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Abstract: In recent years, weeds is responsible for most of the agricultural yield losses. To deal1

with this threat, farmers resort to spraying pesticides throughout the field. Such method not only2

requires huge quantities of herbicides but impact environment and humans health. One way to3

reduce the cost and environmental impact is to allocate the right doses of herbicide at the right4

place and at the right time (Precision Agriculture). Nowadays, Unmanned Aerial Vehicle (UAV) is5

becoming an interesting acquisition system for weeds localization and management due to its ability6

to obtain the images of the entire agricultural field with a very high spatial resolution and at low cost.7

Despite the important advances in UAV acquisition systems, automatic weeds detection remains a8

challenging problem because of its strong similarity with the crops. Recently Deep Learning approach9

has shown impressive results in different complex classification problem. However, this approach10

needs a certain amount of training data but, creating large agricultural datasets with pixel-level11

annotations by expert is an extremely time consuming task. In this paper, we propose a novel fully12

automatic learning method using Convolutional Neuronal Networks (CNNs) with unsupervised13

training dataset collection for weeds detection from UAV images. The proposed method consists14

in three main phases. First we automatically detect the crop lines and using them to identify the15

interline weeds. In the second phase, interline weeds are used to constitute the training dataset.16

Finally, we performed CNNs on this dataset to build a model able to detect the crop and weeds in the17

images. The results obtained are comparable to the traditional supervised training data labeling. The18

accuracy gaps are 1.5% in the spinach field and 6% in the bean field.19

Keywords: Weeds detection, Deep learning, Unmanned aerial vehicle, Image processing, Precision20

agriculture, Crop lines detection21

1. Introduction22

Currently, losses due to pests, diseases and weeds can reach 40% of global crop yields each year23

and this percentage is expected to increase significantly in the coming years [1]. The usual weeds24

control practices consist in spraying herbicides all over the agricultural field. Those practices involve25

significant wastes and costs of herbicides for farmers and environmental pollution [2]. In order to26

reduce the amount of chemicals while continuing to increase productivity, the concept of precision27

agriculture was introduced [3,4]. Precision agriculture is defined as the application of technology28

for the purpose of improving crop performance and environmental quality [3]. The main goal of29

precision agriculture is to allocate the right doses of input at the right place and at the right time.30

Weeds detection and characterization represent one of the major challenges of the precision agriculture.31

In the literature several methods of detection of weeds are proposed with different acquisition32

system. Compared to robot or satellite acquisitions, drones have been considered more efficient since33

they allow a fast acquisition of the field with very high spatial resolution and low cost [5,6]. Despite34

the important advances in UAV acquisition systems, the automatic detection of weeds remains a35

challenging problem. In recent years, deep learning techniques have shown a dramatic improvement36
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for many computer vision tasks, but still not widely used in agriculture domain. Indeed recent37

development showed the importance of these techniques for weeds detection [7,8]. However, the huge38

quantities of the data required in the learning phase, have accentuated the problem of the manual39

annotation of these datasets. The same problem rises in agriculture data, where labeling plants in a40

field image is very time consuming. So far, very little attention have been payed to the unsupervised41

annotation of the data to train the deep learning models, particularly for agriculture.42

In this paper, we propose a new fully automatic learning method using Convolutional Neuronal43

Networks (CNNs) with unsupervised training set labeling for weeds detection on UAV images. This44

method is performed in three main phases. First we automatically detect the crop lines and using them45

to identify the interline weeds. In the second phase interline weeds are used to constitute our training46

dataset. Finally, we performed CNNs on this database to build a model able to detect the crop and47

weeds in the images.48

This paper is divided into five parts. In the section 2 we discuss the related work. Section 349

presents the proposed method. In section 4 we comment and discuss the experimental results obtained.50

Section 5 concludes the paper.51

2. Related work52

In literature, several approaches have been used to detect weeds with different acquisition systems.53

The main approach for weeds detection is to extract vegetation from the image using a segmentation54

and then discriminate crop and weeds. Common segmentation approaches use color and multispectral55

information, to separate vegetation and background (soil and residues). Specific indices are calculated56

from these information to effectively segment vegetation [9].57

However, weeds and crop are hard to discriminate by using spectral information because of their58

strong similarity. Regional approaches and spatial arrangement of pixels are preferred in most cases. In59

