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Abstract - LDAS-Monde, an offline land data assimilation system with global capacity, is applied 

over the CONtiguous US (CONUS) domain to enhance monitoring accuracy for water and energy 

states and fluxes. LDAS-Monde ingests satellite-derived Surface Soil Moisture (SSM) and Leaf 

Area Index (LAI) estimates to constrain the Interactions between Soil, Biosphere, and Atmosphere 

(ISBA) Land Surface Model (LSM) coupled with the CNRM (Centre National de Recherches 

Météorologiques) version of the Total Runoff Integrating Pathways (CTRIP) continental 

hydrological system (ISBA-CTRIP). LDAS-Monde is forced by the ERA-5 atmospheric reanalysis 

from the European Center For Medium Range Weather Forecast (ECMWF) from 2010 to 2016 

leading to a 7-yr, quarter degree spatial resolution offline reanalysis of Land Surface Variables 

(LSVs) over CONUS.  

The impact of assimilating LAI and SSM into LDAS-Monde is assessed over North America,  by 

comparison to satellite-driven model estimates of land evapotranspiration from the Global Land 

Evaporation Amsterdam Model (GLEAM) project, and upscaled ground-based observations of 

gross primary productivity from the FLUXCOM project. Also, taking advantage of the relatively 

dense data networks over CONUS, we also evaluate the impact of the assimilation against in-situ 

measurements of soil moisture from the USCRN network (US Climate Reference Network) are 

used in the evaluation, together with river discharges from the United States Geophysical Survey 

(USGS) and the Global Runoff Data Centre (GRDC). Those data sets highlight the added value of 

assimilating satellite derived observations compared to an open-loop simulation (i.e. no 

assimilation). It is shown that LDAS-Monde has the ability not only to monitor land surface 

variables but also to forecast them, by providing improved initial conditions which impacts persist 

through time. LDAS-Monde reanalysis has a potential to be used to monitor extreme events like 

agricultural drought, also. Finally, limitations related to LDAS-Monde and current satellite-derived 
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observations are exposed as well as several insights on how to use alternative datasets to analyze 

soil moisture and vegetation state. 

Keywords: Land Surface Data Assimilation, remote sensing, ERA5 

 

 1  Introduction 

One of the major scientific challenges in relation to the adaptation to climate change is observing 

and simulating the response of land biophysical variables to extreme events, making Land Surface 

Models (LSMs) constrained by high-quality gridded atmospheric variables and coupled with river-

routing models key tools (Schellekens et al., 2017; Dirmeyer et al., 2006). The modelling of 

terrestrial variables can be improved through the dynamical integration of observations. Remote 

sensing observations are particularly useful in this context due to their global coverage, higher and 

higher spatial resolution. The current fleet of Earth observation missions holds an unprecedented 

potential to quantify land surface variables (LSVs) (Lettenmaier et al., 2015) and many satellite-

derived products relevant to the hydrological and vegetation cycles are already available at high 

spatial resolution. Satellite remote sensing observations exhibit however spatial and temporal gaps 

and not all key LSVs can be observed. LSMs are able to provide LSV estimates at all times and 

locations using physically based equations but as remotely sensed observations they are affected by 

uncertainties (e.g., parametrization representation, atmospheric forcing, initialisation). Through a 

weighted combination of both, LSVs can be better estimated than by either source of information 

alone (Reichle et al., 2007): data assimilation techniques enable to spatially and temporally 

integrate observed informations into LSMs in a consistent way to unobserved locations, time steps 

and variables. 

In the past recent years, several Land Data Assimilation System (LDAS) have emerged at different 

spatial scales: regional like like the Coupled Land Vegetation LDAS (CLVLDAS, Sawada and 

Koike, 2014, Sawada et al., 2015), the Famine Early Warning Systems Network (FEWSNET) 

LDAS (FLDAS, McNally et al., 2017), continental like the North American LDAS (NLDAS, 

Mitchell et al., 2004; Xia etal., 2012), the National Climate Assessment LDAS (NCA-LDAS Kumar 

et al., 2018) as well as at global scale like the Global Land Data assimilation (GLDAS, Rodell et al., 

2004) and more recently LDAS-Monde (Albergel et al., 2017). LDAS-Monde has been developed 

to constrain the CO2-responsive version of the ISBA (Interactions between Soil, Biosphere, and 

Atmosphere ) LSM (Noilhan and Mahfouf, 1996; Calvet et al., 1998, 2004; Gibelin et al., 2006) 

using satellite derived observations within the open-source SURFEX modelling platform (SURFace 

Externalisee, Masson et al., 2013) of Meteo-France. LDAS-Monde has been implemented in a 

monitoring chain of terrestrial water and carbon fluxes. Unlike most of the above mentioned LDAS, 

LDAS-Monde is able to jointly and sequentially assimilate vegetation products such as Leaf Area 
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Index (LAI) together with Surface Soil Moisture (SSM) observations (Barbu et al., 2011; 2014; 

Fairbairn et al., 2017; Albergel et al., 2017). Albergel et al. (2017) tested LDAS-Monde over Europe 

and the Mediterranean basin for the 2000-2012 period. A long term, global scale, multi-sensor 

satellite-derived surface soil moisture dataset (ESA CCI SSM, Liu et al., 2011a, 2012; Dorigo et al., 

2015, 2017) along with satellite derived LAI (GEOV1, http://land.copernicus.eu/global/ last access, 

June 2018), were jointly assimilated. LDAS-Monde was forced by WFDEI (WATCH-Forcing-Data-

ERA-Interim) observations based atmospheric forcing dataset (Weedon et al., 2011, 2014) at half 

degree spatial resolution. Analysis impact was successfully carried out using (i) agricultural 

statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land 

evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) 

spatially gridded observations based estimates of up-scaled gross primary production and 

evapotranspiration from the FLUXNET network (Albergel et al., 2017). 

