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ABSTRACT 

Malaria and Pneumonia are leading causes of serious illness in children and adults 
worldwide with their death rate and prevalence on the rise. Such alarming statistics may retard 
the milestones so far achieved in meeting the Millennium Development Goals 4 and 6 whose 
targets are to improve child survival and reverse the high prevalence of diseases such as 
pneumonia and malaria respectively. Two sub-models of malaria-pneumonia co-infection namely 
malaria model and pneumonia model were considered first and then followed by the full malaria-
pneumonia co-infection model. The malaria model, pneumonia model and co-infection model 
basic reproduction numbers denoted by 𝑅௠, 𝑅௣ and 𝑅௠௣ respectively was obtained using the Next 
Generation Matrix method. The model disease free equilibrium’s local and global stability was 
analysed using Descartes’ Rule of signs and Comparison method. The bifurcation analysis for the 
malaria, pneumonia and co-infection models was studied using the Centre Manifold Theory. The 
sensitivity indices of the model basic reproduction numbers  𝑅௠, 𝑅௣ and 𝑅௠௣ to the parameters in 
the models were calculated. Optimal control theory was applied using the Pontryagins’ Maximum 
Principle to investigate optimal strategies for controlling the spread of malaria, pneumonia and co-
infection models using insecticide treated bed nets ൫𝑢ଵ(𝑡)൯, spraying of mosquitoes insecticides ൫𝑢ଶ(𝑡)൯, sanitation ൫𝑢ଷ(𝑡)൯, vaccination ൫𝑢ସ(𝑡)൯, anti-malaria drugs ൫𝑢ହ(𝑡)൯, anti-pneumonia 
drugs ൫𝑢଺(𝑡)൯, both anti-malaria drugs and anti-pneumonia drugs  ൫𝑢଻(𝑡)൯ as the system time 
control variables.  Numerical simulations using a set of parameter values were provided to validate 
the analytical results. 
Keyword: Malaria, Mass Action, Malaria-Pneumonia, Optimal Control, Pneumonia  

1.0 INTRODUCTION 
 Pneumonia and Malaria are two of the most deadly diseases of our time. The geographic 
overlap of these diseases in sub-Saharan Africa facilitates their co-infection. Although the 
consequences of the co-infection with pneumonia and malaria parasites are not fully understood in 
literature, available evidence now suggests that the infections act synergistically and their 
combination results in worse outcomes which poses a major public health concern. Malaria in an 
individual is an illness or disease that is caused by the parasites of the genus 
Plasmodium  (Phylum Apicomplexa) in the blood or tissues [22]. The parasitic disease malaria is 
transmitted to the human through a biting from an infected female Anopheles mosquito [3]. The 
female Anopheles mosquito gets infected when it takes a blood meal from a person carrying the 
malaria parasite. There are four species of the plasmodium parasites, namely Plasmodium 
falciparum, Plasmodium ovale, Plasmodium vivax and Plasmodium malariae, of the four species, 
Plasmodium Falciparum is the most virulent, lethal and responsible for the majority of morbidity 
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and mortality due to malaria [10]. Evidence of human infections with several species 
of Plasmodium from higher apes has been documented except for P. knowlesi—a zoonotic species 
that causes malaria in macaques these are mostly of limited public health importance [14]. Many 
children living in malaria-endemic areas are frequently exposed to other diseases such as 
pneumonia. Children have a higher risk of developing pneumonia if they have weakened immune 
system. A weak immune system may be as a result of prolonged malaria exposure, malnutrition 
among other factors. Statistics has shown that of all children out patients suffering from respiratory 
complications 25% of the cases are confirmed to be pneumonia [24]. 
Pneumonia is one of the forgotten killer diseases [37]. It is one of the major causes of children’s' 
death in Africa and it kills more children per year than any other illness in the world [37]. The 
death rates are around 2 million children worldwide; every year [37]. Pneumonia is an 
inflammatory condition of the lungs; it is an airborne disease acquired through inhalation or 
aspiration of pulmonary pathogenic organisms into a lung segment or lobe [26]. Pneumonia could 
be caused by bacterial, virus, fungi and parasites [26].  The parasites infections usually enter the 
body through the skin or the mouth and progresses through the body to the lungs, usually through 
the blood [32]. Prevention of diseases such as pneumonia includes vaccination, environmental 
measures and appropriate treatment of other health problems [32]. 
. Malaria and Pneumonia account for about 8% and  19% of annual deaths in children 
[21]. The combination of both diseases contributes about  40% of the deaths in children below five 
years of age in sub-Saharan Africa [21]. Over six million new cases of pneumonia are estimated 
annually in Nigeria while childhood fevers presumed to be malaria account for 30% of all 
childhood deaths [31]. The WHO/UNICEF guidelines defines “malaria” as the presence or history 
of fever and symptoms that also occur in children with pneumonia, while “pneumonia” includes 
history of cough or difficulty in breathing in the presence of increased respiratory rate according to 
age and symptoms that may also indicate malaria [17]. Children who have malaria-pneumonia 
symptom overlap are given dual integrated management of childhood illness (IMCI) classifications 
and are treated with both antimalarial and antibiotics [19]. In Eastern Africa, the extent of the 
overlap has been documented but not in routine IMCI practice at the health centre level in Nigeria 
[22].  
 Mathematical models has been widely used to study and explains the transmission 
dynamics of the spread of malaria following the WHO position statement [36] that it is 
important to carry out modelling studies to determine the impact of various combinations of 
control strategies on the transmission dynamics of malaria. Series of studies have been done to 
quantify the impact of malaria infection in humans ([8], [18] and [20]). Many of these  studies  
discusses  only the  transmission of the  malaria disease in human  and  the  vector  populations, 
however,   recent studies by Chiyaka et al.[13] focused on a deterministic system of 
differential equations  involving two latent periods  in the  non-constant host  and  vector  
populations in order  to analytically assess the potential impact  of personal  protection, 
treatment and possible vaccination  strategies on the  transmission dynamics  of malaria.   
Blayneh et al. [7] formulated a time dependent model to consider the effects of prevention and 
treatment on malaria, while in similar fashion, Okosun et al. [28] studied a time dependent 
model on the p os s i b l e  impact of vaccination with treatment strategies in controlling the 
spread of malaria in a model that incorporate treatment and vaccination with waning 
immunity. Agusto et al. [2] studied a deterministic system of differential equations for the 
transmission of malaria and thereafter considered the optimal control strategies to 
investigate optimal strategies for controlling the spread of malaria disease using 
treatment, insecticide treated bed nets and spraying of mosquito insecticide as the 
system control variables. The possible impact of using combinations of the three 
controls either one at a time or two at a time on the spread of the disease was also 
examined in their study. 
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Many mathematical model already exist describing malaria infection or pneumonia 
infection but the best control for malaria infection, pneumonia infection and the co-infection of 
both diseases still remain a subject of debate. Previous mathematical models have considered 
treatment, sleeping under mosquito treated bedside nets (MTBN) and the use of insecticide coil as 
controls. However, these have their limitations. The insecticides used for treating bedside nets is 
lethal to the mosquitoes, other insects and also repels the mosquitoes, thus reducing the number of 
mosquitoes who attempt to feed on people in the sleeping areas with the nets [2]. However, the 
mosquitoes can still feed on humans outside these protective areas, hence; Agusto et al [2] 
included the spraying of insecticides in their model. The latter control by [2] will be more effective 
in a closed area, hence, the inclusion of sanitation as control in the present work. The preventive 
and treatment controls for pneumonia includes vaccination, environmental measures and 
appropriate treatment of other health problems [32]. It is believed that, if appropriate preventive 
measures were instituted globally, mortality among children could be reduced by 400,000; and, if 
proper treatment were universally available, childhood deaths could be decreased by another 
600,000 [38]. 

The rest of the paper are organised in the following way: The mathematical formulation for 
the full co-infection model was presented in section 2, section 3 focused on the analysis of the sub 
models namely: malaria only model and pneumonia only model, this was later followed by the 
analysis of the full model on malaria-pneumonia co-infection. The optimal control analysis for the 
malaria only, pneumonia only and the co-infection model was considered in section 4 while the 
numerical simulations and the discussion of results was presented in section 5. 
 
2.0 MATHEMATICAL FORMULATION 

Lawi et al [24] studied the following model on malaria-pneumonia co-infection with 
standard incidence:   𝑆௛ᇱ(𝑡) = 𝛬௛ − 𝛼𝛽௠𝐼௩𝑁௛ 𝑆௛ − 𝛽௣𝑐൫𝐼௣ + 𝑘𝐼௠௣൯𝑆௛ − 𝜇௛𝑆௛ + 𝜋𝐼௠ + 𝜏𝐼௣ + 𝜙𝐼௠௣                 
𝐼௠ᇱ(𝑡) = 𝛼𝛽௠𝐼௩𝑁௛ 𝑆௛ − 𝜗𝛽௣𝑐൫𝐼௣ + 𝑘𝐼௠௣൯𝑁௛ 𝐼௠ − (𝜎௠ + 𝜋 + 𝜇௛)𝐼௠                                       
𝐼௣ᇱ(𝑡) = 𝛽௣𝑐൫𝐼௣ + 𝑘𝐼௠௣൯𝑁௛ 𝑆௛ − 𝜀𝛼𝛽௠𝐼௩𝑁௛ 𝐼௣ − ൫𝜎௣ + 𝜏 + 𝜇௛൯𝐼௣                                            
𝐼௠௣ᇱ(𝑡) = 𝜀𝛼𝛽௠𝐼௩𝑁௛ 𝐼௣ + 𝜗𝛽௣𝑐൫𝐼௣ + 𝑘𝐼௠௣൯𝑁௛ 𝐼௠ − ൫𝜎௠ + 𝜎௣ + 𝜎௠௣ + 𝜙 + 𝜇௛൯𝐼௠௣          

 𝑆௩ᇱ(𝑡) = 𝛬௩𝑁௩ − 𝛼𝛽௩𝑐൫𝐼௠ + 𝛿𝐼௠௣൯𝑁௛ 𝑆௩ − 𝜇௩𝑆௩                                                                        
𝐼௩ᇱ(𝑡) = 𝛼𝛽௩𝑐൫𝐼௠ + 𝛿𝐼௠௣൯𝑁௛ 𝑆௩ − 𝜇௩𝐼௩                                                                                        ⎭⎪⎪

⎪⎪⎪
⎪⎬
⎪⎪⎪
⎪⎪⎪
⎫

    (2.1)  

Cai et al [11] replaced the standard incidence with the mass action incidence in their study 
of malaria model with partial immunity to reinfection. Thus, following the modification of the 
work of Lawi et al [24], Oluyo and Adeniyi [29] studied the following model (2.2) on the co-
infection of malaria-pneumonia using the mass action incidence.  
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 𝑆ℎ′(𝑡) = 𝛬ℎ − 𝛼𝛽𝑚𝐼𝑣𝑆ℎ − 𝛽𝑝𝑐൫𝐼𝑝 + 𝑘𝐼𝑚𝑝൯𝑆ℎ − 𝜇ℎ𝑆ℎ + 𝜋𝐼𝑚   + 𝜏𝐼𝑝 + 𝜙𝐼𝑚𝑝                      𝐼𝑚′(𝑡) = 𝛼𝛽𝑚𝐼𝑣𝑆ℎ − 𝜗𝛽𝑝𝑐൫𝐼𝑝 + 𝑘𝐼𝑚𝑝൯𝐼𝑚 − ൫𝜎𝑚 + 𝜋 + 𝜇ℎ൯𝐼𝑚                                               𝐼𝑝′(𝑡) = 𝛽𝑝𝑐൫𝐼𝑝 + 𝑘𝐼𝑚𝑝൯𝑆ℎ − 𝜀𝛼𝛽𝑚𝐼𝑣𝐼𝑝 − ൫𝜎𝑝 + 𝜏 + 𝜇ℎ൯𝐼𝑝                                                    𝐼𝑚𝑝′(𝑡) = 𝜀𝛼𝛽𝑚𝐼𝑣𝐼𝑝 + 𝜗𝛽𝑝𝑐൫𝐼𝑝 + 𝑘𝐼𝑚𝑝൯𝐼𝑚 − ൫𝜎𝑚 + 𝜎𝑝 + 𝜎𝑚𝑝 + 𝜙 + 𝜇ℎ൯𝐼𝑚𝑝                    𝑆𝑣′(𝑡) = 𝛬𝑣 − 𝛼𝛽𝑣൫𝐼𝑚 + 𝛿𝐼𝑚𝑝൯𝑆𝑣 − 𝜇𝑣𝑆𝑣                                                                                   𝐼𝑣′(𝑡) = 𝛼𝛽𝑣൫𝐼𝑚 + 𝛿𝐼𝑚𝑝൯𝑆𝑣 − 𝜇𝑣𝐼𝑣                                                                                              ⎭⎪⎪
⎪⎪⎬
⎪⎪⎪
⎪⎫

    (2.2)    

