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Abstract: In order to alter and adjust the shape of the membrane, cells harness various mechanisms of curvature
generation. Many of these curvature generation mechanisms rely on the interactions between peripheral membrane
proteins, integral membrane proteins, and lipids in the bilayer membrane. One of the challenges in modeling these
processes is identifying the suitable constitutive relationships that describe the membrane free energy that includes
protein distribution and curvature generation capability. Here, we review some of the commonly used continuum elastic
membrane models that have been developed for this purpose and discuss their applications. Finally, we address some
fundamental challenges that future theoretical methods need to overcome in order to push the boundaries of current model
applications.
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1 1. Introduction

12 The ability of cellular membranes to bend and adapt their configurations is critical for a variety of cellular functions
13 including membrane trafficking processes [1,2], fission [3,4], fusion [5,6], differentiation [7], cell motility [8,9], and signal
12 transduction [10-12]. In order to dynamically reshape the membrane, cells rely on a variety of molecular mechanisms from
15 forces exerted by the cytoskeleton [13—15] and membrane-protein interactions [16—19]. Each mechanism induces unique
16 surface stresses on the membrane and these surface stresses can be mapped onto the shape to understand the mechanical
17 aspects of membrane deformation [20-23].

19 The interplay between cellular membrane and membrane proteins is one of the major sources of curvature production in
20 live cells. Membrane protein interactions result not only from those proteins that are integral to the membrane but also
21 from those proteins, such as scaffolding molecules or GTPases that can attach and detach from the membrane surface
22 locally in response to signaling events. [17,18,24-27]. Many different mechanisms have been proposed for how proteins
23 can generate curvature of the membrane; for the purposes of theoretical modeling and capturing the key physical principles,
24 the broadly accepted mechanisms can be grouped into two main categories; (i) the hydrophobic insertion mechanism, and
25 (ii) coat proteins with hydrophilic domains [18,28,29]. In the hydrophobic insertion mechanism, membrane bending occurs
26 due to the change in the relative area of the two membrane leaflets, which happens due to partially embedded amphipathic
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27 helices of the protein domains [30,31]. In contrast, when proteins are thought to coat the membrane, there is no insertion
28 into lipid bilayer and proteins simply oligomerize along the membrane surface [32,33]. In this case, it has been suggested

20 that the steric pressure generated due to protein crowding and scaffolding drive the membrane deformation [34-36].

30 There are various methods to visualize membrane curvatures in situ or in reconstituted systems such as X-ray crystallography
a1 [48,49], nuclear magnetic resonance spectroscopy (NMR) [50,51], fluorescence microscopy [52,53], and electron
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Figure 1. Membrane curvature generation in cells and associated modeling approaches. (A) Membrane budding in

endocytosis, continuum approach [37] (top), molecular dynamics approach [38] (bottom). (B) Formation and stabilization of
tubular membrane structures in the Golgi, continuum approach [39] (top), molecular dynamic approach [40] (bottom). (C)
Change in the topology of nuclear envelopes, continuum approach [41], (D) Membrane invagination in caveolae, continuum
approach [42] (left), molecular dynamic approach [43] (right). (E) Actin force driven filopodia protrusion, continuum
approach [44] (left), molecular dynamics approach [45] (right). (F) Mitochondrial fission, continuum approach [46] (top),
molecular dynamics approach [47] (bottom).
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20 In this review article, we mainly focus on continuum models for incorporating the effects of membrane proteins on lipid
41 bilayers and cell membranes. In section 2, we briefly introduce the basic components of biological membranes and highlight
42 their structure and functions. Next, in section 3 we present the two different computational approaches for modeling
43 membrane-protein interaction — molecular dynamics versus continuum models. In section 4, we provide an overview of
4 some of the popular continuum models for describing the constitutive relationships of the plasma membranes in contact
45 with proteins. We conclude the review with a discussion on the challenges and possible future directions of the theoretical
4 methods in section 5.