In this study, LDAS-Monde is applied and tested in a data-rich area: the CONtiguous US (CONUS, 

defined here as longitudes from 130.0ºW to 60.0ºW, latitudes from 20.0º to 55.0º N, as shown in 

Figure 1). LDAS-Monde is forced by the latest ERA-5 atmospheric reanalysis from the European 

Center For Medium Range Weather Forecast (ECMWF) from 2010 to 2016 leading to a 7-yr, 

quarter degree spatial resolution offline reanalysis of the Land Surface Variables (LSVs). Albergel 

et al. (2018) assessed ERA-5 ability to force the ISBA LSM by comparison to satellite-derived 

products and in-situ observations covering a substantial part of the land surface storage and fluxes. 

They found that using ERA-5 in place its predecessor, ERA-Interim, led to significant 

improvements in the representation of the LSVs linked to the terrestrial water cycle (surface soil 

moisture, river discharges, snow depth and turbulent atmospheric fluxes), but did not improve the 

LSVs linked to the vegetation cycle (evapotranspiration, carbon uptake and LAI). In that respect, 

the assimilation of LAI through ERA-5 driven reanalysis from LDAS-Monde is expected to bring a 

clear improvements (Albergel et al., 2017). In this study, the impact of LDAS-Monde analysis with 

respect to an open-loop (i.e. model run without assimilation) is assessed using satellite-driven 

model estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model 

(GLEAM) project and upscaled ground-based observations of gross primary productivity from the 

FLUXCOM project, together with river discharges from the United States Geophysical Survey 

(USGS) and the Global Runoff Data Centre (GRDC). Over CONUS, in-situ measurements of soil 

moisture from the USCRN network (US Climate Reference Network) are used in the evaluation, 

also. Section 2 describes the different components of LDAS-Monde as well as the evaluation data-

sets and strategy. Section 3 provides a set of statistical diagnostics to assess and evaluate the impact 

of the assimilation. Finally, Sect. 4 provides perspectives and future research directions. 
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 2  Data and Methods 

 2.1  LDAS-Monde system components 

LDAS-Monde allows sequential assimilation of satellite derived land observations at a global scale. 

The assimilation is performed into the open-access SURFEX modelling platform of Météo-France 

(SURFace Externalisée, Masson et al., 2013). It produces offline reanalyses of LSVs using (i) an 

LSM along with data assimilation techniques, (ii) observations and (iii) atmospheric forcing. Those 

components of LDAS-Monde are briefly described below. 

 

 2.1.1  The SURFEX modelling platform 

LDAS-Monde uses the CO2-responsive version of ISBA embedded in the SURFEX platform. The 

most recent version of SURFEX (version 8.1) is used in this study with the “NIT” plant biomass 

monitoring option for ISBA. In this configuration, ISBA simulates leaf-scale physiological 

processes and plant growth (Calvet et al., 1998, 2004; Gibelin et al., 2006), while transfers of water 

and heat through the soil rely on a multilayer diffusion scheme (Boone et al., 2000 and Decharme et 

al., 2013). The ISBA parameters are defined for 12 generic land surface patches. They include nine 

plant functional types (needle leaf trees, evergreen broadleaf trees, deciduous broadleaf trees, C3 

crops, C4 crops, C4 irrigated crops, herbaceous, tropical herbaceous, and wetlands) as well as bare 

soil, rocks, and permanent snow and ice surfaces. 

This version of ISBA is coupled to the CTRIP river routing model through OASIS-MCT (Voldoire 

et al., 2017) in order to simulate streamflows of the main rivers (Decharme et al., 2010, 2012, 

Vergnes and Decharme, 2012, Vergnes et al., 2014). Besides, a single-source energy budget of a 

soil/vegetation composite is computed. SURFEX also involves data assimilation techniques to 

analyse LSVs from the ISBA LSM.  

This study makes use of the Simplified version of an Extended Kalman Filter (SEKF) as already 

used and described in Barbu et al. (2011), Fairbairn et al. (2017), Albergel et al. (2017) and Leroux 

et al. (2018). The SEKF uses finite differences from perturbed simulations to estimate the linear 

tangent model linking the model state control variables to  the observed variables. Satellite derived 

Surface Soil Moisture (SSM) and Leaf Area Index (LAI) are simultaneously assimilated to update 

eight model state control variables (i.e. control variables): LAI and soil moisture from seven layers 

of soil, from 1 cm to 100 cm. Assimilating SSM and LAI within LDAS-Monde results in updates of 

the LSM variables in different ways. First, the SEKF computes the Kalman gain to update the 

model variables corresponding to the observations. It can be variables of the model that are directly 

observed or related to the observations through an observation operator (that can be a simple 

transfer function). Secondly, control variables are updated through their functional link to the 

observed variables. For example, the assimilation of LAI impacts LAI itself but also soil moisture 
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from the 7 layers present in the state vector and the assimilation of SSM impacts LAI, also. Finally, 

other variables are indirectly modified by the SEKF process through biophysical processes and 

feedbacks in the model by updates of the control variables. 

 

 2.1.2  ESA CCI Surface Soil Moisture and CGLS Leaf Area Index 

In this study the European Space Agency and Climate Change Initiative (ESA CCI) SSM-combined 

version of the product (v4.1) is assimilated into LDAS-Monde (http://www.esa-soilmoisture-

cci.org, last access June 2018). The CCI merges SSM observations from seven different microwave 

radiometers (SMMR, SSM/I, TMI, ASMR-E, WindSat, AMSR2, SMOS) and four different 

scatterometers (ERS-1 and 2 AMI and MetOp-A and B ASCAT) into a single combined data set 

covering the time period from November 1978 to December 2016. Data are expressed in volumetric 

(m
3
m

-3
) units and quality flags are provided (i.e. snow coverage or temperature below 0° and dense 

vegetation). For a more comprehensive overview of the product see Dorigo et al. (2015, 2017). 

