104,120,122]. The SC model has also been used to elucidate the role of varying membrane tension due to spontaneous
161 curvature papers [104,120,122]. While the SC model has been very effective in capturing large scale deformations of the
162 membrane, it doesn't take into account the protein density or the curvature induced by each protein.

Box A. Curvatures of surfaces

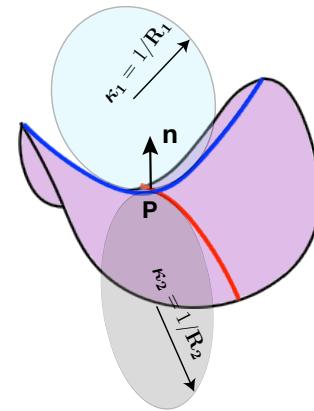
Let us consider the membrane as a two dimensional surface in a three dimensional Euclidean space (Fig. A3). At each point on the surface, there are two curvatures, κ_1 and κ_2 , which characterize the shape of the surface [131,132]. These two curvatures are called principal curvatures and by the definition their values are the reciprocal of the radius of the osculating circle at the point (P) ($\kappa_1 = 1/R_1$ and $\kappa_2 = 1/R_2$ in Fig. A3) [131,132]. The values of these curvatures can be positive or negative. The curvature is positive if the curve turns in a same direction as normal vector to the surface (**n**), otherwise it is negative [131,132]. The average and the product of two principal curvatures give the mean (H) and the Gaussian (K) curvatures as [131,132]

$$H = \frac{\kappa_1 + \kappa_2}{2} \quad \text{and} \quad K = \kappa_1 \kappa_2. \quad (\text{A.1})$$

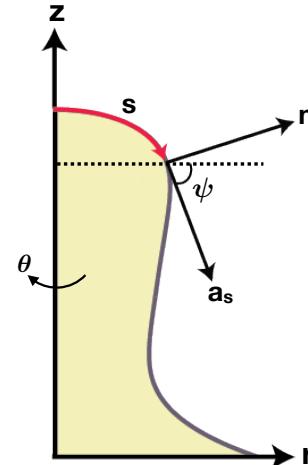
For a rotationally symmetric surface as shown in Fig. A4, we can define the position of each point on the surface as a function of arc length (s) such as

$$\mathbf{r}(s) = r(s)\mathbf{e}_r(\theta) + z(s)\mathbf{k}, \quad (\text{A.2})$$

where $r(s)$ is the radius from axis of revolution, $z(s)$ is the elevation from a base plane, and $(\mathbf{e}_r, \mathbf{e}_\theta, \mathbf{k})$ forms the coordinate basis. Since $r^2(s) + z^2(s) = 1$, we can define the angle ψ such that (Fig. A4)


$$\mathbf{a}_s = \cos(\psi)\mathbf{e}_r + \sin(\psi)\mathbf{k} \quad \text{and} \quad \mathbf{n} = -\sin(\psi)\mathbf{e}_r + \cos(\psi)\mathbf{k}, \quad (\text{A.3})$$

where \mathbf{a}_s and \mathbf{n} are the unit tangent and normal vectors to the surface as shown in Fig. A4. We now can define the two principal curvatures as


$$\kappa_1 = \psi' \quad \text{and} \quad \kappa_2 = \frac{\sin(\psi)}{r}, \quad (\text{A.4})$$

where $(\cdot)' = d(\cdot)/ds$ is the partial derivative with respect to the arc length. With having the two principal curvatures, the curvature deviator (D) in anisotropic condition is given by

$$D = \frac{1}{2} \left(\frac{\sin(\psi)}{r} - \psi' \right). \quad (\text{A.5})$$

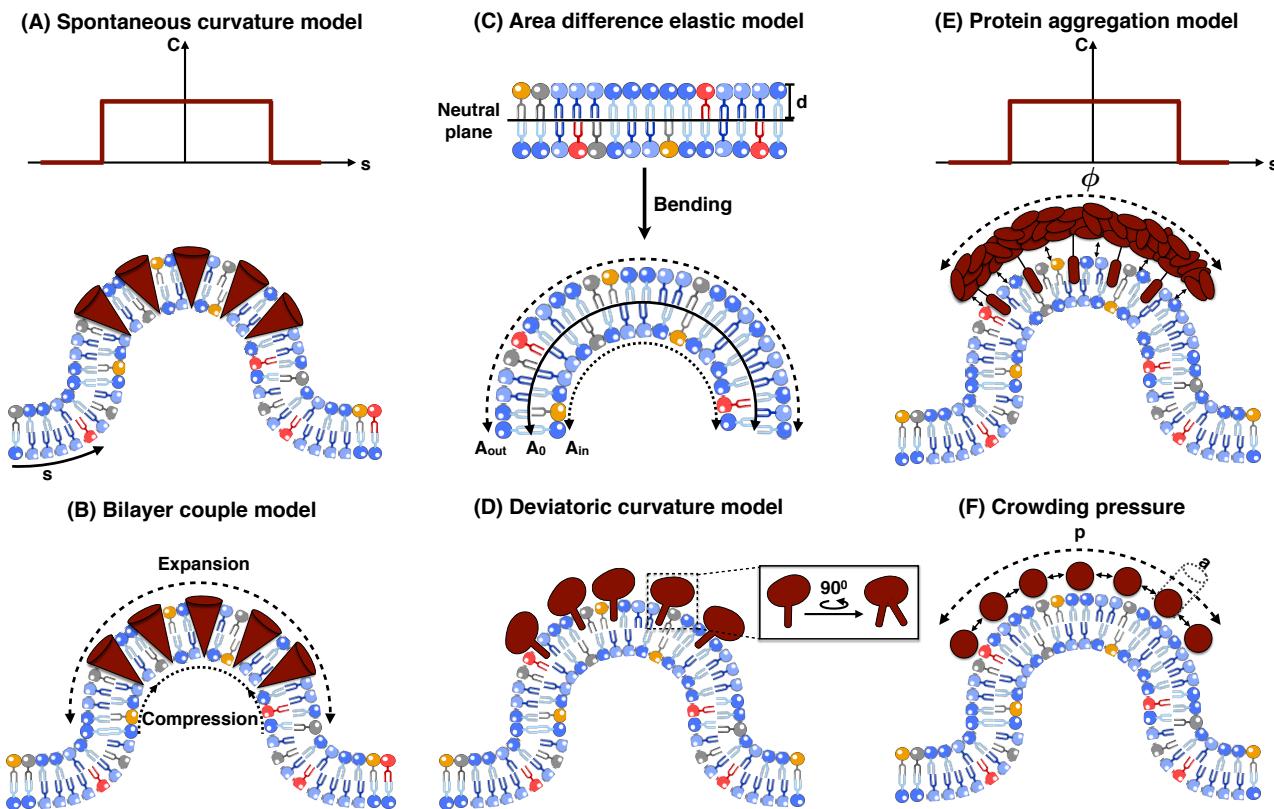
Figure A3. Principal curvatures of a surface.

Figure A4. Axisymmetric coordinates with z as the axis of rotation.

163 *4.2. Bilayer couple model*

164 In order to go beyond an idealized single manifold description of a membrane, the Bilayer Couple model (BC) was
 165 proposed by Sheetz and Singer in 1974 [133]. The basic idea in this model is that each lipid molecule has a fixed area and
 166 there is no lipid exchange between the two leaflets of the bilayer. Thus, any asymmetrical protein insertions into the inner
 167 and outer surfaces of the membrane causes an area mismatch between the two leaflets. This mismatch creates in-plane
 168 compression in one leaflet and extension in the other, resulting in membrane deformation to release the induced stress (Fig.
 169 5B) [18,134]. For a thin lipid bilayer with thickness (d), the area difference between the leaflets (ΔA) can be expressed in
 170 terms of the mean curvature (H) as

$$\Delta A = 2d \int_{\omega} H dA. \quad (3)$$


171 Here, instead of having a spontaneous curvature term in energy, a “hard” constraint on the area difference between the
 172 leaflets (Eq. 3) regulates the membrane curvature. This difference in the mechanism of curvature generation of SC and BC
 173 models distinguishes their predictions for the same membrane deformation [134]. For example, in membrane budding
 174 transition due to thermal expansion, the prediction of the SC model is that the shape transformation is discontinuous,
 175 while based on the BC model, there are pear-shaped structures that appear as intermediates and the transition of shapes is
 176 continuous [134].

