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1 Abstract: In recent years, weeds is responsible for most of the agricultural yield losses. To deal
= with this threat, farmers resort to spraying pesticides throughout the field. Such method not only
s requires huge quantities of herbicides but impact environment and humans health. One way to
« reduce the cost and environmental impact is to allocate the right doses of herbicide at the right
s place and at the right time (Precision Agriculture). Nowadays, Unmanned Aerial Vehicle (UAV) is
s  becoming an interesting acquisition system for weeds localization and management due to its ability
»  to obtain the images of the entire agricultural field with a very high spatial resolution and at low cost.
s Despite the important advances in UAV acquisition systems, automatic weeds detection remains a
s challenging problem because of its strong similarity with the crops. Recently Deep Learning approach
1o has shown impressive results in different complex classification problem. However, this approach
1 needs a certain amount of training data but, creating large agricultural datasets with pixel-level
1= annotations by expert is an extremely time consuming task. In this paper, we propose a novel fully
1z automatic learning method using Convolutional Neuronal Networks (CNNs) with unsupervised
1« training dataset collection for weeds detection from UAV images. The proposed method consists
15 in three main phases. First we automatically detect the crop lines and using them to identify the
1s  interline weeds. In the second phase, interline weeds are used to constitute the training dataset.
1z Finally, we performed CNNs on this dataset to build a model able to detect the crop and weeds in the
1= images. The results obtained are comparable to the traditional supervised training data labeling. The
s accuracy gaps are 1.5% in the spinach field and 6% in the bean field.

20 Keywords: Weeds detection, Deep learning, Unmanned aerial vehicle, Image processing, Precision
=1 agriculture, Crop lines detection

> 1. Introduction

N

23 Currently, losses due to pests, diseases and weeds can reach 40% of global crop yields each year
2a and this percentage is expected to increase significantly in the coming years [1]. The usual weeds
2 control practices consist in spraying herbicides all over the agricultural field. Those practices involve
26 significant wastes and costs of herbicides for farmers and environmental pollution [2]. In order to
2z reduce the amount of chemicals while continuing to increase productivity, the concept of precision
2s agriculture was introduced [3,4]. Precision agriculture is defined as the application of technology
20 for the purpose of improving crop performance and environmental quality [3]. The main goal of
30 Pprecision agriculture is to allocate the right doses of input at the right place and at the right time.
a1 Weeds detection and characterization represent one of the major challenges of the precision agriculture.
32 In the literature several methods of detection of weeds are proposed with different acquisition
ss  system. Compared to robot or satellite acquisitions, drones have been considered more efficient since
:a  they allow a fast acquisition of the field with very high spatial resolution and low cost [5,6]. Despite
s the important advances in UAV acquisition systems, the automatic detection of weeds remains a
ss challenging problem. In recent years, deep learning techniques have shown a dramatic improvement
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sz for many computer vision tasks, but still not widely used in agriculture domain. Indeed recent
s development showed the importance of these techniques for weeds detection [7,8]. However, the huge
3o quantities of the data required in the learning phase, have accentuated the problem of the manual
« annotation of these datasets. The same problem rises in agriculture data, where labeling plants in a
a field image is very time consuming. So far, very little attention have been payed to the unsupervised
«2 annotation of the data to train the deep learning models, particularly for agriculture.

a3 In this paper, we propose a new fully automatic learning method using Convolutional Neuronal
s Networks (CNNs) with unsupervised training set labeling for weeds detection on UAV images. This
+s  method is performed in three main phases. First we automatically detect the crop lines and using them
s to identify the interline weeds. In the second phase interline weeds are used to constitute our training
«z dataset. Finally, we performed CNNs on this database to build a model able to detect the crop and
s weeds in the images.

a0 This paper is divided into five parts. In the section 2 we discuss the related work. Section 3
so presents the proposed method. In section 4 we comment and discuss the experimental results obtained.
s1 Section 5 concludes the paper.

s2 2. Related work

53 In literature, several approaches have been used to detect weeds with different acquisition systems.
s« The main approach for weeds detection is to extract vegetation from the image using a segmentation
ss and then discriminate crop and weeds. Common segmentation approaches use color and multispectral
s information, to separate vegetation and background (soil and residues). Specific indices are calculated
sz from these information to effectively segment vegetation [9].

58 However, weeds and crop are hard to discriminate by using spectral information because of their
so strong similarity. Regional approaches and spatial arrangement of pixels are preferred in most cases. In
so [10], Excess Green Vegetation Index (ExG) [11] and the Otsu’s thresholding [12] have helped to remove
&1 background (soil, residues) before to perform a double Hough transform [13] in order to identify the
e2 main crop lines in perspective images. Then, to discriminate crop and weeds in the segmented image,
es the authors applied a region-based segmentation method developing a blob coloring analysis. Thus
es any region with at least one pixel belonging to the detected lines is considered to be crop, otherwise
es it is weeds. Unfortunately, this technique failed to handle weeds close to crop region. In [14] an
es Object-based image analysis (OBIA) procedure was developed on series of UAV images for automatic
ez discrimination of crop rows and weeds in maize field. For that, they segmented the UAV images into
es homogeneous multi-pixel objects using the multi-scale algorithm [15]. Thus, the large scale highlights
e structures of crop lines and the small scale brings out objects that lie within crop lines. They have
7 found that the process is strongly affected by the presence of weed plants very close or within the crop
71 TOWS.

