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ABSTRACT

The olfactory system is capable of distinguishing individual odorants
from among a virtually unlimited number. Fish, for example, detect
changes in the electric field environment induced by prey and
other sources. Floral electric fields exhibit variations in pattern
and structure, which can be discriminated by bumblebees. We
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have constructed an electric field sensor, which, in the course of
focussing on achieving maximum sensitivity and consistency,
ultimately resembles features of the insect sensorium. A
“fingerprint” 3D plot ( time, frequency range, voltage amplitude),
representing the emitted electric field profile, is presented for each
of a variety of odorants and other chemicals. The substance-
specific electric-field emission and identification is not impeded by
containers or barriers or distance.

Key words: olfaction, olfactory, odorants, pheromones, smell, electric
field, electromagnetic radiation, electric field sensor, insect antennae

INTRODUCTION

All matter continuously generates electric fields, a manifestation of atomic structure,
specifically, electron density and energies. Consequently, the electric field, reflecting the
electron profile, is unique, i.e. a “fingerprint®, for every atomic and molecular species.
Electric field measurements have been reported to provide data for analyses of
biomolecular structure and dynamics (Wang et al. 2013), structural characterization of
DNA hybridization (Cherstvy 2013), chain length of volatile compounds (Wang and
Haick 2013), identification of gases (Pinakoulaki et al. 2006) and molecular size, shape,
charge density, distribution and site of chemical reactivity (5). Evidence is reported for
the major role of electrostatic fields in both the high specificity of substrate/enzyme
interaction and enzymatic catalysis (Fried and Boxer 2017). The physico-chemical
mechanisms, based upon nanoscale electrostatics may explain and unify the motions of
chromosomes during prometaphase, metaphase, and anaphase (Gagliardi 2002).
Potential differences that are established across the cell membrane

generate electric fields that modulate the organizational and functional properties of
protein assemblies such as proton ATPases (Coster and Chilcott 2002).

That animals detect changes in the electric field environment induced by prey and other
sources has been demonstrated. It has been long known that electric fish communicate
and identify sex, age, and other features within the species by means of electric fields.
In the wide variety of insects that sense chemicals in their environment, the receptive
antennae are coupled to sensory neurons. In some cases, the antennae have fine hairs,
sensillae, that contain sensory neurons. Bumblebees use the fine mechanosensory
hairs covering their bodies to detect weak electrical fields by the flowers they feed on
and pollinate (Garral and Martin 2011). That the bees show preference for certain plants
indicates the identifying nature of the emitted electric field. That stereoisomer pairs of

d0i:10.20944/preprints201809.0068.v1


http://dx.doi.org/10.20944/preprints201809.0068.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 September 2018 d0i:10.20944/preprints201809.0068.v1

odorants smell the same (Brookes et al. 2009) is consistent with their identical electron
profiles, and, accordingly, the electric-field profiles of both isomers.

Insects use several senses to forage, detecting floral cues such as color, shape, pattern
and volatiles. Clarke et al. (Clarke et al. 2013) report that, like visual cues, floral electric
fields exhibit variations in pattern and structure, which can be discriminated by
bumblebees and that this modality may facilitate rapid and dynamic communication
between flowers and their pollinators. As a bee approaches a flower, the floral electric
field distorts the field around the bee’s body, and these distortions deflect the
mechanosensory hairs, causing in them a lever-like movement which triggers the nerve
cells at their base to fire off signals.(Any movement of an object or organism perturbs
the ambient electric fields, eliciting a specific pattern of disturbance. For example,
commonly deployed security motion-sensors can distinguish electric-field ‘fingerprints’
of human size, position and limb movements. Electric fields were measured emanating
from honeybees in various contexts, including during the “waggle dance”: the figure
eight-shaped circuit performed by foragers upon their return to the nest to communicate
the location of rewarding flowers to nest mates (Greggurs et al. 2013). Fruit flies were
able to discriminate the odorant, acetophenone that contained normal hydrogen atoms
from that where the hydrogen atoms were replaced by heavier deuterium atoms. The
nucleus of the deuterium atom contains a proton in addition to the neutron found in the
hydrogen atom. The electric field profiles would be different in the two isotopes (Franco
et al. 2011).

MATERIALS AND METHODS

The sensor: an array of eight hair-thin antennas, 10 mm apart. Each
channel has an antenna buffer that transforms the high impedance to
low impedance followed by a gain stage where the gain can be adjusted
from 2 to 11 so that all antennas are matched. The power for the
sensor is provided by the data acquisition USB connection to the
computer. The NI-6009 OEM data acquisition by National instruments is
used to digitize all eight channels. LabView is used for data analysis.
The substances were contained in 10 ml glass vials situated 3 meters
distant from the sensor. For each test period of data acquisition, the
vials were exposed to the sensor for 60 seconds in order to obtain an
optimal SigmaPlot signature. The orientation of the 3D plots are shown
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in a form which permits optimal visual comparisons between
substance-specific profiles.
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RESULTS AND DISCUSSION