177 *4.3. Area difference elasticity model*

178 In 1980, the Area Difference Elasticity (ADE) model was developed by Svetina *et.al.*, [135,136] to combine both SC and
 179 BC models including the missing macroscopic details of membrane bending phenomena. To better explain the physics
 180 underlying this model, we consider a flat membrane that bends downward due to different protein concentrations on two
 181 sides of the membrane (Fig. 5C). This bending, based on the single sheet descriptions of the membrane in SC model, gives
 182 rise to the spontaneous curvature term in the energy equation (Eq. 2). However, if we treat each leaflet as an independent
 183 elastic plate – as was suggested in the BC model – we can then see that besides the curvature, the area of each monolayer
 184 will also change. For example, in Fig. 5C, the outer monolayer is stretched and the inner one is compressed. The energy
 185 associated with the membrane bending and this relative change in the monolayers areas is given by [134,137,138]

$$W_{ADE} = \underbrace{\int_{\omega} 2\kappa(H - C)^2 + \kappa_G K dA}_{\text{Bending energy}} + \underbrace{\frac{\kappa_r}{2Ad^2}(\Delta A - \Delta A_0)^2}_{\text{Elastic stretching energy}}, \quad (4)$$

186 where κ_r is called the nonlocal membrane bending modulus, and A is the total surface area of the neutral plane. ΔA_0 and
 187 ΔA are the relaxed (initial) and the bent area differences between the membrane leaflets respectively ($\Delta A_0 = A_{0,out} - A_{0,in}$
 188 and $\Delta A = A_{out} - A_{in}$, in which A_{out} is the area of the outer layer and A_{in} is the area of the inner layer). In Eq. 4, κ and
 189 κ_r are both in order of $K_a d^2$, where K_a is the area stretching modulus of the bilayer [134,138,139]. This means that in
 190 any membrane deformation, both the terms, the bending and the elastic stretching energies, are comparable and must be
 191 considered. Using the ADE model, researchers for the first time could numerically simulate the shape transformations of
 192 the human red blood cell from stomatocyte to discocyte and to echinocyte [139–142]. Also, using the ADE model the
 193 experimentally observed vesicles were mapped into a theoretical phase diagram, enabling theoreticians to predict in what
 194 regions or range of parameters, the vesicles may become unstable [134,137]. These predictions have been very useful for
 195 detecting unstable shapes, which is challenging to do experimentally.

Figure 5. The mechanisms of membrane curvature generation due to protein interactions in different continuum elastic models. (A) Local protein interactions with membrane produces a spontaneous curvature field. (B) The asymmetric insertion of conical proteins on one side of the membrane results in the expansion of the upper leaflet and compression of the lower leaflet. (C) The area of each membrane leaflet changes due to membrane bending. (D) Rotationally non-symmetric proteins generates anisotropic curvature. (E) Aggregated proteins on the membrane surface creates a spontaneous curvature field and also have entropic interactions with the membrane. Here ϕ represents the relative density of the accumulated proteins. (F) The induced pressure (p) by crowding proteins drives membrane bending. a is the surface area occupied by one protein.

196 4.4. Deviatoric curvature model

197 In the SC model, the induced spontaneous curvature was assumed to be isotropic, same in both directions (see Box. A).
 198 However, not all proteins are rotationally symmetric and have intrinsically anisotropic structures such as banana shaped
 199 BIN-amphiphysin-Rvs (BAR) proteins (Fig. 5D) [143–145]. These proteins can produce different curvatures in different
 200 directions and this difference is required for the formation of nonspherical structures such as membrane tubular protrusions
 201 [146,146,147]. In order to take into account the anisotropic contribution of protein coats or inclusions in the continuum
 202 approach, Kralj-Ilic *et. al* proposed a Deviatoric Elasticity (DE) model [148]. In this model, each complex protein
 203 structure is simplified as a one-dimensional curve that lies on the membrane. The orientation and the position of the
 204 proteins in the plane of the membrane are important factors since an extra term is needed in the for adjusting the actual
 205 local curvature of the membrane to the intrinsic curvatures of the proteins [148,149]. The membrane-free energy that was
 206 suggested by the DE model is given as [148,150]

$$W_{DE} = \int_{\omega} \underbrace{2\kappa(H - C)^2 + \kappa_G K}_{\text{Bending energy}} + \underbrace{2\kappa(D - D_0)^2}_{\text{Deviatoric mismatch}} dA, \quad (5)$$

207 where D is the membrane curvature deviator and D_0 is the spontaneous membrane curvature deviator. Since the DE
 208 model was proposed, there have been many modeling efforts to explain how BAR proteins accumulation in membrane
 209 necks stabilize membrane tubular protrusions without any cytoskeleton supports [151–154]. Effectively, derivation of the
 210 Euler-Lagrange governing equations by a variational approach [155], provides a platform to systematically explore the
 211 impact of the induced stresses by anisotropic curvatures on the morphology of tubular structures [21].

212 *4.5. Protein aggregation model*

213 Aggregation of cytosolic proteins on the membrane surface or phase separation of bilayer proteins into specific domains
 214 have been observed in many biological processes [156–159]. This aggregation of proteins not only creates a concentration
 215 field on the membrane surface but also results in additional contributions to the membrane energy due to compositional
 216 heterogeneity and the entropic interactions of bulk proteins with the lipid bilayer (Fig. 5E) [160–162]. While the exact
 217 form of the free energy is still a matter of debate and has not been verified experimentally yet, a simple model based on
 218 thermodynamic arguments is given as [160,161,163],

$$W_{\text{Aggregation}} = \int_{\omega} \underbrace{2\kappa(H - C)^2 + \kappa_G K}_{\text{Bending energy}} + \underbrace{\frac{T}{a^2}(\phi \ln \phi + (1 - \phi) \ln(1 - \phi))}_{\text{Entropic energy}} + \underbrace{\frac{J}{2a^2}\phi(1 - \phi)}_{\text{Energy due to protein aggregation}} + \underbrace{\frac{J}{4}(\nabla \phi)^2}_{\text{Energy penalty due to compositional heterogeneity}} dA, \quad (6)$$

219 where T is the environment temperature, a is the surface area occupied by one protein, ϕ is the relative density of the
 220 proteins, and J is the aggregation potential. In Eq. 6, the first term is the conventional Helfrich bending energy with
 221 induced spontaneous curvature [102]. The second term represents the entropic contribution due to the thermal motion
 222 of proteins in the membrane [160,164]. The third term gives the aggregation energy, and the last term describes the
 223 energetic penalty for the spatial membrane composition gradient [160,163,164]. The suggested protein aggregation model
 224 mainly used for theoretical analysis of dynamic phase transitions of coupled membrane- proteins- cytoskeleton systems in
 225 membrane protrusions such as microvilli and filopodia [160,165–167]. This model also reveals one interesting fact that in
 226 addition to the induced deviatoric spontaneous curvature of the BAR domain proteins, the associated energy with their
 227 aggregation at membrane necks facilitates tubular structures stability. [154,168]. A major open question in the field is the
 228 relationship between protein density, size, and spontaneous curvature. Although current models use a linear proportionality
 229 [104,161,169], this choice of functions is critical in determining the energy.

230 *4.6. Protein crowding*

231 Protein crowding is a recently discovered curvature generating mechanism that has challenged some conventional paradigms
 232 about the role of involved molecular machinery in a robust cell shape change [34–36,170–172]. Stachowiak *et. al.* reported
 233 that confining a sufficiently high concentration of his-tagged Green Fluorescent Proteins (GFP) to a local region can deform
 234 the membrane into buds or tubules in the absence of any protein insertion into the lipid bilayer [35,170]. Furthermore,
 235 Snead *et. al.* showed that crowding among membrane-bound proteins can also drive membrane fission [34]. This paper

236 raises a controversial prediction that the large disordered domains of BAR domains proteins induce crowding pressure that
 237 promotes membrane fission instead of stabilizing the membrane [173]. Additionally, another set of experiments reported
 238 that the induced crowding pressure by a high concentration of cargo proteins on one side of the ER works as an obstacle,
 239 which opposes membrane bending and inhibits the vesiculation by coat protein complex II (COPII) [174–176].

240 The essence of the crowding mechanism is that the lateral collisions between the membrane-bound proteins on one
 241 side of the membrane generate a steric pressure that causes the membrane to bend away from the bulk proteins (Fig.
 242 5F)[35,177,178]. As the density, the size or the mobility of the bound proteins increase, the induced steric pressure becomes
 243 larger, which results in a more significant membrane bending [35,36]. Modeling the free energy associated with protein
 244 crowding is more difficult because it profoundly depends on the specific composition of the underlying membrane as well
 245 as the lateral confinement of the membrane-bound proteins [179,180]. However, in a recent paper, a simple 2D hard-sphere
 246 gas model based on the Carnahan-Starling approximation has been proposed to describe the free energy of the crowding
 247 mechanism [35,181]. To better visualize it, let us consider a membrane that is crowded with different protein concentration
 248 on each side as shown in Fig. 5. If we model each protein as a hard-sphere gas particle that exerts certain pressure to the
 249 membrane surface, the work that is done by this pressure to bend the membrane according to the standard thermodynamics
 250 is given by [182]

$$W_{\text{Crowding}} = \int p_{\text{in}} dA_{\text{in}} + \int p_{\text{out}} dA_{\text{out}}, \quad (7)$$

251 where p_{in} and p_{out} are the induced steric pressure by the crowding proteins on the inner side and the outer side of the
 252 membrane respectively. This induced pressure (denoted by p here) for a 2D hard-sphere gas protein can be expressed as
 253 [180,183,184]

$$p = \frac{k_B T}{a} p_R(\phi), \quad (8)$$

254 where k_B is the Boltzmann constant and $p_R(\phi)$ is the reduced gas pressure depending on the relative density of the protein
 255 given as [184]

$$p_R(\phi) = \phi \left(1 + 2\phi \frac{1 - \frac{7}{16}\phi}{(1 - \phi)^2} \right). \quad (9)$$

256 Eq. 9 is known as a 2D version of the Carnahan-Starling equation. Based on this equation, at low protein density, the
 257 reduced pressure is simply proportional to ϕ , but as the gas density increases, the non-linear terms play larger roles and
 258 should be considered.