One intervention recommended to control malaria transmission in the work of [29] was 
keeping clean environment. For pneumonia, intervention can be in two ways: reducing the number 
of susceptible individuals through vaccination or reducing the rate of contact by good sanitation. 
Based on the above submission, the model in (2.2) was further extended to include the exposed 
classes for malaria, pneumonia and malaria-pneumonia, vaccination for those exposed to 
pneumonia and the sanitation function for malaria and pneumonia. Thus, the improved model is: 𝑆௛ᇱ(𝑡) = 𝛬௛ − 𝛼𝛽(𝐻)𝐼௩𝑆௛ − 𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝑆௛ − 𝜇௛𝑆௛ + 𝜋𝐼௠                        +𝜋𝐸௠ + 𝜏𝐼௣ + 𝜏𝐸௣ + 𝑉௣𝐸௣ + 𝜙𝐼௠௣ + 𝜙𝐸௠௣𝐸௠ᇱ(𝑡) = 𝛼𝛽(𝐻)𝐼௩𝑆௛ − (𝑘௠ + 𝜋 + 𝜇௛)𝐸௠                                                                     𝐼௠ᇱ(𝑡) = 𝑘௠𝐸௠ − 𝜗𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝐼௠ − (𝜎௠ + 𝜋 + 𝜇௛)𝐼௠                             𝐸௣ᇱ(𝑡) = 𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝑆௛ − ൫𝑘௣ + 𝜏 + 𝑉௣ + 𝜇௛൯𝐸௣                                          𝐼௣ᇱ(𝑡) = 𝑘௣𝐸௣ − 𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ − ൫𝜎௣ + 𝜏 + 𝜇௛൯𝐼௣                                                         𝐸௠௣ᇱ(𝑡) = 𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ + 𝜗𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝐼௠ − ൫𝑘௠௣ + 𝜙 + 𝜇௛൯𝐸௠௣           𝐼௠௣ᇱ(𝑡) = 𝑘௠௣𝐸௠௣ − ൫𝜎௠ + 𝜎௣ + 𝜎௠௣ + 𝜙 + 𝜇௛൯𝐼௠௣                                                 𝑆௩ᇱ(𝑡) = 𝛬௩ − 𝛼𝛽௩൫𝐼௠ + 𝛿𝐼௠௣൯𝑆௩ − 𝜇௩𝑆௩                                                                       𝐸௩ᇱ(𝑡) = 𝛼𝛽௩൫𝐼௠ + 𝛿𝐼௠௣൯𝑆௩ − (𝑘௩ + 𝜇௩)𝐸௩                                                                   𝐼௩ᇱ(𝑡) = 𝑘௩𝐸௩ − 𝜇௩𝐼௩                                                                                                            ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪
⎪⎫

     (2.3)  

 
The model (2.3) subdivides  the  total human population  of interest  into  two sub  

population  depending  on the malaria and pneumonia  status   of individuals.   The  classes 
consist  of Susceptible  (𝑆) representing  the  number  of individuals  who are at  risk of 
acquiring  malaria or pneumonia or both infections, Individuals Exposed t o  malaria or 
pneumonia or both infections (𝐸), Infective (𝐼) representing  infectious m a l a r i a  individuals or 
infectious pneumonia individuals or infectious malaria-pneumonia individuals capable of 
transmitting infection to susceptible individuals. The constant per capita recruitment rate into 
susceptible human population is 𝛬௛ while humans die naturally at a rate 𝜇௛, the modification 
parameter according to the increased susceptibility to infection with pneumonia is denoted 𝜗, 
humans die as a result of malaria infection at rate 𝜎௠ while humans die of pneumonia infection at a 
rate 𝜎௣. Individual become infected with pneumonia by coming in contact with one infectious 
individual at rate 𝛽௣. Malaria and pneumonia induced mortality occur at rate 𝜎௠௣, rate of recovery 
from malaria, pneumonia and malaria-pneumonia back to the susceptible class are denoted by 𝜋, 𝜏 
and 𝜙 respectively while 𝛼 denote the number of bites per human per mosquito. The per capita rate 
of progression of humans from the exposed class 𝐸௠ to the infectious class 𝐼௠ is 𝑘௠ with  ଵ௞೘ 
taking as the average duration of the latent period, 𝑘௣ represent the per capita rate of progression 
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of humans from the exposed class 𝐸௣ to the infectious class 𝐼௣ with  ଵ௞೛  denoting the average 

duration of the latent period while  𝑘௠௣ is the per capita rate of progression of humans from the 
exposed class 𝐸௠௣ to the infectious class 𝐼௠௣. ଵ௞೘೛ is the average duration of the latent period. 

Exposed individuals to pneumonia are vaccinated at constant rate 𝑉௣.The mosquitoes (vector) 
population are sub-divided into susceptible mosquitoes(𝑆௩), mosquitoes exposed to malaria (𝐸௩) 
and infected mosquitoes (𝐼௩) respectively. The per capita recruitment rate of mosquitos into 
susceptible vector population is 𝛬௩, mosquito become infected with malaria after taking a blood 
from any infected human with malaria at a rate 𝛽௩, exposed mosquitoes (𝐸௩) progress to the  
infectious class (𝐼௩) at a constant rate 𝑘௩ with  ଵ௞ೡ being the average duration of the latent period, 
the mosquito natural death rate is 𝜇௩. 𝜀, denote the expected decrease in contact due to ill health as 
a result of pneumonia disease such that 0 < 𝜀 < 1. The modification parameters accounting for the 
relative infectiousness of the co-infected individual as compared to their counterparts are 𝛿 and 𝑘 
respectively.  𝛽(𝐻)  is the transmission rate of malaria in humans expressed as function (linearly 
decreasing function) of the effectiveness of sanitation 𝐻 and is defined by  
 𝛽(𝐻) = 𝛽௠௔௫ − 𝛾𝐻                 (2.4) 
 𝛾 represent the expected reduction / increase in transmission rate of malaria as sanitation level 𝐻 
increases / decreases. 𝐻 is the sanitation level of the community and is defined to be 𝐻 ∈ ሾ0,1ሿ, so 
that if 𝐻 = 0, then there is maximum transmission of malaria in the community and if 𝐻 = 1 
means there is access to maximum sanitation facilities in the community, hence, minimum 
transmission rate of malaria is achieved. 𝐶(𝐻) is the contracting rate of pneumonia expressed as 
function (linearly decreasing function) of the effectiveness of sanitation 𝐻 and is defined by 
 𝐶(𝐻) = 𝐶௠௔௫ − 𝛾𝐻                  (2.5) 
when 𝐻 = 0, then there is maximum transmission of pneumonia in the community and when 𝐻 =1 means there is minimum contacting rate of pneumonia in the community. 

The assumptions for the model in system of equations (2.3) are as follows: 
i. This model assumes a homogeneous mixing of individuals in the population where all 

individuals have equal likelihood of contracting the infection if they come into 
effective contact with infectious individuals or infectious mosquitoes and that 
transmission of the infection occurs with a mass action incidence rate.  

ii. Infected individuals are assumed to recover with no permanent immunity and return to 
the susceptible class.  

iii. Human population is assumed not to be constant since birth, immigration, emigration and 
death occur in the population. 

iv. The probability of survival till the infectious state for individual exposed to malaria as 
well as those exposed to pneumonia is less or equal to unity. 

v. That as a result of the assumption (iv) above, the exposed class of individuals in the 
population are therefore included. 
 

3.0 Malaria – only sub model 
Before the full model of system (2.3) is analysed, it is important to gain insight into the 

dynamics of the malaria – only sub model obtained by setting 𝐸௣(𝑡) = 𝐸௠௣(𝑡) = 𝐼௣(𝑡) =𝐼௠௣(𝑡) = 0 in (2.3) given by  
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 𝑆ℎ′(𝑡) = 𝛬ℎ − 𝛼𝛽(𝐻)𝐼𝑣𝑆ℎ − 𝜇ℎ𝑆ℎ + 𝜋𝐸𝑚 + 𝜋𝐼𝑚                                                          𝐸𝑚′(𝑡) = 𝛼𝛽(𝐻)𝐼𝑣𝑆ℎ − ൫𝑘𝑚 + 𝜋 + 𝜇ℎ൯𝐸𝑚                                                                     𝐼𝑚′(𝑡) = 𝑘𝑚𝐸𝑚 − ൫𝜎𝑚 + 𝜋 + 𝜇ℎ൯𝐼𝑚                                                                                𝑆𝑣′(𝑡) = 𝛬𝑣 − 𝛼𝛽𝑣𝐼𝑚𝑆𝑣 − 𝜇𝑣𝑆𝑣                                                                                        𝐸𝑣′(𝑡) = 𝛼𝛽𝑣𝐼𝑚𝑆𝑣 − ൫𝑘𝑣 + 𝜇𝑣൯𝐸𝑣                                                                                    𝐼𝑣′(𝑡) = 𝑘𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣                                                                                                          ⎭⎪⎪
⎪⎪⎬
⎪⎪⎪
⎪⎫

            (3.1) 

 
Let the total human population and vector population at any time 𝑡 be denote by 𝑁௛(𝑡) and 𝑁௩(𝑡) respectively, then the total human and vector population for the malaria – only model of 

(3.1) are given by 𝑁௛(𝑡) = 𝑆௛(𝑡) + 𝐸௠(𝑡)  + 𝐼௠(𝑡)                 (3.2) 
and  𝑁௩(𝑡) = 𝑆௩(𝑡) + 𝐸௩(𝑡)  + 𝐼௩(𝑡)                (3.3) 
respectively. It is easy to show that both human and vector population will reach a constant value 
over time. i.e.  𝑁௛(𝑡) = ௸೓ఓ೓and 𝑁௩(𝑡) =  ௸ೡఓೡ.  

For system (3.1), it is straightforward to verify that the region   𝛤௛௩ = ቄ(𝑆௛, 𝐸௠, 𝐼௠, 𝑆௩, 𝐸௩, 𝐼௩) ∈ℛା଺: 𝑆௛ + 𝐸௠ + 𝐼௠ ≤ ௸೓ఓ೓ , 𝑆௩ + 𝐸௩ + 𝐼௩ ≤ ௸ೡఓೡ ቅ is positively invariant and attracting. Thus the 
dynamics of malaria – only model will be analysed in  𝛤௛௩.  
 The malaria – only model of (3.1) has a disease-free equilibrium point given by  𝑀଴ = (𝑆௛଴∗, 𝐸௠଴∗, 𝐼௠଴∗, 𝑆௩଴∗, 𝐸௩଴∗, 𝐼௩଴∗) = ቀ௸೓ఓ೓ , 0,0, ௸ೡఓೡ , 0,0ቁ          (3.4) 

and endemic equilibriums 𝑀ଵ∗ = (𝑆௛ଵ∗, 𝐸௠ଵ∗, 𝐼௠ଵ∗, 𝑆௩ଵ∗, 𝐸௩ଵ∗, 𝐼௩ଵ∗) and 
 𝑀ଶ∗ = (𝑆௛ଶ∗, 𝐸௠ଶ∗, 𝐼௠ଶ∗, 𝑆௩ଶ∗, 𝐸௩ଶ∗, 𝐼௩ଶ∗) given by the positive roots of  
 𝐴𝐼௠∗ଶ + 𝐵𝐼௠∗ + 𝐶 = 0             (3.5) 
with 
 𝐴 = 𝛼ଷ𝛽(𝐻)𝛽௩ଶ𝑘௠𝑘௩𝛬௩𝜋(𝜎௠ + 𝜋 + 𝜇௛) + 𝛼ଷ𝛽௩ଶ𝑘௠𝜋 − (𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 +𝜇௛)𝛼ଷ𝛽(𝐻)𝛽௩ଶ𝑘௩𝛬௩ − (𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)𝛼ଶ𝛽௩ଶ𝜇௛𝜇௩(𝑘௩ + 𝜇௩)   𝐵 = 𝛼ଷ𝛽(𝐻)𝛽௩ଶ𝑘௠𝑘௩𝛬௩𝛬௛ + 𝛼ଶ𝛽(𝐻)𝛽௩𝑘௠𝑘௩𝛬௩𝜇௩𝜋(𝜎௠ + 𝜋 + 𝜇௛) +𝛼ଶ𝛽(𝐻)𝛽௩𝑘௠ଶ𝑘௩𝛬௩𝜇௩𝜋 − 2(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)𝛼𝛽௩𝜇௩ଶ𝜇௛(𝑘௩ + 𝜇௩) −𝛼ଶ𝛽(𝐻)𝛽௩𝜇௩𝑘௩𝛬௩(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)  𝐶 = 𝑘௠𝑘௩𝛼ଶ𝛽(𝐻)𝛽௩𝛬௩𝛬௛𝜇௩ − 𝜇௛𝜇௩ଷ(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௩ + 𝜇௩)  
 

The local stability of the equilibrium 𝑀଴ is governed by the basic reproduction number 𝑅௠. 
The basic reproduction number for the malaria model of (3.1) will be investigated using the next 
generation approach ( [15], [35]). Using the notations in [35] on system (3.1), the matrices 𝐹 and 𝑉, representing the new infections terms and transferred terms respectively are given by  