72 In [16], 2-D Gabor filters have been applied to extract the features and Artificial Neural Network
73 (ANN) for broadleaf and grass weeds classification. Their results showed that joint space-frequency
s texture features have potential for weed classification. In [17], the authors rely on morphological
75 variation and use neural network analysis to separate weeds from maize crop. Support Vector Machine
76 (SVM) and shape features was suggested for the effective classification of crops and weeds in digital
7z images in [18]. On their experiment, a total of fourteen features that characterize crops and weeds in
s images were tested to find the optimal combination of features which provides the highest classification
7o rate. [19] suggested that in the image, edge frequencies and veins of both the crop and the weed have
s different density properties (strong and weak edges) to separate crop from weed. A semi-supervised
s method has been proposed in [20] to discriminate weeds and crop. The Ostu thresholding was applied
«2 twice on ExG. In first step, authors used segmentation to remove the background then, in the second
es one they create two classes supposed to be crop and weeds. K-means clustering was used to select
s« one hundred samples of each class for the training. SVM classifier with geometric features, spatial
es features, first and second-order statistics was extracted on the red, blue, green and ExG bands. The
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s method has proven to be effective in sunflower field, but less robust in the corn field because of shade
ez produced by corn plants. In [21], authors used texture features extracted from wavelet sub-images to
es detect and characterize four types of weeds in a sugar beet field. Neural networks have been applied
s as classifier. The use of wavelets proved to be efficient for the detection of weeds even at a stage of
so growth of beet greater than 6 leaves. [22] evaluate weeds detection with support vector machine and
o1 artificial neural networks in four species of common weeds in sugar beet fields using shape features.
o2 In[23] a semi-automatic Object-Based Image Analysis (OBIA) procedure have been developed with
»s  Random Forests (RF) combined with feature selection techniques to classify soil, weeds and maize.
oa With all these articles, we can notice that the selected features change in general from one type of
os culture to another or from one type of data to another.

% Recently, convolutional neural networks have emerged as a powerful approach for computer
oz vision tasks. CNNs [24] progressed mostly through the success of this method in ImageNet Large
os  Scale Vision Recognition Challenge 2012 (ILSCVR12) and the creation of AlexNet network in 2012
9o which showed that a large, deep convolutional neural network is capable of achieving record-breaking
w0 results on a highly challenging dataset using purely supervised training [25]. Nowadays deep learning
11 is applied in several domains to help solve many big data problems such as computer vision, speech
102 recognition, and natural language processing. In agriculture domain, CNNs are applied to classify
103 patches of water hyacinth, serrated tussock and tropical soda apple in [26]. [27] used CNNs for
s Semantic segmentation in the context of mixed crops on images of an oil radish plot trial with barley,
105 grass, weed, stump and soil. [28] provide accurate weeds classification in real sugar beet fields with
10s mobile agricultural robots. [7] applied AlexNet for the detection of weeds in soybean crops. In [8]
17 AlexNet is applied for weeds detection in different crop fields such as the beet, spinach and bean in
s UAV imagery.

109 The main common point between the supervised machine learning algorithms is the need of
1o training data. For a good optimization of deep learning models it is necessary to have a certain
11 amount of labeled data. But as mentioned before creating large agricultural datasets with pixel-level
12 annotations is an extremely time consuming task. Little attempts have been made to develop fully
13 automatic system for training and identification of weeds in agricultural fields. In a Recent work, [29]
ua suggest the use of synthetic training datasets. However, this technique requires a precise modeling
us in terms of texture, 3D models and light conditions. [30] an automatic image processing has been
us developed to discriminate between crop and weed pixels combining spatial and spectral information
1z extracted from four-band multispectral images. Image data was captured at 3 m above ground, with
us  a camera mounted on a pole kept manually. The spatial approach (Hough Transform) is used to
1o detect crop rows and to build a training dataset. SVM is applied to the spectral information to make
120 classification. This method assumes weeds and crops have different spectral information and that is not
121 always the case in agricultural fields. The success of this kind of method lies on better features selection
122 which involves a human analysis according to the agriculture field. To the best of our knowledge there
123 is no work for weeds detection on UAV images using automatic labeling of training images and deep
124 learning.