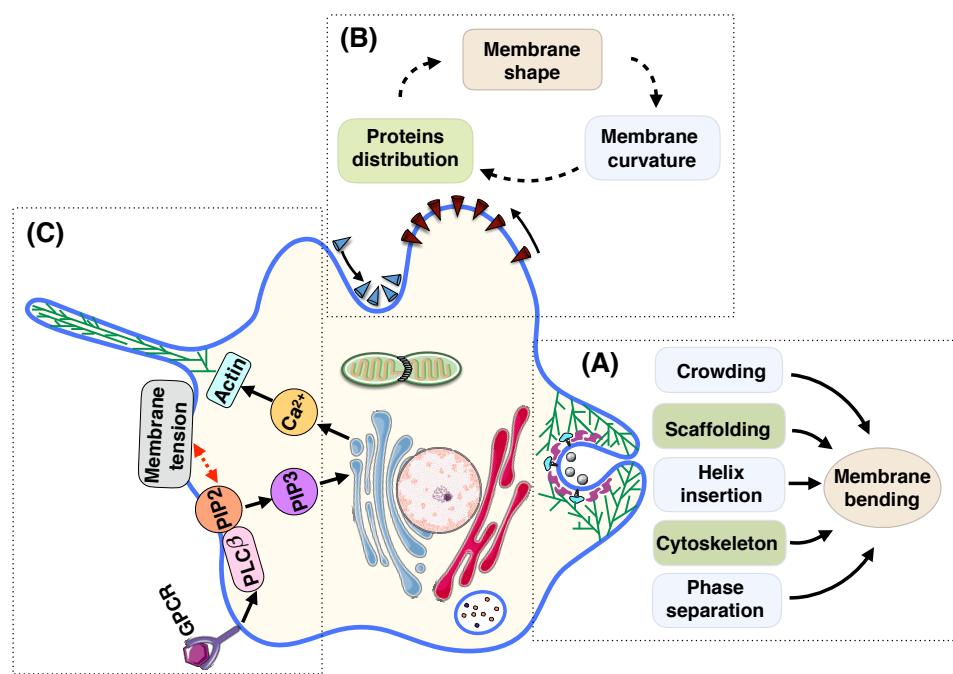
259 4.7. Hydrophobic mismatch

260 Transmembrane proteins embedded in the cell membrane have a hydrophobic region that is in contact with the hydrophobic
 261 region (lipid acyl chain) of the lipid bilayer. Energetically, it is then favorable that both hydrophobic regions have
 262 approximately a same thickness in order to prevent the exposure of the hydrophobic surfaces to the hydrophilic environment.
 263 However, there are various proteins with different lengths in a single membrane [185,186]. On the other hand, one protein
 264 with a same length can be surrounded by lipid bilayers with different thicknesses [187,188]. This difference between
 265 thicknesses of hydrophobic regions of a transmembrane protein (d_p) and the lipid bilayer (d_l) is called hydrophobic
 266 mismatch. There are different adaptation mechanisms that either the protein or the bilayer can utilize in order to avoid

267 the energy cost of the hydrophobic mismatch [187,189]. For example, for positive ($d_l < d_p$) or negative ($d_l > d_p$)
268 mismatch, the lipid bilayer can be stretched or compressed respectively to adjust the length of hydrophobic regions
269 [190,191]. Another possibility is when the hydrophobic part of a transmembrane protein is too thick or too short as
270 compared to the hydrophobic bilayer thickness. In this case, protein aggregation on the membrane or protein surface
271 localization can efficiently minimize the exposed hydrophobic area [192,193]. Also, for proteins that have helices that are
272 too long compared to the thickness of the membrane, helix tilt is one possible mechanism to reduce the protein effective
273 hydrophobic length [187,194,195]. Several theoretical approaches have been developed to incorporate the energy cost and
274 thermodynamic effects of membrane-protein interactions in term of hydrophobic mismatch [196–199].

275 Thus, in addition to the models described above, there are additional considerations to the energy that have been suggested
276 by numerous studies such as higher order bending terms [132,200,201], lipid volume constraints [202], the impacts of a
277 protein shape on membrane deformation [203], and the electrostatic energy between a membrane and proteins [204–207].

278 5. Future perspective and challenges


279 Although the models discussed above have provided insight into some fundamental questions about the molecular machinery
280 of cell shape regulation, all of them have been developed based on simplifying assumptions that need to be revisited in the
281 pursuit of closing the gap between experiment and theory. In order to achieve this goal, multidisciplinary efforts between
282 physicists, mathematicians, engineers, and biologists are required to match different pieces of this cell biology puzzle.

283 Here, we highlight some current challenges that we believe must be considered in the next generation of continuum models.

- 284 • Membrane deformation is a dynamic process, surrounding fluid flow, thermal fluctuation, and diffusion of proteins
285 actively regulate the shape of the membrane at each instance [11,169,208–212]. Currently, the models for membranes
286 at mechanical equilibrium are quite well developed but the models for a dynamic process have not been as
287 well-developed and the community must invest some effort in this aspect.
- 288 • In vivo, multiple mechanisms coupling membrane deformation and cytoskeletal remodeling are commonplace
289 (Fig. 6A). Therefore, the models should be extended to include the dynamic effect and rearrangement of the actin
290 cytoskeleton layer underneath of the membrane.
- 291 • Membrane deformation and protein absorption/rearrangement are often considered as two separate processes with
292 little to no impact on each other. However, recent studies show that proteins can sense the membrane curvature (Fig.
293 6B). Therefore, indeed, there is a feedback loop between the protein distribution and the membrane configuration.
294 While some models are discussed in [161,216–219], we still need more quantitative agreements between theory and
295 experiment.
- 296 • Cell shape can control signal transduction at the plasma membrane, and on the other hands, intracellular signaling
297 changes the membrane tension [220] (Fig. 6C). This coupling between the cell shape and the signaling network
298 inside the cell should be further understood in terms of both quantitative experimental and theoretical biology.
- 299 • As discussed above, membrane deformation is a multiscale phenomena that results from the reorientation of lipids to
300 large scale change in membrane curvature. This suggests the extension of available models toward multiscale models
301 that could represent each biological process over multiple length scales [101,221].

302 Despite these challenges, with increasingly quantitative measurement techniques available experimentally, ease of access to
303 high throughput computing systems, and interdisciplinary training the next generation of scientist leaders, the future of
304 theoretical modeling of biological membranes and cellular membrane processes is brighter than ever.

305 **Acknowledgments** This work was supported by ARO W911NF-16-1-0411, ONR N00014-17-1-2628 grants to P.R.
306 H.A. was supported by a fellowship from the Visible Molecular Cell Consortium (VMCC), a program between UCSD

Figure 6. Perspective for the the future of theoretical models for membrane curvature generating mechanisms. (A) The coupling between membrane shape, membrane curvature, and membrane proteins distribution. The convex proteins (indicated with red cones) aggregate and flow toward the hill where the membrane curvature is negative (assuming the normal vector to the surface is outward). On the other hand, the concave proteins (represented by blue cones) accumulate and move toward the valley where the membrane curvature is large and positive [161]. (B) Various mechanisms are involved in trafficking including amphipathic helix insertion into the bilayer, protein scaffolding, cargo-receptor crowding, forces from actin polymerization, and lipid phase separation [213,214]. (C) The coupling between the formation of a filopodial protrusion and the intracellular signaling inside the cell [215].

307 and the Scripps Research Institute. The authors thank Miriam Bell and Allen Leung for their critical reading of
 308 the manuscript. Figures 1, 2, 3, and 4 used adapted content from Servier Medical Art powerpoint image bank
 309 (<http://www.servier.com/Powerpoint-image-bank>).

310 **Author Contributions:** H.A. and P.R. wrote the manuscript.

311 **Conflicts of Interest:** The authors declare no conflict of interest.

312 References

- 313 1. Mukherjee, S.; Maxfield, F.R. Role of membrane organization and membrane domains in endocytic lipid trafficking. *Traffic*
 314 **2000**, *1*, 203–211.
- 315 2. Gruenberg, J. The endocytic pathway: a mosaic of domains. *Nature reviews Molecular cell biology* **2001**, *2*, 721.
- 316 3. Westermann, B. Mitochondrial fusion and fission in cell life and death. *Nature reviews Molecular cell biology* **2010**, *11*, 872.
- 317 4. Van der Bliek, A.M.; Shen, Q.; Kawajiri, S. Mechanisms of mitochondrial fission and fusion. *Cold Spring Harbor perspectives
 318 in biology* **2013**, *5*, a011072.
- 319 5. Grafmuller, A.; Shillcock, J.; Lipowsky, R. The fusion of membranes and vesicles: pathway and energy barriers from dissipative
 320 particle dynamics. *Biophysical journal* **2009**, *96*, 2658–2675.
- 321 6. Jahn, R.; Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles. *Nature* **2012**, *490*, 201.