The electric-field profiles of a variety of chemical agents are shown in Figures 1, 2 and 3. The
substances were contained in10 ml glass vials situated 3 meters distant from the sensor. For
each test period of data acquisition, the vials were exposed to the sensor for 60 seconds in
order to obtain an optimal SigmaPlot signature. The orientation of the plots are shown in a
form which permits optimal visual comparisons between substance-specific profiles. Left axis:
time, 0-60 seconds; bottom axis: amplitude, maximum 1 mV rms; right axis: frequency range,
280-420 Hz. (We have observed electric field signatures from radioisopes. Current focus is
on generation of an algorithm to enable real-time digital identification of chemical substances.)
The glass vials can themselves be further enclosed in other structures. The continually
emitting and propagating electric field is unimpeded by walls and barriers; the charge
on one side of a wall is in balance with that on the other side.

Our imposition of an external modulating frequency provided a more coherent and
reproducible background carrier and, as a consequence, a more consistently
reproducible electric-field signature. In the elasmobranch skate, a voltage-gated calcium
channel and calcium-activated potassium channel couple to mediate electrosensory cell
membrane voltage oscillations, which are modulated by external weak electrical signals
(Lu and Fishman,1995; Ai et al. 2017; Rajaraman et al. 2015). Virtually all of the
thousands of insect species possess mechanisms that produce vibrations. These
mechanical movements themselves provide a steady output and, as a consequence, a
steady background, i.e. carrier frequency range, of electric field expressed as chirping,
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buzzing and other species-related sounds. Such vibratory responses occur during
conditions of stress, feeding, mating, aggression and other behaviors, circumstances in
which electric fields are emitted from odorants, pheromones, and flora.

We propose that the mechanism whereby insects identify and differentiate among many
odorants, pheromones and plant species can be extrapolated to animal olfaction in
general. The passive electric field emission from atoms and molecules, that reflects
their individual, unique electronic profile, is received by appendages, whose ultra-fine
structure appears to be a feature that endows exquisite sensitivity and power to identify
an unlimited number of molecular signatures. In both insects and man, these electric
field detectors, antennae and cilia, are coupled to neurons whose activation by
impinging electric fields, propagate to the brain where they are processed, interpreted
and stored.

The extraordinary sensitivity and discriminatory power of these miniscule appendages,
found on all cells and in all species, presupposes an evolutionary advantage, evidenced
by the preferential and overwhelming proliferation of insect species and populations.
Electric field sensing is the earliest form of biological communication (Bellono et al.
2017), a highly conserved modality and operative in all cells and species.

This primitive sensing function has been adopted by the visual and auditory systems.
For example, light to cilia in retinal cells is absorbed by light-sensitive proteins,
channelrhodopsin and halorhodopsin (Wietek and Prigge 2016). Both proteins are ionic
channels and simultaneously perform phototransduction and electric excitation. In the
inner ear, the outer hair cells mechanically amplify low-level sound that enters

the cochlea. Again, structural movement generates an electric field fingerprint. This so-
called somatic electromotility found in all land vertebrates is affected by the closing
mechanism of the sensory ion channels at the tips of the hair bundles (Barral and Martin
2011). In the brain inter-neuronal communication is not restricted to synaptic
transmission, but includes functionally significant endogenous electric fields (Baer and
Collello 2016; Green and Mykytyn 2014; Goldwyn and Rinzel 2015).

Primary insect odorant ‘receptors’, in general, appear to be ion channels. For example,
Sato et al. (Sato et. 2008) cultured cells from silk moth, fruit fly or mosquitos responded
with extracellular calcium influx and cation-non-selective ion conductance upon
stimulation with odorant. Direct evidence for odorant-gated ion channels was obtained
by patch-clamp recording of Xenopus oocyte and K293Tcell membranes. The
application of geosmin, in flies an alerting odorant, to a single sensillium transiently
increased [Ca2+]i in a concentration-dependent manner and direct activation of ion
channels by odorants and the resulting excitation of the olfactory receptor cell. The
heteromeric insect olfactory receptor complex forms a cation nonselective ion channel
directly gated by odor or pheromone ligands independent of G-protein signaling
pathways (Touhara 2009). Similarly, the generation of some electric fields relies upon
ion channels. For example, in prey fishes voltage production was greatest at the
mucous membrane-lined mouth and gills, which are sites of direct ion exchange with the
environment (Bedore and Kajiura 2013).
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lon channels in the antennae/cilia appear to be the primary target of electric fields from
matter. The electric fields are converted to electrical signals through a variety of ion-
conducting channels in the ciliary membrane, which result in changes in concentrations
of ions leading to excitation of impinging neurons. Accordingly, an electric field
‘fingerprint’ of a substance is imprinted in the brain as a molecular-specific pattern of
multiple sensory-neuron activation. Stevens reports that, in the fruit fly brain, any given
odorant activates its own population of large-input neurons which, in turn, recruits from
the thousands of next-stage neurons a small subset that serves as an odorant signature
(Stevens 2015).
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