Topographic relief is known to negatively affect satellite remote sensing retrievals of SSM (Mätzler 

and Standley, 2000), hence the time series for pixels whose average altitude exceeds 1500 m above 

sea level were not accounted for. Data on pixels with urban land cover fractions larger than 15% 

were discarded too, to limit the effects of artificial surfaces. These thresholds were set according to 

Draper et al. (2011), Barbu et al. (2014) and Albergel et al. (2017) who processed satellite-based 

SSM retrievals for data assimilation experiments with the ISBA LSM. Data are available almost 

every day with a spatial resolution of 0.25° x 0.25°. Similarly to previous studies, the ESA CCI 

SSM product has been transformed into the model-equivalent SSM to address possible 

misspecification of physiographic parameters, such as the wilting point and the field capacity. The 

linear rescaling approach described in Scipal et al. (2008) (using the first two moments of the 

cumulative distribution function, CDF) was used. It consists of a linear rescaling enabling a 

correction of the differences in the mean and variance of the distribution. It has been applied at a 

seasonal scale (i.e. for each specific month) following Albergel et al. (2017). 

The GEOV1 LAI is assimilated, also. It is produced by the European Copernicus Global Land 

Service project (http://land.copernicus.eu/global/) last access June 2018). Boussetta et al. (2015) 

proposed an evaluation of this product in the context of Numerical Weather Prediction (NWP). LAI 

observations are retrieved from the SPOT-VGT (from 1999 to 2014) and then from PROBA-V 

(from 2014 to present) satellite data according to the methodology proposed by Baret et al. (2013). 

The 1 km spatial resolution observations are interpolated by an arithmetic average to the 0.25° x 

0.25° model grid points, if at least 50 % of the observation grid points are observed (i.e half the 

maximum amount). LAI observations have a temporal frequency of 10 days at best (e.g., in 
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presence of clouds no observations are available). Both assimilated datasets are illustrated by Figure 

1, averaged over 2010-2016.  

 

 2.1.3  ERA-5 atmospheric reanalysis 

ERA-5 (Hersbach and Dee, 2016) is the fifth generation of European reanalyses produced by the 

ECMWF and a key element of the EU-funded Copernicus Climate Change Service (C3S). ERA-5 

important changes relative to ERA-Interim former ECMWF‟s atmospheric reanalysis include (i) a 

higher spatial and temporal resolution as well as (ii) a more recent version of ECMWF Earth 

system model physics and data assimilation system (corresponding to ECMWF‟s cycle CY41R2, 

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-

documentation, last access June 2018). It makes it able to use modern parameterizations of Earth 

processes compared to older versions used in ERA-Interim. For instance, in addition to being 

applied to satellite observations, a variational bias scheme is also applied to aircraft and surface 

ozone and pressure data. ERA-5 also benefits from reprocessed data sets that were not ready yet 

during the production of ERA-Interim. Two other important features of ERA-5 are the    more 

frequent model output and improved model spatial resolution, going from 6-hourly output in ERA-

Interim to hourly output analysis in ERA-5, and from 79 km (horizontal dimension) and 60 levels 

(vertical dimension), to 31 km and 137 levels in ERA-5. Finally, ERA-5 also provides an estimate 

of uncertainty through the use of a 10-member Ensemble of Data Assimilations (EDA) at a coarser 

resolution (63 km horizontal resolution) and 3-hourly frequency. ERA-5 is foreseen to replace 

ERA-Interim reanalysis. All ERA-5 atmospheric variables were interpolated at 0.25x0.25º spatial 

resolution. A bilinear interpolation from the native reanalysis grid to the regular grid was made. 

 

 2.2  Evaluation datasets and methods 

LDAS-Monde analysis impact was assessed with respect to the open-loop model run (i.e. no 

assimilation). The system was spun-up by running year 2010 twenty times. Table I presents the set 

up of the different experiments used in this study, the openloop and the analysis as well as two 

additional model runs: (i) Ini_model, a 12-month model run starting on 1 January 2016 (initialised 

by the model simulation run from 2010 to 2015) and (ii) Ini_analysis, a 12-month model run 

initialised by initial conditions from the analysis on 1 January 2016. The two above-mentioned 

assimilated datasets (ESA-CCI SSM and LAI GEOV1) were used as a way to check to what extent 

the assimilation system was able to produce analyses closer to these two datasets that were 

assimilated than the open-loop. Then two independent spatially distributed datasets, namely 

evapotranspiration from the GLEAM project (Miralles et al., 2011, Martens et al., 2017) and Gross 

Primary Production (GPP) from the FLUXCOM project (Tramontana et al., 2016, Jung et al., 2017) 
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were used in the evaluation process. Ground based measurements of soil moisture from the USCRN 

network (US Climate Reference Network, Bell et al., 2013) were used, also, along with river 

discharge observations from the United States Geophysical Survey (USGS) and the Global Runoff 

Data Centre (GRDC). 

LDAS-Monde ability to represent SSM, LAI, evapotranspiration and GPP, was assessed using the 

correlation coefficient (R) and Root Mean Square Difference (RMSD). These metrics were applied 

at a seasonal scale (i.e. for each month) over 2010-2016. For ground based measurements of SSM, 

R was calculated for both absolute and anomaly time series in order to remove the strong impact 

from the SSM seasonal cycle on this specific metric (see e.g., Albergel et al., 2017, 2018). Ground 

measurements at a depth of 5 cm were compared to soil moisture of the third layer of soil (between 

4 and 10 cm depth) from both the model and the analysis for months from April to September over 

the 2010-2016 time period to avoid frozen conditions. Only stations with significant R values for 

the two experiments (with p-value < 0.05) were kept for the evaluation.  

In order to provide an easier measurement of the added value of the analysis, statistics were also 

normalized with respect to the model. The so called Normalized Information Contribution index 

(NIC as in Kumar et al., 2009; Albergel et al., 2018) was applied to the correlation coefficient (Eq. 

1, for both volumetric and anomaly time-series) and to RMSD (Eq. 2) to quantify the improvement 

or degradation from the analysis with respect to the model.  