322 7. Reilly, G.C.; Engler, A.J. Intrinsic extracellular matrix properties regulate stem cell differentiation. *Journal of biomechanics*
323 **2010**, *43*, 55–62.

324 8. Xiong, Y.; Rangamani, P.; Fardin, M.A.; Lipshtat, A.; Dubin-Thaler, B.; Rossier, O.; Sheetz, M.P.; Iyengar, R. Mechanisms
325 controlling cell size and shape during isotropic cell spreading. *Biophysical journal* **2010**, *98*, 2136–2146.

326 9. Rangamani, P.; Fardin, M.A.; Xiong, Y.; Lipshtat, A.; Rossier, O.; Sheetz, M.P.; Iyengar, R. Signaling network triggers and
327 membrane physical properties control the actin cytoskeleton-driven isotropic phase of cell spreading. *Biophysical journal* **2011**,
328 *100*, 845–857.

329 10. Neves, S.R.; Tsokas, P.; Sarkar, A.; Grace, E.A.; Rangamani, P.; Taubenfeld, S.M.; Alberini, C.M.; Schaff, J.C.; Blitzer, R.D.;
330 Moraru, I.I.; others. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling
331 networks. *Cell* **2008**, *133*, 666–680.

332 11. Rangamani, P.; Lipshtat, A.; Azeloglu, E.U.; Calizo, R.C.; Hu, M.; Ghassemi, S.; Hone, J.; Scarlata, S.; Neves, S.R.; Iyengar, R.
333 Decoding information in cell shape. *Cell* **2013**, *154*, 1356–1369.

334 12. Bell, M.; Bartol, T.; Sejnowski, T.; Rangamani, P. Dendritic spine geometry and spine apparatus organization govern the
335 spatiotemporal dynamics of calcium. *bioRxiv* **2018**, p. 386367.

336 13. Giardini, P.A.; Fletcher, D.A.; Theriot, J.A. Compression forces generated by actin comet tails on lipid vesicles. *Proceedings of
337 the National Academy of Sciences* **2003**, *100*, 6493–6498.

338 14. Carlsson, A.E. Membrane bending by actin polymerization. *Current opinion in cell biology* **2018**, *50*, 1–7.

339 15. Kaksonen, M.; Toret, C.P.; Drubin, D.G. Harnessing actin dynamics for clathrin-mediated endocytosis. *Nature reviews Molecular
340 cell biology* **2006**, *7*, 404.

341 16. McMahon, H.T.; Gallop, J.L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. *Nature* **2005**,
342 *438*, 590.

343 17. Zimmerberg, J.; Kozlov, M.M. How proteins produce cellular membrane curvature. *Nature reviews Molecular cell biology* **2006**,
344 *7*, 9.

345 18. Argudo, D.; Bethel, N.P.; Marcoline, F.V.; Grabe, M. Continuum descriptions of membranes and their interaction with proteins:
346 towards chemically accurate models. *Biochimica et Biophysica Acta (BBA)-Biomembranes* **2016**, *1858*, 1619–1634.

347 19. Kozlov, M.M.; Campelo, F.; Liska, N.; Chernomordik, L.V.; Marrink, S.J.; McMahon, H.T. Mechanisms shaping cell membranes.
348 *Current opinion in cell biology* **2014**, *29*, 53–60.

349 20. Jenkins, J. Static equilibrium configurations of a model red blood cell. *Journal of mathematical biology* **1977**, *4*, 149–169.

350 21. Alimohamadi, H.; Vasan, R.; Hassinger, J.; Stachowiak, J.C.; Rangamani, P. The role of traction in membrane curvature
351 generation. *Molecular Biology of the Cell* **2018**, *29*, 2024–2035.

352 22. Alimohamadi, H.; Vasan, R.; Hassinger, J.; Stachowiak, J.; Rangamani, P. The role of traction in membrane curvature generation.
353 *Biophysical Journal* **2018**, *114*, 600a.

354 23. Guven, J. Membrane geometry with auxiliary variables and quadratic constraints. *Journal of Physics A: Mathematical and
355 General* **2004**, *37*, L313.

356 24. Aridor, M.; Bannykh, S.I.; Rowe, T.; Balch, W.E. Sequential coupling between COPII and COPI vesicle coats in endoplasmic
357 reticulum to Golgi transport. *The Journal of cell biology* **1995**, *131*, 875–893.

358 25. Davies, K.M.; Anselmi, C.; Wittig, I.; Faraldo-Gomez, J.D.; Kuhlbrandt, W. Structure of the yeast F1Fo-ATP synthase dimer and
359 its role in shaping the mitochondrial cristae. *Proceedings of the National Academy of Sciences* **2012**, *109*, 13602–13607.

360 26. Landau, E.M.; Rosenbusch, J.P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. *Proceedings
361 of the National Academy of Sciences* **1996**, *93*, 14532–14535.

362 27. Schmidt, N.W.; Mishra, A.; Wang, J.; DeGrado, W.F.; Wong, G.C. Influenza virus A M2 protein generates negative Gaussian
363 membrane curvature necessary for budding and scission. *Journal of the American Chemical Society* **2013**, *135*, 13710–13719.

364 28. Gallop, J.L.; Jao, C.C.; Kent, H.M.; Butler, P.J.G.; Evans, P.R.; Langen, R.; McMahon, H.T. Mechanism of endophilin N-BAR
365 domain-mediated membrane curvature. *The EMBO journal* **2006**, *25*, 2898–2910.

366 29. Pucadyil, T.J.; Schmid, S.L. Conserved functions of membrane active GTPases in coated vesicle formation. *Science* **2009**,
367 *325*, 1217–1220.

368 30. Lee, M.C.; Orci, L.; Hamamoto, S.; Futai, E.; Ravazzola, M.; Schekman, R. Sar1p N-terminal helix initiates membrane curvature
369 and completes the fission of a COPII vesicle. *Cell* **2005**, *122*, 605–617.

370 31. Campelo, F.; McMahon, H.T.; Kozlov, M.M. The hydrophobic insertion mechanism of membrane curvature generation by
371 proteins. *Biophysical journal* **2008**, *95*, 2325–2339.

372 32. Karotki, L.; Huisken, J.T.; Stefan, C.J.; Ziolkowska, N.E.; Roth, R.; Surma, M.A.; Krogan, N.J.; Emr, S.D.; Heuser, J.;
373 Grunewald, K.; others. Eisosome proteins assemble into a membrane scaffold. *J Cell Biol* **2011**, *195*, 889–902.

374 33. Daumke, O.; Roux, A.; Haucke, V. BAR domain scaffolds in dynamin-mediated membrane fission. *Cell* **2014**, *156*, 882–892.

375 34. Snead, W.T.; Hayden, C.C.; Gadok, A.K.; Zhao, C.; Lafer, E.M.; Rangamani, P.; Stachowiak, J.C. Membrane fission by protein
376 crowding. *Proceedings of the National Academy of Sciences* **2017**, *114*, E3258–E3267.

377 35. Stachowiak, J.C.; Schmid, E.M.; Ryan, C.J.; Ann, H.S.; Sasaki, D.Y.; Sherman, M.B.; Geissler, P.L.; Fletcher, D.A.; Hayden,
378 C.C. Membrane bending by protein–protein crowding. *Nature cell biology* **2012**, *14*, 944.

379 36. Busch, D.J.; Houser, J.R.; Hayden, C.C.; Sherman, M.B.; Lafer, E.M.; Stachowiak, J.C. Intrinsically disordered proteins drive
380 membrane curvature. *Nature communications* **2015**, *6*, 7875.

381 37. Hassinger, J.E.; Oster, G.; Drubin, D.G.; Rangamani, P. Design principles for robust vesiculation in clathrin-mediated endocytosis.
382 *Proceedings of the National Academy of Sciences* **2017**, *114*, E1118–E1127.

383 38. Shen, Z.; Ye, H.; Li, Y. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular
384 dynamic simulation. *Physical Chemistry Chemical Physics* **2018**.

385 39. Bobrovska, N.; Gozdz, W.; Kralj-Iglic, V.; Iglic, A. On the role of anisotropy of membrane components in formation and
386 stabilization of tubular structures in multicomponent membranes. *PLoS one* **2013**, *8*, e73941.

387 40. Bahrami, A.H.; Hummer, G. Formation and stability of lipid membrane nanotubes. *ACS nano* **2017**, *11*, 9558–9565.