[10], Excess Green Vegetation Index (ExG) [11] and the Otsu’s thresholding [12] have helped to remove60

background (soil, residues) before to perform a double Hough transform [13] in order to identify the61

main crop lines in perspective images. Then, to discriminate crop and weeds in the segmented image,62

the authors applied a region-based segmentation method developing a blob coloring analysis. Thus63

any region with at least one pixel belonging to the detected lines is considered to be crop, otherwise64

it is weeds. Unfortunately, this technique failed to handle weeds close to crop region. In [14] an65

object-based image analysis (OBIA) procedure was developed on series of UAV images for automatic66

discrimination of crop rows and weeds in maize field. For that, they segmented the UAV images into67

homogeneous multi-pixel objects using the multi-scale algorithm [15]. Thus, the large scale highlights68

structures of crop lines and the small scale brings out objects that lie within crop lines. They have69

found that the process is strongly affected by the presence of weed plants very close or within the crop70

rows.71

In [16], 2-D Gabor filters have been applied to extract the features and Artificial Neural Network72

(ANN) for broadleaf and grass weeds classification. Their results showed that joint space-frequency73

texture features have potential for weed classification. In [17], the authors rely on morphological74

variation and use neural network analysis to separate weeds from maize crop. Support Vector Machine75

(SVM) and shape features was suggested for the effective classification of crops and weeds in digital76

images in [18]. On their experiment, a total of fourteen features that characterize crops and weeds in77

images were tested to find the optimal combination of features which provides the highest classification78

rate. [19] suggested that in the image, edge frequencies and veins of both the crop and the weed have79

different density properties (strong and weak edges) to separate crop from weed. A semi-supervised80

method has been proposed in [20] to discriminate weeds and crop. The Ostu thresholding was applied81

twice on ExG. In first step, authors used segmentation to remove the background then, in the second82

one they create two classes supposed to be crop and weeds. K-means clustering was used to select83

one hundred samples of each class for the training. SVM classifier with geometric features, spatial84

features, first and second-order statistics was extracted on the red, blue, green and ExG bands. The85
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method has proven to be effective in sunflower field, but less robust in the corn field because of shade86

produced by corn plants. In [21], authors used texture features extracted from wavelet sub-images to87

detect and characterize four types of weeds in a sugar beet field. Neural networks have been applied88

as classifier. The use of wavelets proved to be efficient for the detection of weeds even at a stage of89

growth of beet greater than 6 leaves. [22] evaluate weeds detection with support vector machine and90

artificial neural networks in four species of common weeds in sugar beet fields using shape features.91

In [23] a semi-automatic Object-Based Image Analysis (OBIA) procedure have been developed with92

Random Forests (RF) combined with feature selection techniques to classify soil, weeds and maize.93

With all these articles, we can notice that the selected features change in general from one type of94

culture to another or from one type of data to another.95

Recently, convolutional neural networks have emerged as a powerful approach for computer96

vision tasks. CNNs [24] progressed mostly through the success of this method in ImageNet Large97

Scale Vision Recognition Challenge 2012 (ILSCVR12) and the creation of AlexNet network in 201298

which showed that a large, deep convolutional neural network is capable of achieving record-breaking99

results on a highly challenging dataset using purely supervised training [25]. Nowadays deep learning100

is applied in several domains to help solve many big data problems such as computer vision, speech101

recognition, and natural language processing. In agriculture domain, CNNs are applied to classify102

patches of water hyacinth, serrated tussock and tropical soda apple in [26]. [27] used CNNs for103

semantic segmentation in the context of mixed crops on images of an oil radish plot trial with barley,104

grass, weed, stump and soil. [28] provide accurate weeds classification in real sugar beet fields with105

mobile agricultural robots. [7] applied AlexNet for the detection of weeds in soybean crops. In [8]106

AlexNet is applied for weeds detection in different crop fields such as the beet, spinach and bean in107

UAV imagery.108

The main common point between the supervised machine learning algorithms is the need of109

training data. For a good optimization of deep learning models it is necessary to have a certain110

amount of labeled data. But as mentioned before creating large agricultural datasets with pixel-level111

annotations is an extremely time consuming task. Little attempts have been made to develop fully112

automatic system for training and identification of weeds in agricultural fields. In a Recent work, [29]113

suggest the use of synthetic training datasets. However, this technique requires a precise modeling114

in terms of texture, 3D models and light conditions. [30] an automatic image processing has been115

developed to discriminate between crop and weed pixels combining spatial and spectral information116

extracted from four-band multispectral images. Image data was captured at 3 m above ground, with117

a camera mounted on a pole kept manually. The spatial approach (Hough Transform) is used to118

detect crop rows and to build a training dataset. SVM is applied to the spectral information to make119

classification. This method assumes weeds and crops have different spectral information and that is not120

always the case in agricultural fields. The success of this kind of method lies on better features selection121

which involves a human analysis according to the agriculture field. To the best of our knowledge there122

is no work for weeds detection on UAV images using automatic labeling of training images and deep123

learning.124

3. Proposed Method125

In modern agriculture, most of crops are grown in regular rows separated by a defined space126

that depends on type of the crop. Generally, plants that grow out of the rows are considered as weeds127

commonly referred as inter-line weeds. Several studies have used this assumption to locate weeds128

using the geometric properties of the rows [31]. The main advantage of such technique is that it is129

unsupervised and does not depend on the training data. Indeed, based on this hypothesis we detect130

first the crop rows, then inter-line vegetation is used to constitute our training database which is131

categorized into two classes crop and weed. Thereafter, we performed CNNs on this database to build132

a model able to detect the crop and weeds in the images. The flowchart (Figure 1) depicts the main133

steps of the proposed method. Next sections describes in details each step.134
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Figure 1. Flowchart of the proposed method