NICR=
R(Analysis)− R( Model )

1− R(Model )

× 100
Eq.1 

NRMSD=
RMSD(Analyse)− RMSD( Model )

RMSD(Model )

× 100
Eq.2 

NIC scores were then classified according to three categories: (i) negative impact from the analysis 

with respect to the model with values smaller than -3 %, (ii) positive impact from the analysis with 

respect to the model with values greater than +3 % and (iii) neutral impact from the analysis with 

respect to the model with values between -3 % and 3 %. 

Over the 2010-2016 time period, river discharge from the analysis and model runs were compared 

to daily streamflow data from USGS and GRDC. Data were selected for sub-basins with rather 

large drainage areas (10,000 km2 or greater) due to the low resolution of CTRIP (0.5x0.5°) and with 

a long observation time series (48 months or more). As commonly found in the literature observed 

and simulated river discharge (Q) data are expressed in m3s−1. However given that the observed 

drainage areas may differ from the simulated ones, specific discharge in mm.d−1 (the ratio of Q to 

the drainage area) was used in this study, similarly to Albergel et al., 2017, 2018. Stations with 

drainage areas differing by more than 20 % from the simulated ones were discarded. Impact on Q 

was evaluated using the Kling–Gupta Efficiency (KGE; Gupta et al., 2009) score: 
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KGE= 1−√REσ
2+REμ

2+(1− R)2

Eq. 3 

with REμ  and REσ the relative error of simulated or analysed mean and standard deviation (Eq.4) 

and (Eq. 5) respectively, R the correlation coefficient between the observed discharges and either 

the modelled or analysed river discharges.  

REμ=
Qμ

Q(obs.)μ
− 1

Eq.4 

REσ=
Qσ

Q(obs.)σ
− 1

Eq.5 

KGE represents the Euclidean distance from the ideal point in the [REμ , REσ , R] score space. REμ, 

REσ and R constitute a set of mathematically independent metrics quantifying the fit of 

simulated/analysed discharge time series. At best, Reμ and REσ are equal to 0 and R is equal to 1 

(leading to a perfect KGE value of 1), indicating that simulated or analysed time series are identical 

to the measured one. NIC (Eq. 1) was applied to KGE (Eq.6 ) as well, for stations with KGE values 

greater than 0, only. Finally REμ and REσ metrics were normalised, following Eq. 7, Eq. 8 to 

appreciate the added value from the analysis with respect to the model, also. 

NICKGE=
KGE( Analysis)− KGE( Model )

1− KGE(Model )
× 100

 Eq.6 

NREμ
= 100∗

REμ( Analysis)− REμ(Model )

REμ( Model ) Eq.7 

NREσ
= 100∗

REσ(Analysis)− REσ(Model )

REσ(Model ) Eq.8 

 3  Results 

 3.1  Analysis impact on assimilated variables 

Being the model equivalents of the assimilated observations, LAI and soil moisture from the second 

layer of soil are expected to be the two variables most affected by the assimilation. Figure 2 

presents 10-day time series of LAI averaged over the whole domain for the 2010-2016 time period. 

From Figure 2 one can see that the open-loop simulation tends to overestimate the observed LAI in 

winter periods and that the senescence phase of vegetation is too late over the autumn when 

compared to the observations. To that respect, the assimilation is efficiently correcting the model ; 

however analysed LAI does not reach LAI maximal values of the observations. Figure 3 shows 

maps of LAI for the model (Fig. 3a), the observations (Fig. 3b) and the analysis (Fig. 3c) averaged 

over 2010-2016. It is clearly visible that the model overestimates LAI in the eastern part of the 

domain. Also, some geographical patterns visible in the observations (e.g., the Mississippi and red 

river areas in Fig. 3b) are not represented in the model (Fig. 3a). After assimilation, the analysis 

presents reduced LAI values in the eastern part of the domain and the above-mentioned 

geographical patterns are visible, too (fig.3c). This shows the ability of the assimilation to integrate 
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geographical information into the model. Figure 3 also presents seasonal scores between the model 

and the observations and between the analysis and the observations for RMSD and R, over the 

2010-2016 time period. The analysis leads to better fit between the model forecasts and the 

subsequent assimilated observations, for both metrics. On average for the whole period, RMSD 

values drop from 1.10 m
2
m

-2
 (model vs. observations) to 0.65 m

2
m

-2
 (analysis vs. observations) 

while R values increase from 0.69 (model vs. Observations) to 0.88 (Analysis vs. Observations). 

Figure 4 presents the same information content for soil moisture. As ESA CCI SSM was rescaled in 

order to match the modelled SSM probability distribution, differences are hardly visible from fig.4a, 

b and c. From fig.4d & e however, one can appreciate the added value of the analysis: RMSD 

values drop from 0.046 m
3
m

-3
 (model vs. Observations) to 0.044 m

3
m

-3
 (Analysis vs. observations) 

while R values increase from 0.85 (model vs. observations) to 0.87 (analysis vs. observations). 

Finally, Figure 5 shows maps of analysis increments for 4 (out of 8) control variables averaged over 

the whole 2010-2016 time period (LAI, second, fourth and sixth layers of soil from left to right, 

respectively). It can be noticed that the magnitude of increments is decreasing with depth. It can 

also be noticed that over almost the whole domain, the analysis tends to add water in the soil near 

the surface (positive increments) while it removes water in the deepest layers (negative increments). 

 3.2  Evaluation using independent datasets 

 3.2.1  Evapotranspiration and GPP 

On average, R increases from 0.80 to 0.81 when comparing  evapotranspiration from the model and 

from the analysis, respectively, to the independent estimates. Average RMSD decreases from 0.89 

kg.m
-2

.d
-1

 to 0.85 kg.m
-2

.d
-1

. When compared to GPP estimates, averaged correlations rise from 0.74 

to 0.78 and RMSD drops from 2.198 kg(C).m
-2

.d
-1

 to 1.908 kg(C).m
-2

.d
-1 

when considering the 

model or the analysis, respectively. Figure 6 presents spatial maps of NRMSD (fig.6a and c) and NICR 

(fig.6b and d) resulting from the comparison with evapotranspiration (figure 6, top row) and GPP 

(figure 6, bottom row) of their modeled and analysed equivalent. For, NRMSD (fig.6a and c) blue 

colors represent an improvement from the analysis regarding RMSDs (i.e. the latter better 

represents either evapotranspiration or GPP than the model) while for NICR (fig.6b and d) red 

colors represent an improvement from the analysis. Figure 6 shows that both evapotranspiration and 

GPP are improved almost everywhere, in terms of correlation and RMSD. Finally Figure 7 shows 

the annual cycle of monthly RMSD and R values. From fig.7a and c one can appreciate the positive 

impact of the assimilation, with reduced RMSD values all year long, especially for GPP. From 

fig.7b, it is visible that the analysis has a positive impact on the R values for evapotranspiration on a 

limited time period (April to May) and from fig.7d, a strong positive impact on R values for GPP is 

noticeable all year long. 