388 41. Torbati, M.; Lele, T.P.; Agrawal, A. Ultradonut topology of the nuclear envelope. *Proceedings of the National Academy of
389 Sciences* **2016**, *113*, 11094–11099.

390 42. Liang, X.; Zu, Y.; Cao, Y.P.; Yang, C. A dual-scale model for the caveolin-mediated vesiculation. *Soft Matter* **2013**, *9*, 7981–7987.

391 43. Woo, H.J.; Wallqvist, A. Spontaneous buckling of lipid bilayer and vesicle budding induced by antimicrobial peptide magainin 2:
392 a coarse-grained simulation study. *The journal of physical chemistry B* **2011**, *115*, 8122–8129.

393 44. Walani, N.; Torres, J.; Agrawal, A. Endocytic proteins drive vesicle growth via instability in high membrane tension environment.
394 *Proceedings of the National Academy of Sciences* **2015**, p. 201418491.

395 45. Weichsel, J.; Geissler, P.L. The more the tubular: dynamic bundling of actin filaments for membrane tube formation. *PLoS
396 computational biology* **2016**, *12*, e1004982.

397 46. Beltran-Heredia, E.; Almendro-Vedia, V.G.; Monroy, F.; Cao, F.J. Modeling the Mechanics of Cell Division: Influence of
398 Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure. *Frontiers in physiology* **2017**, *8*, 312.

399 47. Markvoort, A.J.; Smeijers, A.; Pieterse, K.; van Santen, R.; Hilbers, P. Lipid-based mechanisms for vesicle fission. *The Journal
400 of Physical Chemistry B* **2007**, *111*, 5719–5725.

401 48. Shi, Y. A glimpse of structural biology through X-ray crystallography. *Cell* **2014**, *159*, 995–1014.

402 49. Hsia, C.Y.; Richards, M.J.; Daniel, S. A review of traditional and emerging methods to characterize lipid–protein interactions in
403 biological membranes. *Analytical Methods* **2015**, *7*, 7076–7094.

404 50. Marion, D. An introduction to biological NMR spectroscopy. *Molecular and Cellular Proteomics* **2013**, pp. mcp–O113.

405 51. Emsley, J.W.; Feeney, J.; Sutcliffe, L.H. *High resolution nuclear magnetic resonance spectroscopy*; Vol. 2, Elsevier, 2013.

406 52. Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz,
407 J.; Hess, H.F. Imaging intracellular fluorescent proteins at nanometer resolution. *Science* **2006**, *313*, 1642–1645.

408 53. Gao, L.; Shao, L.; Higgins, C.D.; Poulton, J.S.; Peifer, M.; Davidson, M.W.; Wu, X.; Goldstein, B.; Betzig, E. Noninvasive
409 imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. *Cell* **2012**, *151*, 1370–1385.

410 54. Bozzola, J.J.; Russell, L.D. *Electron microscopy: principles and techniques for biologists*; Jones and Bartlett Learning, 1999.

411 55. Stephens, D.J.; Allan, V.J. Light microscopy techniques for live cell imaging. *Science* **2003**, *300*, 82–86.

412 56. De Vries, A.H.; Mark, A.E.; Marrink, S.J. Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle
413 in water in atomistic detail. *Journal of the American Chemical Society* **2004**, *126*, 4488–4489.

414 57. Marcoline, F.V.; Bethel, N.; Guerriero, C.J.; Brodsky, J.L.; Grabe, M. Membrane protein properties revealed through data-rich
415 electrostatics calculations. *Structure* **2015**, *23*, 1526–1537.

416 58. MacCallum, J.L.; Bennett, W.D.; Tielemans, D.P. Partitioning of amino acid side chains into lipid bilayers: results from computer
417 simulations and comparison to experiment. *The Journal of general physiology* **2007**, *129*, 371–377.

418 59. Du, Q.; Liu, C.; Wang, X. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions.
419 *Journal of Computational Physics* **2006**, *212*, 757–777.

420 60. Chabanon, M.; Rangamani, P. Gaussian curvature directs the distribution of spontaneous curvature on bilayer membrane necks.
421 *Soft matter* **2018**, *14*, 2281–2294.

422 61. Muller, M.; Katsov, K.; Schick, M. Biological and synthetic membranes: What can be learned from a coarse-grained description?
423 *Physics Reports* **2006**, *434*, 113–176.

424 62. Noid, W.; Chu, J.W.; Ayton, G.S.; Krishna, V.; Izvekov, S.; Voth, G.A.; Das, A.; Andersen, H.C. The multiscale coarse-graining
425 method. I. A rigorous bridge between atomistic and coarse-grained models. *The Journal of chemical physics* **2008**, *128*, 244114.

426 63. Alimohamadi, H.; Ovryn, B.; Rangamani, P. Protein-Mediated Beads-on-a-String Structure Formation Along Membrane
427 Nanotubes in Live Cells. *Biophysical Journal* **2018**, *114*, 392a.

428 64. Cuvelier, D.; Derenyi, I.; Bassereau, P.; Nassoy, P. Coalescence of membrane tethers: experiments, theory, and applications.
429 *Biophysical journal* **2005**, *88*, 2714–2726.

430 65. Vasan, R.; Hassinger, J.; Alimohamadi, H.; Drubin, D.; Rangamani, P. Energetics and Stability of Neck Formation in Yeast and
431 Mammalian Endocytosis. *Biophysical Journal* **2018**, *114*, 281a.

432 66. Darnell, J.E.; Lodish, H.F.; Baltimore, D.; others. *Molecular cell biology*; Vol. 2, Scientific American Books New York, 1990.

433 67. Stillwell, W. *An introduction to biological membranes: from bilayers to rafts*; Newnes, 2013.

434 68. Cevc, G.; Marsh, D. *Phospholipid bilayers: physical principles and models*; Wiley, 1987.

435 69. Terzi, M.M.; Deserno, M. Lipid Membranes: From Self-assembly to Elasticity. In *The Role of Mechanics in the Study of Lipid
436 Bilayers*; Springer, 2018; pp. 105–166.

437 70. Guidotti, G. The composition of biological membranes. *Archives of internal medicine* **1972**, *129*, 194–201.

438 71. Yeagle, P.L. *The structure of biological membranes*; CRC press, 2011.

439 72. Watson, H. Biological membranes. *Essays in biochemistry* **2015**, *59*, 43–69.

440 73. Schulz, G.E.; Schirmer, R.H. *Principles of protein structure*; Springer Science and Business Media, 2013.

441 74. Albersheim, P.; Anderson-Prouty, A.J. Carbohydrates, proteins, cell surfaces, and the biochemistry of pathogenesis. *Annual
442 Review of Plant Physiology* **1975**, *26*, 31–52.

443 75. Jain, M.K.; Wagner, R.C.; others. Introduction to biological membranes. Technical report, Wiley New York, 1988.

444 76. Singer, S.J.; Nicolson, G.L. The fluid mosaic model of the structure of cell membranes. *Science* **1972**, *175*, 720–731.

445 77. Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J.; others. *Molecular cell biology*; Vol. 3, WH
446 Freeman New York, 1995.

447 78. White, A.; Handler, P.; Smith, E.; Stetten Jr, D.; others. Principles of biochemistry. *Principles of Biochemistry*. **1959**, *2*.

448 79. Hong, H.; Tamm, L.K. Elastic coupling of integral membrane protein stability to lipid bilayer forces. *Proceedings of the
449 National Academy of Sciences* **2004**, *101*, 4065–4070.

450 80. Lee, A.G. How lipids affect the activities of integral membrane proteins. *Biochimica et Biophysica Acta (BBA)-Biomembranes*
451 **2004**, *1666*, 62–87.

452 81. Rangamani, P.; Steigmann, D. Variable tilt on lipid membranes. *Proc. R. Soc. A* **2014**, *470*, 20140463.

453 82. Phillips, R.; Ursell, T.; Wiggins, P.; Sens, P. Emerging roles for lipids in shaping membrane-protein function. *Nature* **2009**,
454 *459*, 379.

455 83. Ray, S.; Kassan, A.; Busija, A.R.; Rangamani, P.; Patel, H.H. The plasma membrane as a capacitor for energy and metabolism.
456 *American Journal of Physiology-Cell Physiology* **2016**, *310*, C181–C192.

457 84. Seaton, B.A.; Roberts, M.F. Peripheral membrane proteins. In *Biological Membranes*; Springer, 1996; pp. 355–403.

458 85. Benga, G. Protein-lipid interactions in biological membranes. In *Structure and Properties of Cell Membrane Structure and
459 Properties of Cell Membranes*; CRC Press, 2017; pp. 167–196.

460 86. Tamm, L.K. *Protein-lipid interactions: from membrane domains to cellular networks*; John Wiley and Sons, 2006.

461 87. Garber, E.A.; Margoliash, E. Interaction of cytochrome c with cytochrome c oxidase: an understanding of the high-to low-affinity
462 transition. *Biochimica et Biophysica Acta (BBA)-Bioenergetics* **1990**, *1015*, 279–287.