125 3. Proposed Method

126 In modern agriculture, most of crops are grown in regular rows separated by a defined space
12z that depends on type of the crop. Generally, plants that grow out of the rows are considered as weeds
122 commonly referred as inter-line weeds. Several studies have used this assumption to locate weeds
120 using the geometric properties of the rows [31]. The main advantage of such technique is that it is
130 unsupervised and does not depend on the training data. Indeed, based on this hypothesis we detect
11 first the crop rows, then inter-line vegetation is used to constitute our training database which is
132 categorized into two classes crop and weed. Thereafter, we performed CNNs on this database to build
133 a model able to detect the crop and weeds in the images. The flowchart (Figure 1) depicts the main
13a  steps of the proposed method. Next sections describes in details each step.
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Figure 1. Flowchart of the proposed method
135 3.1. Crop lines detection
136 A crop row can be defined as a composition of several parallel lines. The aim is to detect the main

137 line of each crop row. For that purpose we have used a Hough transform to highlight the alignments
13e  of the pixels. In Hough space there is one cell by line which involve an aggregation of cells by crop row.
130 The main lines in Hough space correspond to the cells which contains the maximum of vote (peak) on
1s0 each aggregation. Before starting any line detection procedure, generally pre-processing is required to
11 remove undesirable perturbations such as shadows, soil or stones. Here we have used the ExG (Eq. 1)
12z with the Otsu adaptive thresholding to discriminate between vegetation and background.

ExG=2¢g—-r—1b 1

14z wherer, g and b are the normalized RGB coordinates.

144 Hough transform is one of the most widely used methods for lines detection and it is often
s integrated in tools for guiding agricultural machines because of its robustness and ability to adjust
s discontinuous lines caused by missing crop plants in the row or poor germination [32]. Usually, for
17 crop lines detection, Hough transform is directly applied to the segmented image. This procedure
14s  is computational expensive and depends on the density of the vegetation in crop rows and there
140 is also a risk of the lines over-detection. We have addressed this problem by using the skeleton of
150 each row, this approach has shown better performances in (Bah et al. 2017). The skeleton provided a
11 good overall representation of the structure of the field, namely orientations and periodicity. Indeed,
12 the Hough transform H(6, p) is computed on the skeleton with a 6 resolution equal to 0.1° letting
s 0 take values in the range of | — 90°;90°] and p resolution equal to 1. Thanks to a histogram of the
15 skeletons directions, the most represented angle is chosen as the main orientation 6;;,,,; of crop lines.
1ss  H (0, p) has been normalized Hyorn (6, p) in order to give the same weight to all the crop lines, especially
156 the short ones close to the borders of the image [10]. Hyorm (6, p) is defined as the ratio between the
1z accumulator of the vegetation image and the accumulator of a totally white image of the same size
18 Hones(8, p). To disregard the small lines created by aggregation of weeds in inter-row a threshold of 0.1
15 was applied to the normalized Hough transform. Moreover in modern agriculture crops are usually
160 sown in parallel lines with the same interline distance that is the main peaks corresponding to the crop
11 lines are aligned around an angle in the Hough space with same gaps. Unfortunately, because of the
162 realities in the agricultural field the lines are not perfectly parallel, thus the peaks in the Hough space
163 have close but different angles and the interline distance is not constant. In order to not skip any crop
16s line during the detection, all the lines which have in Hough space a peak whose angle compared to the
165 overall orientation (6};,,.5) of the lines does not exceed 20° are retained. Figure 2 presents the flowchart
166 Of the lines detection method. However, to avoid detecting more than one peak in an aggregation
167 (reduce over-detection), every time that we identify a peak of a crop row in Hyor (6, p), we identify the
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Figure 2. Flowchart of crop lines detection method.

1ee  corresponding skeleton, and then we delete the votes of this skeleton in Hy,or (6, p) before continuing.
16s  All the steps are summarized in algorithm 1.

Algorithm 1: Crop lines detection.

input :skeletons
output:crop lines
1 Computation of the skeletons angle
2 Computation of the main orientation 6;;,,.; of the crop lines
3 Hough transform of the skeletons H(6, p)
4 Hyorm(0,0)=H(6,p)/Hones(6, p)
5 while maximum of Hyorm(6,p) > 0.1 do
6 Computation of the maximum of Hyerm (6, p) and the corresponding angle 0,
7 Recovery of the line corresponding to the maximum (Lineggejeton)
8 Computation of the normalized Hough transform (Hsenp (0, p)) of the Lineseeton
9 Hyorm (0, p)=Hnorm(9/ P) _Htemp (9/ P)
10 if 0 > 01505 — 20° and 0y, < )05 + 20° then
11 | The detected line is a crop line

wo  3.2. Unsupervised training data labeling

7 The unsupervised training dataset annotation is based on the detected lines obtained in previous
172 section. According to hypothesis that the lines detected are mainly at the center of the crop rows
173 (Figure 3) we performed a mask to delimit the crop rows. Hence, the vegetation overlapped by the
17+ mask correspond to the crop. This mask is obtained from the intersection of superpixels formed by the
175 simple linear iterative clustering (SLIC) algorithm [33] and the detected lines. SLIC is chosen since it is
176 simple and efficient in terms of results quality and computation time. It is an adaptation of k-means
1z for superpixels generation with a control on size and compactness of superpixels. SLIC creates a local
s grouping of pixels based on their spectral values defined by the values of the CIELAB color space and
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(a) (b)

Figure 3. From left to right lines detection in bean (a) and spinach (b) fields. Detected lines are in blue.
In the spinach field interline distance and the crop rows orientation are not regular. The detected lines
are mainly in the center of the crop rows.