 3.2.2  Soil moisture  
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The statistical scores for surface soil moisture from the model and the analysis (third layer of soil 

between 4 and 10 cm depth) over 2010–2016 when compared to ground measurements from the 

USCRN network (at 5 cm depth) are presented in Table II. Median R values on volumetric soil 

moisture time-series (anomaly time series) along with their 95 % confidence interval of the median 

derived from a 10 000 samples bootstrapping are: 0.72±0.02 (0.60±0.02) and 0.74±0.02 (0.60±0.02) 

while median ubRMSD are 0.049±0.004 and 0.048±0.004 for the model and the analysis, 

respectively. Figures 8a &b illustrate correlation values on volumetric and anomaly time-series, 

respectively, between the model and the observations, for each stations. Figures 8c & d represent 

the added value of the analysis expressed through the NIC index (Eq.1) applied for correlations 

(NICR) values on volumetric and anomaly time-series: large blue circles represent a positive impact 

from the analysis at NICR greater that +3 (i.e. R values are better when the analysis is used than 

when the model is used), large red circles a degradation from the analysis at NICR smaller than -3 

while diamond symbols represent a rather neutral impact at NICR between [-3;+3]. While 46% 

(81%) of the pool of stations present a rather neutral impact for R values on volumetric (anomaly) 

time series, stations more impacted by the analysis tend to be positively impacted at 46% (18%), to 

be compared with 8% (1%) of negative impacts. Although differences between the model run and 

the analysis are rather small, these results underline the added value of the analysis with respect to 

the model run. 

 3.2.3  Streamflow  

A subset of 258 out of 531 gauging stations was selected for the evaluation according to the criteria 

described in the methodology section, with KGE scores within the [0, 1] interval. Figure 9 presents 

the performance of analysed streamflow with respect to the one from the model run for this pool of 

stations, with a focus on the eastern part of the domain. NICKGE values are presented following the 

same classification as NICR applied to soil moisture. Scores are presented in Table III. Looking at 

NICKGE, 62% of the pool of stations (258 stations) present a rather neutral impact (at NICKGE  

between [-3;3]) and 26% of the stations present a positive impact (at NICKGE>+3) while only 12 % 

of stations have a negative impact (at NICKGE<-3). NICR, NREσ and NREμ follow the same 

classification (with even a smaller percentage of stations being negatively affected by the analysis; 

1%); when the analysis is impacting streamflow representation, it tends to be a positive impact. 

 

 4  Potential applications, discussions and perspectives 

 4.1  Could LDAS-Monde bu used to monitor agricultural droughts? 

The previous section has highlighted the LDAS-Monde ability to enhance the monitoring accuracy 

for land surface variables. It should then be possible to use it to better represent extreme events like 

agricultural droughts. Figure 10 represents monthly LAI anomalies averaged over the USA corn belt 
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(simplified as a box from 110°W to 70°W and 30°N to 50°N) with respect to 2010-2016 means 

from the model, the analysis and the observations. As showed by Figure 10, for the second part of 

the year 2012, LAI observations exhibit a strong negative anomaly at this domain scale. While it is 

also visible in the model, the latter clearly overestimates the intensity of the observed anomaly. The 

analysed LAI anomaly is closer to the observed one than the model. This extreme drought event is 

known as the August 2012 US corn belt drought. The U.S. Department of Agriculture (USDA, 

www.nass.usda.gov, last access June 2018) estimated that corn yield (per acre of planted crop) was 

26% below the expectation that they had at the beginning of the 2012 growing season. The 2012 

corn yield deficit and the implied climatic impact was classified as an „historic event’ (Hoerling et 

al., 2014). As visible on figure 10, spring 2012 presents a positive anomaly for vegetation. Ault et 

al. (2013) defined spring 2012 as the earliest false spring in North American record (i.e., a period of 

weather in late winter or early spring allowing to bring vegetation out of dormancy prematurely). It has 

contributed to an earlier dry out of the soil. Figure 11 presents maps of LAI anomaly for this 

specific month for the model, observations and analysis from left to right, respectively. Compared 

to the observations (fig.11b), the area affected by the anomaly in the model (fig.11a) is too large and 

too intense while the analysis (fig.11c) better matches the observed pattern both in space and 

intensity. This impact is valid when comparing to most of the severe droughts events that occurred 

over CONUS (data from the National Oceanic and Atmospheric Administration -NOAA- state of 

the climate website, last access April-2018 https://www.ncdc.noaa.gov/sotc/drought/201803, not 

shown). Hence, LDAS-Monde provides a better tool than the model alone to monitor extreme 

events like agricultural droughts. 

 4.2  Could LDAS-Monde provide accurate initial conditions for model forecast? 

In the context of NWP, assimilation of satellite observations in atmospheric models has the capacity 

of mitigating model deficiencies, leading to better estimates of system states. This has been the 

main driver of the improvement of both weather forecast skill and lead time (Bauer et al., 2015). 