47 2. Membrane-protein interactions

s 2.1. Biological membranes

s Biological membranes (BMs) are fundamental architectures that form the outer boundary of living cells or compartments
so inside the cell. BMs act as semi-impermeable barriers that separate the cell contents from the extracellular environment
st while they also allow the vital materials to pass into or out of the cell [66,67]. The main component of all biological
52 membranes is a lipid bilayer. The lipid bilayer thickness is about 5-10 nm and is made of three primary lipids: phospholipids,
53 cholesterol, and glycolipid molecules (see Fig. 2) [67-69]. Proteins are the second major component of cell membranes in
s+ which the weight ratio of the lipids to membrane proteins can vary from 20% to 70%, depending on the cell type [67,70,71].
ss  Proteins in cell membranes are classified into two categories; integral and peripheral proteins [72,73] (see Fig. 2). The third
ss major component of BMs is carbohydrate molecules, which are found on the extracellular side of cell membranes. [74,75].
57 Carbohydrates are usually short and branched chains consisting of plain sugars, amino sugars, and acidic sugars. We briefly
ss  survey the different classes of membrane proteins, their functions, and their structures in cell membranes in what follows.

ss  2.2. Integral proteins

e Integral proteins are embedded permanently in the membrane by hydrophobic, electrostatic, and other non-covalent
et interactions [76,77]. Therefore, removing integral proteins from lipid bilayer is only possible by the use of detergents or
e2 nonpolar solvents that break down the strong membrane-protein interactions. The most common type of integral proteins
es are transmembrane proteins, which span across the lipid bilayer such that one end contacts the cell interior and the other
e« end touches the exterior. When proteins cross the lipid bilayer, they usually adopt an a-helical configuration ( Fig. 2)
es [73,78]. Single-pass membrane proteins cross the membrane only once, while the multiple-pass membrane proteins are
e crossing the membrane several times. Many of the integral membrane proteins function as ion channels or transporters,
ez regulating the influx of ions/molecules between the extracellular and intracellular spaces. Cell surface receptors, linkers,
es enzymatic proteins, and proteins responsible for cell adhesion [66] are all classes of integral membrane proteins and
o hormone receptors, Band3, rhodopsin, histocompatibility antigens, glycophorin, and Na™ and K™ channels are some
70 examples of integral proteins in a cell membrane. Recent studies have shown that activity of these proteins depends on the
71 lipid composition and membrane-protein interactions more so than previously thought [79,80], highlight the role of lipids

72 in the activity of these molecules fundamental for biological information transfer [§1-83].

73 2.3. Peripheral proteins

7+ Peripheral proteins temporarily bind to the surface of the membrane with weak interactions [76,84]. This means that
75 unlike integral proteins, peripheral proteins can be easily separated from lipid bilayer by either altering the pH or the

76 salt concentration of the cell culture medium [67]. A peripheral protein can have different structures, but there are
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77 two key aspects that each structure should have. First, peripheral protein have a unique amino acid sequence which
78 allows them to bind and congregate on the surface of the membrane [85,86]. Second, there is no hydrophobic region of
79 amino acids in peripheral proteins structure, therefore they can attach to membrane surface without being locked onto it
s [85,86]. Classic examples of peripheral proteins include Cytochrome c, spectrin in erythrocytes, myelin basic protein, and
a1 acetylcholinesterase in electroplax membranes [87,88]. The primary role of peripheral proteins is to provide a point of
g2 attachment for other components to the cell membrane. For instance, both membrane cytoskeleton and components of
83 extracellular matrix are linked to the cell membrane through peripheral proteins, thus they help the cell to maintain its
s shape while the membrane remains flexible to bend based on the cellular functions [89]. Besides the structural supports,
g5 peripheral proteins are involved in various other functions including cell communication, energy transduction, and molecule
ss transfer across the membrane [89].