𝐹 = ൮ 0 0 00 0 000 (𝛼𝛽௩𝛬௩ 𝜇௩⁄ )0 00     (𝛼𝛽௩𝛬௩ 𝜇௩⁄ )000 ൲ ;  
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𝑉 = ൮(𝑘௠ + 𝜋 + 𝜇௛) 0 0−𝑘௠ (𝜎௠ + 𝜋 + 𝜇௛) 000 00 (𝑘௩ + 𝜇௩)−𝑘௩
     000𝜇௩൲ 

Thus, the basic reproduction number for system (3.1), denoted by 𝑅௠ is given by the spectral 
radius 𝜌 of 𝐹𝑉ିଵ (the dominant eigenvalue in magnitude) 𝑅௠ = ρ(𝐹𝑉ିଵ) = ඨ 𝛼ଶ𝛽(𝐻)𝛽௩𝑘௠𝑘௩𝛬௛𝛬௩𝜇௛𝜇௩ଶ(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௠ + 𝜋 + 𝜇௛)                                     (3.6) 

The reproduction number 𝑅௠ is the average number of secondary malaria infectious cases 
produced by a single infected mosquito during its infectious period when introduced in a 
population of mostly malaria susceptible individuals. 
Theorem 3.1: The malaria disease - free equilibrium 𝑀଴ of system (3.1) is locally asymptotically 
stable if 𝑅௠ < 1 and unstable if 𝑅௠ > 1. 
Proof: The Jacobian matrix of system (3.1) evaluated at 𝑀଴ is 𝐽(𝑀଴) =

⎝⎜
⎜⎛

−𝜇௛00000
  

𝜋−(𝑘௠ + 𝜋 + 𝜇௛)𝑘௠000
  

𝜋0−(𝜎௠ + 𝜋 + 𝜇௛) (−𝛼𝛽௩𝛬௩ 𝜇௩⁄ )(𝛼𝛽௩𝛬௩ 𝜇௩⁄ )0
    

000−𝜇௩00
    

0000−(𝑘௩ + 𝜇௩)𝑘௩
 
(−𝛼𝛽(𝐻)𝛬௛ 𝜇௛⁄ )(𝛼𝛽(𝐻)𝛬௛ 𝜇௛⁄ )000−𝜇௩

  
⎠⎟
⎟⎞      (3.7)          

The characteristic equation of equation (3.7) is  (−𝜇௛ − 𝜆)(−𝜇௩ − 𝜆)𝑔(𝜆) = 0         (3.8) 
where 𝑔(𝜆) = (𝜆ସ + (𝑘௠ + 2𝜋 + 2𝜇௛ + 2𝜇௩ + 𝜎௠ + 𝑘௩)𝜆ଷ+ (𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 +  𝜇௛) +(𝑘௠ + 2𝜋 + 2𝜇௛ + 𝜎௠)(𝑘௩ + 𝜇௩) + (𝑘௠ + 2𝜋 + 2𝜇௛ + 2𝜇௩ + 𝜎௠ + 𝑘௩)𝜇௩) 𝜆ଶ+ቀ𝜇௩൫(𝑘௠ +  𝜋 +𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛) + (𝑘௠ + 2𝜋 + 2𝜇௛ + 𝜎௠)(𝑘௩ + 𝜇௩)൯ +  (𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௩ +𝜇௩)ቁ 𝜆 + 𝜇௩(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௠ + 𝜋 + 𝜇௛) − ఈమఉ(ு)ఉೡ௞೘௞ೡ௸೓௸ೡఓ೓ఓೡ  

Clearly, 𝜆ଵ = −𝜇௛, 𝜆ଶ = −𝜇௩ while 𝜆ଷ, 𝜆ସ, 𝜆ହ and 𝜆଺ are obtained from 𝑔(𝜆) = 0 i.e 𝜆ସ + (𝑘௠ + 2𝜋 + 2𝜇௛ + 2𝜇௩ + 𝜎௠ + 𝑘௩)𝜆ଷ + ൫(𝑘௠ + 𝜋 +  𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛) + (𝑘௠ + 2𝜋 +2𝜇௛ + 𝜎௠)(𝑘௩ + 𝜇௩) + (𝑘௠ + 2𝜋 + 2𝜇௛ + 2𝜇௩ + 𝜎௠ + 𝑘௩)𝜇௩൯𝜆ଶ + ቀ𝜇௩൫(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ +𝜋 + 𝜇௛) + (𝑘௠ + 2𝜋 + 2𝜇௛ + 𝜎௠)(𝑘௩ + 𝜇௩)൯ + (𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௩ + 𝜇௩)ቁ 𝜆 +𝜇௩(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௠ + 𝜋 + 𝜇௛) − ఈమఉ(ு)ఉೡ௞೘௞ೡ௸೓௸ೡఓ೓ఓೡ = 0   (3.9)         
        
Equation (3.9) will have four negative real roots (by Descartes rule of positive solutions) if  𝛼ଶ𝛽(𝐻)𝛽௩𝑘௠𝑘௩𝛬௛𝛬௩𝜇௛𝜇௩ < 𝜇௩(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௠ + 𝜋 + 𝜇௛) 

⇒ 𝛼ଶ𝛽(𝐻)𝛽௩𝑘௠𝑘௩𝛬௛𝛬௩𝜇௛𝜇௩ଶ(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௠ + 𝜋 +  𝜇௛) < 1 𝑅௠ଶ < 1 ∴  𝑅௠ < 1 
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Hence, the malaria disease – free equilibrium 𝑀଴ of system (3.1)  is locally asymptotically 
stable if 𝑅௠ < 1. The result follows immediately that 𝑀଴ is unstable if 𝑅௠ > 1. 
Theorem 3.2: The malaria disease - free equilibrium 𝑀଴ of system (3.1) is globally asymptotically 
stable if 𝑅௠ < 1 and unstable if 𝑅௠ > 1. 

Proof:The Comparison method as implemented in Lashmkantham, et al [23] and Mushayabasa et 
al [27] is used here. The rate of change of the exposed and infected components of system (3.1) 
can be written as 

⎝⎜
⎜⎜⎜⎜
⎛𝑑𝐸௠𝑑𝑡𝑑𝐼௠𝑑𝑡𝑑𝐸௩𝑑𝑡𝑑𝐼௩𝑑𝑡 ⎠⎟

⎟⎟⎟⎟
⎞ = (𝐹 − 𝑉) ൮𝐸௠𝐼௠𝐸௩𝐼௩ ൲ − ൬1 − 𝑆௛𝑁௛൰ ൬1 − 𝑆௩𝑁௩൰ 𝐹 ൮𝐸௠𝐼௠𝐸௩𝐼௩ ൲                                           (3.10) 

where 𝐹 and 𝑉 are as defined above. Since at the disease free 𝐸௠ = 𝐼௠ = 𝐸௩ = 𝐼௩ = 0 → (0,0,0,0) 
and 𝑆௛ ≤ 𝑁௛, 𝑆௩ ≤ 𝑁௩ as  𝑡 → ∞ in 𝛤௛௩. Thus, 

⎝⎜
⎜⎜⎜⎜
⎛𝑑𝐸௠𝑑𝑡𝑑𝐼௠𝑑𝑡𝑑𝐸௩𝑑𝑡𝑑𝐼௩𝑑𝑡 ⎠⎟

⎟⎟⎟⎟
⎞ ≤ (𝐹 − 𝑉) ൮𝐸௠𝐼௠𝐸௩𝐼௩ ൲                                                                                                     (3.11) 

Then all eigenvalues of the matrix (𝐹 − 𝑉) have negative real parts i.e 𝜆ସ + (𝑘௠ + 2𝜋 + 2𝜇௛ + 2𝜇௩ + 𝜎௠ + 𝑘௩)𝜆ଷ + ൫(𝑘௠ + 𝜋 +  𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛) + (𝑘௠ + 2𝜋 +2𝜇௛ + 𝜎௠)(𝑘௩ + 𝜇௩) + (𝑘௠ + 2𝜋 + 2𝜇௛ + 2𝜇௩ + 𝜎௠ + 𝑘௩)𝜇௩൯𝜆ଶ + ቀ𝜇௩൫(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ +𝜋 + 𝜇௛) + (𝑘௠ + 2𝜋 + 2𝜇௛ + 𝜎௠)(𝑘௩ + 𝜇௩)൯ + (𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௩ + 𝜇௩)ቁ 𝜆 +𝜇௩(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௠ + 𝜋 + 𝜇௛) − ఈమఉ(ு)ఉೡ௞೘௞ೡ௸೓௸ೡఓ೓ఓೡ = 0                           (3.12)  
Equation (3.12) have four negative roots by Descartes rule of signs if  𝑅௠ < 1. It follows 

that the linearized differential inequality (3.11) is stable whenever 𝑅௠ < 1. Consequently, (𝐸௠, 𝐼௠, 𝐸௩, 𝐼௩) → (0,0,0,0) as 𝑡 → ∞. Evaluating system (3.1) at 𝐸௠ = 𝐼௠ = 𝐸௩ = 𝐼௩ = 0 gives, 𝑆௛ → 1 and 𝑆௩ → 1 for  𝑅௠ < 1. Hence, the malaria diseases free equilibrium 𝑀଴ of system (3.1) 
is globally asymptotically stable if 𝑅௠ < 1. The result also follow immediately that the malaria 
disease – free equilibrium 𝑀଴ of system (3.1) is unstable if 𝑅௠ > 1. 
 
3.1 Local Asymptotic Stability of Malaria Endemic Equilibrium 
The Centre Manifold theorem is now applied to study the local stability of the malaria endemic 
equilibrium. 
Let 𝛽(𝐻) = 𝛽(𝐻)∗ be a bifurcation parameter and if the case 𝑅௠ = 1 is considered, then 𝛽(𝐻) = 𝛽(𝐻)∗ = 𝜇௛𝜇௩ଶ(𝑘௩ + 𝜇௩)(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)𝛼ଶ𝛽௩𝑘௠𝑘௩𝛬௛𝛬௩                                      (3.13) 

Firstly, the Jacobian matrix of system (3.1) at point (𝑀଴, 𝛽(𝐻)∗) is 
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𝐽(𝑀଴, 𝛽(𝐻)∗)
=

⎝⎜
⎜⎛

−𝜇௛00000
𝜋−(𝑘௠ + 𝜋 + 𝜇௛)𝑘௠000

 
𝜋0−(𝜎௠ + 𝜋 + 𝜇௛)(−𝛼𝛽௩𝛬௩ 𝜇௩⁄ )(𝛼𝛽௩𝛬௩ 𝜇௩⁄ )0

 
000−𝜇௩00

0000−(𝑘௩ + 𝜇௩)𝑘௩
   

(−𝛼𝛽(𝐻)∗𝛬௛ 𝜇௛⁄ )(𝛼𝛽(𝐻)∗𝛬௛ 𝜇௛⁄ )000−𝜇௩
 
⎠⎟
⎟⎞ (3.14) 

The characteristic equation of (3.14) has a simple zero eigenvalue i.e.  𝜆ଵ = −𝜇௛,  𝜆ଶ = −𝜇௩,  𝜆ଷ = 0 , while the remaining equation is written as 𝜆ଷ + (𝑘௠ + 2𝜋 + 2𝜇௛ + 2𝜇௩ + 𝜎௠ + 𝑘௩)𝜆ଶ + ൫(𝑘௠ + 𝜋 +  𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛) + (𝑘௠ + 2𝜋 +2𝜇௛ + 𝜎௠)(𝑘௩ + 𝜇௩) + (𝑘௠ + 2𝜋 + 2𝜇௛ + 2𝜇௩ + 𝜎௠ + 𝑘௩)𝜇௩൯𝜆 + ቀ𝜇௩൫(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ +𝜋 + 𝜇௛) + (𝑘௠ + 2𝜋 + 2𝜇௛ + 𝜎௠)(𝑘௩ + 𝜇௩)൯ + (𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௩ + 𝜇௩)ቁ = 0 
            (3.15) 
Equation (3.15) has three negative eigenvalues as its roots (by Descartes rule of signs). Thus, 𝜆ଷ =0 is a simple zero eigenvalue and the other eigenvalues are real and negative, then the assumptions 
of theorem A.1 (Centre Manifold theorem) in the appendix is then verified.  Furthermore, the right 
and left eigenvectors associated with the zero eigenvalue 𝜆ଷ = 0 are  𝑤
= ⎣⎢⎢⎢

⎡ (𝜋𝜇௛𝜇௩ଶ(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛) + 𝜋𝜇௛𝜇௩ଶ𝑘௠(𝑘௩ + 𝜇௩) − 𝛼ଶ𝛽(𝐻)∗𝛽௩𝑘௠𝑘௩𝛬௛𝛬௩)𝑤ଶ𝜇௛(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛) , 𝑤ଶ,𝑘௠𝑤ଶ(𝜎௠ + 𝜋 + 𝜇௛) , − 𝛼𝛽௩𝛬௩𝑘௠𝑤ଶ𝜇௩ଶ(𝜎௠ + 𝜋 + 𝜇௛) , 𝛼𝛽௩𝛬௩𝑘௠𝑤ଶ𝜇௩(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛) , 𝛼𝛽௩𝑘௠𝑘௩𝛬௩𝑤ଶ𝜇௩ଶ(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛)⎦⎥⎥⎥
⎤்

 

and 

𝑣̅ = ⎣⎢⎢⎢
⎡0, 𝑣̅ଶ, (𝑘௠ + 𝜋 + 𝜇௛)𝑣̅ଶ𝑘௠  ,0, 𝜇௩(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)𝑣̅ଶ𝛬௩𝑘௠𝛼𝛽௩ ,(𝑘௩ + 𝜇௩)(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)𝜇௩𝑣̅ଶ𝛬௩𝑘௩𝑘௠𝛼𝛽௩ ⎦⎥⎥⎥

⎤
 

where 𝑤ଶ > 0  and 𝑣̅ଶ > 0 are  free right and left eigenvectors. 