3.1. Crop lines detection135

A crop row can be defined as a composition of several parallel lines. The aim is to detect the main136

line of each crop row. For that purpose we have used a Hough transform to highlight the alignments137

of the pixels. In Hough space there is one cell by line which involve an aggregation of cells by crop row.138

The main lines in Hough space correspond to the cells which contains the maximum of vote (peak) on139

each aggregation. Before starting any line detection procedure, generally pre-processing is required to140

remove undesirable perturbations such as shadows, soil or stones. Here we have used the ExG (Eq. 1)141

with the Otsu adaptive thresholding to discriminate between vegetation and background.142

ExG = 2g − r − b (1)

where r, g and b are the normalized RGB coordinates.143

Hough transform is one of the most widely used methods for lines detection and it is often144

integrated in tools for guiding agricultural machines because of its robustness and ability to adjust145

discontinuous lines caused by missing crop plants in the row or poor germination [32]. Usually, for146

crop lines detection, Hough transform is directly applied to the segmented image. This procedure147

is computational expensive and depends on the density of the vegetation in crop rows and there148

is also a risk of the lines over-detection. We have addressed this problem by using the skeleton of149

each row, this approach has shown better performances in (Bah et al. 2017). The skeleton provided a150

good overall representation of the structure of the field, namely orientations and periodicity. Indeed,151

the Hough transform H(θ, ρ) is computed on the skeleton with a θ resolution equal to 0.1◦ letting152

θ take values in the range of ]− 90◦; 90◦] and ρ resolution equal to 1. Thanks to a histogram of the153

skeletons directions, the most represented angle is chosen as the main orientation θlines of crop lines.154

H(θ, ρ) has been normalized Hnorm(θ, ρ) in order to give the same weight to all the crop lines, especially155

the short ones close to the borders of the image [10]. Hnorm(θ, ρ) is defined as the ratio between the156

accumulator of the vegetation image and the accumulator of a totally white image of the same size157

Hones(θ, ρ). To disregard the small lines created by aggregation of weeds in inter-row a threshold of 0.1158

was applied to the normalized Hough transform. Moreover in modern agriculture crops are usually159

sown in parallel lines with the same interline distance that is the main peaks corresponding to the crop160

lines are aligned around an angle in the Hough space with same gaps. Unfortunately, because of the161

realities in the agricultural field the lines are not perfectly parallel, thus the peaks in the Hough space162

have close but different angles and the interline distance is not constant. In order to not skip any crop163

line during the detection, all the lines which have in Hough space a peak whose angle compared to the164

overall orientation (θlines) of the lines does not exceed 20◦ are retained. Figure 2 presents the flowchart165

of the lines detection method. However, to avoid detecting more than one peak in an aggregation166

(reduce over-detection), every time that we identify a peak of a crop row in Hnorm(θ, ρ), we identify the167
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Figure 2. Flowchart of crop lines detection method.

corresponding skeleton, and then we delete the votes of this skeleton in Hnorm(θ, ρ) before continuing.168

All the steps are summarized in algorithm 1.169

Algorithm 1: Crop lines detection.
input :skeletons
output :crop lines

1 Computation of the skeletons angle
2 Computation of the main orientation θlines of the crop lines
3 Hough transform of the skeletons H(θ, ρ)
4 Hnorm(θ, ρ)=H(θ, ρ)/Hones(θ, ρ)
5 while maximum of Hnorm(θ, ρ) > 0.1 do
6 Computation of the maximum of Hnorm(θ, ρ) and the corresponding angle θm
7 Recovery of the line corresponding to the maximum (Lineskeleton)
8 Computation of the normalized Hough transform (Htemp(θ, ρ)) of the Lineskeleton
9 Hnorm(θ, ρ)=Hnorm(θ, ρ) −Htemp(θ, ρ)

10 if θm > θlines − 20◦ and θm < θlines + 20◦ then
11 The detected line is a crop line

3.2. Unsupervised training data labeling170

The unsupervised training dataset annotation is based on the detected lines obtained in previous171

section. According to hypothesis that the lines detected are mainly at the center of the crop rows172