&7 2.4. Glycoproteins

s  Glycoproteins are a class of proteins which have carbohydrate chains (in the form of oligosaccharides) covalently attach
s to the main protein body [90,91]. The presence of carbohydrate chains can dramatically alter the intrinsic properties
90 of a glycoprotein such as the size, charge, solubility, structure, and accessibility [92]. Depending on how and where
91 carbohydrate chains attach to the protein, the glycoproteins are classified into three categories; N-linked glycoproteins,
92 O-linked glycoproteins, and non-enzymatic glycosylated glycoproteins [90,93]. In N-linked glycoproteins, the carbohydrate
93 chains are attached to the the nitrogen atoms of the amino acid asparagine. In O-linked glycoproteins, the carbohydrate
94 chains are linked to the hydroxyl side chain of amino acids serine or threonine. In the third group, unlike the two others,
95 the non-enzymatic glycosylated glycoproteins are synthesized by chemical addition of carbohydrate chains to polypeptides
s [73,90]. In terms of functionality, glycoproteins are almost found in all living organisms and serve a number of important
o7 roles as structural molecules, immunologic molecules, transport molecules, receptors, enzymes, and hormones [90,94]. For
9 instance, the glycoproteins on the membrane surface form bonds with the extracellular matrix, helping the cell stabilize
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Figure 2. Schematic depiction of the composition of a cellular membrane. There are two layers of amphipathic lipid
molecules that self-assemble to form the bilayaer. In each layer, the hydrophilic head groups form the outer surface and
the hydrophobic tails face toward each other in the interior region. The distribution and organization of lipids and different
proteins can vary from cell to cell. The cell membrane is decorated with many different molecules including peripheral
proteins, integral proteins, and carbohydrate molecules.
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99 its membrane structure. In addition to that, the glycoproteins receptors and antigens facilitate cell-cell recognition and
10 interaction which are a key factor for immune system functionality [94].

101 3. Theoretical models of biological membranes

12 3.1. Mechanical viewpoint

1s  Theoretical approaches are complementary techniques that have been developed in the last few decades to how cells
14 regulate their function through geometry, mechanics, and signaling. [11,58,95-97]. In general, theoretical approaches
105 can be classified into discrete and continuum models. In discrete models, the equations describe atoms’ motion with in
106 interaction with each other, through a set of bonded and non-bonded potentials, are solved by Molecular Dynamics (MD) or
107 Coarse-Grained (CG) simulation techniques [98,99]. Tracing all atoms in a system makes this model suitable for exploring
1s  the nature of the biological process at the molecular level such as the biochemistry underlying the lipid-lipid or lipid-protein
100 interactions, which are typically very difficult to detect experimentally. However, the high computational cost of MD or CG
1o simulations limit the applications of discrete models just to phenomena at nanoscopic length and time scales [95,100,101].

111 On the other hand, there is a continuum approach that deals with the membrane as a continuous surface with average
12 properties [95]. Indeed, the small length scale of the membrane constituents (~ 3-6 nm) compared to the length scales
1z of biological phenomena (~ 100 nm-ym) allows us to define the complex membrane as a single continuum surface [95].
114 The most popular and widely used model in continuum framework is the Helfrich model that was proposed in 1973 [102].
15 In this model, the membrane is considered as a thin elastic shell that can bend such that at all the times the lipids remain
1e aligned and normal to the membrane surface. In addition, this model presumes that the curvature of the membrane is much
17 larger than the thickness of the bilayer [102]. Under these assumptions, Helfrich proposed an energy function for the
11s membrane system that depends only on the mean and Gaussian curvatures of the membrane as [102]

WBending = / 2kH? + kcKdA, (D)
w

19 where W is total strain energy of the membrane due to bending, H is the membrane mean curvature, K is the membrane
120 Gaussian curvature, and x and kg are the membrane properties which are called the bending and Gaussian modulii
121 respectively. The integration in Eq. 1 is over the entire membrane surface area w and d A is the area element. We describe
122 the geometrical concepts of membrane curvature in Box. A.

123 3.2. Simulation techniques

124 From a mechanical perspective, cell membrane deformation can be characterized by balance laws for mass and momentum.
125 Simplifying these mass and momentum governing equations in continuum framework results in partial differential equations
126 (PDEs) [103]. To solve the PDEs, first step we need to define the constitutive relationship for membrane deformation such
127 as Helfrich bending energy (Eq. 1). Other forms of suggested constitutive equations including the effects of proteins are
128 presented in Sec. 4.

120 Besides the need for a constitutive equation, the derived PDEs from cell mechanics are usually higher order and highly
130 nonlinear differential equations. Therefore, in most cases, analytical solution are not possible and the equations are often
131 solved numerically. Over the last few decades, various computational approaches have been developed to solve the set of
12 governing PDEs including the boundary value problem for axisymmetric coordinates [21,37,44,104,105], different finite
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1s  element methods [106—108], Monte Carlo methods [109—111], finite difference methods [112,113], and the phase field
13a  representation of the surface [114—116]. Each of these methods has its own advantage and disadvantage and depending on

135 the complexity of the problem, one or more of them can be implemented.