Computation of the Coefficient 𝒂 and 𝒃 for the Malaria Model 
After some rigorous mathematical manipulations using the associated partial non-zero partial 
derivatives of (3.1) at 𝑀଴, it can be shown that 𝒂 = 2𝑣̅ଶ𝛼𝑤ଶଶ𝛽௩(𝑘௠ + 𝜋 + 𝜇௛)𝜇௩(𝜎௠ + 𝜋 + 𝜇௛) ሾ𝑎଴ − 1ሿ,   𝒃 = 𝑣̅ଶ 𝛼ଶ𝛽௩𝑘௠𝑘௩𝑤ଶ𝜇௩(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛) 

where 𝑎଴ = ቆ(𝜋𝜇௛𝜇௩ଶ(𝑘௩ + 𝜇௩)(𝜎௠ + 𝜋 + 𝜇௛) + 𝜋𝜇௛𝜇௩ଶ𝑘௠(𝑘௩ + 𝜇௩) − 𝛼ଶ𝛽(𝐻)∗𝛽௩𝑘௠𝑘௩𝛬௛𝛬௩)𝛬௛𝑘௠(𝑘௩ + 𝜇௩) ቇ 𝜇௩ 

According to theorem A.1 in the appendix it is the sign of the coefficient 𝒂 - which depend on 𝑎଴ - 
that decides the local dynamics around the disease free equilibrium for 𝛽(𝐻) = 𝛽(𝐻)∗. Thus, 

1. If 𝑎଴ > 1, then 𝑎 > 0, thus a backward bifurcation occurs 
2.  If 𝑎଴ < 1, then  𝑎 < 0, thus a forward bifurcation occurs 

The foregoing discussion is summarized in the following results from theorem A.1 items (a) and 
(d): 
Lemma 3.1: The malaria only model of (3.1) has a positive endemic equilibrium which is unstable 
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if 𝑅௠ < 1 otherwise stable. 
Lemma 3.2: The malaria only model of (3.1) has a unique positive endemic equilibrium which is 
locally asymptotically stable (LAS) if 𝑅௠ > 1 otherwise unstable. 

3.2  Sensitivity Analysis of (𝑅௠) 
The sensitivity index of the reproduction number is used to assess the impact on the relevant 

parameters to disease transmission. The sensitivity of the reproduction number, 𝑅௠ is analysed to 
determine the parameter that are most sensitive to 𝑅௠. Following the approach in [6], the forward 
sensitivity index with respect to biting rates of the mosquitoes, 𝛼 and treatment rate, 𝜋 used in the 
malaria only model is presented below using the following formula 𝑟௤ோ೘ = 𝜕𝑅௠𝜕𝑞 × 𝑞𝑅௠                                                                                                                         (3.16) 

 𝜕𝑅௠𝜕𝛼 × 𝑞𝛼𝑅௠ = 1                                                                                                                            (3.17) 

 𝜕𝑅௠𝜕𝜋 × 𝜋𝑅௠ = − 𝜋(𝑘௠ + 𝜎௠ + 2𝜋 + 2𝜇௛)2(𝜎௠ + 𝜋 + 𝜇௛)(𝑘௠ + 𝜋 + 𝜇௛)                                                               (3.18) 

From the calculation in (3.17), it was observed that 𝑅௠  is most sensitive to changes in the 
biting rates of the mosquitoes, 𝛼. An increase in number of mosquito bites 𝛼 will bring about an 
increase of the same proportion in 𝑅௠ and a decrease in 𝛼 will result in a decrease in 𝑅௠ with 
about an equivalent magnitude. Equation (3.18) imply that an increase in treatment of malaria 
infected individuals have a positive impact in controlling malaria in the population.  

3.3 Pneumonia only Disease Transmission Model 
Here, pneumonia disease transmission model only are investigated and analysed. 

Let  𝐸௠(𝑡) = 𝐼௠(𝑡) = 𝐸௩(𝑡) = 𝐼௩(𝑡) = 𝐸௠௣(𝑡) = 𝐼௠௣(𝑡) = 0 in model system (2.3), then we 
have the following system of equations is obtained 𝑆௛ᇱ(𝑡) = 𝛬௛ − 𝛽௣𝑐(𝐻)𝐼௣𝑆௛ − 𝜇௛𝑆௛ + 𝜏𝐸௣ + 𝜏𝐼௣ + 𝑉௣𝐸௣𝐸௣ᇱ(𝑡) = 𝛽௣𝑐(𝐻)𝐼௣𝑆௛ − ൫𝑘௣ + 𝜏 + 𝑉௣ + 𝜇௛൯𝐸௣                 𝐼௣ᇱ(𝑡) = 𝑘௣𝐸௣ − ൫𝜎௣ + 𝜏 + 𝜇௛൯𝐼௣                                         𝑆௩ᇱ(𝑡) = 𝛬௩ − 𝜇௩𝑆௩                                                                  ⎭⎪⎬

⎪⎫                                        (3.19)   

 
Note that the fourth equation in system (3.19) is independent of the other three equations then 
equation (3.19) can be re-written as  𝑆௛ᇱ(𝑡) = 𝛬௛ − 𝛽௣𝑐(𝐻)𝐼௣𝑆௛ − 𝜇௛𝑆௛ + 𝜏𝐸௣ + 𝜏𝐼௣ + 𝑉௣𝐸௣𝐸௣ᇱ(𝑡) = 𝛽௣𝑐(𝐻)𝐼௣𝑆௛ − ൫𝑘௣ + 𝜏 + 𝑉௣ + 𝜇௛൯𝐸௣                  𝐼௣ᇱ(𝑡) = 𝑘௣𝐸௣ − ൫𝜎௣ + 𝜏 + 𝜇௛൯𝐼௣                                          ൢ                                              (3.20) 

with 𝑁௛(𝑡) = 𝑆௛(𝑡) + 𝐸௣(𝑡)  + 𝐼௣(𝑡). For system (3.20) it can be shown that the region 𝛤 = 𝛤௛ ⊂ℛାଷ with 𝛤௛ = ቄ൫𝑆௛, 𝐸௣, 𝐼௣൯ ∈ ℛାଷ: 𝑆௛ + 𝐸௣ + 𝐼௣ ≤ ௸೓ఓ೓ቅ  
is positively invariant. Thus, in this region the model system (3.20) can be considered to be 
epidemiologically well-posed. The pneumonia free equilibrium is obtained to be  𝑃଴ = ൫𝑆௛଴∗, 𝐸௣଴∗, 𝐼௣଴∗൯ = (௸೓ఓ೓ , 0,0)              (3.21) 
 

Following the approach in [15] and [35] as in section 3.0 on the analysis of malaria model. 
It can be shown that the reproduction number for system (3.20) denoted by 𝑅௣ is given by   
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𝑅௣ = 𝑘௣𝛽௣𝑐(𝐻)𝛬௛𝜇௛൫𝜎௣ + 𝜏 + 𝜇௛൯൫𝑘௣ + 𝜏+𝑉௣ + 𝜇௛൯                                                                                 (3.22) 

The basic reproduction number 𝑅௣ is the average number of new infections caused by a single 
pneumonia infected individual (but not infected with malaria) during his or her infectious period 
in a population of pneumonia susceptible s who have no malaria. 

3.4.1 Sensitivity Analysis of the Reproduction Number, 𝑹𝒑  
Here, the impact of treatment on pneumonia is investigated using the sensitivity of the 
reproduction number for pneumonia 𝑅௣. It follows from (3.22), that the sensitivity of  𝑅௣ with 
respect to 𝜏 can be obtained as 𝜕𝑅௣𝜕𝑞 × 𝑞𝑅௣ = − 𝜏൫𝑘௣ + 𝜎௣ + 2𝜏 + 2𝜇௛൯൫𝑘௣ + 𝜏 + 𝜇௛൯൫𝜎௣ + 𝜏 + 𝜇௛൯                                                                        (3.23) 

Hence, the treatment of pneumonia patients will have a positive impact in reducing pneumonia 
burden. Thus the foregoing discussion is summarized in the following result: 
Theorem 3.3: The pneumonia disease - free equilibrium 𝑃଴ of system (3.20) is locally 
asymptotically stable if 𝑅௣ < 1 and unstable if 𝑅௣ > 1. 

Theorem 3.3 implies that pneumonia can be eliminated from the population (when 𝑅௣ < 1) if the 
initial size of the sub-population of the model system (3.20) are in the basin of attraction of the 
disease free equilibrium 𝑃଴. In order to ensure that pneumonia elimination does not depend on the 
initial size of the sub-populations, it is important to establish that the DFE is globally 
asymptotically stable. 

3.4.2 Global Stability of Pneumonia - Free Equilibrium 
The rate of change of the exposed and the infected components of system (3.25) can be written as 

൮𝑑𝐸௣𝑑𝑡𝑑𝐼௣𝑑𝑡 ൲ = (𝐹 − 𝑉) ൬𝐸௣I௣ ൰ − ൬1 − 𝑆௛𝑁௛൰ 𝐹 ൬𝐸௣I௣ ൰                                                                           (3.24) 

where  𝐹 = ቆ00      ఉ೛௖(ு)௸೓ఓ೓0 ቇ      ,         𝑉 = ቆ൫𝑘௣ + 𝜏 + 𝑉௣ + 𝜇௛൯−𝑘௣       0൫𝜎௣ + 𝜏 + 𝜇௛൯ቇ 

Since at the disease free 𝐸௣ = 𝐼௣ = 0 → (0,0) and 𝑆௛ ≤ 𝑁௛ as  𝑡 → ∞ in 𝛤௛. Thus, 

൮𝑑𝐸௣𝑑𝑡𝑑𝐼௣𝑑𝑡 ൲ ≤  (𝐹 − 𝑉) ൬𝐸௣I௣ ൰                                                                                                                (3.25) 

Then all eigenvalues of the matrix (𝐹 − 𝑉) have negative real parts i.e 𝜆ଶ + ൫𝑘௣ + 2𝜏 + 𝑉௣ + 2𝜇௛ + 𝜎௣൯𝜆 + ൫𝑘௣ + 𝜏 + 𝑉௣ + 𝜇௛൯൫𝜎௣ + 𝜏 + 𝜇௛൯ − 𝑘௣𝛽௣𝑐(𝐻) = 0      
                          (3.26) 
Equation (3.26) has its entire roots negative and real if 𝑅௣ < 1  
It follows that the linearized differential inequality (3.25) is stable whenever 𝑅௣ < 1. 
Consequently, ൫𝐸௣, 𝐼௣, ൯ → (0,0) as 𝑡 → ∞. Evaluating system (3.20) at 𝐸௣ = 𝐼௣ = 0 gives 𝑆௛ → 1 
for 𝑅௣ < 1. The result is summarized in the following theorem: 

 Theorem 3.4: The pneumonia diseases free equilibrium 𝑃଴ of system (3.20) is globally 
asymptotically stable if 𝑅௣ < 1 and unstable if 𝑅௣ > 1. 
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3.4.3 Local Asymptotic Stability of Pneumonia Endemic Equilibrium 
The Centre Manifold Theorem as used in [9] is employed here to establish the local 

asymptotic stability of the endemic equilibrium. The following change of variables are made in 
order to apply the Centre Manifold theory: Let 𝑆௛ = 𝑥ଵ, 𝐸௣ = 𝑥ଶ, 𝐼௣ = 𝑥ଷ; so that  𝑥ଵ + 𝑥ଶ + 𝑥ଷ =𝑁௛(𝑡). Furthermore, let the vector  𝑋 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ)் , then the model in system (3.20) can now be 
written in the form ௗ௑ௗ௧ = 𝑓(𝑥) , where 𝑓 = (𝑓ଵ, 𝑓ଶ, 𝑓ଷ)். It implies that system (3.20) can be written in term of the new 
variables as 𝑑𝑥ଵ𝑑𝑡 = 𝑓ଵ = 𝛬௛ − 𝛽௣𝑐(𝐻)𝑥ଷ𝑥ଵ − 𝜇௛𝑥ଵ + 𝜏𝑥ଶ + 𝑉௣𝑥ଶ + 𝜏𝑥ଷ 𝑑𝑥ଶ𝑑𝑡 = 𝑓ଶ = 𝛽௣𝑐(𝐻)𝑥ଷ𝑥ଵ − ൫𝑘௣ + 𝜏 + 𝑉௣ + 𝜇௛൯𝑥ଶ                   𝑑𝑥ଷ𝑑𝑡 = 𝑓ଷ = 𝑘௣𝑥ଶ − ൫𝜎௣ + 𝜏 + 𝜇௛൯𝑥ଷ                                          ⎭⎪⎬