1o their spatial proximity. A higher value of compactness makes superpixels more regularly shaped. A
1.0 lower value makes superpixels adhere to boundaries better, making them irregularly shaped. Since
11 here the goal is to create a mask around the detected crop lines able to delimit the crop rows we have
1.2 chosen a compactness of 20 because we found it was less sensitive to the variation of color caused by
13 the effect of light and shadow. Figure 4 shows examples of images segmented with different size of
1es  superpixels.

185 Once the crop is identified, next step consists in detection of the interlines weeds. Interline weed
1s is plant which grows up in the interline crop. To detect weeds that lie in inter-row we performed a
1z blob coloring algorithm. Hence any region that does not intersect with the crop mask is regarded as
1es weed. Besides, vegetation pixels which do not belong to the crop mask neither to the interlines weeds
10 are attributed to the potential weeds. Figure 5 shows the mask of crop, interline weeds and potential
100 weeds. To construct the training dataset, we extracted patches from the original images using positions
11 Of the detected inter-row weeds and crops. For weeds samples we performed bounding boxes on
102 each segmented intra-row weed. For the crop samples, sliding window has been applied on the input
103 image using positions relative to the segmented crop lines. Thus, for a given position of the window if
10s it intersects the binary mask and there is no inter-lines weeds pixels we attribute it to the crop class.
105 Generally, the crop class has much more samples than the weed. In the case that we have less interline
106 weeds samples and in the same time we have a wide potential weeds as in Figure 5 we propose to
197 collect samples from the potential weeds. Hence, the window which contains only potential weeds is
108 labeled as weeds. Windows which contain crop and potential weeds, where we have more potential
190 weeds than crop are not retained.

200 3.3. Crop/Weeds classification using Convolutional Neural Networks

201 CNN s are a part of Deep learning approach, they showed impressive performances in many
202 computer vision tasks [34]. CNNs are made up of two types of layers, the convolutional layers which
203 extract different characteristics of images and the fully connected layers based on multilayer perceptron.
20e  The number of convolutional layers depends on the classification task and also the number and the
205 size of the training data.

206 In this work we used a Residual Network (ResNet), this network architecture was introduced
207 in 2015 [35]. It won the ImageNet Large Scale Vision Recognition Challenge 2015 with 152 layers.
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(a) (b) (0)

Figure 4. Examples of superpixels computed on images of dimensions N=7360x4912. From left to
right, the image is segmented with a number of superpixels equal to 0.5% x N, 0.1%xN and 0.01%
xN respectively.

Figure 5. Detection of interline weeds (red) after lines detection (blue) in a bean image. The mask of
crop is represented in green and the potential weeds in magenta.

20 However, according to the size of data we used the ResNet with 18 layers (ResNet18) described in [35]
200 because it has shown a better result than AlexNet and VGG13 [36] in the ImageNet challenge. Due to
20 abundant categories and significant number of images in ImageNet, studies revealed the performance
2 of transferability of networks trained with ImageNet dataset. Thus we performed fine tuning to train
212 the networks in our data. Fine-tuning means that we start with the learned features on the ImageNet
=z dataset, we truncate the last layer (softmax layer) of the pre-trained network and replace it with new
zs  softmax layer that are relevant to our own problem. Here the thousand categories of ImageNet have
25 been replaced by two categories (crop and weeds).

216 3.4. Features Extraction

217 Although color indices do make sense in distinguishing between the vegetation and the
21s background, they become less effective when applied to classify the species of plants. Sometimes, the
210 color of weeds and crop leaves look almost the same. Moreover, the result will become unreliable
220 under different lighting conditions. To solve this problem, several features have been proposed. We
=21 compute series of statistics features, shape features and texture features which have been selected
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222 on other works [19-21,37]. A procedure of feature selection is then used to analyze the most suitable
223 features.

222 3.4.1. Color features

226 The color features used are: mean and standard deviation of three bands of the RGB image and
226 EXG image. In order to make the color features consistent with different lighting levels every color
227 bands was normalized by the sum of all the three color bands.

226 3.4.2. Geometric shape feature

220 Based on [18], three parameters namely Form Factor, Elongatedness and Solidity have been
20 computed as geometric features. We named the vector of feature created by those three as Geo3.

4 % 77 % area
FormFactor = ————
perimeter

areq
Elongatedness = —————
& thickness?

. area
Solidity = ———
CONVeXgreq
231 Here, area is defined as the number of pixels with a value "1” in the binary image. Perimeter is

232 defined as the number of pixels with a value "1’ for which at least one of the eight neighboring pixels
233 has the value 0", implying that perimeter is the number of border pixels. Convex area is the area of the
23s  smallest convex hull that covers all the plant pixels in an image.