136 A major challenge in modeling membrane protein interactions is identifying a constitutive relationship that captures the
137 different levels of complexities associated with membrane protein interactions. In what follows, we discuss some of the
138 popular models used for such purposes along with their applications. We then discuss where new constitutive relationships

130 relationships are needed and how these can be experimentally parameterized.

110 4. Continuum elastic energy models of membrane-protein interaction

11 4.1. Spontaneous curvature model

122 In the spontaneous curvature (SC) model, it has been suggested that the interaction between proteins and surrounding
13 lipids changes the local membrane properties particularly the preferred — called spontaneous — curvature of the membrane
1aa  [18,117-119]. In this case, the induced spontaneous curvature is a parameter that reflects a possible asymmetry between
15 the two leaflets of the bilayer. This can be the result of any membrane bending mechanisms such as phase separation of
146 membrane proteins into distinct domains, amphipathic helix or conically shaped transmembrane protein insertion, protein
147 scaffolding, or protein crowding ( Fig. 5A). In reality, a combination of all these mechanisms can occur simultaneously and
1as  the local value of spontaneous curvature can then be interpreted as a single measure of the curvature-generating capability
129 of the membrane-protein interaction [17,18]. In a continuum framework, the most common model for induced spontaneous

150 curvature is the modified version of Helfrich energy (Eq. 1), given by [44,118,120,121]

Wse = / 2(H — C)2 + koKdA, @)
w

151 where C is the spontaneous curvature and its effective strength depends on the membrane composition, temperature, the
152 membrane thickness, the protein density, and the membrane area coverage by proteins [102,122].

153 Modeling the net effect of membrane-protein interaction as an induced spontaneous curvature (Eq. 2) has provided great
154 insight into various aspects of membrane deformation, from vesiculation in caveolae and endosomal sorting complexes
155 to cylindrical shapes of membrane endoplasmic reticulum (ER) [123—125]. By using the SC model, recent studies have
156 shown for example how a line tension at a lipid phase boundary could drive scission in yeast endocytosis [21,126,127],
157 or how a snapthrough transition from open U-shaped buds to closed ()-shaped buds in Clathrin Mediated Endocytosis
158 (CME) is regulated by membrane tension [37,44]. Furthermore, the experimentally observed change in membrane tension
159 (Spontaneous tension) in response to protein adsorption [128—130], can be explained in the context of the SC model
w0 [104,120,122]. The SC model has also been used to elucidate the role of varying membrane tension due to spontaneous
11 curvature papers [104,120,122]. While the SC model has been very effective in capturing large scale deformations of the

12 membrane, it doesn’t take into account the protein density or the curvature induced by each protein.
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Box A. Curvatures of surfaces

Let us consider the membrane as a two dimensional surface in a three
dimensional Euclidean space (Fig. A3). At each point on the surface, there
are two curvatures, x1 and xp, which characterize the shape of the surface
[131,132]. These two curvatures are called principal curvatures and by the
definition their values are the reciprocal of the radius of the osculating circle
at the point (P) (k1 = 1/Rq and x, = 1/R; in Fig. A3) [131,132]. The
values of these curvatures can be positive or negative. The curvature is
positive if the curve turns in a same direction as normal vector to the surface
(n), otherwise it is negative [131,132]. The average and the product of two
principal curvatures give the mean (H) and the Gaussian (K) curvatures as
[131,132]

K1 + Ko

H = and K = xyxs. (A1) Figure A3. Principal curvatures of a

surface.
For a rotationally symmetric surface as shown in Fig. A4, we can define the

position of each point on the surface as a function of arc length (s) such as

r(s) = r(s)er(0) + z(s)k, (A.2)

> N

where 7(s) is the radius from axis of revolution, z(s) is the elevation from
a base plane, and (ey, eg, k) forms the coordinate basis. Since r2 (s) +
z2(s) = 1, we can define the angle ¥ such that (Fig. A4) e .