⎪⎫                                                  (3.26) 

It can be shown that system (3.26) has a right and left eigenvectors associated with zero eigenvalue 
at 𝑐(𝐻) = 𝑐(𝐻)∗ given by  𝑤= ቌቀ𝜇௛൫𝜏 + 𝑉௣൯൫𝜎௣ + 𝜏 + 𝜇௛൯ + 𝑘௣൫𝜇௛𝜏 − 𝛽௣𝑐(𝐻)∗𝛬௛൯ቁ 𝑤ଶ𝜇௛ଶ൫𝜎௣ + 𝜏 + 𝜇௛൯ , 𝑤ଶ, 𝑘௣𝑤ଶ൫𝜎௣ + 𝜏 + 𝜇௛൯ቍ்                   (3.27) 

and  𝑣̅ = (𝑣̅ଵ, 𝑣̅ଶ, 𝑣̅ଷ) = ቆ0, 𝑣̅ଶ, ൫𝑘௣ + 𝜏 + 𝑉௣ + 𝜇௛൯𝑣̅ଶ𝑘௣ ቇ                                                              (3.28) 

where 𝑤ଶ > 0 and  𝑣̅ଶ > 0 are free  right eigenvector and left eigenvector. 
Computation of the coefficient 𝒂 and 𝒃 
For system (3.26), the associated non-zero partial derivatives at 𝑃଴  can be shown to be  𝜕ଶ𝑓ଶ𝜕𝑥ଵ𝜕𝑥ଷ = 𝛽௣𝑐(𝐻)∗                                                                                                                                   (3.29) 

From (3.29), it follows that 𝑎 = 2𝑣̅ଶ൫𝑘௣ + 𝜏 + 𝑉௣ + 𝜇௛൯𝑤ଶଶ𝑎ଵ𝛬௛൫𝜎௣ + 𝜏 + 𝜇௛൯   , 𝑏 = 𝑣̅ଶ𝑤ଷ𝛽௣ = 𝑣̅ଶ𝑘௣𝛽௣𝑤ଶ൫𝜎௣ + 𝜏 + 𝜇௛൯                                   (3.30) 

where  𝑎ଵ = 𝜇௛൫𝜏 + 𝑉௣൯൫𝜎௣ + 𝜏 + 𝜇௛൯ + 𝑘௣൫𝜇௛𝜏 − 𝛬௛𝛽௣𝑐(𝐻)∗൯ 
Thus, (i) If 𝑎ଵ > 0, a backward bifurcation occurs (ii) If 𝑎ଵ < 0, a forward bifurcation occurs. 
The above analysis is summarized in the following results from theorem A.1 item (d): 
 
Lemma 3.3: The pneumonia only model of (3.20) has a unique positive endemic equilibrium 
which is locally asymptotically stable (LAS) if 𝑅௣ > 1 otherwise unstable. 

3.5  Analysis of Malaria-Pneumonia Co-infection Disease Transmission Model 
The full model on the co-infection of Malaria and Pneumonia disease transmission (2.3) is now 
considered. Firstly, the co-infection dynamics of the full model system (2.3) is reduced to an eight 
dimensional system by neglecting the susceptible classes for both human and vector populations 
respectively and also using the fact that  𝑆௛(𝑡) = 1 − 𝐸௠(𝑡) − 𝐼௠(𝑡) − 𝐸௣(𝑡) − 𝐼௣(𝑡) − 𝐸௠௣(𝑡) −  𝐼௠௣(𝑡) and  𝑆௩(𝑡) = 1 − 𝐸௩(𝑡) − 𝐼௩(𝑡). Thus,  
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𝐸௠ᇱ(𝑡) = 𝛼𝛽(𝐻)𝐼௩൫1 − 𝐸௠ − 𝐼௠ − 𝐸௣ − 𝐼௣ − 𝐸௠௣ −  𝐼௠௣൯ − (𝑘௠ + 𝜋 + 𝜇௛)𝐸௠                           𝐼௠ᇱ(𝑡) = 𝑘௠𝐸௠ − 𝜗𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝐼௠ − (𝜎௠ + 𝜋 + 𝜇௛)𝐼௠                                                           𝐸௣ᇱ(𝑡) = 𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯൫1 − 𝐸௠ − 𝐼௠ − 𝐸௣ − 𝐼௣ − 𝐸௠௣ − 𝐼௠௣൯ − ൫𝑘௣ + 𝜏 + 𝑉௣ + 𝜇௛൯𝐸௣ 𝐼௣ᇱ(𝑡) = 𝑘௣𝐸௣ − 𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ − ൫𝜎௣ + 𝜏 + 𝜇௛൯𝐼௣                                                                                      𝐸௠௣ᇱ(𝑡) = 𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ + 𝜗𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝐼௠ − ൫𝑘௠௣ + 𝜙 + 𝜇௛൯𝐸௠௣                                         𝐼௠௣ᇱ(𝑡) = 𝑘௠௣𝐸௠௣ − ൫𝜎௠ + 𝜎௣ + 𝜎௠௣ + 𝜙 + 𝜇௛൯𝐼௠௣                                                                           𝐸௩ᇱ(𝑡) = 𝛼𝛽௩൫𝐼௠ + 𝛿𝐼௠௣൯(1 − 𝐸௩ − 𝐼௩) − 𝑘௩𝐸௩ − 𝜇௩𝐸௩                                                                       𝐼௩ᇱ(𝑡) = 𝑘௩𝐸௩ − 𝜇௩𝐼௩                                                                                                                                      ⎭⎪⎪⎪
⎪⎬
⎪⎪⎪⎪
⎫

 

(3.31)        
 
The disease-free equilibrium is given by 𝑃௠௣௙ = ൫𝐸௠଴, 𝐼௠଴, 𝐸௣଴, 𝐼௣଴, 𝐸௠௣଴, 𝐼௠௣଴, 𝐸௩଴, 𝐼௩଴൯ = (0,0,0,0,0,0,0,0)              (3.32)  
 

It can be shown that the basic reproduction number, denoted by 𝑅௠௣ for the full malaria-
pneumonia co-infection model (3.31) by using the next generation matrix approach is given by 𝑅௠௣ = 𝑚𝑎𝑥൛𝑅௠, 𝑅௣ൟ                   (3.33) 
So that the following result follows from theorem 2 in [35]: 

Theorem 3.5: The malaria-pneumonia free equilibrium 𝑷𝒎𝒑𝒇 of system (3.31) is locally 
asymptotically stable if 𝑅௠ < 1,  𝑅௣ < 1 and unstable if 𝑅௠ > 1 and 𝑅௠ > 1. 

3.5.1 Global Stability of Malaria-Pneumonia Free Equilibrium 𝑷𝒎𝒑𝒇 Model 
Theorem 3.6: The malaria-pneumonia free equilibrium 𝑷𝒎𝒑𝒇 of system (3.31) is globally 

asymptotically stable if 𝑅௣ < 1 , 𝑅௠ < 1, otherwise unstable. 
Proof: 
The rate of change of the exposed and infected components of system (3.31) can be written as 

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 𝑑𝐸௠𝑑𝑡𝑑𝐼௠𝑑𝑡𝑑𝐸௣𝑑𝑡𝑑𝐼௣𝑑𝑡𝑑𝐸௠௣𝑑𝑡𝑑𝐼௠௣𝑑𝑡𝑑𝐸௩𝑑𝑡𝑑𝐼௩𝑑𝑡 ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

= (𝐹 − 𝑉)
⎝⎜
⎜⎜⎜⎜
⎛ 𝐸௠𝐼௠𝐸௣𝐼௣𝐸௠௣𝐼௠௣𝐸௩𝐼௩ ⎠⎟

⎟⎟⎟⎟
⎞ − ൬1 − 𝑆௛𝑁௛൰ ൬1 − 𝑆௩𝑁௩൰ 𝐹

⎝⎜
⎜⎜⎜⎜
⎛ 𝐸௠𝐼௠𝐸௣𝐼௣𝐸௠௣𝐼௠௣𝐸௩𝐼௩ ⎠⎟

⎟⎟⎟⎟
⎞                                      (3.39) 

where 𝐹 and 𝑉 are given by 
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𝐹 =
⎝⎜
⎜⎜⎜
⎛00000000

    
000000𝛼𝛽௩0

     
00000000

     
00𝛽௣𝑐(𝐻)00000

      
00000000

      
00𝛽௣𝑘𝑐(𝐻)000𝛼𝛽௩𝛿0

     
00000000

     
𝛼𝛽(𝐻)0000000

  
⎠⎟
⎟⎟⎟
⎞

  

and 

𝑉 =
⎝⎜
⎜⎜⎜
⎛ 𝐷଴−𝑘௠000000

    
0𝐷ଵ000000

     
00𝐷ଶ−𝑘௣0000

     
000𝐷ଷ0000

      
0000𝐷ସ−𝑘௠௣00

      
00000𝐷ହ00

     
000000(𝑘௩ + 𝜇௩)−𝑘௩

     
0000000𝜇௩

  
⎠⎟
⎟⎟⎟
⎞

 

with 𝐷଴ = (𝑘௠ + 𝜋 + 𝜇௛), 𝐷ଵ = (𝜎௠ + 𝜋 + 𝜇௛), 𝐷ଶ = ൫𝑘௣ + 𝜏 + 𝑉௣ + 𝜇௛൯,  𝐷ଷ = ൫𝜎௣ + 𝜏 + 𝜇௛൯, 𝐷ସ = ൫𝑘௠௣ + 𝜙 + 𝜇௛൯, 𝐷ହ = ൫𝜎௠+𝜎௣ + 𝜎௠௣ + 𝜙 + 𝜇௛൯ 
Since at the disease free 𝐸௠ = 𝐼௠ = 𝐸௣ = 𝐼௣ = 𝐸௠௣ = 𝐼௠௣ = 𝐸௩ = 𝐼௩ = 0 → (0,0,0,0,0,0,0,0) 
with 𝑆௛ ≤ 𝑁௛ and 𝑆௩ ≤ 𝑁௩as 𝑡 → ∞ in 𝛤. Thus, 

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 𝑑𝐸௠𝑑𝑡𝑑𝐼௠𝑑𝑡𝑑𝐸௣𝑑𝑡𝑑𝐼௣𝑑𝑡𝑑𝐸௠௣𝑑𝑡𝑑𝐼௠௣𝑑𝑡𝑑𝐸௩𝑑𝑡𝑑𝐼௩𝑑𝑡 ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

≤ (𝐹 − 𝑉)
⎝⎜
⎜⎜⎜⎜
⎛ 𝐸௠𝐼௠𝐸௣𝐼௣𝐸௠௣𝐼௠௣𝐸௩𝐼௩ ⎠⎟

⎟⎟⎟⎟
⎞                                                                                                          (3.35) 

According to [35], all eigenvalues of the matrix (𝐹 − 𝑉) have negative real parts i.e. |(𝐹 − 𝑉) − 𝜆𝐼| = 0                   (3.36) 
Equation (3.41) simplifies to give 
 (−𝐷ସ − 𝜆)(−𝐷ହ − 𝜆)ሾ(−𝐷଴ − 𝜆)(−𝐷ଵ − 𝜆)(−𝜇௩ − 𝜆)(−(𝑘௩ + 𝜇௩) − 𝜆) − 𝛼ଶ𝛽௩𝛽(𝐻)𝑘௠𝑘௩ሿൣ(−𝐷ଶ − 𝜆)(−𝐷ଷ − 𝜆) − 𝑘௣𝛽௣𝑐(𝐻)൧ = 0  
Clearly, 𝜆ଵ = −𝐷ସ, 𝜆ଶ = −𝐷ହ  and   (−𝐷଴ − 𝜆)(−𝐷ଵ − 𝜆)(−𝜇௩ − 𝜆)(−(𝑘௩ + 𝜇௩) − 𝜆) − 𝛼ଶ𝛽௩𝛽௠𝑘௠𝑘௩ = 0  
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𝜆ସ + ൫𝐷଴ + 𝐷ଵ + 𝜇௩ + (𝑘௩ + 𝜇௩)൯𝜆ଷ + ൫𝐷଴𝐷ଵ + 𝐷଴𝜇௩ + 𝐷଴(𝑘௩ + 𝜇௩) + 𝐷ଵ𝜇௩ +  𝐷ଵ(𝑘௩ + 𝜇௩) +𝜇௩(𝑘௩ + 𝜇௩)൯𝜆ଶ + ൫𝐷଴𝐷ଵ𝜇௩ + 𝐷଴𝜇௩(𝑘௩ + 𝜇௩) + 𝐷଴𝐷ଵ(𝑘௩ + 𝜇௩)൯𝜆 +  𝐷଴𝐷ଵ𝜇௩(𝑘௩ + 𝜇௩) −𝛼ଶ𝛽௩𝛽(𝐻)𝑘௠𝑘௩ = 0                 (3.37) 
Equation (3.37) will have all its eigenvalues to be real and negative (Descartes Rule of signs) if 𝑅௠ < 1 and  𝑅௣ < 1. Therefore, all eigenvalues of the linearized differential inequality are 
negative if 𝑅௣ < 1 and 𝑅௠ < 1. Consequently, ൫𝐸௠, 𝐼௠, 𝐸௣, 𝐼௣, 𝐸௠௣, 𝐼௠௣, 𝐸௩, 𝐼௩൯ →(0,0,0,0,0,0,0,0) as 𝑡 → ∞. Evaluating system (3.31) at 𝐸௠ = 𝐼௠ = 𝐸௣ = 𝐼௣ = 𝐸௠௣ = 𝐼௠௣ = 𝐸௩ =𝐼௩ = 0 gives 𝑆௛ → 1, 𝑆௩ → 1 for 𝑅௣ < 1  and  𝑅௠ < 1. Hence, the malaria-pneumonia disease free 
equilibrium 𝑷𝒎𝒑𝒇 is globally asymptotically stable if 𝑅௣ < 1 and 𝑅௠ < 1. The result follows that 
the malaria-pneumonia disease free equilibrium 𝑷𝒎𝒑𝒇 is unstable if  𝑅௣ > 1 and 𝑅௠ > 1. 
 