235 3.4.3. Edge density

236 Edge detection is a method of image segmentation which uses the fact that the edge frequencies
237 and veins of both the crop and the weed have different density properties (strong and weak edges) to
23s  separate crop from weed [19]. In the follow of this article we will denote edge density as Edensity. It is
230 defined as:

ED — Edgeurea
area
240 Here, area is defined as the number of pixels with a value "1” in the binary image. The image will

21 then be computed by Sobel edge detection method, all the pixels marked as edge in the binary edge
22 image will be added together, the sum of them is the edgee,-

23 3.4.4. HOG

248 Contour attributes generally correspond to the histogram of the gradient orientation. HOG [38] is
2es  fast comparing to the SIFT (because no smoothing is computed), It is computed on a large number of
a6 cells uniformly spaced image and overlapping. Thanks to the normalization of the local contrast, it is
247 invariant to the conditions of illumination. HOG has been initially used for pedestrian detection, but
2e¢ it has shown robustness in many other issues. In 2010, Xiao et al. introduced HOG to identify plant
2e0  leaves [39]. That experiment is inspiring and indicates that we can combine the features extracted by
20 HOG methods to realize leaves classification.

251 3.4.5. Haralick texture

252 The co-occurrence matrix makes possible to obtain the occurrence frequency of a pattern of 2
23 pixels separated by a distance d along a direction 6. In [40] authors propose 14 features that can
zs  be computed on this matrix. These features have the aim of highlighting the visual characteristics,
=5 statistics, the randomness of the distribution of the gray levels and the linear dependence of the gray
26 levels on a neighborhood of pixels (the homogeneity, the coarseness, the periodicity, the smoothness, ...).


http://dx.doi.org/10.20944/preprints201809.0088.v1
http://dx.doi.org/10.3390/rs10111690

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2018 d0i:10.20944/preprints201809.0088.v1

9 of 20

27 In 2012, Haralick method have been applied to extract texture features in classification of plants species
zs  [41]. The authors used 6 of the Haralick features, including: autocorrelation, contrast, correlation,
20 dissimilarity, energy and entropy. Same features are used here and they are called Haralick features.

200 3.4.6. Gabor wavelets

261 This method realizes joint space-frequency analysis.The short time Fourier transform with a
202 Gaussian window is called the Gabor transform. It is able to preserve both local and global information
263 in image. In 2003, Tang et al. fixed the filter orientation at 90° for the classification of broad and narrow
26s leave [16]. By analyzing the separation between classes of each feature, they concluded that a filter
2es  bank with four frequency levels from 4 to 7 are suitable for the classification task. Therefore, we have
266 chosen from 4 to 7 as the frequencies, while 0°, 45° and 90° to be the orientation. We generated 12
207 Gabor features.

20 3.5. SVM or Support Vector Machine

269 The ideal for a good classification is to have a fast classifier, which avoids overfitting, able to
20 respond to multi-class problems, to separate classes with a large gap or margin, to manage large
=i features vector. In this paper we applied the SVM or Support Vector Machine or Large Margin
2z Separator. It is one of the most successful machine learning methods. Its popularity stems from the
23 fact that it ensures a separation of classes with a very great difference if it is provided with two-class
27a data and also because it is adapted to linear and nonlinear cases.

275 3.6. Random Forest (RF)

276 The Random Forest, is a meta-classier, It combines several weak classifiers to form a strong
277 classifier. RF easily handles multi-class problems and is robust to large features and has a very low risk
s Of overfitting. It is used in several applications such as point tracking in video surveillance, medical
2re  imaging, for games in Microsoft’s Kinect. In addition, the RF has been shown to be ideally suited
200 for classifying high resolution UAV data [42]. It is structured like a real forest with trees, where each
21 tree has roots, branches and leaves. The trees correspond to the different classifiers, the first node
2e2  corresponds to the root of the tree (the point of entry of our data), each node is then separated into
203 intermediate nodes and each leaf corresponds to a terminal node where the final decision is stored.
2es  The trees of the forest are built using bagging or Bootstrap aggregating. The principle of bagging is to
2es  construct each tree by selecting a subset of n observations among the N learning data (n < N) obtained
2. by random sampling with delivery. The objective is to get the trees as different as possible, in other
27 words to obtain uncorrelated trees because the more the trees are different, the more robust the forest
2ee  is. The other advantage of bagging is that it makes possible to estimate the prediction error of the
200 forest by using "out-of-bag" (OOB) or data not used during the construction of the trees.

200 4. Experiments and results

201 Experiments were conducted on two different fields of bean and spinach (Figure 6). The images
202 are acquired by a DJI Phantom 3 Pro drone that embeds a 36 megapixel (MP) RGB camera at an altitude
203 of 20 m. This acquisition system enables to obtain very high resolution images with a spatial resolution
204 about 0.35 cm.