Data assimilation is able to produce similar benefits for LSVs forecasting. Seeking to foster link 

with applications, LDAS-Monde could be used not only to monitor the LSVs but also be integrated 

in a forecasting system (at different time scales) assuming that it can provide better initial 

conditions than a model run and that its impact lasts in time. Many applications could benefit from a 

better representation of the LSVs, from NWP (de Rosnay et al., 2013), to early warning systems of 

e.g. agricultural drought, yield forecasts. As a first step towards such early warning systems, Figure 

12 shows a comparison between LAI from the two last simulations presented in Table I: Ini_Model 

and Ini_Analysis. Fig.12a(b) shows monthly RMSD (R) values for the year 2016 for LAI. Not only 

a strong impact is visible from the beginning of the two simulations but also a few months later (up 

to April). The four maps of fig.12c show RMSD differences between Ini_analysis and Ini_model 
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from January to April. All maps are dominated by negative values suggesting that Ini_analysis 

present a better match with the observed LAI and that these effects last in time. Such results are 

strongly linked to the time of the year when the simulation is initialised by the analysis, i.e. the 

greater the prior difference between the model and the analysis experiments will be, the stronger the 

impact . As for LAI, and according to Figure 2 a marked impact would be expected from July to 

March. It is also very promising that the impact of LAI initialisation last in time for several weeks, 

or even months. 

 4.3  Which alternative data to better constrain LDAS-Monde? 

LDAS-Monde reanalyses presented above were repeated assimilating only SSM or LAI, 

results suggested that most of the skill came from the assimilation of LAI (not shown). 

While assimilating SSM does mainly affect the first layers of soil (layer 2, 1 cm to 4 cm 

and layer 3, 4 cm to 10 cm), assimilating LAI has an impact on deeper layers (up to 60 

cm) and is more efficient to analyse the root zone soil moisture, too. This has also been 

suggested by Albergel et al. (2017), when analysing the ISBA LSM sensitivity to the 

assimilated observations through the SEKF Jacobians.  

However, the LAI product used in this study is available every 10 days at best, making it 

less efficient to constrain the ISBA LSM, particularly in areas of the world affected by 

clouds for long periods of time (e.g. areas affected by the monsoon regime).  

Microwave remote sensing over land has mainly been focusing on soil moisture retrieval 

(Entekhabi et al., 1994; Reichle et al., 2001) and vegetation was mostly considered 

during the retrieval of surface soil moisture as a by-pass product affecting the signal 

penetration to the surface (Kurum et al., 2011; 2012). The attenuation of the signal (i.e. 

when passing through the vegetation) depends on the Vegetation Optical Depth (VOD). 

VOD describes the attenuation of radiation due to scattering and absorption within the 

vegetation layer, which is caused by the water contained in the vegetation. It is function 

of the frequency of the microwave sensor, the water content of the plant (trunk, 

branches, leaves) as well as on the biomass (e.g. Meesters et al., 2005; Liu et al., 2011b; 

Konings et al., 2016; Tian et al., 2016). VOD can be retrieved from microwave data e.g. 

from the L-band Soil Moisture and Ocean Salinity (SMOS) mission (Fernandez-Moran 

et al., 2017) or the C-band Advanced Scatterometer (ASCAT) mission on-board the 

meteorological operational satellite A (MetOp-A) (Vreugdenhil et al., 2016a, 2016b). 

VOD can be related to LAI (e.g., Zribi et al., 2011; Kim et al., 2012; Sawada et al., 

2016; Momen et al., 2017). Figures 13 presents a map of temporal correlation coefficient 

values between modelled LAI and microwave-derived VOD from radar backscatter 

measurements of ASCAT (Vreugdenhil et al., 2016a, 2016b) (fig.13a) as well as their 
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distribution (fig.13b) for 2010-2016. High correlations values are found in large parts of 

the domain, with a median value of 0.57. The northern part of the domain shows R 

values greater than 0.7 while smaller R values (an even negative R values) are found in 

the southern part of the domain. Over dry soils, sub-surface scattering from the 

microwave signal potentially affects the VOD estimates (Wolfgang Wagner, TU WIEN, 

personal communication, April 2018). The same VOD dataset has a higher median R 

value with the observed LAI, 0.88. Consequently it better correlates with the analysis 

(median R values of 0.61) than with the model, also. If a strong statistical relationship 

between C-band VOD and LAI can be obtained through the use of e.g. machine learning 

techniques (like Neural Network techniques, Rodriguez-Fernandez et al., 2017), it could 

enable obtaining a surrogate of LAI based on C-band VOD that would have the 

advantage of having higher temporal frequency than the current LAI product (low 

frequency microwave observations are not affected much by clouds and are not affected 

by solar elevation). Such a product could then be assimilated into LDAS-Monde to 

better constrain the system. Looking at such relationship for data assimilation purposes 

is currently under study at CNRM.  

Also, retrieved soil moisture is assimilated in LDAS-Monde, from active radar 

backscatter (σo) observations. Retrieval methods usually make use of land surface 

parameters and auxiliary information (like vegetation, texture and temperature), possibly 

being inconsistent with specific model simulations (which also include these parameters 

but potentially from different sources). Also, if retrievals and model simulations rely on 

similar types of auxiliary information, their errors may be cross-correlated, potentially 

degrading the system performance (De Lannoy and Reichle, 2016). This leads to an 

increasing tendency towards the direct assimilation of σo observations (and of passive 

radiometer brightness temperature, Tb, as well) (De Lannoy et al., 2013; Han et al., 

2014; Lievens et al., 2015, 2016). CNRM is also investigating the direct assimilation of 

σo. It requires the implementation of a forward model for σo in the ISBA LSM. Lievens 

et al. (2016) used the Water Cloud Model (Attema and Ulaby, 1978) to relate surface soil 

moisture from the Global Land Evaporation Amsterdam Model (GLEAM, Miralles et 

al., 2011a,b) to σo for data assimilation purposes. Within LDAS-Monde, both surface 

soil moisture and leaf area index could be related to the radar backscatter. 