3.5.2 Local Asymptotic Stability of Malaria-Pneumonia Endemic Equilibrium 𝑷𝒎𝒑𝒆  
We establish the stability of the endemic equilibrium of the malaria – pneumonia model (3.31), 
using the Centre Manifold theory. The following result follows. 
 
Theorem 3.6: The full malaria – pneumonia co-infection model of (3.31) has a unique endemic 
equilibrium which is locally asymptotically stable if 𝑅௠௣ > 1 and unstable if 𝑅௠௣ < 1  whenever 
item (d) of theorem A.1 in the appendix is satisfied. 
Proof: 
To apply the Centre Manifold theory, the following change of variables is made. Let 𝐸௠ = 𝑥ଵ, 𝐼௠ = 𝑥ଶ, 𝐸௣ = 𝑥ଷ, 𝐼௣ = 𝑥ସ, 𝐸௠௣ = 𝑥ହ, 𝐼௠௣ = 𝑥଺, 𝐸௩ = 𝑥଻, 𝐼௩ = 𝑥଼ 
Furthermore, introducing the vector  𝑋 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥଺, 𝑥଻, 𝑥଼)் ,  
and then the model in system (3.31) can now be written in the form ௗ௑ௗ௧ = 𝐹(𝑥) , where 𝐹 = (𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑓ସ, 𝑓ହ, 𝑓଺, 𝑓଻, 𝑓 )். It implies that system (3.31) can be written in 
term of the new variable as follow:  ௗ௫భௗ௧ = 𝑓ଵ = 𝛼𝛽(𝐻)𝑥଼(1 − 𝑥ଵ − 𝑥ଶ − 𝑥ଷ − 𝑥ସ − 𝑥ହ − 𝑥଺) − (𝑘௠ + 𝜋 + 𝜇௛)𝑥ଵ                         ௗ௫మௗ௧ = 𝑓ଶ = 𝑘௠𝑥ଵ − 𝜗𝛽௣𝑐(𝐻)(𝑥ସ + 𝑘𝑥଺)𝑥ଶ − (𝜎௠ + 𝜋 + 𝜇௛)𝑥ଶ                                                     ௗ௫యௗ௧ = 𝑓ଷ = 𝛽௣𝑐(𝐻)(𝑥ସ + 𝑘𝑥଺)(1 − 𝑥ଵ − 𝑥ଶ − 𝑥ଷ − 𝑥ସ − 𝑥ହ − 𝑥଺) − ൫𝑘௣ + 𝜏 + 𝑉௣ + 𝜇௛൯𝑥ଷௗ௫రௗ௧ = 𝑓ସ = 𝑘௣𝑥ଷ − 𝜀𝛼𝛽(𝐻)𝑥଼𝑥ସ − ൫𝜎௣ + 𝜏 + 𝜇௛൯𝑥ସ                                                                       ௗ௫ఱௗ௧ = 𝑓ହ = 𝜀𝛼𝛽(𝐻)𝑥଼𝑥ସ + 𝜗𝛽௣𝑐(𝐻)(𝑥ସ + 𝑘𝑥଺)𝑥ଶ − ൫𝑘௠௣ + 𝜙 + 𝜇௛൯𝑥ହ                                  ௗ௫లௗ௧ = 𝑓଺ = 𝑘௠௣𝑥ହ − ൫𝜎௠ + 𝜎௣ + 𝜎௠௣ + 𝜙 + 𝜇௛൯𝑥଺                                                                        ௗ௫ళௗ௧ = 𝑓଻ = 𝛼𝛽௩(𝑥ଶ + 𝛿𝑥଺)(1 − 𝑥଻ − 𝑥଼) − (𝑘௩ + 𝜇௩)𝑥଻                                                               ௗ௫ఴௗ௧ = 𝑓 = 𝑘௩𝑥଻ − 𝜇௩𝑥଼                                                                                                                         ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪
⎪⎫

(3.38)     

   It can be shown that system (3.39) has the right and left eigenvectors given by  𝑤 = ൬𝐷ଵ𝑘௠ 𝑤ଶ, 𝑤ଶ, 0,0,0,0, 𝛼𝛽௩(𝑘௩ + 𝜇௩) 𝑤ଶ, 𝛼𝛽௩𝑘௩𝜇௩(𝑘௩ + 𝜇௩) 𝑤ଶ൰்                                                (3.39) 

and  𝑣̅ = ቆ𝑘௠𝐷଴ 𝑣̅ଶ, 𝑣̅ଶ, 0,0, 𝛼ଶ𝛽௩𝛿𝛽(𝐻)∗𝑘௠𝑘௩𝑘௠௣𝜇௩(𝑘௩ + 𝜇௩)𝐷଴𝐷ସ𝐷ହ 𝑣̅ଶ, 𝛼ଶ𝛽௩𝛿𝛽(𝐻)∗𝑘௠𝑘௩𝜇௩(𝑘௩ + 𝜇௩)𝐷଴𝐷ହ 𝑣̅ଶ, 𝛼𝛽(𝐻)∗𝑘௠𝑘௩𝜇௩(𝑘௩ + 𝜇௩)𝐷଴ 𝑣̅ଶ, 𝛼𝛽(𝐻)∗𝑘௠𝜇௩𝐷଴ 𝑣̅ଶቇ 

           (3.40) 
where 𝑤ଶ > 0 and 𝑣̅ଶ > 0  are free right and left eigenvector. 
Computation of the coefficient 𝒂 and 𝒃 
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For system (3.43), the associated non-zero partial derivatives of (3.38) at 𝑃௠௣௙  can be shown to be  𝜕ଶ𝑓ଵ𝜕𝑥ଵ𝜕𝑥଼ = 𝜕ଶ𝑓ଵ𝜕𝑥ଶ𝜕𝑥଼ = −𝛼𝛽(𝐻)∗ ,   𝜕ଶ𝑓଻𝜕𝑥ଶ𝜕𝑥଻ = 𝜕ଶ𝑓଻𝜕𝑥ଶ𝜕𝑥଼ = −𝛼𝛽௩  , 𝜕ଶ𝑓ଵ𝜕𝑥଼𝜕𝛽(𝐻) = 𝛼             (3.41) 

From (3.41), it follows that 𝑎 = −2𝛼(𝑣̅ଵ𝑤ଵ𝑤଼𝛽(𝐻)∗ + 𝑣̅ଵ𝑤ଶ𝑤଼𝛽(𝐻)∗ + 𝑣̅଻𝑤ଶ𝑤଻𝛽௩ + 𝑣̅଻𝑤ଶ𝑤଼𝛽௩) < 0                   (3.42) 𝑏 = 𝑣̅ଵ𝑤଼𝛼 > 0                                                                                                                                 (3.43) 

3.6  The Effect of Sanitation on Disease Transmission Dynamics 
The aim and ultimate goal of a public health worker is to change the transmission dynamics of a 
disease in such a way that if an infected individual enters into a community he/she will not trigger 
an epidemic in the community. Mathematically, it is reasonable to assume that if  𝑅଴ < 1,   then   ௗூௗ௧ < 0                                                                                                                             (3.44)                    
For malaria, intervention can be in the following ways: (i) Treatment using anti-malaria drugs 
(ii) Reducing the rate of contact between susceptible individuals and infected mosquitoes and vice-
versa. The latter can be achieved through sleeping under the mosquito treated nets, clean 
environment (maintaining high level of sanitation), etc. The system of equations in (2.3) introduces 
the functions 𝛽(𝐻) and 𝑐(𝐻) to describe the effect of sanitation on the malaria and pneumonia 
transmission respectively.  
The functions  𝛽(𝐻) and 𝑐(𝐻) in equations (2.4) and (2.5) predicts that malaria and pneumonia 
transmissions are reduced proportionally to the improvement of sanitation conditions. Using the 
functions defined in (2.4) and (2.5), a required level of sanitation to prevent the outbreak and low 
transmission of malaria and pneumonia respectively are established as follows: 
If 𝑅௠ < 1  ඨ 𝛼ଶ𝛽௩𝛽(𝐻)𝑘௠𝑘௩𝛬௛𝛬௩𝜇௛𝜇௩ଶ(𝑘௩ + 𝜇௩)(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛) < 1 

𝛽(𝐻) < 𝜇௛𝜇௩ଶ(𝑘௩ + 𝜇௩)(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)𝛼ଶ𝛽௩𝑘௠𝑘௩𝛬௛𝛬௩                                                         (3.45) 

      𝛽௠௔௫ − 𝛾𝐻 < 𝜇௛𝜇௩ଶ(𝑘௩ + 𝜇௩)(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)𝛼ଶ𝛽௩𝑘௠𝑘௩𝛬௛𝛬௩  

Thus, the level of sanitation required for malaria reduction / eradication is 𝐻 > 1𝛾 ቈ𝛽௠௔௫ − 𝜇௛𝜇௩ଶ(𝑘௩ + 𝜇௩)(𝑘௠ + 𝜋 + 𝜇௛)(𝜎௠ + 𝜋 + 𝜇௛)𝛼ଶ𝛽௩𝑘௠𝑘௩𝛬௛𝛬௩ ቉                                      (3.46) 

       
Also, if 𝑅௣ < 1             𝑐(𝐻) < ൫𝜎௣ + 𝜏 + 𝜇௛൯൫𝑘௣ + 𝜏+𝑉௣ + 𝜇௛൯𝛬௛𝜇௛𝑘௣𝛽௣  

𝑐௠௔௫ − 𝛾𝐻 < ൫𝜎௣ + 𝜏 + 𝜇௛൯൫𝑘௣ + 𝜏+𝑉௣ + 𝜇௛൯𝛬௛𝜇௛𝑘௣𝛽௣  

Thus, the level of sanitation required pneumonia reduction / eradication is 𝐻 > 1𝛾 ቈ𝑐௠௔௫ − ൫𝜎௣ + 𝜏 + 𝜇௛൯൫𝑘௣ + 𝜏+𝑉௣ + 𝜇௛൯𝛬௛𝜇௛𝑘௣𝛽௣ ቉                                                 (3.47)  
 

4.0  Application of Optimal Control to the Co-infection of Malaria-Pneumonia 
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The main objective of this study is to suggest possible(s) optimal method of reducing/minimizing 
malaria and pneumonia transmission. Many mathematical model already exist describing malaria 
infection or pneumonia infection but the best control for malaria infection, pneumonia infection 
and the co-infection of both diseases still remain a subject of debate. Previous mathematical 
models have considered treatment, sleeping under mosquito treated bedside nets (MTBN) and the 
use of insecticide coil as controls. However, these have their limitations. The insecticides used for 
treating bedside nets is lethal to the mosquitoes, insects and also repels the mosquitoes, thus 
reducing the number of mosquitoes who attempt to feed on people in the sleeping areas with the 
nets [2]. However, the mosquitoes can still feed on humans outside these protective areas, hence; 
Agusto et al [2] included the spraying of insecticides in their model. The latter control by Agusto 
et al [2] will be more effective in a closed area, hence, the inclusion of sanitation as control in the 
present work. 

The preventive and treatment control for pneumonia includes vaccination, environmental 
measures and appropriate treatment of other health problems [32]. It is believed that, if appropriate 
preventive measures were instituted globally, mortality among children could be reduced by 
400,000; and, if proper treatment were universally available, childhood deaths could be decreased 
by another 600,000 [37]. 
 