6
a; = cos(¢)ey +sin(p)k and n = —sin(yP)er + cos(P)k, (A.3) s
where a; and n are the unit tangent and normal vectors to the surface as
shown in Fig. A4. We now can define the two principal curvatures as
> I
/ sin(y)
ki =9 and x = P (A-4) " Figure A4. Axisymmetric coordinates with

z as the axis of rotation.
where ()’ = d(-)/ds is the partial derivative with respect to the arc length.
With having the two principal curvatures, the curvature deviator (D) in
anisotropic condition is given by

/
> 7—1{)) (AS)
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s 4.2. Bilayer couple model

1« In order to go beyond an idealized single manifold description of a membrane, the Bilayer Couple model (BC) was
165 proposed by Sheetz and Singer in 1974 [133]. The basic idea in this model is that each lipid molecule has a fixed area and
s there is no lipid exchange between the two leaflets of the bilayer. Thus, any asymmetrical protein insertions into the inner
17 and outer surfaces of the membrane causes an area mismatch between the two leaflets. This mismatch creates in-plane
18 compression in one leaflet and extension in the other, resulting in membrane deformation to release the induced stress (Fig.
19 5B) [18,134]. For a thin lipid bilayer with thickness (d), the area difference between the leaflets (AA) can be expressed in
170 terms of the mean curvature (H) as

AA = 2d / HAA. 3)

171 Here, instead of having a spontaneous curvature term in energy, a “hard" constraint on the area difference between the
172 leaflets (Eq. 3) regulates the membrane curvature. This difference in the mechanism of curvature generation of SC and BC
173 models distinguishes their predictions for the same membrane deformation [134]. For example, in membrane budding
174 transition due to thermal expansion, the prediction of the SC model is that the shape transformation is discontinuous,
175 while based on the BC model, there are pear-shaped structures that appear as intermediates and the transition of shapes is
176 continuous [134].

177 4.3. Area difference elasticity model

178 In 1980, the Area Difference Elasticity (ADE) model was developed by Svetina et.al, [135,136] to combine both SC and
17s BC models including the missing macroscopic details of membrane bending phenomena. To better explain the physics
180 underlying this model, we consider a flat membrane that bends downward due to different protein concentrations on two
11 sides of the membrane (Fig. 5C). This bending, based on the single sheet descriptions of the membrane in SC model, gives
182 rise to the spontaneous curvature term in the energy equation (Eq. 2). However, if we treat each leaflet as an independent
1ss  elastic plate — as was suggested in the BC model — we can then see that besides the curvature, the area of each monolayer
1sa  will also change. For example, in Fig. 5C, the outer monolayer is stretched and the inner one is compressed. The energy
15 associated with the membrane bending and this relative change in the monolayers areas is given by [134,137,138]

K
Wapg = / 2(H = CP + kKA + 530 (A = AAy)?, @)
w
Bending energy Elastic stretching energy

18s  where «, is called the nonlocal membrane bending modulus, and A is the total surface area of the neutral plane. AA( and
17 AA are the relaxed (initial) and the bent area differences between the membrane leaflets respectively (AAg = Ao,out — Ao,in
18s  and AA = Aoyt — Ain, in which Agy is the area of the outer layer and Aj, is the area of the inner layer). In Eq. 4, x and
1w K, are both in order of K,d?, where K, is the area stretching modulus of the bilayer [134,138,139]. This means that in
190 any membrane deformation, both the terms, the bending and the elastic stretching energies, are comparable and must be
191 considered. Using the ADE model, researchers for the first time could numerically simulate the shape transformations of
192 the human red blood cell from stomatocyte to discocyte and to echinocyte [139-142]. Also, using the ADE model the
153 experimentally observed vesicles were mapped into a theoretical phase diagram, enabling theoreticians to predict in what
194 regions or range of parameters, the vesicles may become unstable [134,137]. These predictions have been very useful for
155 detecting unstable shapes, which is challenging to do experimentally.


http://dx.doi.org/10.20944/preprints201809.0055.v1
http://dx.doi.org/10.3390/biom8040120

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 September 2018 d0i:10.20944/preprints201809.0055.v1

196

197

198

199

200

201

202

203

204

205

206

9 of 22

(A) Spontaneous curvature model (C) Area difference elastic model (E) Protein aggregation model
(o] [