463 88. Day, E.D. Myelin basic protein. In *Contemporary topics in molecular immunology*; Springer, 1981; pp. 1–39.

464 89. Singer, S. The molecular organization of membranes. *Annual review of biochemistry* **1974**, *43*, 805–833.

465 90. Sharon, N.; Lis, H. Glycoproteins: structure and function. *Glycosciences: status and perspectives* **1996**, pp. 133–162.

466 91. Shylaja, M.; Seshadri, H. Glycoproteins: an overview. *Biochemical Education* **1989**, *17*, 170–178.

467 92. Wittmann, V. Glycoproteins: properties. In *Glycoscience*; Springer, 2008; pp. 1771–1793.

468 93. Nettleship, J.E. Structural biology of glycoproteins. In *Glycosylation*; InTech, 2012.

469 94. Easton, R.; Leader, T. Glycosylation of proteins—structure, function and analysis. *Life Sci Tech Bull* **2011**, *60*, 1–5.

470 95. Ramakrishnan, N.; Kumar, P.S.; Radhakrishnan, R. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins. *Physics reports* **2014**, *543*, 1–60.

471 96. Canham, P.B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. *Journal of theoretical biology* **1970**, *26*, 61–81.

472 97. Safran, S. *Statistical thermodynamics of surfaces, interfaces, and membranes*; CRC Press, 2018.

473 98. Tobias, D.J.; Tu, K.; Klein, M.L. Atomic-scale molecular dynamics simulations of lipid membranes. *Current Opinion in Colloid & Interface Science* **1997**, *2*, 15–26.

474 99. Tieleman, D.P.; Marrink, S.J.; Berendsen, H.J. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. *Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes* **1997**, *1331*, 235–270.

475 100. Lindahl, E.; Sansom, M.S. Membrane proteins: molecular dynamics simulations. *Current opinion in structural biology* **2008**, *18*, 425–431.

476 101. Chabanon, M.; Stachowiak, J.C.; Rangamani, P. Systems biology of cellular membranes: a convergence with biophysics. *Wiley Interdisciplinary Reviews: Systems Biology and Medicine* **2017**, *9*, e1386.

477 102. Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. *Zeitschrift für Naturforschung C* **1973**, *28*, 693–703.

478 103. Sauer, R.A. On the computational modeling of lipid bilayers using thin-shell theory. In *The Role of Mechanics in the Study of Lipid Bilayers*; Springer, 2018; pp. 221–286.

479 104. Alimohamadi, H.; Ovryn, B.; Rangamani, P. Protein aggregation and membrane bending govern nanotube morphology. *bioRxiv* **2018**, p. 373811.

480 105. Agrawal, A.; Steigmann, D.J. Boundary-value problems in the theory of lipid membranes. *Continuum Mechanics and Thermodynamics* **2009**, *21*, 57–82.

481 106. Laadhari, A.; Saramito, P.; Misbah, C. An adaptive finite element method for the modeling of the equilibrium of red blood cells. *International Journal for Numerical Methods in Fluids* **2016**, *80*, 397–428.

482 107. Sauer, R.A.; Duong, T.X.; Mandadapu, K.K.; Steigmann, D.J. A stabilized finite element formulation for liquid shells and its application to lipid bilayers. *Journal of Computational Physics* **2017**, *330*, 436–466.

483 108. Duong, T.X.; Roohbakhshan, F.; Sauer, R.A. A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. *Computer Methods in Applied Mechanics and Engineering* **2017**, *316*, 43–83.

484 109. Ramakrishnan, N.; Kumar, P.S.; Ipsen, J.H. Monte Carlo simulations of fluid vesicles with in-plane orientational ordering. *Physical Review E* **2010**, *81*, 041922.

485 110. Guan, X.; Ma, M.; Gan, Z.; Xu, Z.; Li, B. Hybrid Monte Carlo and continuum modeling of electrolytes with concentration-induced dielectric variations. *Physical Review E* **2016**, *94*, 053312.

486 111. Sreeja, K.; Ipsen, J.H.; Kumar, P.S. Monte Carlo simulations of fluid vesicles. *Journal of Physics: Condensed Matter* **2015**, *27*, 273104.

487 112. Lau, C.; Brownell, W.E.; Spector, A.A. Internal forces, tension and energy density in tethered cellular membranes. *Journal of biomechanics* **2012**, *45*, 1328–1331.

488 113. Gu, R.; Wang, X.; Gunzburger, M. Simulating vesicle–substrate adhesion using two phase field functions. *Journal of Computational Physics* **2014**, *275*, 626–641.

489 114. Banham, T.; Li, B.; Zhao, Y. Pattern formation by phase-field relaxation of bending energy with fixed surface area and volume. *Physical Review E* **2014**, *90*, 033308.

490 115. Du, Q.; Wang, X. Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations **2006**.

491 116. Zhang, J.; Das, S.; Du, Q. A phase field model for vesicle–substrate adhesion. *Journal of Computational Physics* **2009**, *228*, 7837–7849.

492 117. Arkhipov, A.; Yin, Y.; Schulten, K. Four-scale description of membrane sculpting by BAR domains. *Biophysical journal* **2008**, *95*, 2806–2821.

493 118. Steigmann, D. Fluid films with curvature elasticity. *Archive for Rational Mechanics and Analysis* **1999**, *150*, 127–152.

516 119. Kishimoto, T.; Sun, Y.; Buser, C.; Liu, J.; Michelot, A.; Drubin, D.G. Determinants of endocytic membrane geometry, stability,
517 and scission. *Proceedings of the National Academy of Sciences* **2011**, p. 201113413.

518 120. Rangamani, P.; Mandadap, K.K.; Oster, G. Protein-induced membrane curvature alters local membrane tension. *Biophysical
519 journal* **2014**, *107*, 751–762.

520 121. Agrawal, A.; Steigmann, D.J. Modeling protein-mediated morphology in biomembranes. *Biomechanics and modeling in
521 mechanobiology* **2009**, *8*, 371.

522 122. Lipowsky, R. Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature.
523 *Faraday discussions* **2013**, *161*, 305–331.

524 123. Sens, P.; Turner, M.S. Theoretical model for the formation of caveolae and similar membrane invaginations. *Biophysical journal*
525 **2004**, *86*, 2049–2057.

526 124. Rozycki, B.; Boura, E.; Hurley, J.H.; Hummer, G. Membrane-elasticity model of Coatless vesicle budding induced by ESCRT
527 complexes. *PLoS computational biology* **2012**, *8*, e1002736.

528 125. Hu, J.; Shibata, Y.; Voss, C.; Shemesh, T.; Li, Z.; Coughlin, M.; Kozlov, M.M.; Rapoport, T.A.; Prinz, W.A. Membrane proteins
529 of the endoplasmic reticulum induce high-curvature tubules. *Science* **2008**, *319*, 1247–1250.

530 126. Liu, J.; Sun, Y.; Drubin, D.G.; Oster, G.F. The mechanochemistry of endocytosis. *PLoS biology* **2009**, *7*, e1000204.

531 127. Liu, J.; Kaksonen, M.; Drubin, D.G.; Oster, G. Endocytic vesicle scission by lipid phase boundary forces. *Proceedings of the
532 National Academy of Sciences* **2006**, *103*, 10277–10282.

533 128. Faris, M.E.A.; Lacoste, D.; Pécréaux, J.; Joanny, J.F.; Prost, J.; Bassereau, P. Membrane tension lowering induced by protein
534 activity. *Physical review letters* **2009**, *102*, 038102.

535 129. Manneville, J.B.; Bassereau, P.; Ramaswamy, S.; Prost, J. Active membrane fluctuations studied by micropipet aspiration.
536 *Physical Review E* **2001**, *64*, 021908.

537 130. Shi, Z.; Gruber, Z.T.; Baumgart, T.; Stone, H.A.; Cohen, A.E. Cell membranes resist flow. *bioRxiv* **2018**, p. 290643.

538 131. Spivak, M.D. *A comprehensive introduction to differential geometry*; Publish or perish, 1970.

539 132. Deserno, M. Fluid lipid membranes: From differential geometry to curvature stresses. *Chemistry and physics of lipids* **2015**,
540 *185*, 11–45.

541 133. Sheetz, M.P.; Singer, S. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions.
542 *Proceedings of the National Academy of Sciences* **1974**, *71*, 4457–4461.

543 134. Miao, L.; Seifert, U.; Wortis, M.; Dobereiner, H.G. Budding transitions of fluid-bilayer vesicles: the effect of area-difference
544 elasticity. *Physical Review E* **1994**, *49*, 5389.

545 135. Svetina, S.; Brumen, M.; Zeks, B. Lipid bilayer elasticity and the bilayer couple interpretation of red-cell shape transformations
546 and lysis. *Studia Biophysica* **1985**, *110*, 177–184.

547 136. Svetina, S.; Zeks, B. Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. *European
548 biophysics journal* **1989**, *17*, 101–111.

549 137. Dobereiner, H.G.; Evans, E.; Kraus, M.; Seifert, U.; Wortis, M. Mapping vesicle shapes into the phase diagram: A comparison
550 of experiment and theory. *Physical Review E* **1997**, *55*, 4458.