205 To build the unsupervised training database, we selected two different parts of given field. The
206 first one (Partl) is used to collect the training data and the other (Part2) for test data collection.

207 To create the crop binary mask after line detection the superpixels compactness have been set
208 to 20 and the number of superpixels is equal to 0.1%xN, where N=7360x4912 (Figure 4b). In this
200  experiments, we used a 64 by 64 window to create the weed and crop training databases. This window
30 size provides a good trade off between plant type and overall information. A small window is not
s1  sufficient to capture whole plant and can lead to confuse culture and non culture, because in some
sz conditions crop and weed leaves have the same visual characteristics. In other hand, too large size
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(a) (b)

Figure 6. Example of images taken in the bean (a) and spinach fields (b). The bean field has less
interline weeds and is predominately composed of potential weeds. The inter-row distance is stable
and the plant is sparse compared to the spinach field which presents a dense vegetation in the crop
rows and irregular inter-row distance. Spinach field has more interlines weeds and it has few potential
weeds.

Figure 7. Example of crop and weed samples of size 64x64 with and without background. Bean:

samples of crop (a and b), samples of weed. (c and d). Spinach: samples of crop (e and f) and samples
of weed (g and h). Depending on the size of the plant and the position of the window we obtain a plant
or aggregation of plants per window.
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Figure 8. Parts of bean field (a) and spinach field (b) with the weeds labeled manually by an expert in
red. The manual labeling has taken about 2 working days.

Table 1. Training and validation data in the bean field.

Data Class Training Validation Total
Supervised Crop 17192 11694 28886
labeling Weed 17076 9060 16136
Total 34868 20754 45022
Unsupervised  Crop 7688 1928 9616

labeling Weed 5935 1493 7428

Total 13623 3421 17044

;03 presents a risk of having crop and weeds in the same window. In the bean field, the weeds present
s0s are thistles and young sprouts of potato from previous sowing on the same field. This field has few
sos interline weeds so we have decided to include the potential weeds in weeds samples. After applying
s06  the unsupervised labeling method, the number of samples collected is 673 for weeds and 4861 for
;07 crops. Even with potential weeds the collected samples was unbalanced. To address this problem
s We realized data-augmentation. Hence we have performed two contrast changes, a smoothing with
s00  a Gaussian filter and three rotations (90°, 180°, 270°). The strong heterogeneity in the fields can
a0 Often be encountered from one part of the field to another. This heterogeneity may be a difference
su  of soil moisture, presence of straw, etc... In order to make our models robust to the background, we
;12 mixed samples with background and no background. Samples without background were obtained
a1z by applying ExG followed by Otsu’s thresholding on previously created samples (see Figure 7). We
a1s  evaluated the performance of our method by comparing models created by data labeled in supervised
a5 and unsupervised way.

316 The supervised training dataset were labeled by human experts. A mask is performed manually
a1z on the pixels of weeds and crops. Figure 8 presents weeds manually delineated by an expert in red. The
se  supervised data collected were also unbalanced so we have carried out the same data augmentation
s19  procedure performed on the unsupervised data. The total number of samples is shown in the Table 1.
320 The spinach field is more infected than the bean field, there are mainly thistles. In total 4303
sz samples of crop and 3626 samples of weed were labeled in unsupervised way. Unlike bean field
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Table 2. Training and validation data in the spinach field.

Data Class Training Validation Total
Supervised Crop 11350 2838 14188
labeling Weed 8234 2058 10292
Total 19584 4896 34772
Unsupervised  Crop 6884 1722 8606
labeling Weed 5800 1452 7252
Total 12684 3174 15858

sz we have obtained a less unbalanced data. Therefore, the only data augmentation applied is adding
;23 samples without background. The same processing has been applied on the supervised data. Table 2
;22 presents the number of samples.

sz 4.1. Evaluation of ResNet results

326 After the creation of both weed and crop classes, 80% of samples were selected randomly for the
;27 training, and the remaining ones were used for validation. The Tables 1 and 2 present the training and
:2¢  validation data performed on each field. For finetuning we tested different values of the learning rate.
220 The initial learning rate is set to 0.01 and updated every 200 epochs. The update is done by dividing
s30  the learning rate by factor of 10. Figure 9 shows the evolution of the loss function during training
s for supervised and unsupervised datasets for spinach and bean fields. From these figures we can
sz notice that the validation loss curves decrease during about the first 80 epochs before to increase and to
a3 converge (behavior close to overfitting phenomenon). This overfitting phenomenon is less emphasized
:3¢  in the supervised labeled data of bean. The best models were obtained during the first learning phase
:3s  with a learning rate of 0.01.

336 Performance of models have been evaluated on test ground truth data collected in Part2 by
s37  supervised way on each field, the Table 3 presents the samples. The performance of the classification
sse  results are illustrated with Receiver Operating Characteristic (ROC) curves.

Table 3. Number of test samples used for each field.

