

1 Article

2 **Carbon dioxide emissions, energy consumption**
3 **and economic growth: A comparative empirical**
4 **study of selected developed and developing**
5 **countries. The role of exergy.**

6

7 **Raúl Arango-Miranda^{1*}, Robert Hausler^{1,†}, Rabindranath Romero-Lopez^{2, †}, Mathias**
8 **Glaus^{1, †}, Sara P. Ibarra-Zavaleta^{3, †}.**

9 ¹ Affiliation 1; Station Expérimentale des Procédés Pilotes en Environnement, École de Technologie
10 Supérieure, Université du Québec, 1100, rue Notre-Dame Ouest Local A-1500, Montréal, QC; H3C
11 1K3, Canada ; e-Mails: robert.hausler@etsmtl.ca (R.H.) ; mathias.glaus@etsmtl.ca (M.G.);

12 ² Affiliation 2; Unidad de Investigación Especializada en Hidroinformática y Tecnología Ambiental,
13 Facultad de Ingeniería Civil, Universidad Veracruzana, Lomas del Estadio s/n, Zona Universitaria,

14 ³ Affiliation 3; Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana. Av. de las
15 Culturas Núm.101, col. Emiliano Zapata. Xalapa 91090., Veracruz, México. e-Mail:
16 rabromero@uv.mx. (R.R.L.) Xalapa, 91000 Veracruz, México; e-Mail: saibarra@uv.mx (S.P.I.Z.).

17 [†] These authors contributed equally to this work.

18 * Correspondence: raul.arango-miranda.1@ens.etsmtl.ca; Tel.: +1-514-396-8800 (ext. 7686)

19

20

21 **Abstract:** Diverse factors may have an impact in Carbon dioxide (CO₂) emissions; thus, three
22 main contributors, energy consumption, exergy indicator and gross domestic product (GDP)
23 are examined in this work. This study explores the relationship between economic growth
24 and energy consumption by means of the hypothesis postulated for the Environmental
25 Kuznets Curve (EKC). Panel data for 10 countries, from 1971 to 2014 have been studied.
26 Despite all this wide gamma of research, the role of an exergy variable has not been tested to
27 find the EKC; then exergy analysis is proposed. Exergy analyses were developed to propose
28 an exergetic indicator as a control variable and a comparative empirical study is developed
29 to study a multivariable framework with the aim to detect correlations between them. High
30 correlation between CO₂, GDP, energy consumption, energy intensity and trade openness
31 are observed, conversely not statistically significant values for trade openness and energy
32 intensity. The results do not support the EKC hypothesis, however exergy intensity opens
33 the door for future research once it proves to be a useful control variable. Exergy provides
34 opportunities to analyze and implement energy and environmental policies in these
35 countries, with the possibility to link exergy efficiencies and the use of renewables.

36 **Keywords:** climate change, energy policy, exergy analysis, exergetic intensity, greenhouse
37 gases

38 **1. Introduction**

39 Growing consumption trends of modern societies increase the pressure on
40 manufacturing to satisfy such demands [1,2]. The growing request of fossil fuels as the main
41 source of energy is triggering environmental degradation, that is without a doubt, one of the

42 most pressing global atmospheric challenges experienced by developed and developing
43 countries in 21st century in the form of greenhouse gases (GHG), global warming (GW) and
44 climate change (CC) [3]. Once natural resources are not infinite as a source for economic
45 activities, then uncontrolled economic development entails actual risks for the global
46 environment [4] The rates of worldwide economic development indicate that increased
47 energy demand at all sectoral levels may represent a threat to the achievement of global
48 reduction objectives for 2050 [5]. Rapid global economic growth between 2005 and 2013,
49 influenced global GHG emissions increased by 18.3% reaching more than 35 billion tons by
50 2013 [6]. Virtually 90% of the CO₂ emissions has a fossil-fuel source and therefore are
51 determined by the energy demand or the level of energy-intensive activity. After several
52 periods of economic growth without considering environmental damage, academics,
53 practitioners and policy makers, mostly representing developed countries perceiving the risk
54 related with industrialization and deforestation processes among other anthropogenic
55 activities and react, a heated debate between the importance of economy without
56 compromising our natural resources then started [7]. How to tackle the problem of climate
57 change is a great challenge. Sustainability offers an approach to combat GHG and CC. In late
58 80's efforts from governmental and non-governmental organizations mainly in industrialized
59 countries, were the first steps in the route of sustainable development [8]. In 1992,
60 Munasinghe introduced three major poles to the definition of sustainability: economic, social,
61 and environmental [9]. However, due its complexity, only a limited number of studies had
62 tested the three axes of sustainability and the interrelationship of its variables in the same
63 framework [10,11]. The idea of causal relationship between energy consumption and
64 economic growth was first introduced in the influential paper of Kraft [12], once the causality
65 relationship between them has important policy implications. The debate about what becomes
66 first, economics or environment, no matter at local or global level was settled and the
67 functional relationships between economic growth and environmental degradation were
68 masterfully expressed by the environmental Kuznets curve (EKC), an inverted U-shape curve
69 [13].

70 A literature review on the EKC starts with the seminal research from Grossman and
71 Krueger [14] in their attempt to explore the path of sustainable development theory to
72 describe the environmental degradation-economic growth relationship. Then, many scholars
73 have been developed empirical studies of the EKC hypothesis in single or multiple countries,
74 even regions, applying different econometric methodologies [13,15-18]. Other researches have
75 focused their attention for different environmental dimensions (i.e., CO₂, SO₂, particulate
76 matter, waste water, protected areas) or time contexts. Mixed findings still reported. Scholars
77 found that the relationship presented multiple shaped EKC such as U, inverted-U, N, etc.
78 Additionally, there were also evidences that the testing results depended on the specific
79 econometric models [19]. The results of [20,21] deliver two comprehensive and detailed
80 reviews of the relevant past empirical studies.

81 Despite all this wide gamma of research, the role of an exergy variable has not been
82 tested to find the EKC, then exergy analysis is proposed with the goal to enrich sustainability
83 and exergy as elements of environmental studies once exergy links thermodynamic principles
84 and system under study with the environment [22]. Loiseau [23] compared environmental
85 assessment tools and methods and quotes that among others, exergy analysis are part of the
86 "energy family of methodologies" applying thermodynamics to sustainability able to study
87 cities or industries [24-26].