4.1  Formulation of Optimal Control Model for the Co-infection of Malaria-Pneumonia 

with Mass Action Incidence 
We now introduce into system (2.3) time dependent preventive measures ൫𝑢ଵ(𝑡), 𝑢ଶ(𝑡), 𝑢ଷ(𝑡), 𝑢ସ(𝑡)൯ and treatment efforts ൫𝑢ହ(𝑡), 𝑢଺(𝑡), 𝑢଻(𝑡)൯ as controls to curtail the 
spread of malaria and pneumonia infection. Thus, system (2.3) becomes  𝑆௛ᇱ(𝑡) = 𝛬௛ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽(𝐻)𝐼௩𝑆௛                                                           −(1 − 𝑢ଷ − 𝑢ସ)𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝑆௛ − 𝜇௛𝑆௛                  +𝑢ହ𝐼௠ + 𝑢ହ𝐸௠ + 𝑢଺𝐼௣ + 𝑢଺𝐸௣ + 𝑢ସ𝐸௣ + 𝑢଻𝐼௠௣ + 𝑢଻𝐸௠௣𝐸௠ᇱ(𝑡) = (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽(𝐻)𝐼௩𝑆௛ − (𝑘௠ + 𝑢ହ + 𝜇௛)𝐸௠                           𝐼௠ᇱ(𝑡) = 𝑘௠𝐸௠ − (1 − 𝑢ସ)𝜗𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝐼௠ − (𝜎௠ + 𝑢ହ + 𝜇௛)𝐼௠         𝐸௣ᇱ(𝑡) = (1 − 𝑢ଷ − 𝑢ସ)𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝑆௛ − ൫𝑘௣ + 𝑢ସ + 𝑢଺ + 𝜇௛൯𝐸௣          𝐼௣ᇱ(𝑡) = 𝑘௣𝐸௣ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ − ൫𝜎௣ + 𝑢଺ + 𝜇௛൯𝐼௣                 𝐸௠௣ᇱ(𝑡) = (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ + (1 − 𝑢ସ)𝜗𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝐼௠−൫𝑘௠௣ + 𝑢଻ + 𝜇௛൯𝐸௠௣                                                             𝐼௠௣ᇱ(𝑡) = 𝑘௠௣𝐸௠௣ − ൫𝜎௠ + 𝜎௣ + 𝜎௠௣ + 𝑢଻ + 𝜇௛൯𝐼௠௣                                             𝑆௩ᇱ(𝑡) = 𝛬௩ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩൫𝐼௠ + 𝛿𝐼௠௣൯𝑆௩                                               −(𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝑆௩                                                    𝐸௩ᇱ(𝑡) = (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩൫𝐼௠ + 𝛿𝐼௠௣൯𝑆௩ − (𝑘௩ + 𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝐸௩ 𝐼௩ᇱ(𝑡) = 𝑘௩𝐸௩ − (𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝐼௩                                                                            ⎭⎪⎪

⎪⎪⎪
⎪⎪⎬
⎪⎪⎪
⎪⎪⎪
⎪⎫

 (3.48)  

where  𝑢ଵ(𝑡): is the time preventive control using mosquito treated bedside nets (MTBN) for malaria 𝑢ଶ(𝑡): is the time preventive control using insecticides spray on mosquitoes 𝑢ଷ(𝑡): is the time preventive control through sanitation for malaria and pneumonia control 𝑢ସ(𝑡): is the time preventive control using vaccine for pneumonia control 𝑢ହ(𝑡): is the treatment effort using anti-malaria drugs for malaria 𝑢଺(𝑡): is the treatment effort using anti-pneumonia drugs for pneumonia 𝑢଻(𝑡): is the treatment effort using both anti-malaria and anti-pneumonia drugs 
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The following cases are considered: 
Case 1: The optimal control strategy for malaria transmission model 
Case 2: The optimal control strategy for pneumonia transmission model 
Case 3: The optimal control strategy for the co-infection of malaria and pneumonia disease 
transmission model 

4.2 The Optimal Control Strategy for Malaria Transmission Model Case 1 
Here, the formulation of the optimal control problem, analysis of the optimal control problem, 
adjoint conditions, optimality conditions and the optimality system for the malaria model are 
considered. Let  𝐼௣(𝑡) = 𝐼௠௣(𝑡) = 𝐸௣(𝑡) = 𝐸௠௣(𝑡) = 0 in model system (3.48) gives the 
following system of equations  𝑆௛ᇱ(𝑡) = 𝛬௛ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽(𝐻)𝐼௩𝑆௛ − 𝜇௛𝑆௛ + 𝑢ହ𝐼௠ + 𝑢ହ𝐸௠ 𝐸௠ᇱ(𝑡) = (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽(𝐻)𝐼௩𝑆௛ − (𝑘௠ + 𝑢ହ + 𝜇௛)𝐸௠ 𝐼௠ᇱ(𝑡) = 𝑘௠𝐸௠ − (𝜎௠ + 𝑢ହ + 𝜇௛)𝐼௠  𝑆௩ᇱ(𝑡) = 𝛬௩ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩𝐼௠𝑆௩ − (𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝑆௩ 𝐸௩ᇱ(𝑡) = (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩𝐼௠𝑆௩ − (𝑘௩ + 𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝐸௩ 𝐼௩ᇱ(𝑡) = 𝑘௩𝐸௩ − (𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝐼௩      (3.49) 

The controls 𝑢 in (3.49) is defined to be 𝑢 ∈ ሾ0,1ሿ, where 𝑢 ranges from no control (𝑢 = 0) to 
maximum control (𝑢 = 1). Note that  𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ହ ∈ 𝑢. 
The main objective of this research is to find the optimal control strategy 𝑢 throughout the length 
of 0 ≤ 𝑡 ≤ 𝑡௙ such that the numbers of infected humans 𝐼௠ and infected vectors are minimized 
while minimizing the cost of control  𝑢. Thus, the objective function is 𝐽(𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ହ) = ׬ (𝑀𝐼௠ + 𝑁𝐼௩ + 𝑚ଵ𝑢ଵଶ + 𝑚ଶ𝑢ଶଶ + 𝑚ଷ𝑢ଷଶ + 𝑚ହ𝑢ହଶ)𝑑𝑡௧௙଴           (3.50) 
where coefficients 𝑀, 𝑚ଵ, 𝑚ଶ, 𝑚ଷ and 𝑚ହ are positive weights to balance the factors. Thus, we 
seek an optimal control 𝑢∗ = ሼ𝑢ଵ∗, 𝑢ଶ∗, 𝑢ଷ∗, 𝑢ହ∗ሽ such that 𝐽(𝑢ଵ∗, 𝑢ଶ∗, 𝑢ଷ∗, 𝑢ହ∗) = min௨భ,௨మ,௨య,௨ఱ൛𝐽(𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ହ)|௨భ,௨మ,௨య,௨ఱ ∈ 𝑢ൟ       (3.51) 

where 𝑢 = ൛(𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ହ)|௨భ,௨మ,௨య,௨ఱ: ൣ0, 𝑡௙൧ → ሾ0,1ሿൟ          (3.52) 
is Lebesgue measurable and convex on 𝑢, then there exist an optimal control 𝑢 satisfying the 
conditions in Appendix A.2 

Since there exist an optimal control for minimizing the functional (3.50) subject to system 
of equations (3.49), the Pontryagins’ Maximum Principle [16] is used to derive necessary 
conditions for this optimal control. The Hamiltonian is defined as follows:  𝐻ഥ = 𝑀𝐼௠ + 𝑁𝐼௩ + 𝑚ଵ𝑢ଵଶ + 𝑚ଶ𝑢ଶଶ + 𝑚ଷ𝑢ଷଶ + 𝑚ହ𝑢ହଶ + 𝜆ଵሾ𝛬௛ − (1 − 𝑢ଵ − 𝑢ଶ −𝑢ଷ)𝛼𝛽(𝐻)𝐼௩𝑆௛ − 𝜇௛𝑆௛ + 𝑢ହ𝐼௠ + 𝑢ହ𝐸௠ሿ + 𝜆ଶሾ(1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽(𝐻)𝐼௩𝑆௛ − (𝑘௠ + 𝑢ହ +𝜇௛)𝐸௠ሿ + 𝜆ଷሾ𝑘௠𝐸௠ − (𝜎௠ + 𝑢ହ + 𝜇௛)𝐼௠ሿ + 𝜆ସሾ𝛬௩ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩𝐼௠𝑆௩ −(𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝑆௩ሿ + 𝜆ହሾ(1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩𝐼௠𝑆௩ − (𝑘௩ + 𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝐸௩ሿ +𝜆଺ሾ𝑘௩𝐸௩ − (𝑢ଵ + 𝑢ଶ + 𝑢ଷ+𝜇௩)𝐼௩ሿ          (3.53) 
where  𝜆ଵ, 𝜆ଶ, 𝜆ଷ, 𝜆ସ, 𝜆ହ and 𝜆଺ are the adjoint variables or co-state variables. 

In order to attach the system of ordinary differential equation in (3.49) on to the objective 
function in (3.50), the adjoint functions (or co-state variables) were used. The Pontryagins’ 
Maximum Principle gives the necessary conditions that the adjoint functions must satisfy. Thus, 
the differential equations satisfied by system (3.49) are: 𝑑𝜆ଵ𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝑆௛ = (𝜆ଵ − 𝜆ଶ)(1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽(𝐻)𝐼௩ + 𝜆ଵ𝜇௛ 𝑑𝜆ଶ𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐸௠ = 𝜆ଶ(𝑘௠ + 𝑢ହ + 𝜇௛) − 𝜆ଵ𝑢ହ − 𝜆ଷ𝑘௠ 
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𝑑𝜆ଷ𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐼௠ = (𝜆ସ − 𝜆ହ)(1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩𝑆௩ + 𝜆ଷ(𝜎௠ + 𝑢ହ + 𝜇௛) − 𝜆ଵ𝑢ହ − 𝑀 𝑑𝜆ସ𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝑆௩ = (𝜆ସ − 𝜆ହ)(1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩𝐼௠ + 𝜆ସ(𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩) 𝑑𝜆ହ𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐸௩ = 𝜆ହ(𝑘௩ + 𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩) − 𝜆଺𝑘௩ ௗఒలௗ௧ = − డுഥడூೡ = (𝜆ଵ − 𝜆ଶ)(1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽(𝐻)𝑆௛ + 𝜆଺(𝑢ଵ + 𝑢ଶ + 𝑢ଷ+𝜇௩) − 𝑁  (3.54) 
with the boundary conditions (or Transversality conditions) at the final time, 𝑡௙: 𝜆ଵ൫𝑡௙൯ = 0,  𝜆ଶ൫𝑡௙൯ = 0,  𝜆ଷ൫𝑡௙൯ = 0,  𝜆ସ൫𝑡௙൯ = 0,  𝜆ହ൫𝑡௙൯ = 0, 𝜆଺൫𝑡௙൯ = 0  (3.55) 
The Hamiltonian in (3.53) is minimized with respect to the controls 𝑢ଵ, 𝑢ଶ, 𝑢ଷ and 𝑢ହ separately in 
order to obtain the optimal value of 𝑢ଵ∗, 𝑢ଶ∗, 𝑢ଷ∗, 𝑢ହ∗. At these controls values, the maximum 
Hamiltonian is obtained. The derivative of the Hamiltonian with respect to 𝑢ଵ, 𝑢ଶ, 𝑢ଷ and 𝑢ହ is thus 
zero, since at the absolute minimum or maximum the slope of a function is zero. Thus,  𝑢ଵ = (𝜆ଶ − 𝜆ଵ)𝛼𝛽(𝐻)𝐼௩𝑆௛ + (𝜆ହ − 𝜆ସ)𝛼𝛽௩𝐼௠𝑆௩ + 𝜆ହ𝐸௩ + 𝜆଺𝐼௩ + 𝜆ସ𝑆௩2𝑚ଵ                        (3.56) 

  𝑢ଶ = (𝜆ଶ − 𝜆ଵ)𝛼𝛽(𝐻)𝐼௩𝑆௛ + (𝜆ହ − 𝜆ସ)𝛼𝛽௩𝐼௠𝑆௩ + 𝜆ହ𝐸௩ + 𝜆଺𝐼௩ + 𝜆ସ𝑆௩2𝑚ଶ                         (3.57) 𝑢ଷ = (𝜆ଶ − 𝜆ଵ)𝛼𝛽(𝐻)𝐼௩𝑆௛ + (𝜆ହ − 𝜆ସ)𝛼𝛽௩𝐼௠𝑆௩ + 𝜆ହ𝐸௩ + 𝜆଺𝐼௩ + 𝜆ସ𝑆௩2𝑚ଷ                         (3.58) 𝑢ହ = (𝜆ଷ − 𝜆ଵ)𝐼௠ + (𝜆ଶ − 𝜆ଵ)𝐸௠2𝑚ହ                                                                                              (3.59) 

At the absolute minimum 𝑢 = 𝑢∗, therefore the optimality conditions are  𝑢ଵ∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0, 𝑢ଵ)ሽ𝑢ଶ∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0, 𝑢ଶ)ሽ 𝑢ଷ∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0, 𝑢ଷ )ሽ𝑢ହ∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0, 𝑢ହ)ሽ⎭⎬
⎫

             (3.60) 