(Figure 3) we performed a mask to delimit the crop rows. Hence, the vegetation overlapped by the173

mask correspond to the crop. This mask is obtained from the intersection of superpixels formed by the174

simple linear iterative clustering (SLIC) algorithm [33] and the detected lines. SLIC is chosen since it is175

simple and efficient in terms of results quality and computation time. It is an adaptation of k-means176

for superpixels generation with a control on size and compactness of superpixels. SLIC creates a local177

grouping of pixels based on their spectral values defined by the values of the CIELAB color space and178
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(a) (b)

Figure 3. From left to right lines detection in bean (a) and spinach (b) fields. Detected lines are in blue.
In the spinach field interline distance and the crop rows orientation are not regular. The detected lines
are mainly in the center of the crop rows.

their spatial proximity. A higher value of compactness makes superpixels more regularly shaped. A179

lower value makes superpixels adhere to boundaries better, making them irregularly shaped. Since180

here the goal is to create a mask around the detected crop lines able to delimit the crop rows we have181

chosen a compactness of 20 because we found it was less sensitive to the variation of color caused by182

the effect of light and shadow. Figure 4 shows examples of images segmented with different size of183

superpixels.184

Once the crop is identified, next step consists in detection of the interlines weeds. Interline weed185

is plant which grows up in the interline crop. To detect weeds that lie in inter-row we performed a186

blob coloring algorithm. Hence any region that does not intersect with the crop mask is regarded as187

weed. Besides, vegetation pixels which do not belong to the crop mask neither to the interlines weeds188

are attributed to the potential weeds. Figure 5 shows the mask of crop, interline weeds and potential189

weeds. To construct the training dataset, we extracted patches from the original images using positions190

of the detected inter-row weeds and crops. For weeds samples we performed bounding boxes on191

each segmented intra-row weed. For the crop samples, sliding window has been applied on the input192

image using positions relative to the segmented crop lines. Thus, for a given position of the window if193

it intersects the binary mask and there is no inter-lines weeds pixels we attribute it to the crop class.194

Generally, the crop class has much more samples than the weed. In the case that we have less interline195

weeds samples and in the same time we have a wide potential weeds as in Figure 5 we propose to196

collect samples from the potential weeds. Hence, the window which contains only potential weeds is197

labeled as weeds. Windows which contain crop and potential weeds, where we have more potential198

weeds than crop are not retained.199

3.3. Crop/Weeds classification using Convolutional Neural Networks200

CNNs are a part of Deep learning approach, they showed impressive performances in many201

computer vision tasks [34]. CNNs are made up of two types of layers, the convolutional layers which202

extract different characteristics of images and the fully connected layers based on multilayer perceptron.203

The number of convolutional layers depends on the classification task and also the number and the204

size of the training data.205

In this work we used a Residual Network (ResNet), this network architecture was introduced206

in 2015 [35]. It won the ImageNet Large Scale Vision Recognition Challenge 2015 with 152 layers.207
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(a) (b) (c)

Figure 4. Examples of superpixels computed on images of dimensions N=7360×4912. From left to
right, the image is segmented with a number of superpixels equal to 0.5% × N, 0.1%×N and 0.01%
×N respectively.

Figure 5. Detection of interline weeds (red) after lines detection (blue) in a bean image. The mask of
crop is represented in green and the potential weeds in magenta.

However, according to the size of data we used the ResNet with 18 layers (ResNet18) described in [35]208

because it has shown a better result than AlexNet and VGG13 [36] in the ImageNet challenge. Due to209

abundant categories and significant number of images in ImageNet, studies revealed the performance210

of transferability of networks trained with ImageNet dataset. Thus we performed fine tuning to train211

the networks in our data. Fine-tuning means that we start with the learned features on the ImageNet212

dataset, we truncate the last layer (softmax layer) of the pre-trained network and replace it with new213

softmax layer that are relevant to our own problem. Here the thousand categories of ImageNet have214

been replaced by two categories (crop and weeds).215

3.4. Features Extraction216

Although color indices do make sense in distinguishing between the vegetation and the217

background, they become less effective when applied to classify the species of plants. Sometimes, the218

color of weeds and crop leaves look almost the same. Moreover, the result will become unreliable219

under different lighting conditions. To solve this problem, several features have been proposed. We220

compute series of statistics features, shape features and texture features which have been selected221
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on other works [19–21,37]. A procedure of feature selection is then used to analyze the most suitable222

features.223

3.4.1. Color features224

The color features used are: mean and standard deviation of three bands of the RGB image and225

ExG image. In order to make the color features consistent with different lighting levels every color226

bands was normalized by the sum of all the three color bands.227

3.4.2. Geometric shape feature228

Based on [18], three parameters namely Form Factor, Elongatedness and Solidity have been229

computed as geometric features. We named the vector of feature created by those three as Geo3.230