88 Exergy has been evolved by years, as showed by Scuibba [27] in his essential brief
89 commented history on exergy in 2007. From the theoretical concepts from Carnot and Gibbs,
90 the research by Reistad [28], as a notion to resource accounting approaches by Wall [29,30], the

91 efficiency improvements in industrial equipment or power cycles and its components [31],
92 complex systems analysis [32], sectors and extended exergy analysis in societies or countries
93 [33-36].

94 To the more recently link to the environment studied by Dincer & Rosen [37] in their
95 comprehensive Exergy: energy, environment and sustainable development. The conducted
96 studies on exergy analysis of the industrial sector are classified into three main subsections: of
97 exergy analysis of the industrial sector of different countries; exergy analysis of different
98 industries and exergy analysis of industrial devices [38]. Romero in his review of the state of
99 the art indicators for sustainability, claims the suitability of using exergy as an indicator for
100 energy sustainability studies, also exergy can serve as a link to fill gaps in the generation of
101 economic and environmental indicators [39]. Gong established that "to improve energy and
102 material conversion processes, the exergy concept should be applied. Therefore, exergy
103 analysis is a tool to create and maintain a sustainable or rather a vital society" [40].
104 Researchers also claim that exergy brings opportunities in decision-making to increase energy
105 efficiency and energy conservation [41]. In parallel, exergy analysis was also studied
106 regarding the environment and sustainability [42,43].

107 It may be reported that to the best of authors' knowledge, there is no work on the review
108 of exergy analysis and the CO₂ emissions involving the EKC theory regarding the industrial
109 sector. This research is expected to contribute to fill this gap. The aim of this work is to
110 examine correlations between economic growth, energy consumption and CO₂ emissions.
111 Additionally, an exergy variable is suggested as a control variable, to test its influence for the
112 EKC on the selected countries.

113

114 **2. Data sources**

115 In this study, yearly data of GDP (in constant 2005 US dollars) and energy consumption
116 (million tons oil equivalent) is revised for a set of 10 countries (a mix of 5 developed and 5
117 developing countries, includes: Brazil, Canada, China, Italy, Mexico, Norway, South Africa,
118 Turkey, UK and USA) to investigate the relationship between CO₂ emissions, energy
119 consumption and economic growth. Data from the IEA database [44] and the report "CO₂
120 Emissions from Fuel Combustion, IEA 2017" [45], was achieved and analyzed chronologically
121 from 1971 to 2014. The temporal dimension was restricted due to data availability.

122

123 *2.1. Countries selection criteria.*

124 *2.1.1. Socioeconomic criteria.*

125 According to the World Bank to pay attention about the economical-social-
126 environmental challenges of the future, the upper-middle income countries, whose
127 industrialization process increased strongly, need to be assessed deeply [46]. The idea to
128 contrast two sets of countries is based on the socio economic and environmental changes
129 through last four decades. The selected sample consists of a mixture of developed and
130 developing countries. Between them, there are similarities: economic growth, geographical,
131 population and the production of manufacturing goods to exports. Another interesting factor
132 is that usually, some developing countries evolved from an economic base of agriculture
133 towards manufacturing [47]. Agreeing their economic and social development, a key factor in
134 terms of data availability was that most of them share an association with two international
135 institutions: The Organization for Development and Economic Cooperation (OECD); and the

136 International Energy Agency (IEA). Additionally, 9 out of 10 countries are part of the G20
137 countries.

138 **2.1.2. Environmental criteria.**

139 Four of them were listed as the world's major GHG emitters [48,49]. The Climate Change
140 Performance Index (CPI) 2014 report [50] assesses and compare the climate protection
141 performance of 58 countries, that are, jointly, responsible for more than 90 percent of global
142 energy-related CO₂ emissions, the results for the selected countries were the following:
143 Canada and Turkey received a "very poor rank", the 58th and 54th; China, United States,
144 South Africa, Brazil received a "poor" rank, the 46th, 43rd, 39th and 36th; Norway, Mexico and
145 Italy received a "moderate" rank, the 24th, 20th and 18th; while the United Kingdom received a
146 "good" rank, the 5th.

147

148 **3. Methods**

149 A theoretical-descriptive approach was applied in this study with a comparative
150 empirical test based on a statistical generalized linear model (GLM); this section involves
151 three main steps.

152 *3.1 Exergy analyses to compute exergy consumption and exergy intensity*

153 *3.2 A descriptive statistical analysis to detect linear correlations (R) between the variables*

154 *3.3 An econometric analysis, including an ordinary least squares analysis (OLS).*

155 A data set of 440 observations is considered in this research. The carbon dioxide
156 emissions per capita (CO₂ / Capita) measured in metric tons per person was considered as the
157 environmental decline variable. The growth variable is estimated by the per capita GDP,
158 measured in United States dollars at 2005 prices. Since exergy can serve as a link to fill gaps in
159 the generation of economic and environmental indicators, to serve as control variables, two
160 exergetic variables were computed: exergetic consumption and exergetic intensity. In a global
161 economy, the selected ten countries have been increasing their economic or commercial trade;
162 accordingly, the specific impact of trade was analyzed through the trade openness variable.
163

164 *3.1 Exergy analysis theoretical Background.*

165 An energy and exergy analysis of the selected countries, from 1971 to 2014 is developed;
166 in parallel detect energy intensities to compute exergy ones, with the goal to propose those
167 exergy indicators as an innovative control variable in search of the EKC hypothesis. Scholars
168 have been studying exergy analysis on a large-scale base, such as a country, its society or their
169 own economic sectors [35,51]. In 1997, Dincer [52] assessed the energy consumption of the
170 industrial sector in Canada to increase its efficiency based on exergetic analyses. To formulate
171 an exergy balance of a non-constant flow system (like mass or energy balances), a common
172 scenario requires establishing a control volume as well as a reference environment; it is
173 usually established through a temperature $T_0 = 25^\circ\text{C}$ and a $P_0 = 1 \text{ atm}$. [44]. The flow of exergy
174 entering in a system can be best described as the sum of the totality of their exergies (physical,
175 chemical, potential, kinetic and nuclear exergies) [53]:

$$Exergy_{sys} = Exergy^{Ph} + Exergy^{Kn} + Exergy^{Pt} + Exergy^{Ch} + \dots \quad (1)$$

176 3.1.1. Exergy of a flowing stream of matter

177 In principle, the exergy of matter can be determined by letting it be brought to the dead
 178 state by means of reversible processes. The basic formulas used in exergy analysis modeling
 179 are given below. The total exergy can be divided into two-parts: physical exergy
 180 (thermo-mechanical exergy) and chemical exergy. The specific total exergy of the flowing
 181 stream of matter can be expressed as:

182

$$Exergy = Exergy^{Ph} + Exergy^{Ch} \quad (2)$$

184

185 The first part of Eq. (1) represents the physical exergy, while the second represents the
 186 chemical exergy. The physical exergy is the maximum work obtainable by taking the matter
 187 through reversible processes from its initial state (temperature T and pressure P) to the state
 188 determined by the environment conditions (temperature T_o and pressure P_o). The chemical
 189 exergy is the maximum work that can be obtained by taking a substance having the
 190 parameters (T_o, P_o, m_{jo}) to the state determined by the dead state (T_o, P_o, m_{jo_o}).
 191

192 3.1.2. Exergy of fuels

193 One of the most common mass flows is hydrocarbon fuels at near-environment
 194 condition, for which the first term in the Eq. (2) is zero, and the specific exergy reduces to
 195 chemical exergy, which can be written as ([36,54-56]):

$$Exergy_f = \gamma_f HHV_f \quad (3)$$

196 Were γ_f denotes the fuel exergy grade function, defined as the ratio of fuel chemical
 197 exergy to the fuel higher heating value (HHV_f). With the use of the quality factor, conversions
 198 of energy data to exergy values of energy carriers are given by a proportionality constant, also
 199 called exergy factor [56,57]. Due to the complexity of the chemical composition of these fuels,
 200 the following simple approach, which is since the higher heating value (HHV_f) is close to the
 201 chemical exergy, was applied.

202 In this paper, the average exergy grade functions for different energy carriers are
 203 considered, extracted of several sources [35,36,41,58,59]. There are also other fuels that are
 204 obtained as by products from the different processes in the manufacturing sector.
 205

206

207 3.2. Linear correlations coefficients(R) detection

208 First, in a set of 44 observations, the annual averages are calculated by country for each
 209 variable, proceeding to estimate the correlations based on the variable $pcCO_2$. Secondly, the
 210 complete data were analyzed, by year and by country (440 observations) in function of $pcCO_2$.

211 Subsequently, a descriptive statistical analysis is developed, based on empirical tests,
 212 with the aim of detecting the strength and direction of a linear relationship and
 213 proportionality between two study variables, by means of linear correlation (R) among the
 214 proposed variables. Table 1 describes the total set of variables applied in this study in search
 215 of the existence of the EKC.

216

217

Table 1. Multivariable framework summary.

No.	Abbreviation	Description	Units
1	pcCO ₂	CO ₂ Emissions	Mt of CO ₂ /year/Capita
2	ffCO ₂	CO ₂ Emissions from Fossil Fuels	Mton/year
3	pcTPES	Total Primary Energy Supply	toe/Capita
4	pcGDP	GDP per capita; USD 2005	Billion USD, 2005
5	Tr opn	Trade openness	%
6	ffEn con	Energy consumption from Fossil Fuels	PJ/year
7	En int	Energy Intensity	TPES/GDP
8	C int	Carbon intensity	Mton/year
9	Ex con	Exergy Consumption	PJ/year
10	Ex int	Exergy Intensity	TPES/GDP

218 Source: [60].

219 Prior to the econometric analysis, the data sets were are analyzed and the moderate
220 correlation coefficients (-0.5 < R) and (R > 0.5) were identified [61].

221

222 *3.3. Econometric analysis*223 To test the existence of the EKC hypothesis, a model using panel data estimation
224 techniques was developed. The approach on this research adjusts to the simplest specification
225 of EKC hypothesis, a linear equation, with the aim to test the viability of exergy indicators and
226 its possible effects. Additionally, to test the significance of the model, an ordinary least
227 squares analysis (OLS) was developed228 The EKC literature refers there are four main hypotheses to explain the direction of the
229 relationship between energy consumption and economic growth: growth, conservation,
230 feedback and neutrality[16,62]. The growth hypothesis validates a unidirectional causality
231 flowing from energy consumption to economic growth. The conservation hypothesis argues
232 that there is a one-way causality flowing from economic growth to energy consumption. The
233 feedback hypothesis validates that energy consumption and economic growth cause each
234 other. The neutrality hypothesis contents that there is no causality flowing between economic
235 growth and energy consumption. According to Grossman and Krueger, Panayotou, De Bruyn,
236 Dinda, among others, the generalized functional form of the equation to test the EKC is
237 presented as follow [14,15,63,64]:

238

239
$$ED = f(EG_{it}, EnC_{it}, ExC_{it}, TrO_{it}, \mu_{it})$$

240 Were:

241 ED=Environmental degradation = ffCO₂

242 EG=Economic Growth= pcGDP

243 EnC=Energy consumption= En con

244 ExC=Exergy consumption= Ex con

245 TrO=Trade openness= Tr opn

246 μ_{it} = error term

247

248 The Environmental Kuznets Curve for lineal model can be written as follows:

249

250 $CO_{2t} = \beta_{0it} + \beta_{1it} * GDP + \mu_{it}$ (4)

251
252 In this research, an extended form of the model, used to investigate the influence of an
253 exergetic variable on the environment, can be described as follows:
254

255 $ffCO_2 = \beta_1 * GDP + \beta_2 * ffEn\ con + \beta_3 * Ex\ con + \beta_4 * Ex\ int + \beta_5 * pcTPES + \beta_6 * Tr\ opn$ (5)

256

257 **4. Results and discussion.**

258 **4.1. Energy and exergy analysis**

259 This section discusses the measurement concept of exergy indicators, presents the new
260 data set, and clarifies the relationship between energy losses and exergy indicators. Energy
261 and exergy analysis were developed to calculate exergetic variables from a selected panel of
262 ten countries, from 1971 to 2014.

263 Starting with the compute of the energy and exergy inputs by selected countries, Table 2
264 shows the results of exergy input consumption (PJ) as an example for the year 2014; energy
265 carriers were considered, with fossil fuels largely highlighting as the main source for most of
266 the countries and along the 44 years span.

267 **Table 2.** Exergy consumption rates of countries, year 2014.