Field Samples of crop Sample of weed

Bean 2139 1852
Spinach 1523 1825
330 From the ROC curves (Figure 10) we can notice that the AUC (Area Under the Curve) are close to

a0 or greater than 90%. Although both types of learning data provide good results and their results are
:a1  comparable. On both fields we remark that positive rate of 20% provides a true positive rate greater
sz than 80%. The differences of performance between supervised and unsupervised data labeling are
sas  about 6% in the bean field and about 1.5% in the spinach field. The performance gap in the bean field
sas  can be explained by the low presence of weeds in the inter-row.

345 Both fields are infested mainly by thistles, we tested the robustness of our models by exchanging
sas  the samples of weeds from the bean field with that of the spinach field.

247 In Figure 11 the results obtained show that despite the small samples harvested in the bean filed,
s those data are suitable to the spinach field and the model created with unsupervised labeling in the
a0 spinach field is most sensitive to the presence of young potato sprouts among bean weed samples.
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Figure 9. Evolution of the loss during training for supervised and unsupervised data in the fields
of spinach and bean. The validation loss curves decrease during about the first 80 epochs before to
increase and converging. First line represents the spinach field and the second one the bean field. The
first and second column are respectively the training on the the supervised and unsupervised data.
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Figure 10. ROC curves of the test data with the unsupervised and supervised data labeling.From left
to right the ROC curves computed on the bean (a) and spinach (b) test data. In the bean field the area
under the curve are (AUC) are 88.73% for unsupervised data and 94.84% for the supervised data. In
the spinach field the area under the curve are (AUC) are 94.34% for unsupervised data and 95.70% for
the supervised data. Supervised and unsupervised data means respectively data labeled in supervised
and unsupervised way:.
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Figure 11. ROC curves of test data with weeds data of the bean field exchanged with that of the spinach
field. From left to right the ROC curves computed on the bean (a) and spinach (b) test data. In the
bean field the area under the curve are (AUC) are 91.37% for unsupervised data and 93.25% for the
supervised data. In the spinach field the area under the curve are (AUC) are 82.70% for unsupervised
data and 94.34% for the supervised data. Supervised and unsupervised data means respectively data
labeled in supervised and unsupervised way.

Table 4. Results on test data collected in bean field with ResNet18, SVM and Random Forest. For the
SVM and RF only the result of the best selected features are presented.

SVM (AUC%) RF (AUC%) ResNet18 (AUC%)
Sup Unsup Sup Unsup Sup Unsup
labeling labeling labeling labeling labeling labeling
ALL features 60.60 44.76 70.16 63.95 - -
Geo3 40.80 59.51 48.91 44.86 - -
Haralick, Color 59.78 40.46 68.15 65.40 - -
- - - - - 94.84 88.73

Best features

sso  4.2. ResNet vs Features extraction with SVM and RF

351 SVM and RF have been applied on features extracted on the dataset (Table 1 and Table 2). RF has
;52 been performed with 200 trees. As for the Resnet18, models have been created on the data labeled
53 in a supervised and unsupervised way. In order to assess the effectiveness of the selected features
¢ we applied them separately and to select the set of features that gives the optimal classification result
;55 we mixed them together. In Figure 12 and Figure 13 we have noticed that the color, Haralick and
s geometric features give the best results. In the field of spinach, the strong presence of thistle with
57 leaves color different from that of spinach at a certain level of growth explain the effectiveness of
sss  the color features. In the bean field, the color features were less effective than the texture features
0 (Haralick) in both dataset since we have young potatoes shoots from the previous sowing among the
3.0 weeds and they have a color almost similar to that of the bean plants.

361 By Using SVM, while the features are combined, the improvement is less than 2% for data labeled
62 in a supervised manner and about 10% for unsupervised data in the spinach field. In the bean field the
ses  same remark applies to the data collected in a supervised manner, for unsupervised data collected
s« N0 improvement has been found. Another remark that can be made is that from one type of data to
ses another the best features are not the same. We also noticed that the selected features are not suitable to
ses detect the weeds present in the bean field. With the RF, the feature selection procedure only increased
se7  performance by about 1% for both spinach dataset. In the bean field an improvement of about 1% have
ses  been observed on data labeled in unsupervised way and about 5% for data labeled in supervised way.
seo Table 4 and Table 5 present the result of SVM and RF with best selected features.
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Figure 12. ROC curves of the SVM models created by each features for each field. First line represents
the spinach field and the second one the bean field. The first and second column are respectively the
training on the the supervised and unsupervised data.

Table 5. Results on test data collected in spinach field with ResNet18, SVM and Random Forest. For
the SVM and RF only the result of the best selected features are presented. Sup and Unsup mean
respectively supervised and unsupervised.

SVM (AUC%) RF (AUC%) ResNet18 (AUC%)
Sup Unsup Sup Unsup Sup Unsup
labeling labeling labeling labeling labeling labeling

Best features

Color, HOG, Gabor 95.94 87.38 93.50 95.131 - -
Haralick, Color, HOG, Gabor 93.93 90.77 95.464 96.177 - -
All features 93.352 90.70 96.99 95.162 - -

- - - - - 95.70 94.34
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Figure 13. ROC curves of the RF models created by each features for each field. First line represents
the spinach field and the second one the bean field. The first and second column are respectively the
training on the the supervised and unsupervised data.