FormFactor =
4 ∗ π ∗ area
perimeter2

Elongatedness =
area

thickness2

Solidity =
area

convexarea

Here, area is defined as the number of pixels with a value ’1’ in the binary image. Perimeter is231

defined as the number of pixels with a value ’1’ for which at least one of the eight neighboring pixels232

has the value ’0’, implying that perimeter is the number of border pixels. Convex area is the area of the233

smallest convex hull that covers all the plant pixels in an image.234

3.4.3. Edge density235

Edge detection is a method of image segmentation which uses the fact that the edge frequencies236

and veins of both the crop and the weed have different density properties (strong and weak edges) to237

separate crop from weed [19]. In the follow of this article we will denote edge density as Edensity. It is238

defined as:239

ED =
edgearea

area
Here, area is defined as the number of pixels with a value ’1’ in the binary image. The image will240

then be computed by Sobel edge detection method, all the pixels marked as edge in the binary edge241

image will be added together, the sum of them is the edgearea.242

3.4.4. HOG243

Contour attributes generally correspond to the histogram of the gradient orientation. HOG [38] is244

fast comparing to the SIFT (because no smoothing is computed), It is computed on a large number of245

cells uniformly spaced image and overlapping. Thanks to the normalization of the local contrast, it is246

invariant to the conditions of illumination. HOG has been initially used for pedestrian detection, but247

it has shown robustness in many other issues. In 2010, Xiao et al. introduced HOG to identify plant248

leaves [39]. That experiment is inspiring and indicates that we can combine the features extracted by249

HOG methods to realize leaves classification.250

3.4.5. Haralick texture251

The co-occurrence matrix makes possible to obtain the occurrence frequency of a pattern of 2252

pixels separated by a distance d along a direction θ. In [40] authors propose 14 features that can253

be computed on this matrix. These features have the aim of highlighting the visual characteristics,254

statistics, the randomness of the distribution of the gray levels and the linear dependence of the gray255

levels on a neighborhood of pixels (the homogeneity, the coarseness, the periodicity, the smoothness, ...).256
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In 2012, Haralick method have been applied to extract texture features in classification of plants species257

[41]. The authors used 6 of the Haralick features, including: autocorrelation, contrast, correlation,258

dissimilarity, energy and entropy. Same features are used here and they are called Haralick features.259

3.4.6. Gabor wavelets260

This method realizes joint space-frequency analysis.The short time Fourier transform with a261

Gaussian window is called the Gabor transform. It is able to preserve both local and global information262

in image. In 2003, Tang et al. fixed the filter orientation at 90◦ for the classification of broad and narrow263

leave [16]. By analyzing the separation between classes of each feature, they concluded that a filter264

bank with four frequency levels from 4 to 7 are suitable for the classification task. Therefore, we have265

chosen from 4 to 7 as the frequencies, while 0◦, 45◦ and 90◦ to be the orientation. We generated 12266

Gabor features.267

3.5. SVM or Support Vector Machine268

The ideal for a good classification is to have a fast classifier, which avoids overfitting, able to269

respond to multi-class problems, to separate classes with a large gap or margin, to manage large270

features vector. In this paper we applied the SVM or Support Vector Machine or Large Margin271

Separator. It is one of the most successful machine learning methods. Its popularity stems from the272

fact that it ensures a separation of classes with a very great difference if it is provided with two-class273

data and also because it is adapted to linear and nonlinear cases.274

3.6. Random Forest (RF)275

The Random Forest, is a meta-classier, It combines several weak classifiers to form a strong276

classifier. RF easily handles multi-class problems and is robust to large features and has a very low risk277

of overfitting. It is used in several applications such as point tracking in video surveillance, medical278

imaging, for games in Microsoft’s Kinect. In addition, the RF has been shown to be ideally suited279

for classifying high resolution UAV data [42]. It is structured like a real forest with trees, where each280

tree has roots, branches and leaves. The trees correspond to the different classifiers, the first node281

corresponds to the root of the tree (the point of entry of our data), each node is then separated into282

intermediate nodes and each leaf corresponds to a terminal node where the final decision is stored.283

The trees of the forest are built using bagging or Bootstrap aggregating. The principle of bagging is to284

construct each tree by selecting a subset of n observations among the N learning data (n < N) obtained285

by random sampling with delivery. The objective is to get the trees as different as possible, in other286

words to obtain uncorrelated trees because the more the trees are different, the more robust the forest287

is. The other advantage of bagging is that it makes possible to estimate the prediction error of the288

forest by using "out-of-bag" (OOB) or data not used during the construction of the trees.289

4. Experiments and results290

Experiments were conducted on two different fields of bean and spinach (Figure 6). The images291

are acquired by a DJI Phantom 3 Pro drone that embeds a 36 megapixel (MP) RGB camera at an altitude292

of 20 m. This acquisition system enables to obtain very high resolution images with a spatial resolution293

about 0.35 cm.294

To build the unsupervised training database, we selected two different parts of given field. The295

first one (Part1) is used to collect the training data and the other (Part2) for test data collection.296