Country	Energy carriers (ktoe)					Total exergy consumptions (PJ)
	Hydrocarbons	Renewables	Nuclear	Electricity	Heat	
Mexico	173,077	16,989	2,446	45	0	8,060
Canada	208,128	51,229	27,119	3,923	0	12,597
USA	1,878,318	167,673	209,961	4,576	0	99,790
Italy	116,650	29,163	0	3,760	0	6,829
Norway	15,508	13,489	0	1,340	59	1,771
U. Kingdom	151,000	14,433	16,115	1,765	0	7,974
Turkey	112,122	12,390	0	452	0	5,213
China	2,819,883	259,014	33,504	202	0	131,083
S. Africa	132,893	18,187	3,487	229	0	6,471
Brazil	183,308	129,313	3,888	2,905	44	13,375

268
269 Table 2 depicts interesting information; first the use of fossil fuels still has a strong
270 tendency to increase along the 44 years observed in the 10 countries; highlights that
271 hydrocarbons are the main energy carrier with rates from 47% to 90%, despite remarkable
272 consumption rates of natural gas near 30%. Renewable fuels are employed with higher rates
273 than 10% in six of ten countries, highlighting Norway with a highest 48%, followed by Brazil
274 with 39%. According to the IEA, China, USA, Canada, UK, Brazil, Turkey, Italy and Mexico
275 are listed among the worldwide major producers of iron, steel and cement [65]. The most
276 important topic in exergy analysis is the second law efficiency. Due to a continuous increase in
277 the energy price in the last forty years, engineers tend to utilize thermal systems or

278 components that have maximum second law efficiencies, in industrial processes or devices. In
279 this way, they can be confident is the best way to use the energy source thus, minimizing the
280 expenditures.

281 In parallel, energy security is an essential ingredient to development. Therefore,
282 increasing energy consumption may be one of the fundamental aspirations of developing
283 regions such as Latin American, Asian and African countries [61,66]. Paired with energy
284 increasing to satisfy societal demands, another key factor to boost energy security is
285 minimizing energy lost or degradations in the form of inefficiencies. Hereafter, it is important
286 to create datasets of exergy indicators to improve energy efficiencies, consequently to strong
287 energy security.

288 Degradation of energy matters because it might be a consequence of process inefficiency
289 or environmental impact producing materials, i.e. GHG's [40,41,67]. According with Hepbasli
290 [68], exergy is concerned with the quality of energy to cause change, degradation of energy
291 during a process, entropy generation and the lost opportunities to do work. Then exergy is a
292 fitted tool to improve efficiencies in manufacturing. Higher amounts of degradation of energy
293 inside the economic and environmental development performance of countries might cause
294 larger environmental impacts affecting societies at local, regional or global levels [22].

295

296 4. 2. *Linear correlations, empirical evidence*

297 Many factors may have an impact in CO₂ emissions; in this study were examined four
298 major contributors: energy consumption, exergy consumption, exergy intensity and GDP.
299 Prior to the econometric analysis, the prearrangement of the database was based on two
300 criteria: by year, by country and vice versa. In addition, the averages of the values per year for
301 each variable were computed. Last, an analysis of the data applying the linear regression
302 method to obtain the determination coefficients was applied. Table 3 shows the results of the
303 correlation factors (*R*) between the different variables. As a result, ffCO₂ (*R* ≥ 0.95) emissions
304 correlations get bigger coefficients compared to those of pcCO₂ emissions (*R* ≥ 0.7) in terms of
305 the control variables.

306

307

Table 3. Correlation coefficients matrix

	pcGDP (USD 2005)	pcCO ₂ (MtonCO ₂)	ffCO ₂	ffEn cons (PJ)	En int (TPES/GDP)	Ex int (TPES/GDP)	pcTPES (TPES/GDP)	Tr opn (%)
pcGDP	1							
pcCO ₂	0.654	1						
ffCO ₂	0.938	0.633	1					
ffEx con	0.956	0.624	0.998	1.000	1			
Ex int	-0.988	-0.537	-0.919	-0.940	-0.940	1		
pcTPES	0.958	0.725	0.845	0.871	0.871	-0.927	1	
Tr opn	0.949	0.624	0.989	0.990	0.990	-0.934	0.861	1

308

309 After the first test with a set of 44 observations per variable, yearly averages per country
 310 for each was computed, proceeding to estimate the correlations based on the pcCO₂ as
 311 environmental deterioration; as a result, only three of them presented values of $R \geq 0.95$
 312 (pcTPES, ffEx cons, Tr opn). It is remarkable that Ex int shows negative but high values of $R \geq$
 313 0.90, explaining a linear but inverse or decreasing curve.

314 In economics, energy intensity is viewed as an indicator of the energy efficiency of an
 315 economy. It is calculated as the ratio between the energy consumption (En cons) and the gross
 316 domestic product (GDP) of a country, meaning the units of energy needed to produce a unit of
 317 economic growth [69]. The dataset of the panel shows that energy intensity countries with
 318 high values are the 5 developed ones; contrarily the 5 developing countries shows lower
 319 values, except by China with the higher of all of them but with a drastically decreasing trend.
 320 A deeper analysis in the datasets reveals that both energy and exergy intensities increased for
 321 developed countries plus China and regrettably decrease in developing countries, pointing
 322 out opportunities to increase future efficiencies, and exergy efficiency is a fitted tool regarding
 323 the industrial sector [36,55,70].

324 In fact, Energy efficiency is one of the main variables that induce a reduction in
 325 fossil-based energy consumption. In a study conducted by the International Energy Agency
 326 [71] shows that without the improvements made on energy efficiency during the period from
 327 1973 to 2005 at global scale, the use of energy would have been 58% higher than the level
 328 recorded in 2005, highlighting the relevance of energy efficiency to reduce the energy request.
 329 However, since 1990, the energy efficiency rate has stagnated due to the lower economic
 330 interest affected by the relatively low price of fuels inducing an increase in the demand for oil
 331 [72,73]. Considering the energy efficiency as a control variable (reciprocal of energy intensity),
 332 the results showed that his trend could be negative but statistically significant ($R=0.95$).
 333

334 4.3. Econometric analysis of empirical results.

335 It is important to understand the relation between renewable and non-renewable energy
 336 consumption, CO₂ emissions and economic growth in terms of revealing the dependence of
 337 the economy on energy and designing the energy policies [74]. Table 4 shows results of the

338 variables used in the analyses of the EKC; it is observed that there is a large dispersion
 339 between cross-section units (countries), mainly in the levels of per capita income.