Neural L0000 R AR

P eecbdedideelede

lBending

Q_\)y Oé¢é Aot Ao Ain

s

(B) Bilayer couple model (D) Deviatoric curvature model
Expansion posneepoenn
QTP
LPs i g
,fA“ (qux; % »’,Q\ 6
; %0 50 1 L= 8 "¢ Fy
iCompressioniy 386 3-=¢ 3¢ 3 8-
%ZO:;;@OQ% (n)%“)g %’g %:%EQOO ?rofg § b\‘%{%eorl
gg&%ee oog%&}fb (gé{gge ecgw%‘v\b 6édde

Figure 5. The mechanisms of membrane curvature generation due to protein interactions in different continuum elastic
models. (A) Local protein interactions with membrane produces a spontaneous curvature filed. (B) The asymmetric insertion
of conical proteins on one side of the membrane results in the expansion of the upper leaflet and compression of the lower
leaflet. (C) The are of each membrane leaflet changes due to membrane bending. (D) Rotationally non-symmetric proteins
generates anisotropic curvature. (E) Aggregated proteins on the membrane surface creates a spontaneous curvature filed and
also have entropic interactions with the membrane. Here ¢ represents the relative density of the accumulated proteins. (F)
The induced pressure (p) by crowding proteins drives membrane bending. a is the surface area occupied by one protein.

4.4. Deviatoric curvature model

In the SC model, the induced spontaneous curvature was assumed to be isotropic, same in both directions (see Box. A).
However, not all proteins are rotationally symmetric and have intrinsically anisotropic structures such as banana shaped
BIN-amphiphysin-Rvs (BAR) proteins (Fig. 5D) [143—145]. These proteins can produce different curvatures in different
directions and this difference is required for the formation of nonspherical structures such as membrane tubular protrusions
[146,146,147]. In order to take into account the anisotropic contribution of protein coats or inclusions in the continuum
approach, Kralj-Iglic er. al proposed a Deviatoric Elasticity (DE) model [148]. In this model, each complex protein
structure is simplified as a one-dimensional curve that lies on the membrane. The orientation and the position of the
proteins in the plane of the membrane are important factors since an extra term is needed in the for adjusting the actual
local curvature of the membrane to the intrinsic curvatures of the proteins [148,149]. The membrane-free energy that was
suggested by the DE model is given as [148,150]
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Wop = / 2k(H — C)2 + kK + 2x(D — Dy)? dA, ©)
w

Bending energy Deviatoric mismatch

207 where D is the membrane curvature deviator and Dy is the spontaneous membrane curvature deviator. Since the DE
208 model was proposed, there have been many modeling efforts to explain how BAR proteins accumulation in membrane
200 necks stabilize membrane tubular protrusions without any cytoskeleton supports [151—-154]. Effectively, derivation of the
210 Buler-Lagrange governing equations by a variational approach [155], provides a platform to systematically explore the
211 impact of the induced stresses by anisotropic curvatures on the morphology of tubular structures [21].

212 4.5. Protein aggregation model

213 Aggregation of cytosolic proteins on the membrane surface or phase separation of bilayer proteins into specific domains
214 have been observed in many biological processes [156—159]. This aggregation of proteins not only creates a concentration
215 field on the membrane surface but also results in additional contributions to the membrane energy due to compositional
216 heterogeneity and the entropic interactions of bulk proteins with the lipid bilayer (Fig. 5E) [160-162]. While the exact
217 form of the free energy is still a matter of debate and has not been verified experimentally yet, a simple model based on
218 thermodynamic arguments is given as [160,161,163],

T
Wasargaion = | 26(H = O + KK+ (plng+ (1= ) In(1-9)) + z0(1—¢) + L(V9P dA
Bending energy Entropic energy Energy due to protein  Energy penalty due
aggregation to compositional

heterogeneity

(6)
21s - where T is the environment temperature, a is the surface area occupied by one protein, ¢ is the relative density of the
220 proteins, and | is the aggregation potential. In Eq. 6, the first term is the conventional Helfrich bending energy with
221 induced spontaneous curvature [102]. The second term represents the entropic contribution due to the thermal motion
222 of proteins in the membrane [160,164]. The third term gives the aggregation energy, and the last term describes the
223 energetic penalty for the spatial membrane composition gradient [160,163,164]. The suggested protein aggregation model
224 mainly used for theoretical analysis of dynamic phase transitions of coupled membrane- proteins- cytoskeleton systems in
225 membrane protrusions such as microvilli and filopodia [160,165-167]. This model also reveals one interesting fact that in
26 addition to the induced deviatoric spontaneous curvature of the BAR domain proteins, the associated energy with their
227 aggregation at membrane necks facilitates tubular structures stability. [154,168]. A major open question in the field is the
228 relationship between protein density, size, and spontaneous curvature. Although current models use a linear proportionality
229 [104,161,169], this choice of functions is critical in determining the energy.