 

 5  Conclusions 

In this study, LDAS-Monde sequential assimilation of satellite derived surface soil moisture and 

leaf area index, forced by ERA-5 latest atmospheric re-analysis was applied to the CONtiguous US 
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domain. Albergel et al. (2018) have highlighted the added value of using the ERA-5 atmospheric 

reanalysis to force the ISBA Land Surface Model over the CONtiguous US for the 2010-2016 

period. They found that the use of ERA-5 instead of ERA-Interim leads to significant improvements 

in the representation of the land surface variables linked to the terrestrial water cycle (e.g. surface 

soil moisture, river discharges, snow depth and turbulent fluxes) but to a rather neutral impact on 

land surface variables linked to the vegetation cycle (e.g. evapotranspiration, carbon uptake and leaf 

area index). Assimilating satellite derived observations linked to vegetation (LAI in this application) 

through LDAS-Monde forced by ERA-5 not only leads to a clear improvement in the representation 

of the vegetation cycle in ISBA but brings further improvement on the representation of the 

terrestrial water cycle. Results have highlighted the stronger impact of LAI observations 

assimilation with respect to soil moisture assimilation. Other vegetation-related observations such 

as Vegetation Optical Depth could be used, under specific circumstances, as a surrogate of LAI 

limiting the negative impact of the rather low temporal frequency of the LAI product. LDAS-

Monde is a powerful tool to track the evolution of land surface variables and to monitor extreme 

events such as agricultural drought. Since LDAS-Monde analysis is more accurate than a simple 

model run, it can be used to initialise a forecast experiment of the land surface variables. 

Preliminary results suggest that its impact on forecast experiments, in particular with respect to 

vegetation, is positive and lasts in time. It opens the way towards applications from monitoring to 

forecasting land surface states, For that purpose, LDAS-Monde could be forced by other ECMWF 

atmospheric products like the high resolution forecast (HRES, current spatial resolution of ~9km), 

which also gives daily forecasts up to 10 days ahead and/or the ensemble forecast (ENS, current 

spatial resolution of ~18km), giving daily forecasts up to 15 days (46 days twice a week). 
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Code availability- LDAS-Monde is a part of the ISBA land surface model and is available as open 

source via the surface modelling platform called SURFEX. SURFEX can be downloaded freely at 

http: //www.umr-cnrm.fr/surfex/ using a CECILL-C Licence (a French equivalent to the L-GPL 

licence; http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.txt). It is updated at a relatively 

low frequency (every 3 to 6 months). If more frequent updates are needed, or if what is required is 

not in Open-SURFEX (DrHOOK, FA/LFI formats, GAUSSIAN grid), you are invited to follow the 
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procedure to get a SVN account and to access real-time modifications of the code (see the 

instructions at the first link). The developments presented in this study stemmed on SURFEX 

version 8.0 and are now part of the version 8.1 (revision number 4621). 

 

Data availability-The ERA-5 datasetsare distributed by ECMWF (http://apps.ecmwf.int/datasets/, 

ECMWF, last access: June 2018). The ECOCLIMAP dataset is distributed by CNRM 

(https://opensource.umr-cnrm.fr/projects/ ecoclimap, CNRM, 2013). The SURFEX model code is 

distributed by CNRM (http://www.umr-cnrm.fr/surfex/, CNRM, 2016). The satellite-derived LAI 

GEOV1 observations are freely accessible from the Copernicus Global Land Service 

(http://land.copernicus.eu/global/; last access: June 2018). The ESA CCI surface soil moisture 

dataset is distributed by ESA (http://www.esa-soilmoisture-cci.org/, last access: June 2018, Dorigo 

et al., 2017). The satellite-driven model estimates of land evapotranspiration are freely accessible at 

http://www.gleam.eu (last access: June 2018; Martens et al., 2017). The upscaled estimates of gross 

primary production are freely accessible at https://www.bgc-

jenna.mpg.de/geodb/projects/Home.php (last access: June 2018; Jung et al., 2017). In situ 

measurements of soil moisture are freely available at https://www.ncdc.noaa.gov/crn (last access: 

June 2018; Bell et al., 2013). In situ measurements of streamflow are freely available at 

https://nwis.waterdata.usgs.gov/nwis (last access: June 2018, USGS).  
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Tables 

Table I: Set up of the experiments used in this study 

Experiments 

(time period) 
Model 

Domain  
& spatial 

resolution 
 

Atmospheric 

forcing 
DA 

method 
Assimilated 

observations 
Observation

s operators 
Control 

variables 
Additional 

options 

Model or 

Openloop 
(2010-2016) 

ISBA 
Multi-layer 

soil model 
CO2-

responsive 

version 
(Interactive 

vegetation) 
 

CONtiguous 

US 

(CONUS), 

0.25°x0.25° 

ERA-5 N/A N/A N/A N/A 
Coupling 

with 

CTRIP 

(0.5°) 

Analysis 
(2010-2016) 

ISBA 
Multi-layer 

soil model 
CO2-

responsive 

version 
(Interactive 

vegetation) 
 

CONtiguous 

US 

(CONUS), 

0.25°x0.25° 

ERA-5 SEKF 

SSM  
(ESA-CCI) 

 

LAI 
(GEOV1) 

 

Rescaled 

WG2 

(Second 

layer of soil 

(1-4cm)) 
 

LAI 
 

Layers of 

soil 2 to 8 

(WG2 to 

WG8, 1-

100cm) 
 

LAI 
 

Coupling 

with 

CTRIP 

(0.5°) 
 

Ini_Model 
(2016) 

ISBA 
Multi-layer 

soil model 
CO2-

responsive 

version 
(Interactive 

vegetation) 
 

CONtiguous 

US 

(CONUS), 

0.25°x0.25° 

ERA-5 

12-month model run starting on 1 January 

2016 (initialised by the model simulation run 

from 2010 to 2015) 

Coupling 

with 

CTRIP 

(0.5°) 
 

Ini_Analysis 
(2016) 

ISBA 
Multi-layer 

soil model 
CO2-

responsive 

version 
(Interactive 

vegetation) 
 

CONtiguous 

US 

(CONUS), 

0.25°x0.25° 
ERA-5 

12-month model run starting on 1 January 

2016 (initialised by the analysis run from 2010 

to 2015) 

Coupling 

with 

CTRIP 

(0.5°) 
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Table II: Analysis impact evaluation against in situ measurements of soil moisture from the 

USCRN network. In situ measurements at a depth of 5cm are used to evaluate soil moisture from 

the third layer of soil (4-10 cm) from either the model or analysis experiment over 2010-2016. The 

Nornalized Information Contribution (NIC) is applied to the correlation (anomaly correlations) 

values. NIC scores are classified according to three categories: (i) negative impact from the analysis 

with respect to the model with values smaller than -3 %, (ii) positive impact from the analysis with 

respect to the model with values greater than +3 % and (iii) neutral impact from the analysis with 

respect to the model with values between -3 % and 3 %. 