340 **Table 4.** Summary of empiric results of the multivariable framework

Variables						
	pcGDP (USD 2005)	pcCO ₂ (MtonCO ₂ /Cap)	ffEn cons (PJ)	ffEx con (PJ)	Ex int (TPES/GDP)	pcTPES (toe/Cap)
Media	23,309.5	7.5	17,814.3	21,199.1	117.8	3.4
Median	14,843.8	6.6	6,748.0	8,030.1	117.7	2.6
Stdr Dev	21,027.3	5.7	28,038.4	33,365.7	28.0	2.5
Max	91,597.2	22.1	128,356.8	152,744.6	230.5	8.5
Min	262.9	0.9	557.9	664.0	44.3	0.5

341

342 The linear correlation result shows a positive trend between ffCO₂ vs pcGDP, ffCO₂ vs Ex
 343 con and ffCO₂ vs Tr opn; as well as an inverted correlation of ffCO₂ vs Ex int. This relation
 344 depicts the existence of the EKC for the panel, with a feedback hypothesis. Afterwards,
 345 regarding the test of the hypothesis cited by Apergis et al [75,76], in the present research work
 346 was detected that the pcGDP – exergy consumption relation confirms the growth hypothesis,
 347 similar to those results from Lee [77] by developing countries. These findings are on line with
 348 Magazzino et al [78,79] once energy consumption tends to be more responsive to economic
 349 growth in less developed than in advanced countries; however it is important to state that
 350 according to them, the relationship between energy and economic growth activity could be
 351 affected by a variety of other factors. In addition to this, an ordinary least squares analysis
 352 (OLS) was developed to test the significance of the model; the results are showed in Table 5.

353 **Table 5** Regression of ffCO₂ emissions and pcGDP

Variable	Coefficient
Correlation coefficient R^2 -	0.98260592
Determination coefficient R^2 -	0.96551439
Adjusted R^2 -	0.95992213
Standard error	0.0637957
Observations	44
Countries	10

354

355 The independent variables pcGDP, Ex con, Ex int, pcTPES and Tr opn explain 96.55% of
 356 the variation of ffCO₂. Besides, an analysis to test the global significance of the proposed
 357 model was developed, confirming its own validity. The overall effects of the model are
 358 significant since the null hypothesis is rejected due a low p-value ≤ 0.001 . Table 6 shows the
 359 long run tests results.

360

361

362

Table 6. Regression of ffCO₂ emissions and pcGDP

	Coefficient	Stdr. Error	t-Statistic	Probability	Inferior 95%	Superior 95%
Interception	-7.843	0.787	-9.968	0.000	-9.440	-6.250
pcGDP	0.000	0.000	3.168	0.003	0.000	0.000
Ex con	0.000	0.000	-1.688	0.100	0.000	0.000
Ex int	0.037	0.010	3.813	0.001	0.020	0.060
pcTPES	0.961	0.257	3.735	0.001	0.440	1.480
Tr opn	0.005	0.005	1.008	0.320	-0.010	0.020

363

364 Thus, it was observed that the forecaster variables pcGDP, Ex int and pcTPES are
 365 statistically significant because their p-values are low (<0.05). However, the p-value for Tr opn
 366 (0.320) and Ex int (0.001) is greater than the common alpha level of 0.050, and an indication of
 367 non-statistically significant variables.

368 The growth of ffCO₂ emissions and pcGDP in the first part of the curve is validated, since
 369 the increase in economic growth goes simultaneously with the degradation of the
 370 environment. Once it is observed that the sign of the quadratic term is positive, this implies
 371 that in a second stage, when the pcGDP remains increasing, it also grows the carbon dioxide
 372 emissions, non-validating the second part of the environmental curve. This result could be
 373 expected due the comparison of the mixed sample of developed and developing economies.
 374 Usually in developed countries, growth or feedback hypothesis is reported, and the curve
 375 changes its slope to negative for the reduction of emissions, considering that the country
 376 reached a level of economic stability where the degradation of the environment tends to
 377 decrease, making intensive use of green technologies [80]. On the contrary, developing
 378 economies, particularly China, the CO₂ curve trend tend to remain increasing along the
 379 chosen timeline, as a consequence a growth hypothesis is suggested [81,82].

380 These results are in accordance with previous authors, due the influence of several
 381 external factors producing ups and downs trends in the curves [16,83]. Also interesting is the
 382 correlation between pcCO₂ and exergy consumption, it shows a negative trend, describing
 383 possibly an inverted N shape. This result opens the door to future research with the use of
 384 exergetic indicators, with the possibility to link exergy efficiencies and the use of renewables
 385 in countries [40,84]. Hence, detection of degradation of energy through exergy indicators is
 386 becoming a prominent topic in energy and environmental literature [39,42,43]. Energy
 387 analysis has been widely used by the academics and government agencies. Among others,
 388 Hammond [70,85] has argued that it is important for practitioners and policy makers to
 389 employ exergy analysis as a complement to the existing methods to develop datasets, official
 390 reports and environmental and energetic strategies. It is necessary to increase the contribution
 391 of exergy to the environment. Although this is a small sample of panel model of countries, the
 392 results of our study extend the debate of previous research in the use of the timeline, set of
 393 chosen countries, control variables or other external factors i.e. technology, socio political
 394 issues.

395 5. Conclusions

396 The results confirm the existence of strong correlations between the multivariable
 397 frameworks, excepted by the carbon intensity. Additionally, a long-term feedback hypothesis
 398 among CO₂ emissions from fossil fuels, GDP per capita and exergy consumption was

399 confirmed; highlights and inverted, but a strong correlation was between CO₂ emissions from
400 fossil fuels and exergy intensity are detected, offering and insight for future efficiency
401 improvements.

402 Results from developed countries have been increased their effectiveness to manage
403 environmental problems, especially, CO₂ emissions. The use of renewables or natural gas
404 seems to be the right way to combat global warming and reduce CO₂ emissions, enabling the
405 reduction of energy dependency and promoting energy security. The whole period of 44
406 years, neutrality hypothesis was confirmed by OECD countries such as Canada, Mexico,
407 Norway, Turkey, the UK and the USA. It means that there is no causality amid economic
408 growth and energy consumption.

409 Comparing the long run correlations between CO₂ emissions from fossil fuels, GDP per
410 capita and exergy consumption, a positive correlation trend was observed, denotes that by
411 improving energy efficiency policies and regulatory instruments, the efficiency of the system
412 under study tends to improve, accordingly decrease emissions and environmental impacts.
413 The EKC was not confirmed, therefore, the efforts to reduce the GHGs emissions like Kyoto
414 Protocol proves insufficient, as permanent patterns for reducing CO₂ emission is not observed
415 for the afore mentioned countries.

416 The results highlight that restrictions on the use of energy can negatively affect economic
417 growth, while increases in energy can contribute to economic growth. Consequently, it is
418 concluded that energy is a limiting factor for economic growth and, therefore, the impacts on
419 energy supply will have a negative impact on economic growth.