To create the crop binary mask after line detection the superpixels compactness have been set297

to 20 and the number of superpixels is equal to 0.1%×N, where N=7360×4912 (Figure 4b). In this298

experiments, we used a 64 by 64 window to create the weed and crop training databases. This window299

size provides a good trade off between plant type and overall information. A small window is not300

sufficient to capture whole plant and can lead to confuse culture and non culture, because in some301

conditions crop and weed leaves have the same visual characteristics. In other hand, too large size302
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(a) (b)

Figure 6. Example of images taken in the bean (a) and spinach fields (b). The bean field has less
interline weeds and is predominately composed of potential weeds. The inter-row distance is stable
and the plant is sparse compared to the spinach field which presents a dense vegetation in the crop
rows and irregular inter-row distance. Spinach field has more interlines weeds and it has few potential
weeds.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Example of crop and weed samples of size 64×64 with and without background. Bean:
samples of crop (a and b), samples of weed. (c and d). Spinach: samples of crop (e and f) and samples
of weed (g and h). Depending on the size of the plant and the position of the window we obtain a plant
or aggregation of plants per window.
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(a) (b)

Figure 8. Parts of bean field (a) and spinach field (b) with the weeds labeled manually by an expert in
red. The manual labeling has taken about 2 working days.

Table 1. Training and validation data in the bean field.

Data Class Training Validation Total

Supervised Crop 17192 11694 28886
labeling Weed 17076 9060 16136
Total 34868 20754 45022

Unsupervised Crop 7688 1928 9616
labeling Weed 5935 1493 7428
Total 13623 3421 17044

presents a risk of having crop and weeds in the same window. In the bean field, the weeds present303

are thistles and young sprouts of potato from previous sowing on the same field. This field has few304

interline weeds so we have decided to include the potential weeds in weeds samples. After applying305

the unsupervised labeling method, the number of samples collected is 673 for weeds and 4861 for306

crops. Even with potential weeds the collected samples was unbalanced. To address this problem307

we realized data-augmentation. Hence we have performed two contrast changes, a smoothing with308

a Gaussian filter and three rotations (90◦, 180◦, 270◦). The strong heterogeneity in the fields can309

often be encountered from one part of the field to another. This heterogeneity may be a difference310

of soil moisture, presence of straw, etc... In order to make our models robust to the background, we311

mixed samples with background and no background. Samples without background were obtained312

by applying ExG followed by Otsu’s thresholding on previously created samples (see Figure 7). We313

evaluated the performance of our method by comparing models created by data labeled in supervised314

and unsupervised way.315

The supervised training dataset were labeled by human experts. A mask is performed manually316

on the pixels of weeds and crops. Figure 8 presents weeds manually delineated by an expert in red. The317

supervised data collected were also unbalanced so we have carried out the same data augmentation318

procedure performed on the unsupervised data. The total number of samples is shown in the Table 1.319

The spinach field is more infected than the bean field, there are mainly thistles. In total 4303320

samples of crop and 3626 samples of weed were labeled in unsupervised way. Unlike bean field321
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Table 2. Training and validation data in the spinach field.

Data Class Training Validation Total

Supervised Crop 11350 2838 14188
labeling Weed 8234 2058 10292
Total 19584 4896 34772

Unsupervised Crop 6884 1722 8606
labeling Weed 5800 1452 7252
Total 12684 3174 15858

we have obtained a less unbalanced data. Therefore, the only data augmentation applied is adding322

samples without background. The same processing has been applied on the supervised data. Table 2323

presents the number of samples.324

4.1. Evaluation of ResNet results325

After the creation of both weed and crop classes, 80% of samples were selected randomly for the326

training, and the remaining ones were used for validation. The Tables 1 and 2 present the training and327

validation data performed on each field. For finetuning we tested different values of the learning rate.328

The initial learning rate is set to 0.01 and updated every 200 epochs. The update is done by dividing329

the learning rate by factor of 10. Figure 9 shows the evolution of the loss function during training330

for supervised and unsupervised datasets for spinach and bean fields. From these figures we can331

notice that the validation loss curves decrease during about the first 80 epochs before to increase and to332

converge (behavior close to overfitting phenomenon). This overfitting phenomenon is less emphasized333

in the supervised labeled data of bean. The best models were obtained during the first learning phase334

with a learning rate of 0.01.335

Performance of models have been evaluated on test ground truth data collected in Part2 by336

supervised way on each field, the Table 3 presents the samples. The performance of the classification337

results are illustrated with Receiver Operating Characteristic (ROC) curves.338

Table 3. Number of test samples used for each field.