370 In Table 5 we have remarked that ResNet18 provides much better results than SVM and RF in the
sn bean field, with a performance difference greater than 20%. However in the spinach field the results
sz Obtained are comparable and sometimes the results of ResNet18 are lower than those of SVM and
a3 RF (Table 5). This performance of ResNet18 can be explained by the small amount of data used for
s7a  the training in the spinach field. For deep learning algorithms the more data we have, the better the
s7s  algorithm learns. We can also note that the performances of the models formed by the two types of
s7e  data collected are comparable for the three classification methods. The maximum difference is about
sz 6% in both fields.

378 Through those results, we can say that even whether we manage to select the most suitable
a0 features to identify weeds in a field it is possible that these features are not adapted to another field
0 with a different type of culture. They also show that the features considered better by a classifier can
;a1 not necessarily be the best if you change classifier. However, in the fields from one year to another there
se2  is a possibility to find new types of weeds and that the level of growth of the plants can sometimes
s cause confusion between weeds and crops, which leads to a new collection of weeds/crop data and a
ses  selection of features. Thus for an efficient classification it would be interesting to use a tool capable of
ses  automatically generating relevant samples and features to detect weeds, hence the interest of using
ses  deep learning with unsupervised data labeling.
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(a) (b)

(c) (d

Figure 14. Example of UAV image classification with models created by unsupervised data in two
different fields. From first to the second line we have samples from spinach and bean fields. On the first
column we have the samples obtained after using sliding window, without crop lines and background
information. Blue, red and white dot mean that the plants are is identified as weed, crop and uncertain
decision respectively. On the second column we have the detected weeds in red after crop lines and
background information have been applied.

ss7 4.3. Weeds detection

388 In the aim to detect weeds in entire UAV image we applied an overlapping window for weeds
se0  detection. For each position of the window the CNNs models provide the probability of being weeds or
a0 crops. Thus, the center of the extracted image is marked by a colored dot according to the probabilities.
;01 Blue, red and white dot mean respectively that the extracted image is identified as weed, crop and
302 uncertain decision (Figures 14a and 14c). Uncertain decision means the both probabilities are very
03 close to 0.5. Thereafter, we used crop lines information and superpixels that have been created before,
s0s  to classify all the pixels of the image. On each superpixel we look which color of dot has the majority.
s0s A superpixel is classed as crop or weed if the most represented dots are in blue respectively in red. For
106 superpixels that have white dots as majority we used crop lines information. Hence, superpixels which
37 are in the crop lines are regarded as crop and the others are weeds. The superpixels created in the
s0s  background are removed. Figures 14b and 14d present the classification results in parts of spinach and
300 bean fields. On those figures we remark that interline weeds and intra-line weeds have been detected
a0 with a low overdetection. Overdetections are mainly found on the edges of the crop rows where the
200 window cannot overlap the whole plant. Some pixels of weeds are not entirely in red, because after
a2 performing the threshold on the ExG, the parts of these plants which are less green are considered as
a3 sOil.
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404 However, the unsupervised data collection method depends strongly on the efficiency of the crop
05 line detection method and also the presence of weeds in the interline. The line detection approach used
a6 here has already shown its effectiveness in beet and corn fields in our previous work [43]. With the
«07 bean field we found even if a field does not have a lot of samples of weeds in the interline it is possible
as to create a robust model with data-augmentation. We also noticed using a deep learning architecture
a0 such as ResNet18 we can create robust models for classification of weeds in bean or spinach fields
a0 with supervised or unsupervised data annotation. The main advantage of our method is that it is fully
a1 automatic.

a1z 5. Conclusion

a13 In this paper, we proposed a novel fully automatic learning method using Convolutional Neuronal
a1.s Networks CNNs) with unsupervised training dataset collection for weeds detection from UAV images
a5 taken in bean and spinach fields. The results obtained have shown close performance to the supervised
a6 data labeling ones. The Area Under Curve (AUC) differences are 1.5% in the spinach field and 6%
a1z in the bean field. Supervised labeling is an expensive task for human experts and according to the
as gaps of accuracies between the supervised and the unsupervised labeling, our method can be a better
a0 choice in the detection of weeds, especially when the crop rows are spaced. The proposed method
a0 is interesting in terms of flexibility and adaptivity, since the models can be easily trained in new
sz dataset. We also found that ResNet18 architecture can extract useful features for classification of weeds
«22 in bean or spinach fields with data labeled with supervised or unsupervised way. In addition the
«2s developed method could be a key of online weeds detection with UAV. As future work we plan to use
a2« multispectral images because in some conditions near infra red could help to distinguish plant even if
a2s they have a similarity in the visible spectral and leave shape. With the near infra-red we plan also to
a2¢ improve the background segmentation.
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