551 138. Bozic, B.; Svetina, S.; Zeks, B.; Waugh, R. Role of lamellar membrane structure in tether formation from bilayer vesicles.
552 *Biophysical journal* **1992**, *61*, 963–973.

553 139. Waugh, R.E. Elastic energy of curvature-driven bump formation on red blood cell membrane. *Biophysical journal* **1996**,
554 *70*, 1027–1035.

555 140. Mukhopadhyay, R.; Lim, H.G.; Wortis, M. Echinocyte shapes: bending, stretching, and shear determine spicule shape and
556 spacing. *Biophysical Journal* **2002**, *82*, 1756–1772.

557 141. HW, G.L.; Wortis, M.; Mukhopadhyay, R. Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence
558 for the bilayer–couple hypothesis from membrane mechanics. *Proceedings of the National Academy of Sciences* **2002**,
559 *99*, 16766–16769.

560 142. Svetina, S.; Kuzman, D.; Waugh, R.E.; Zicherl, P.; Zeks, B. The cooperative role of membrane skeleton and bilayer in the
561 mechanical behaviour of red blood cells. *Bioelectrochemistry* **2004**, *62*, 107–113.

562 143. Peter, B.J.; Kent, H.M.; Mills, I.G.; Vallis, Y.; Butler, P.J.G.; Evans, P.R.; McMahon, H.T. BAR domains as sensors of membrane
563 curvature: the amphiphysin BAR structure. *Science* **2004**, *303*, 495–499.

564 144. Schweitzer, Y.; Kozlov, M.M. Membrane-mediated interaction between strongly anisotropic protein scaffolds. *PLoS computational biology* **2015**, *11*, e1004054.

565 145. Simunovic, M.; Prevost, C.; Callan-Jones, A.; Bassereau, P. Physical basis of some membrane shaping mechanisms. *Phil. Trans. R. Soc. A* **2016**, *374*, 20160034.

566 146. Frost, A.; Perera, R.; Roux, A.; Spasov, K.; Destaing, O.; Egelman, E.H.; De Camilli, P.; Unger, V.M. Structural basis of membrane invagination by F-BAR domains. *Cell* **2008**, *132*, 807–817.

567 147. Shimada, A.; Niwa, H.; Tsujita, K.; Suetsugu, S.; Nitta, K.; Hanawa-Suetsugu, K.; Akasaka, R.; Nishino, Y.; Toyama, M.; Chen, L.; others. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. *Cell* **2007**, *129*, 761–772.

568 148. Kralj-Iglic, V.; Svetina, S.; Zekz, B. Shapes of bilayer vesicles with membrane embedded molecules. *European biophysics journal* **1996**, *24*, 311–321.

569 149. Fournier, J. Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. *Physical review letters* **1996**, *76*, 4436.

570 150. Kralj-Iglic, V.; Heinrich, V.; Svetina, S.; Zeks, B. Free energy of closed membrane with anisotropic inclusions. *The European Physical Journal B-Condensed Matter and Complex Systems* **1999**, *10*, 5–8.

571 151. Kralj-Iglic, V.; Remskar, M.; Vidmar, G.; Fosnaric, M.; Iglic, A. Deviatoric elasticity as a possible physical mechanism explaining collapse of inorganic micro and nanotubes. *Physics Letters A* **2002**, *296*, 151–155.

572 152. Iglic, A.; Hagerstrand, H.; Veranic, P.; Plemenitas, A.; Kralj-Iglic, V. Curvature-induced accumulation of anisotropic membrane components and raft formation in cylindrical membrane protrusions. *Journal of Theoretical Biology* **2006**, *240*, 368–373.

573 153. Kabaso, D.; Bobrovska, N.; Gozdz, W.; Gov, N.; Kralj-Iglic, V.; Veranic, P.; Iglic, A. On the role of membrane anisotropy and BAR proteins in the stability of tubular membrane structures. *Journal of biomechanics* **2012**, *45*, 231–238.

574 154. Kabaso, D.; Gongadze, E.; Elter, P.; Van Rienen, U.; Gimza, J.; Kralj-Iglic, V.; Iglic, A. Attachment of rod-like (BAR) proteins and membrane shape. *Mini reviews in medicinal chemistry* **2011**, *11*, 272–282.

575 155. Walani, N.; Torres, J.; Agrawal, A. Anisotropic spontaneous curvatures in lipid membranes. *Physical Review E* **2014**, *89*, 062715.

576 156. Reynwar, B.J.; Illya, G.; Harmandaris, V.A.; Müller, M.M.; Kremer, K.; Deserno, M. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. *Nature* **2007**, *447*, 461.

577 157. Tourdot, R.W.; Ramakrishnan, N.; Radhakrishnan, R. Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers. *Physical Review E* **2014**, *90*, 022717.

578 158. Shi, Z.; Baumgart, T. Dynamics and instabilities of lipid bilayer membrane shapes. *Advances in colloid and interface science* **2014**, *208*, 76–88.

579 159. Shnyrova, A.V.; Frolov, V.A.; Zimmerberg, J. Domain-driven morphogenesis of cellular membranes. *Current Biology* **2009**, *19*, R772–R780.

580 160. Veksler, A.; Gov, N.S. Phase transitions of the coupled membrane-cytoskeleton modify cellular shape. *Biophysical journal* **2007**, *93*, 3798–3810.

581 161. Gov, N. Guided by curvature: shaping cells by coupling curved membrane proteins and cytoskeletal forces. *Phil. Trans. R. Soc. B* **2018**, *373*, 20170115.

582 162. Gil, T.; Ipsen, J.H.; Mouritsen, O.G.; Sabra, M.C.; Sperotto, M.M.; Zuckermann, M.J. Theoretical analysis of protein organization in lipid membranes. *Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes* **1998**, *1376*, 245–266.

583 163. Givli, S.; Giang, H.; Bhattacharya, K. Stability of multicomponent biological membranes. *SIAM Journal on Applied Mathematics* **2012**, *72*, 489–511.

584 164. Katz, S.; Givli, S. Curvature-Induced Spatial Ordering of Composition in Lipid Membranes. *Computational and mathematical methods in medicine* **2017**, *2017*.

585 165. Kabaso, D.; Shlomovitz, R.; Schloen, K.; Stradal, T.; Gov, N.S. Theoretical model for cellular shapes driven by protrusive and adhesive forces. *PLoS computational biology* **2011**, *7*, e1001127.

586 166. Shlomovitz, R.; Gov, N. Exciting cytoskeleton-membrane waves. *Physical Review E* **2008**, *78*, 041911.

587 167. Orly, G.; Naoz, M.; Gov, N. Physical model for the geometry of actin-based cellular protrusions. *Biophysical journal* **2014**, *107*, 576–587.

588 168. Kabaso, D.; Gongadze, E.; Jorgacevski, J.; Kreft, M.; Rienen, U.; Zorec, R.; Iglic, A. Exploring the binding dynamics of BAR proteins. *Cellular and molecular biology letters* **2011**, *16*, 398.

613 169. Agrawal, A.; Steigmann, D.J. A model for surface diffusion of trans-membrane proteins on lipid bilayers. *Zeitschrift für
614 angewandte Mathematik und Physik* **2011**, *62*, 549.

615 170. Stachowiak, J.C.; Hayden, C.C.; Sasaki, D.Y. Steric confinement of proteins on lipid membranes can drive curvature and
616 tubulation. *Proceedings of the National Academy of Sciences* **2010**, *107*, 7781–7786.

617 171. Chen, Z.; Atefi, E.; Baumgart, T. Membrane shape instability induced by protein crowding. *Biophysical journal* **2016**,
618 *111*, 1823–1826.

619 172. Callan-Jones, A.; Bassereau, P. Curvature-driven membrane lipid and protein distribution. *Current Opinion in Solid State and
620 Materials Science* **2013**, *17*, 143–150.

621 173. Snead, W.; Zeno, W.; Kago, G.; Perkins, R.; Richter, J.B.; Lafer, E.; Stachowiak, J. BAR scaffolds drive membrane fission by
622 crowding disordered domains. *bioRxiv* **2018**, p. 276147.

623 174. Copic, A.; Latham, C.F.; Horlbeck, M.A.; D'Arcangelo, J.G.; Miller, E.A. ER cargo properties specify a requirement for COPII
624 coat rigidity mediated by Sec13p. *Science* **2012**, *335*, 1359–1362.

625 175. DArcangelo, J.G.; Crissman, J.; Pagant, S.; Copic, A.; Latham, C.F.; Snapp, E.L.; Miller, E.A. Traffic of p24 proteins and COPII
626 coat composition mutually influence membrane scaffolding. *Current Biology* **2015**, *25*, 1296–1305.

627 176. Brandizzi, F.; Barlowe, C. Organization of the ER–Golgi interface for membrane traffic control. *Nature reviews Molecular cell
628 biology* **2013**, *14*, 382.