Field Samples of crop Sample of weed

Bean 2139 1852
Spinach 1523 1825

From the ROC curves (Figure 10) we can notice that the AUC (Area Under the Curve) are close to339

or greater than 90%. Although both types of learning data provide good results and their results are340

comparable. On both fields we remark that positive rate of 20% provides a true positive rate greater341

than 80%. The differences of performance between supervised and unsupervised data labeling are342

about 6% in the bean field and about 1.5% in the spinach field. The performance gap in the bean field343

can be explained by the low presence of weeds in the inter-row.344

Both fields are infested mainly by thistles, we tested the robustness of our models by exchanging345

the samples of weeds from the bean field with that of the spinach field.346

In Figure 11 the results obtained show that despite the small samples harvested in the bean filed,347

those data are suitable to the spinach field and the model created with unsupervised labeling in the348

spinach field is most sensitive to the presence of young potato sprouts among bean weed samples.349
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(a) (b)

(c) (d)

Figure 9. Evolution of the loss during training for supervised and unsupervised data in the fields
of spinach and bean. The validation loss curves decrease during about the first 80 epochs before to
increase and converging. First line represents the spinach field and the second one the bean field. The
first and second column are respectively the training on the the supervised and unsupervised data.

(a) (b)

Figure 10. ROC curves of the test data with the unsupervised and supervised data labeling.From left
to right the ROC curves computed on the bean (a) and spinach (b) test data. In the bean field the area
under the curve are (AUC) are 88.73% for unsupervised data and 94.84% for the supervised data. In
the spinach field the area under the curve are (AUC) are 94.34% for unsupervised data and 95.70% for
the supervised data. Supervised and unsupervised data means respectively data labeled in supervised
and unsupervised way.
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(a) (b)

Figure 11. ROC curves of test data with weeds data of the bean field exchanged with that of the spinach
field. From left to right the ROC curves computed on the bean (a) and spinach (b) test data. In the
bean field the area under the curve are (AUC) are 91.37% for unsupervised data and 93.25% for the
supervised data. In the spinach field the area under the curve are (AUC) are 82.70% for unsupervised
data and 94.34% for the supervised data. Supervised and unsupervised data means respectively data
labeled in supervised and unsupervised way.

Table 4. Results on test data collected in bean field with ResNet18, SVM and Random Forest. For the
SVM and RF only the result of the best selected features are presented.

SVM (AUC%) RF (AUC%) ResNet18 (AUC%)

Best features Sup Unsup Sup Unsup Sup Unsup
labeling labeling labeling labeling labeling labeling

ALL features 60.60 44.76 70.16 63.95 - -
Geo3 40.80 59.51 48.91 44.86 - -

Haralick, Color 59.78 40.46 68.15 65.40 - -
- - - - - 94.84 88.73

4.2. ResNet vs Features extraction with SVM and RF350

SVM and RF have been applied on features extracted on the dataset (Table 1 and Table 2). RF has351

been performed with 200 trees. As for the Resnet18, models have been created on the data labeled352

in a supervised and unsupervised way. In order to assess the effectiveness of the selected features353

we applied them separately and to select the set of features that gives the optimal classification result354

we mixed them together. In Figure 12 and Figure 13 we have noticed that the color, Haralick and355

geometric features give the best results. In the field of spinach, the strong presence of thistle with356

leaves color different from that of spinach at a certain level of growth explain the effectiveness of357

the color features. In the bean field, the color features were less effective than the texture features358

(Haralick) in both dataset since we have young potatoes shoots from the previous sowing among the359

weeds and they have a color almost similar to that of the bean plants.360

By Using SVM, while the features are combined, the improvement is less than 2% for data labeled361

in a supervised manner and about 10% for unsupervised data in the spinach field. In the bean field the362

same remark applies to the data collected in a supervised manner, for unsupervised data collected363

no improvement has been found. Another remark that can be made is that from one type of data to364

another the best features are not the same. We also noticed that the selected features are not suitable to365

detect the weeds present in the bean field. With the RF, the feature selection procedure only increased366

performance by about 1% for both spinach dataset. In the bean field an improvement of about 1% have367

been observed on data labeled in unsupervised way and about 5% for data labeled in supervised way.368

Table 4 and Table 5 present the result of SVM and RF with best selected features.369
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(a) (b)

(c) (d)

Figure 12. ROC curves of the SVM models created by each features for each field. First line represents
the spinach field and the second one the bean field. The first and second column are respectively the
training on the the supervised and unsupervised data.

Table 5. Results on test data collected in spinach field with ResNet18, SVM and Random Forest. For
the SVM and RF only the result of the best selected features are presented. Sup and Unsup mean
respectively supervised and unsupervised.