420 Although our work differs from previous findings regarding the validity of the EKC by
421 the selected countries, however, its importance is based on the proposed exergetic variables
422 since it foresees the possibility of its inclusion in future research. Accordingly, an initial test of
423 an exergetic control variable is on line with a simplistic model. Definitively, future research
424 should be focus on expanding the model and digging into its complexity, thus the inclusion of
425 exergetic variables. Also, could be focused to develop a deeper analysis regarding the
426 correlations of environmental and economic indicators, to increase the contribution of exergy
427 to the environment.

428

429 **Author Contributions:** Conceptualization and methodology design: Raul Arango, Robert Hausler and
430 Rabindranarth Romero. Experiments: Raul Arango and Sara Ibarra. Data analysis and validation: Raul
431 Arango, Rabindranarth Romero and Sara Ibarra. Writing-Original Draft Preparation: Raul Arango,
432 Robert Hausler and Rabindranarth Romero. Writing-Review & Editing: Robert Hausler, Rabindranarth
433 Romero and Mathias Glaus. Supervision: Robert Hausler, Rabindranarth Romero and Mathias Glaus.

434 **Acknowledgments:** The authors thanks to the great support provided by the Consejo Nacional de
435 Ciencia y Tecnología (CONACYT) and from the Consejo Veracruzano de Investigación Científica y
436 Desarrollo Tecnológico (COVEICYDET) through Ph.D. scholarship (No. 218934) to Raul
437 Arango-Miranda.

438 **Conflicts of Interest:** The authors declare no conflict of interest.

439

440 **References**

- 441 1. Sanne, C. Willing consumers—or locked-in? Policies for a sustainable consumption. *Ecological
442 Economics* **2002**, *42*, 273-287 [https://doi.org/10.1016/S0921-8009\(02\)00086-1](https://doi.org/10.1016/S0921-8009(02)00086-1).
- 443 2. Lorek, S.; Spangenberg, J.H. Sustainable consumption within a sustainable economy—beyond green
444 growth and green economies. *Journal of cleaner production* **2014**, *63*, 33-44.

445 3. Hanif, I. Economics-energy-environment nexus in latin america and the caribbean. *Energy* **2017**,
446 141, 170-178 <https://doi.org/10.1016/j.energy.2017.09.054>.

447 4. Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C.S.; Jansson, B.-O.; Levin, S.;
448 Mäler, K.-G.; Perrings, C. Economic growth, carrying capacity, and the environment. *Science(Washington)*
449 **1995**, 268, 520-521.

450 5. -UNEP, I.P.o.C.C. Climate change 2014, report. Mitigation on climate change.
451 <http://www.ipcc.ch/report/ar5/wg3/> (30-05-2018),

452 6. Canada, G.o. Global greenhouse gas emissions.
453 <https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/global-green-house-gas-emissions.html> (07-05-2018),

454 7. Vlontzos, G.; Niavis, S.; Pardalos, P. Testing for environmental kuznets curve in the eu agricultural
455 sector through an eco-(in) efficiency index. *Energies* **2017**, 10, 1992 <https://doi.org/10.3390/en10121992>

456 8. Robinson, J. Squaring the circle? Some thoughts on the idea of sustainable development. *Ecological
457 Economics* **2004**, 48, 369-384 <https://doi.org/10.1016/j.ecolecon.2003.10.017>.

458 9. Munasinghe, M.; Cutler, J. Sustainable development triangle. *The Encyclopedia of the Earth* **2007**.

459 10. Fodha, M.; Zaghdoud, O. Economic growth and pollutant emissions in tunisia: An empirical
460 analysis of the environmental kuznets curve. *Energy Policy* **2010**, 38, 1150-1156
461 <https://doi.org/10.1016/j.enpol.2009.11.002>.

462 11. Bekhet, H.A.; Matar, A.; Yasmin, T. Co2 emissions, energy consumption, economic growth, and
463 financial development in gcc countries: Dynamic simultaneous equation models. *Renewable and
464 Sustainable Energy Reviews* **2017**, 70, 117-132 <https://doi.org/10.1016/j.rser.2016.11.089>.

465 12. Kraft, J.; Kraft, A. On the relationship between energy and gnp. *The Journal of Energy and
466 Development* **1978**, 401-403.

467 13. Stern, D.I. The rise and fall of the environmental kuznets curve. *World Development* **2004**, 32,
468 1419-1439 <https://doi.org/10.1016/j.worlddev.2004.03.004>.

469 14. Grossman, G.M.; Krueger, A.B. Economic growth and the environment. *The quarterly journal of
470 economics* **1995**, 110, 353-377.

471 15. Dinda, S. Environmental kuznets curve hypothesis: A survey. *Ecological Economics* **2004**, 49, 431-455
472 <https://doi.org/10.1016/j.ecolecon.2004.02.011>.

473 16. Ozturk, I. A literature survey on energy-growth nexus. *Energy Policy* **2010**, 38, 340-349
474 <https://doi.org/10.1016/j.enpol.2009.09.024>.

475 17. Harbaugh, W.T.; Levinson, A.; Wilson, D.M. Reexamining the empirical evidence for an
476 environmental kuznets curve. *Review of Economics and Statistics* **2002**, 84, 541-551.

477 18. Bo, S. A literature survey on environmental kuznets curve. *Energy Procedia* **2011**, 5, 1322-1325
478 <https://doi.org/10.1016/j.egypro.2011.03.229>.

479 19. Chowdhury, R.R.; Moran, E.F. Turning the curve: A critical review of kuznets approaches. *Applied
480 Geography* **2012**, 32, 3-11.

481 20. Stern, D.I. The environmental kuznets curve after 25 years. *Journal of Bioeconomics* **2017**, 19, 7-28
482 [10.1007/s10818-017-9243-1](https://doi.org/10.1007/s10818-017-9243-1).

483 21. Kaika, D.; Zervas, E. The environmental kuznets curve (ekc) theory—part a: Concept, causes and
484 the co2 emissions case. *Energy Policy* **2013**, 62, 1392-1402 <https://doi.org/10.1016/j.enpol.2013.07.131>.

485 22. Rosen, M.A.; Dincer, I. Exergy as the confluence of energy, environment and sustainable
486 development. *Exergy, an International journal* **2001**, 1, 3-13.

487 23. Loiseau, E.; Junqua, G.; Roux, P.; Bellon-Maurel, V. Environmental assessment of a territory: An
488 overview of existing tools and methods. *Journal of Environmental Management* **2012**, 112, 213-225
489 <http://dx.doi.org/10.1016/j.jenvman.2012.07.024>.