110 (110) stations 

with significant 

R (Anomaly R) 

Median R 

(Anomaly R) 
Median 

ubRMSD 

 

Positive impact: 

>+3 

←3 
Negative impact: 

<-3 

 

Neutral impact [-

3;+3] 

Model 
0.72±0.02*  

(0.60±0.02*) 
0.049±0.004* N/A N/A N/A 

Analysis 
0.74±0.02*  

(0.60±0.02*) 
0.048±0.004* 46%(18%) 8%(1%) 46%(81%) 

*95% confidence interval of the median derived from a 10000 samples bootstrapping 

Table III: Analysis impact evaluation against daily streamflow over 2010-2016. The impact from 

the analysis with respect to the model is assessed through the Nornalized Information Contribution 

(NIC) applied to the Kling–Gupta efficiency (KGE) score as well as using normalized relative error 

of simulated or analysed mean (REμ) and standard deviation (REσ). Scores are classified according 

to three categories: (i) negative impact from the analysis with respect to the model with values 

smaller than -3, (ii) positive impact from the analysis with respect to the model with values greater 

than +3 and (iii) neutral impact from the analysis with respect to the model with values between -3 

and 3. 

258 out of 531 stations 

with KGE greater than 0 
Positive impact: >+3 Negative impact: <-3 Neutral impact [-3;+3] 

NICKGE 26% 12% 62% 

NREσ 22% 1% 77% 

NREμ 34% 1% 65% 
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Figures 

 

 

 

 

Figure 1: Averaged (a) surface soil moisture from the Climate Change Initiative project of ESA (for 

pixels with less than 15% of urban areas and with an elevation of less than 1500 m above sea level), 

(b) GEOV1 leaf area index from the Copernicus Global Land Service project (for pixels covered by 

more than 90 % of vegetation) from 2010 to 2016. 

Figure 2: Leaf Area Index time series from the model (blue line), the observations (green dots and 

dashed line) and the analysis (red line) averaged over the whole domain from 2010 to 2017. 
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Figure 3: Top row; Leaf Area Index from (a) the model, (b) the observations and (c) the analysis 

averaged over the 2010-2016 time period. Bottom row: Seasonal (d) RMSD and (e) correlation 

values between leaf area index (LAI) from the model (in blue), the analysis (in red) and GEOV1 LAI 

estimates from the Copernicus Global Land Service project from 2010 to 2016. 
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Figure 4: Same as Figure 3 for soil moisture. 

Figure 5: Analysis increments averaged over the 2010-2016 time period for (a) LAI in m
2
m

-2
, (b) 

second (c) fourth and (d) sixth layer of soil moisture in m
3
m

-3
. 
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Figure 6: Top row: (a) normalized RMSD (blue colours indicate an improvement) and (b) NIC 

applied on Correlations values (red colours indicate an improvement) for evapotranspiration from 

the analysis with respect to the model. Bottom row: same as top row for Gross Primary Production. 

Units are percent. 
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Figure 7: Top row: seasonal (a) RMSD and (b) correlation values between Evapotranspiration from 

the model (in blue), the analysis (in red) and estimates from the GLEAM project over 2010–2016. 

Bottom row: (c) and (d), same as (a) and (b) for Gross Primary Production from either the model or 

the analysis and estimates from the FLUXCOM project. 
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Figure 8: Maps of correlation (R) on volumetric time-series (a) and anomaly time-series (b) 

between in situ measurements at 5 cm depth from the USCRN network and soil moisture from the 

model (third layer of soil between 4 cm and 10 cm) from 2010 to 2016. NIC applied on R (anomaly 

R) values (c and d); analysis with respect to the model. NIC scores are classified according to three 

categories: (i) negative impact from the analysis with respect to the model with values smaller than 

-3 % (red circles), (ii) positive impact from the analysis with respect to the model with values 

greater than +3 % (blue circles) and (iii) neutral impact from the analysis with respect to the model 

with values between -3 % and 3 % (diamonds). 
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Figure 10: Leaf Area Index monthly anomalies over the 2010-2016 time period for the model (blue 

bars), the analysis (red bars) and the CGLS GEOV1 observations (in green) over the corn belt 

drought defined as a box from 110°W to 70°W and 30°N to 50°N. 

Figure 9: Normalized information contribution scores based on KGE scores (NICKGE ) (a) analysis 

with respect to the model, (b) zoom over the eastern part of the domain. Small diamonds represent 

stations for which NICKGE are between [-3;+3]. NICKGE greater than 3 (blue large circles) suggest 

an improvement from the analysis over the model, values smaller than -3 (red large circles) a 

degradation. For sack of clarity, a factor of 100 has been applied to NIC. 
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Figure 11: (a) Monthly anomaly of Leaf Area Index for August 2012 with respect to the 2010-2016 

period, (b) same as (a) for observed Leaf Area Index, (c) same as (a) for analysed Leaf Area Index. 

Figure 12: Seasonal (a) RMSD and (b) correlation values between observed Leaf Area Index (LAI) 

and (in blue) a 12-month model run, (in red) a 12-month model run initialised by analysed 

conditions from LDAS-Monde. (c) RMSD differences values between a 12-month model run and a  

12-month model run initialised by analysed conditions from LDAS-Monde. 
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Figure 13: (a) Correlation coefficient values between modelled LAI and C-band VOD over 2010-

2016, (b) probability distribution of the correlation coefficient values over the same period 
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