SVM (AUC%) RF (AUC%) ResNet18 (AUC%)

Best features Sup Unsup Sup Unsup Sup Unsup
labeling labeling labeling labeling labeling labeling

Color, HOG, Gabor 95.94 87.38 93.50 95.131 - -
Haralick, Color, HOG, Gabor 93.93 90.77 95.464 96.177 - -

All features 93.352 90.70 96.99 95.162 - -
- - - - - 95.70 94.34
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(a) (b)

(c) (d)

Figure 13. ROC curves of the RF models created by each features for each field. First line represents
the spinach field and the second one the bean field. The first and second column are respectively the
training on the the supervised and unsupervised data.

In Table 5 we have remarked that ResNet18 provides much better results than SVM and RF in the370

bean field, with a performance difference greater than 20%. However in the spinach field the results371

obtained are comparable and sometimes the results of ResNet18 are lower than those of SVM and372

RF (Table 5 ). This performance of ResNet18 can be explained by the small amount of data used for373

the training in the spinach field. For deep learning algorithms the more data we have, the better the374

algorithm learns. We can also note that the performances of the models formed by the two types of375

data collected are comparable for the three classification methods. The maximum difference is about376

6% in both fields.377

Through those results, we can say that even whether we manage to select the most suitable378

features to identify weeds in a field it is possible that these features are not adapted to another field379

with a different type of culture. They also show that the features considered better by a classifier can380

not necessarily be the best if you change classifier. However, in the fields from one year to another there381

is a possibility to find new types of weeds and that the level of growth of the plants can sometimes382

cause confusion between weeds and crops, which leads to a new collection of weeds/crop data and a383

selection of features. Thus for an efficient classification it would be interesting to use a tool capable of384

automatically generating relevant samples and features to detect weeds, hence the interest of using385

deep learning with unsupervised data labeling.386
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(a) (b)

(c) (d)

Figure 14. Example of UAV image classification with models created by unsupervised data in two
different fields. From first to the second line we have samples from spinach and bean fields. On the first
column we have the samples obtained after using sliding window, without crop lines and background
information. Blue, red and white dot mean that the plants are is identified as weed, crop and uncertain
decision respectively. On the second column we have the detected weeds in red after crop lines and
background information have been applied.

4.3. Weeds detection387

In the aim to detect weeds in entire UAV image we applied an overlapping window for weeds388

detection. For each position of the window the CNNs models provide the probability of being weeds or389

crops. Thus, the center of the extracted image is marked by a colored dot according to the probabilities.390

Blue, red and white dot mean respectively that the extracted image is identified as weed, crop and391

uncertain decision (Figures 14a and 14c). Uncertain decision means the both probabilities are very392

close to 0.5. Thereafter, we used crop lines information and superpixels that have been created before,393

to classify all the pixels of the image. On each superpixel we look which color of dot has the majority.394

A superpixel is classed as crop or weed if the most represented dots are in blue respectively in red. For395

superpixels that have white dots as majority we used crop lines information. Hence, superpixels which396

are in the crop lines are regarded as crop and the others are weeds. The superpixels created in the397

background are removed. Figures 14b and 14d present the classification results in parts of spinach and398

bean fields. On those figures we remark that interline weeds and intra-line weeds have been detected399

with a low overdetection. Overdetections are mainly found on the edges of the crop rows where the400

window cannot overlap the whole plant. Some pixels of weeds are not entirely in red, because after401

performing the threshold on the ExG, the parts of these plants which are less green are considered as402

soil.403
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However, the unsupervised data collection method depends strongly on the efficiency of the crop404

line detection method and also the presence of weeds in the interline. The line detection approach used405

here has already shown its effectiveness in beet and corn fields in our previous work [43]. With the406

bean field we found even if a field does not have a lot of samples of weeds in the interline it is possible407

to create a robust model with data-augmentation. We also noticed using a deep learning architecture408

such as ResNet18 we can create robust models for classification of weeds in bean or spinach fields409

with supervised or unsupervised data annotation. The main advantage of our method is that it is fully410

automatic.411

5. Conclusion412

In this paper, we proposed a novel fully automatic learning method using Convolutional Neuronal413

Networks CNNs) with unsupervised training dataset collection for weeds detection from UAV images414

taken in bean and spinach fields. The results obtained have shown close performance to the supervised415

data labeling ones. The Area Under Curve (AUC) differences are 1.5% in the spinach field and 6%416

in the bean field. Supervised labeling is an expensive task for human experts and according to the417

gaps of accuracies between the supervised and the unsupervised labeling, our method can be a better418

choice in the detection of weeds, especially when the crop rows are spaced. The proposed method419

is interesting in terms of flexibility and adaptivity, since the models can be easily trained in new420

dataset. We also found that ResNet18 architecture can extract useful features for classification of weeds421

in bean or spinach fields with data labeled with supervised or unsupervised way. In addition the422

developed method could be a key of online weeds detection with UAV. As future work we plan to use423

multispectral images because in some conditions near infra red could help to distinguish plant even if424

they have a similarity in the visible spectral and leave shape. With the near infra-red we plan also to425

improve the background segmentation.426
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