490 24. Vega-Azamar, R.E.; Romero-López, R.; Glaus, M.; Oropeza-García, N.A.; Hausler, R. Sustainability
491 assessment of the residential land use in seven boroughs of the island of montreal, canada. *Sustainability*
492 **2015**, 7, 2454-2472.

493 25. Sciubba, E.; Ulgiati, S. Energy and exergy analyses: Complementary methods or irreducible
494 ideological options? *Energy* **2005**, 30, 1953-1988.

495

496 26. Geng, Y.; Zhang, P.; Ulgiati, S.; Sarkis, J. Exergy analysis of an industrial park: The case of dalian,
497 china. *Science of the total environment* **2010**, *408*, 5273-5283.

498 27. Sciubba, E., Wall, G. . A brief commented history of exergy from the beginnings to 2004. In *Int. J. of*
499 *Thermodynamics*, March 2007 ed.; 2007; Vol. 10, pp 1-26.

500 28. Reistad, G. Available energy conversion and utilization in the united states. *Journal of Engineering*
501 *for Power* **1975**, *97*, 429-434.

502 29. Wall, G. *Exergy-a useful concept within resource accounting*. Chalmers tekniska högskola, Göteborgs
503 universitet: 1977.

504 30. Szargut, J.; Morris, D.R.; Steward, F.R. Exergy analysis of thermal, chemical, and metallurgical
505 processes. **1987**.

506 31. Lozano, M.; Valero, A. Application of the exergetic costs theory to a steam boiler in a thermal
507 generating station. *ASME Book* **1987**, 3-2.

508 32. Sciubba, E.; Bastianoni, S.; Tiezzi, E. Exergy and extended exergy accounting of very large complex
509 systems with an application to the province of siena, italy. *Journal of Environmental Management* **2008**, *86*,
510 372-382 <http://dx.doi.org/10.1016/j.jenvman.2006.04.016>.

511 33. Ayres, R.U.; Ayres, L.W.; Warr, B. Exergy, power and work in the us economy, 1900–1998. *Energy*
512 **2003**, *28*, 219-273 [https://doi.org/10.1016/S0360-5442\(02\)00089-0](https://doi.org/10.1016/S0360-5442(02)00089-0).

513 34. Wall, G. Exergy conversions in the finnish, japanese and swedish societies. *OPUSCULA Exergy*
514 *Papers* **1991**, 1-11.

515 35. Ertesvåg, I.S. Society exergy analysis: A comparison of different societies. *Energy* **2001**, *26*, 253-270
516 [https://doi.org/10.1016/S0360-5442\(00\)00070-0](https://doi.org/10.1016/S0360-5442(00)00070-0).

517 36. Rosen, M.A. Evaluation of energy utilization efficiency in canada using energy and exergy
518 analyses. *Energy* **1992**, *17*, 339-350 [http://dx.doi.org/10.1016/0360-5442\(92\)90109-D](http://dx.doi.org/10.1016/0360-5442(92)90109-D).

519 37. Dincer, I.; Rosen, M.A. *Exergy* Elsevier: 2013; p 537-552.

520 38. BoroumandJazi, G.; Rismanchi, B.; Saidur, R. A review on exergy analysis of industrial sector.
521 *Renewable and Sustainable Energy Reviews* **2013**, *27*, 198-203 <https://doi.org/10.1016/j.rser.2013.06.054>.

522 39. Romero, J.C.; Linares, P. Exergy as a global energy sustainability indicator. A review of the state of
523 the art. *Renewable and Sustainable Energy Reviews* **2014**, *33*, 427-442
524 <https://doi.org/10.1016/j.rser.2014.02.012>.

525 40. Gong, M.; Wall, G. Exergy analysis of the supply of energy and material resources in the swedish
526 society. *Energies* **2016**, *9*, 707.

527 41. Utlu, Z.; Hepbasli, A. A review and assessment of the energy utilization efficiency in the turkish
528 industrial sector using energy and exergy analysis method. *Renewable and Sustainable Energy Reviews*
529 **2007**, *11*, 1438-1459 <https://doi.org/10.1016/j.rser.2005.11.006>.

530 42. Rosen, M.A., - Dincer, Ibrahim. On exergy and environmental impact. *International Journal of Energy*
531 *Research* **1997**, *21*, 643-654 10.1002/(SICI)1099-114X(19970610)21:7<643::AID-ER284>3.0.CO;2-I.

532 43. Dincer, I.; Rosen, M.A. Exergy as a driver for achieving sustainability. *International journal of green*
533 *energy* **2004**, *1*, 1-19.

534 44. IEA. *Energy balances* International Energy Agency (IEA): 2017.

535 45. IEA. *Co2 emissions from fuel combustion, statistics 2017. Highligths*; International Energy Agency
536 (IEA): Paris, 2017; p 162.

537 46. World Bank, G. *World development indicators 2014*. World Bank Publications: 2014.

538 47. Magazzino, C. A panel var approach of the relationship among economic growth, co2 emissions,
539 and energy use in the asean-6 countries. **2014**.

540 48. Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Abd. Majid, M.Z. A global review of energy
541 consumption, co2 emissions and policy in the residential sector (with an overview of the top ten co2
542 emitting countries). *Renewable and Sustainable Energy Reviews* **2015**, *43*, 843-862
543 <https://doi.org/10.1016/j.rser.2014.11.066>.

544 49. IEA. Co2 emissions from fuel combustion. <http://www.iea.org/co2highlights/co2highlights.pdf>.
545 (25-04-2018),

546 50. Burck, J.; Marten, F.; Bals, C.; Höhne, N. The climate change performance index: Results 2015.
547 Germanwatch Berlin: Germany, 2014; p 32.

548 51. Wall, G.; Sciubba, E.; Naso, V. Exergy use in the italian society. *Energy* **1994**, *19*, 1267-1274.

549 52. Dincer, I. Sectoral energy and exergy modeling of turkey. *J. Energy Resour. Technol* **1997**, *119*,
550 200-204.

551 53. Rosen, M.A. Using exergy to assess regional and national energy utilization: A comparative review.
552 *Arabian Journal for Science and Engineering* **2013**, *38*, 251-261.

553 54. Al-Ghandoor, A.; Phelan, P.E.; Villalobos, R.; Jaber, J.O. Energy and exergy utilizations of the u.S.
554 Manufacturing sector. *Energy* **2010**, *35*, 3048-3065 <https://doi.org/10.1016/j.energy.2010.03.046>.