629 177. Kirchhausen, T. Bending membranes. *Nature cell biology* **2012**, *14*, 906.

630 178. Guigas, G.; Weiss, M. Effects of protein crowding on membrane systems. *Biochimica et Biophysica Acta (BBA)-Biomembranes*
631 **2016**, *1858*, 2441–2450.

632 179. Stachowiak, J.C.; Brodsky, F.M.; Miller, E.A. A cost–benefit analysis of the physical mechanisms of membrane curvature.
633 *Nature cell biology* **2013**, *15*, 1019.

634 180. Derganc, J.; Copic, A. Membrane bending by protein crowding is affected by protein lateral confinement. *Biochimica et
635 Biophysica Acta (BBA)-Biomembranes* **2016**, *1858*, 1152–1159.

636 181. Linden, M.; Sens, P.; Phillips, R. Entropic tension in crowded membranes. *PLoS computational biology* **2012**, *8*, e1002431.

637 182. Van Wylen, G.J.; Sonntag, R.E. Fundamentals of classical thermodynamics. Technical report, 1965.

638 183. Luding, S. Global equation of state of two-dimensional hard sphere systems. *Physical Review E* **2001**, *63*, 042201.

639 184. Carnahan, N.F.; Starling, K.E. Equation of state for nonattracting rigid spheres. *The Journal of Chemical Physics* **1969**,
640 *51*, 635–636.

641 185. Dalbey, R.E. Leader peptidase. *Molecular microbiology* **1991**, *5*, 2855–2860.

642 186. Kaback, H.R.; Frillingos, S.; Jung, H.; Jung, K.; Prive, G.G.; Ujwal, M.; Weitzman, C.; Wu, J.; Zen, K. The lactose permease
643 meets Frankenstein. *Journal of Experimental Biology* **1994**, *196*, 183–195.

644 187. Killian, J.A. Hydrophobic mismatch between proteins and lipids in membranes. *Biochimica et Biophysica Acta (BBA)-Reviews
645 on Biomembranes* **1998**, *1376*, 401–416.

646 188. Thurmond, R.L.; Niemi, A.R.; Lindblom, G.; Wieslander, A.; Rilfors, L. Membrane thickness and molecular ordering in
647 Acholeplasma laidlawii strain A studied by 2H NMR spectroscopy. *Biochemistry* **1994**, *33*, 13178–13188.

648 189. Andersen, O.S.; Koepp, R.E. Bilayer thickness and membrane protein function: an energetic perspective. *Annu. Rev. Biophys.
649 Biomol. Struct.* **2007**, *36*, 107–130.

650 190. Marcelja, S. Lipid-mediated protein interaction in membranes. *Biochimica et Biophysica Acta (BBA)-Biomembranes* **1976**,
651 *455*, 1–7.

652 191. Owicki, J.C.; McConnell, H.M. Theory of protein-lipid and protein-protein interactions in bilayer membranes. *Proceedings of
653 the National Academy of Sciences* **1979**, *76*, 4750–4754.

654 192. Lewis, B.A.; Engelman, D.M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles.
655 *Journal of molecular biology* **1983**, *166*, 211–217.

656 193. Ryba, N.J.; Marsh, D. Protein rotational diffusion and lipid/protein interactions in recombinants of bovine rhodopsin with
657 saturated diacylphosphatidylcholines of different chain lengths studied by conventional and saturation-transfer electron spin
658 resonance. *Biochemistry* **1992**, *31*, 7511–7518.

659 194. Vonck, J. A three-dimensional difference map of the N intermediate in the bacteriorhodopsin photocycle: part of the F helix tilts
660 in the M to N transition. *Biochemistry* **1996**, *35*, 5870–5878.

661 195. Rangamani, P.; Benjamini, A.; Agrawal, A.; Smit, B.; Steigmann, D.J.; Oster, G. Small scale membrane mechanics. *Biomechanics and modeling in mechanobiology* **2014**, *13*, 697–711.

662 196. Duque, D.; Li, X.J.; Katsov, K.; Schick, M. Molecular theory of hydrophobic mismatch between lipids and peptides. *The Journal of chemical physics* **2002**, *116*, 10478–10484.

663 197. Fattal, D.R.; Ben-Shaul, A. Mean-field calculations of chain packing and conformational statistics in lipid bilayers: comparison with experiments and molecular dynamics studies. *Biophysical journal* **1994**, *67*, 985.

664 198. Argudo, D.; Bethel, N.P.; Marcoline, F.V.; Wolgemuth, C.W.; Grabe, M. New Continuum Approaches for Determining Protein-Induced Membrane Deformations. *Biophysical journal* **2017**, *112*, 2159–2172.

665 199. Mouritsen, O.; Bloom, M. Mattress model of lipid-protein interactions in membranes. *Biophysical journal* **1984**, *46*, 141–153.

666 200. Fournier, J.; Galatola, P. Tubular vesicles and effective fourth-order membrane elastic theories. *EPL (Europhysics Letters)* **1997**, *39*, 225.

667 201. Siegel, D.P. Fourth-Order Curvature Energy Model for the Stability of Bicontinuous Inverted Cubic Phases in Amphiphile-Water Systems. *Langmuir* **2010**, *26*, 8673–8683.

668 202. Brannigan, G.; Brown, F.L. Contributions of Gaussian curvature and nonconstant lipid volume to protein deformation of lipid bilayers. *Biophysical journal* **2007**, *92*, 864–876.

669 203. Kim, K.; Neu, J.; Oster, G. Effect of protein shape on multibody interactions between membrane inclusions. *Physical Review E* **2000**, *61*, 4281.

670 204. Latorraca, N.R.; Callenberg, K.M.; Boyle, J.P.; Grabe, M. Continuum approaches to understanding ion and peptide interactions with the membrane. *The Journal of membrane biology* **2014**, *247*, 395–408.

671 205. Israelachvili, J.N. *Intermolecular and surface forces*; Academic press, 2011.

672 206. Zhou, Y.; Lu, B.; Gorfe, A.A. Continuum electromechanical modeling of protein-membrane interactions. *Physical Review E* **2010**, *82*, 041923.

673 207. Steigmann, D.; Agrawal, A. Electromechanics of polarized lipid bilayers. *Mathematics and Mechanics of Complex Systems* **2016**, *4*, 31–54.

674 208. Steigmann, D.J. *The Role of Mechanics in the Study of Lipid Bilayers*; Vol. 577, Springer, 2017.

675 209. Monzel, C.; Sengupta, K. Measuring shape fluctuations in biological membranes. *Journal of Physics D: Applied Physics* **2016**, *49*, 243002.

676 210. Shlomovitz, R.; Gov, N.; Roux, A. Membrane-mediated interactions and the dynamics of dynamin oligomers on membrane tubes. *New Journal of Physics* **2011**, *13*, 065008.

677 211. Peng, Z.; Asaro, R.J.; Zhu, Q. Multiscale simulation of erythrocyte membranes. *Physical Review E* **2010**, *81*, 031904.

678 212. Noguchi, H.; Gompper, G. Fluid vesicles with viscous membranes in shear flow. *Physical review letters* **2004**, *93*, 258102.

679 213. Kirchhausen, T.; Owen, D.; Harrison, S.C. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. *Cold Spring Harbor perspectives in biology* **2014**, *6*, a016725.

680 214. Ford, M.G.; Mills, I.G.; Peter, B.J.; Vallis, Y.; Praefcke, G.J.; Evans, P.R.; McMahon, H.T. Curvature of clathrin-coated pits driven by epsin. *Nature* **2002**, *419*, 361.

681 215. Calizo, R.C.; Ron, A.; Hu, M.; Bhattacharya, S.; Janssen, W.G.; Hone, J.; Scarlata, S.; Rangamani, P.; Iyengar, R. Curvature regulates subcellular organelle location to control intracellular signal propagation. *bioRxiv* **2017**, p. 161950.

682 216. Prevost, C.; Zhao, H.; Manzi, J.; Lemichez, E.; Lappalainen, P.; Callan-Jones, A.; Bassereau, P. IRSp53 senses negative membrane curvature and phase separates along membrane tubules. *Nature communications* **2015**, *6*, 8529.

683 217. Wedlich-Soldner, R.; Betz, T. Self-organization: the fundament of cell biology, 2018.

684 218. Ramaswamy, S.; Toner, J.; Prost, J. Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes. *Physical review letters* **2000**, *84*, 3494.

685 219. Madsen, K.L.; Bhatia, V.; Gether, U.; Stamou, D. BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature. *FEBS letters* **2010**, *584*, 1848–1855.

686 220. Raucher, D.; Stauffer, T.; Chen, W.; Shen, K.; Guo, S.; York, J.D.; Sheetz, M.P.; Meyer, T. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. *Cell* **2000**, *100*, 221–228.

687 221. Ayton, G.S.; McWhirter, J.L.; Voth, G.A. A second generation mesoscopic lipid bilayer model: Connections to field-theory descriptions of membranes and nonlocal hydrodynamics. *The Journal of chemical physics* **2006**, *124*, 064906.