230 4.6. Protein crowding

231 Protein crowding is a recently discovered curvature generating mechanism that has challenged some conventional paradigms
232 about the role of involved molecular machinery in a robust cell shape change [34-36,170-172]. Stachowiak et. al. reported
233 that confining a sufficiently high concentration of his-tagged Green Fluorescent Proteins (GFP) to a local region can deform
23 the membrane into buds or tubules in the absence of any protein insertion into the lipid bilayer [35,170]. Furthermore,
235 Snead et. al. showed that crowding among membrane-bound proteins can also drive membrane fission [34]. This paper
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23 raises a controversial prediction that the large disordered domains of BAR domains proteins induce crowding pressure that
237 promotes membrane fission instead of stabilizing the membrane [173]. Additionally, another set of experiments reported
233 that the induced crowding pressure by a high concentration of cargo proteins on one side of the ER works as an obstacle,

23 which opposes membrane bending and inhibits the vesiculation by coat protein complex II (COPII) [174-176].

20 The essence of the crowding mechanism is that the lateral collisions between the membrane-bound proteins on one
241 side of the membrane generate a steric pressure that causes the membrane to bend away from the bulk proteins (Fig.
22 SF)[35,177,178]. As the density, the size or the mobility of the bound proteins increase, the induced steric pressure becomes
23 larger, which results in a more significant membrane bending [35,36]. Modeling the free energy associated with protein
224 crowding is more difficult because it profoundly depends on the specific composition of the underlying membrane as well
25 as the lateral confinement of the membrane-bound proteins [179,180]. However, in a recent paper, a simple 2D hard-sphere
26 gas model based on the Carnahan-Starling approximation has been proposed to describe the free energy of the crowding
2e7  mechanism [35,181]. To better visualize it, let us consider a membrane that is crowded with different protein concentration
28 on each side as shown in Fig. 5. If we model each protein as a hard-sphere gas particle that exerts certain pressure to the
249 membrane surface, the work that is done by this pressure to bend the membrane according to the standard thermodynamics
250 1S given by [182]

WCrowding = /pindAin+/P0utdA0ut/ (7

251 where pj, and poy are the induced steric pressure by the crowding proteins on the inner side and the outer side of the
22 membrane respectively. This induced pressure (denoted by p here ) for a 2D hard-sphere gas protein can be expressed as
s [180,183,184]

kgT
p="—pr(®), ®)

25 where kp is the Boltzmann constant and pg(¢) is the reduced gas pressure depending on the relative density of the protein
255 given as [184]

1o
(1—¢)?

256 Eq. 9 is known as a 2D version of the Carnahan-Starling equation. Based on this equation, at low protein density, the

Pr(¢) = (1 +2¢ )- ©)

257 reduced pressure is simply proportional to ¢, but as the gas density increases, the non-linear terms play larger roles and
253 should be considered.

es9  4.7. Hydrophobic mismatch

260 Transmembrane proteins embedded in the cell membrane have a hydrophobic region that is in contact with the hydrophobic
26t region (lipid acyl chain) of the lipid bilayer. Energetically, it is then favorable that both hydrophobic regions have
262 approximately a same thickness in order to prevent the exposure of the hydrophobic surfaces to the hydrophilic environment.
263 However, there are various proteins with different lengths in a single membrane [185,186]. On the other hand, one protein
26« with a same length can be surrounded by lipid bilayers with different thicknesses [187,188]. This difference between
265 thicknesses of hydrophobic regions of a transmembrane protein (dp) and the lipid bilayer (d;) is called hydrophobic