555 55. Utlu, Z.; Hepbasli, A. A review on analyzing and evaluating the energy utilization efficiency of
556 countries. *Renewable and Sustainable Energy Reviews* **2007**, *11*, 1-29 <http://doi.org/10.1016/j.rser.2004.12.005>.

557 56. Guevara, Z.; Sousa, T.; Domingos, T. Insights on energy transitions in mexico from the analysis of
558 useful exergy 1971–2009. *Energies* **2016**, *9*, 488.

559 57. Bühler, F.; Nguyen, T.-V.; Elmegaard, B. Energy and exergy analyses of the danish industry sector.
560 *Applied Energy* **2016**, *184*, 1447-1459 <https://doi.org/10.1016/j.apenergy.2016.02.072>.

561 58. Reistad, G.M. Available energy conversion and utilization in the united states. *Journal of Engineering
562 for Power* **1975**, *97*, 429-434 [10.1115/1.3446026](https://doi.org/10.1115/1.3446026).

563 59. Szargut, J.; Morris, D.R.; Steward, F.R. *Exergy analysis of thermal, chemical, and metallurgical processes*.
564 Hemisphere Publishing, New York, NY; None: 1987; p Medium: X; Size: Pages: 400.

565 60. (IEA), I.E.A. International energy agency.Statistics.Statistics search.
566 <https://www.iea.org/statistics/statisticssearch/> (25-05-2018),

567 61. Zilio, M.; Recalde, M. Gdp and environment pressure: The role of energy in latin america and the
568 caribbean. *Energy Policy* **2011**, *39*, 7941-7949.

569 62. Shahbaz, M.; Loganathan, N.; Zeshan, M.; Zaman, K. Does renewable energy consumption add in
570 economic growth? An application of auto-regressive distributed lag model in pakistan. *Renewable and
571 Sustainable Energy Reviews* **2015**, *44*, 576-585.

572 63. De Bruyn, S.M. Explaining the environmental kuznets curve: Structural change and international
573 agreements in reducing sulphur emissions. *Environment and development economics* **1997**, *2*, 485-503.

574 64. Panayotou, T. Demystifying the environmental kuznets curve: Turning a black box into a policy
575 tool. *Environment and development economics* **1997**, *2*, 465-484.

576 65. (IEA), I.E.A. *Worldwide trends in energy use and efficiency: Key insights from ie a indicator analysis*,;
577 International Energy Agency (IEA): Paris, France, 2008; p 94.

578 66. Pereira, M.G.; Freitas, M.A.V.; da Silva, N.F. The challenge of energy poverty: Brazilian case study.
579 *Energy Policy* **2011**, *39*, 167-175.

580 67. Sciubba, E.; Wall, G. A brief commented history of exergy from the beginnings to 2004. *International
581 Journal of Thermodynamics* **2007**, *10*, 1-26.

582 68. Hepbasli, A. A key review on exergetic analysis and assessment of renewable energy resources for
583 a sustainable future. *Renewable and sustainable energy reviews* **2008**, *12*, 593-661.

584 69. Catalán, H. Curva ambiental de kuznets: Implicaciones para un crecimiento sustentable. *Economía
585 Informa* **2014**, *389*, 19-37.

586 70. Arango-Miranda, R.; Hausler, R.; Romero-López, R.; Glaus, M.; Ibarra-Zavaleta, S.P. An overview
587 of energy and exergy analysis to the industrial sector, a contribution to sustainability. *Sustainability* **2018**,
588 *10*, 153.

589 71. IEA. *Energy efficiency; market report 2015*; Internaciona lEnergy Agency (IEA): Paris, 2015; p 250.

590 72. Proskuryakova, L.; Kovalev, A. Measuring energy efficiency: Is energy intensity a good evidence
591 base? *Applied energy* **2015**, *138*, 450-459.

592 73. Herendeen, R. Energy intensity, residence time, exergy, and ascendency in dynamic ecosystems.
593 *Ecological Modelling* **1989**, *48*, 19-44.

594 74. Khobai, H.; Le Roux, P. Does renewable energy consumption drive economic growth: Evidence
595 from granger-causality technique. *International Journal of Energy Economics and Policy* **2018**, *8*, 205-212.

596 75. Apergis, N.; Payne, J.E. Energy consumption and economic growth: Evidence from the
597 commonwealth of independent states. *Energy Economics* **2009**, *31*, 641-647.

598 76. Chen, S.-T.; Kuo, H.-I.; Chen, C.-C. The relationship between gdp and electricity consumption in 10
599 asian countries. *Energy Policy* **2007**, *35*, 2611-2621.

600 77. Lee, C.-C. Energy consumption and gdp in developing countries: A cointegrated panel analysis.
601 *Energy economics* **2005**, *27*, 415-427.

602 78. de Janosi, P.E.; Grayson, L.E. Patterns of energy consumption and economic growth and structure.
603 *The Journal of Development Studies* **1972**, *8*, 241-249.

604 79. Magazzino, C. Energy consumption and aggregate income in italy: Cointegration and causality
605 analysis. **2011**.

606 80. Lee, C.-C.; Chang, C.-P.; Chen, P.-F. Energy-income causality in oecd countries revisited: The key
607 role of capital stock. *Energy Economics* **2008**, *30*, 2359-2373 <https://doi.org/10.1016/j.eneco.2008.01.005>.

608 81. Fang, Y. Economic welfare impacts from renewable energy consumption: The china experience.
609 *Renewable and Sustainable Energy Reviews* **2011**, *15*, 5120-5128 <https://doi.org/10.1016/j.rser.2011.07.044>.

610 82. Zhang, X.-P.; Cheng, X.-M. Energy consumption, carbon emissions, and economic growth in china.
611 *Ecological Economics* **2009**, *68*, 2706-2712 <https://doi.org/10.1016/j.ecolecon.2009.05.011>.

612 83. Özokcu, S.; Özdemir, Ö. Economic growth, energy, and environmental kuznets curve. *Renewable*
613 *and Sustainable Energy Reviews* **2017**, *72*, 639-647 <https://doi.org/10.1016/j.rser.2017.01.059>.

614 84. Arango-Miranda, R.; Hausler, R.; Romero-López, R.; Glaus, M.; Ibarra-Zavaleta, S. An overview of
615 energy and exergy analysis to the industrial sector, a contribution to sustainability. *Sustainability* **2018**,
616 *10*, 153.

617 85. Hammond, G.; Stapleton, A. Exergy analysis of the united kingdom energy system. *Proceedings of*
618 *the Institution of Mechanical Engineers, Part A: Journal of Power and Energy* **2001**, *215*, 141-162.