266 mismatch. There are different adaptation mechanisms that either the protein or the bilayer can utilize in order to avoid
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267 the energy cost of the hydrophobic mismatch [187,189]. For example, for positive (d; < dj) or negative (d; > dy)
268 mismatch, the lipid bilayer can be stretched or compressed respectively to adjust the length of hydrophobic regions
269 [190,191]. Another possibility is when the hydrophobic part of a transmembrane protein is too thick or too short as
270 compared to the hydrophobic bilayer thickness. In this case, protein aggregation on the membrane or protein surface
271 localization can efficiently minimize the exposed hydrophobic area [192,193]. Also, for proteins that have helices that are
272 too long compared to the thickness of the membrane, helix tilt is one possible mechanism to reduce the protein effective
2r3 hydrophobic length [187,194,195]. Several theoretical approaches have been developed to incorporate the energy cost and

274 thermodynamic effects of membrane-protein interactions in term of hydrophobic mismatch [196—199].

275 Thus, in addition to the models described above, there are additional considerations to the energy that have been suggested
276 by numerous studies such as higher order bending terms [132,200,201], lipid volume constraints [202], the impacts of a
277 protein shape on membrane deformation [203], and the electrostatic energy between a membrane and proteins [204-207].

278 5. Future perspective and challenges

279 Although the models discussed above have provided insight into some fundamental questions about the molecular machinery
250  of cell shape regulation, all of them have been developed based on simplifying assumptions that need to be revisited in the
231 pursuit of closing the gap between experiment and theory. In order to achieve this goal, multidisciplinary efforts between
252 physicists, mathematicians, engineers, and biologists are required to match different pieces of this cell biology puzzle.

233 Here, we highlight some current challenges that we believe must be considered in the next generation of continuum models.

284 e Membrane deformation is a dynamic process, surrounding fluid flow, thermal fluctuation, and diffusion of proteins
285 actively regulate the shape of the membrane at each instance [11,169,208-212]. Currently, the models for membranes
286 at mechanical equilibrium are quite well developed but the models for a dynamic process have not been as
287 well-developed and the community must invest some effort in this aspect.

288 e In vivo, multiple mechanisms coupling membrane deformation and cytoskeletal remodeling are commonplace
289 (Fig. 6A). Therefore, the models should be extended to include the dynamic effect and rearrangement of the actin
290 cytoskeleton layer underneath of the membrane.

291 e Membrane deformation and protein absorption/rearrangement are often considered as two separate processes with
292 little to no impact on each other. However, recent studies show that proteins can sense the membrane curvature (Fig.
293 6B). Therefore, indeed, there is a feedback loop between the protein distribution and the membrane configuration.
204 While some models are discussed in [161,216-219], we still need more quantitative agreements between theory and
295 experiment.

296 e Cell shape can control signal transduction at the plasma membrane, and on the other hands, intracellular signaling
297 changes the membrane tension [220] (Fig. 6C). This coupling between the cell shape and the signaling network
298 inside the cell should be further understood in terms of both quantitative experimental and theoretical biology.

299 e As discussed above, membrane deformation is a multiscale phenomena that results from the reorientation of lipids to
300 large scale change in membrane curvature. This suggests the extension of available models toward multiscale models
301 that could represent each biological process over multiple length scales [101,221].

a2 Despite these challenges, with increasingly quantitative measurement techniques available experimentally, ease of access to
a3  high throughput computing systems, and interdisciplinary training the next generation of scientist leaders, the future of

as theoretical modeling of biological membranes and cellular membrane processes is brighter than ever.
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Figure 6. Perspective for the the future of theoretical models for membrane curvature generating mechanisms. (A) The
coupling between membrane shape, membrane curvature, and membrane proteins distribution. The convex proteins (indicated
with red cones) aggregate and flow toward the hill where the membrane curvature is negative (assuming the normal vector to
the surface is outward). On the other hand, the concave proteins (represented by blue cones) accumulate and move toward
the valley where the membrane curvature is large and positive [161]. (B) Various mechanisms are involved in trafficking
including amphipathic helix insertion into the bilayer, protein scaffolding, cargo-receptor crowding, forces from actin
polymerization, and lipid phase separation [213,214]. (C) The coupling between the formation of a filopodial protrusion and
the intracellular signaling inside the cell [215].
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