4.3 The Optimal Control Strategy for Pneumonia Transmission Model Case 2 
If  𝐸௠(𝑡) = 𝐼௠(𝑡) = 𝐸௠௣(𝑡) = 𝐼௠௣(𝑡) = 𝐸௩(𝑡) = 𝐼௩(𝑡) = 0 in model system (3.48) gives 

the following system of equations 𝑆௛ᇱ(𝑡) = 𝛬௛ − (1 − 𝑢ଷ − 𝑢ସ) 𝛽௣𝑐(𝐻)𝐼௣𝑆௛ − 𝜇௛𝑆௛ + 𝑢଺𝐸௣ + 𝑢଺𝐼௣ + 𝑢ସ𝐸௣𝐸௣ᇱ(𝑡) = (1 − 𝑢ଷ − 𝑢ସ) 𝛽௣𝑐(𝐻)𝐼௣𝑆௛ − ൫𝑘௣ + 𝑢଺ + 𝑢ସ + 𝜇௛൯𝐸௣                    𝐼௣ᇱ(𝑡) = 𝑘௣𝐸௣ − ൫𝜎௣ + 𝑢଺ + 𝜇௛൯𝐼௣                                                                        𝑆௩ᇱ(𝑡) = 𝛬𝑣 − ൫𝑢1 + 𝑢2 + 𝑢3 + 𝜇𝑣൯𝑆𝑣                                                                                                                                         ⎭⎪⎬
⎪⎫                 (3.61) 

Observe that the fourth differential equation in (3.61) is independent of the first three differential 
equations; hence, system (3.67) can then be written as 𝑆௛ᇱ(𝑡) = 𝛬௛ − (1 − 𝑢ଷ − 𝑢ସ) 𝛽௣𝑐(𝐻)𝐼௣𝑆௛ − 𝜇௛𝑆௛ + 𝑢଺𝐸௣ + 𝑢଺𝐼௣ + 𝑢ସ𝐸௣𝐸௣ᇱ(𝑡) = (1 − 𝑢ଷ − 𝑢ସ) 𝛽௣𝑐(𝐻)𝐼௣𝑆௛ − ൫𝑘௣ + 𝑢଺ + 𝑢ସ + 𝜇௛൯𝐸௣                   𝐼௣ᇱ(𝑡) = 𝑘௣𝐸௣ − ൫𝜎௣ + 𝑢଺ + 𝜇௛൯𝐼௣                                                                       ൢ             (3.62)  

where the controls 𝑢ଷ, 𝑢ସ and 𝑢଺ retain their original meaning as defined in system (3.48) The 
controls 𝑢 in (3.62) is defined to be 𝑢 ∈ ሾ0,1ሿ, for 𝑢ଷ, 𝑢ସ, 𝑢଺ ∈ 𝑢 

The objective is such that the numbers of infected humans with pneumonia 𝐼௣ is minimized 
while minimizing the cost of control 𝑢. Hence 
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𝐽(𝑢ଷ, 𝑢ସ, 𝑢଺) = ׬ ൫𝐷𝐼௣ + 𝑚ଷ𝑢ଷଶ + 𝑚ସ𝑢ସଶ + 𝑚଺𝑢଺ଶ൯𝑑𝑡௧௙଴         (3.63) 
where coefficients 𝐷,  𝑚ଷ, 𝑚ସ and 𝑚଺ are positive weights to balance the factors. 
Thus, we seek an optimal control  𝑢∗ = ሼ𝑢ଷ∗, 𝑢ସ∗, 𝑢଺∗ሽ such that 𝐽(𝑢ଷ∗, 𝑢ସ∗, 𝑢଺∗) = min௨మ,௨ర,௨ల൛𝐽(𝑢ଶ, 𝑢ସ, 𝑢଺)|௨మ,௨ర,௨ల ∈ 𝑢ൟ      (3.64) 

where 𝑢 = ൛(𝑢ଶ, 𝑢ସ, 𝑢଺)|௨మ,௨ర,௨ల: ൣ0, 𝑡௙൧ → ሾ0,1ሿൟ        (3.65) 
is Lebesgue measurable and convex on 𝑢, then there exist an optimal control 𝑢 satisfying the 
conditions in Appendix A.2. We define an Hamiltonian as follows:  𝐻ഥ = 𝐷𝐼௣ + 𝑚ଷ𝑢ଷଶ + 𝑚ସ𝑢ସଶ + 𝑚଺𝑢଺ଶ + 𝜆ଵൣ𝛬௛ − (1 − 𝑢ଷ − 𝑢ସ) 𝛽௣𝑐(𝐻)𝐼௣𝑆௛ − 𝜇௛𝑆௛ + 𝑢଺𝐸௣ +𝑢଺𝐼௣ + 𝑢ସ𝐸௣൧ + 𝜆ଶൣ(1 − 𝑢ଷ − 𝑢ସ) 𝛽௣𝑐(𝐻)𝐼௣𝑆௛ − ൫𝑘௣ + 𝑢଺ + 𝑢ସ + 𝜇௛൯𝐸௣൧ +  𝜆ଷൣ𝑘௣𝐸௣ −൫𝜎௣ + 𝑢଺ + 𝜇௛൯𝐼௣൧                   (3.66) 
with 𝜆ଵ, 𝜆ଶ, 𝜆ଷ defined as the adjoint variables or co-state variables and obtained as  𝑑𝜆ଵ𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝑆௛ = (𝜆ଵ − 𝜆ଶ)(1 − 𝑢ଷ − 𝑢ସ)𝛽௣𝑐(𝐻)𝐼௣ + 𝜆ଵ𝜇௛                                        𝑑𝜆ଶ𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐸௣ = 𝜆ଶ൫𝑘௣ + 𝑢ସ + 𝑢଺ + 𝜇௛൯ − (𝑢ସ + 𝑢଺)𝜆ଵ − 𝜆ଷ𝑘௣                              𝑑𝜆ଷ𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐼௣ = (𝜆ଵ − 𝜆ଶ)(1 − 𝑢ଷ − 𝑢ସ)𝛽௣𝑐(𝐻)𝑆௛ + 𝜆ଷ൫𝜎௣ + 𝑢଺ + 𝜇௛൯ − 𝐷       ⎭⎪⎪⎬

⎪⎪⎫          (3.67) 

with the boundary conditions (or Transversality conditions) at the final time, 𝑡௙: 𝜆ଵ൫𝑡௙൯ = 0,  𝜆ଶ൫𝑡௙൯ = 0,  𝜆ଷ൫𝑡௙൯ = 0               (3.68) 
The Hamiltonian in (3.72) is minimized with respect to the controls 𝑢ଷ, 𝑢ସ and 𝑢଺ 

separately in order to obtain the optimal value of 𝑢ଷ∗, 𝑢ସ∗, 𝑢଺∗. Thus, 𝑢ଷ = (𝜆ଶ − 𝜆ଵ)𝛽௣𝑐(𝐻)𝐼௣𝑆௛2𝑚ଷ                                                                                                                  (3.69) 

   𝑢ସ = (𝜆ଶ − 𝜆ଵ)𝛽௣𝑐(𝐻)𝐼௣𝑆௛ + (𝜆ଶ − 𝜆ଵ)𝐸௣2𝑚ସ                                                                                    (3.70) 𝑢଺ = (𝜆ଶ − 𝜆ଵ)𝐸௣ + (𝜆ଷ − 𝜆ଵ)𝐼௣2𝑚଺                                                                                                       (3.71) 

The optimality conditions in this case are  𝑢ଷ∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0, 𝑢ଷ)ሽ𝑢ସ∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0, 𝑢ସ)ሽ 𝑢଺∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0, 𝑢଺)ሽ ቑ                     (3.72) 

 
 
 
 
 
 
 
 
 
4.4  The Optimal Control Model for the Co-infection of Malaria-Pneumonia with Mass  
        Action Incidence Model Case 3 
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       Recall the system of equations in (3.48) written below as  𝑆௛ᇱ(𝑡) = 𝛬௛ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽(𝐻)𝐼௩𝑆௛                                                           −(1 − 𝑢ଷ − 𝑢ସ)𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝑆௛ − 𝜇௛𝑆௛                  +𝑢ହ𝐼௠ + 𝑢ହ𝐸௠ + 𝑢଺𝐼௣ + 𝑢଺𝐸௣ + 𝑢ସ𝐸௣ + 𝑢଻𝐼௠௣ + 𝑢଻𝐸௠௣𝐸௠ᇱ(𝑡) = (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽(𝐻)𝐼௩𝑆௛ − (𝑘௠ + 𝑢ହ + 𝜇௛)𝐸௠                           𝐼௠ᇱ(𝑡) = 𝑘௠𝐸௠ − (1 − 𝑢ସ)𝜗𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝐼௠ − (𝜎௠ + 𝑢ହ + 𝜇௛)𝐼௠         𝐸௣ᇱ(𝑡) = (1 − 𝑢ଷ − 𝑢ସ)𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝑆௛ − ൫𝑘௣ + 𝑢ସ + 𝑢଺ + 𝜇௛൯𝐸௣          𝐼௣ᇱ(𝑡) = 𝑘௣𝐸௣ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ − ൫𝜎௣ + 𝑢଺ + 𝜇௛൯𝐼௣                 𝐸௠௣ᇱ(𝑡) = (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ + (1 − 𝑢ସ)𝜗𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝐼௠−൫𝑘௠௣ + 𝑢଻ + 𝜇௛൯𝐸௠௣                                                             𝐼௠௣ᇱ(𝑡) = 𝑘௠௣𝐸௠௣ − ൫𝜎௠ + 𝜎௣ + 𝜎௠௣ + 𝑢଻ + 𝜇௛൯𝐼௠௣                                             𝑆௩ᇱ(𝑡) = 𝛬௩ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩൫𝐼௠ + 𝛿𝐼௠௣൯𝑆௩                                               −(𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝑆௩                                                    𝐸௩ᇱ(𝑡) = (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩൫𝐼௠ + 𝛿𝐼௠௣൯𝑆௩ − (𝑘௩ + 𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝐸௩ 𝐼௩ᇱ(𝑡) = 𝑘௩𝐸௩ − (𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝐼௩                                                                            ⎭⎪⎪
⎪⎪⎪
⎪⎪⎬
⎪⎪⎪
⎪⎪⎪
⎪⎫

(3.73) 

where the controls 𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ସ, 𝑢ହ, 𝑢଺ and 𝑢଻ retain their original meaning as defined in system 
(3.48). The objective functional is 𝐽(𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ହ) = ׬ ൫𝑀𝐼௠ + 𝐷𝐼௣ + 𝑄𝐼௠௣ + 𝑁𝐼௩ + 𝑚ଵ𝑢ଵଶ + 𝑚ଶ𝑢ଶଶ + 𝑚ଷ𝑢ଷଶ + 𝑚ସ𝑢ସଶ +௧௙଴𝑚ହ𝑢ହଶ + 𝑚଺𝑢଺ଶ + 𝑚଻𝑢଻ଶ൯𝑑𝑡                   (3.74) 
where the coefficients 𝐷, 𝑀, 𝑁, 𝑄, 𝑚ଵ, 𝑚ଶ, 𝑚ଷ, 𝑚ସ, 𝑚ହ, 𝑚଺ and 𝑚଻ are positive weights to balance 
the factors. Thus, an optimal control  𝑢∗ = ሼ𝑢ଵ∗, 𝑢ଶ∗, 𝑢ଷ∗, 𝑢ସ∗, 𝑢ହ∗, 𝑢଺∗, 𝑢଻∗ሽ is sought 
such that 𝐽(𝑢ଵ∗, 𝑢ଶ∗, 𝑢ଷ∗, 𝑢ସ∗, 𝑢ହ∗, 𝑢଺∗, 𝑢଻∗) = min௨భ,௨మ,௨య,௨ఱ൛𝐽(𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ସ, 𝑢ହ, 𝑢଺, 𝑢଻)|௨భ,௨మ,௨య,௨ఱ ∈ 𝑢ൟ  

where 𝑢 = ൛(𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ସ, 𝑢ହ, 𝑢଺, 𝑢଻)|௨భ,௨మ,௨య,௨ర,௨ఱ,௨ల,௨ళ: ൣ0, 𝑡௙൧ → ሾ0,1ሿൟ     (3.75) 
is Lebesgue measurable and convex on 𝑢, then there exist an optimal control 𝑢 satisfying the 
conditions in section 2.7. The Hamiltonian is defined as  𝐻ഥ = 𝑀𝐼௠ + 𝐷𝐼௣ + 𝑄𝐼௠௣ + 𝑁𝐼௩ + 𝑚ଵ𝑢ଵଶ + 𝑚ଶ𝑢ଶଶ + 𝑚ଷ𝑢ଷଶ + 𝑚ସ𝑢ସଶ + 𝑚ହ𝑢ହଶ + 𝑚଺𝑢଺ଶ +𝑚଻𝑢଻ଶ+𝜆ଵൣ𝛬௛ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽(𝐻)𝐼௩𝑆௛ − (1 − 𝑢ଷ − 𝑢ସ)𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝑆௛ −𝜇௛𝑆௛ + 𝑢ହ𝐼௠ + 𝑢ହ𝐸௠ + 𝑢଺𝐼௣ + 𝑢଺𝐸௣ + 𝑢ସ𝐸௣ + 𝑢଻𝐼௠௣ + 𝑢଻𝐸௠௣൧ + 𝜆ଶሾ(1 − 𝑢ଵ − 𝑢ଶ −𝑢ଷ)𝛼𝛽(𝐻)𝐼௩𝑆௛ − (𝑘௠ + 𝑢ହ + 𝜇௛)𝐸௠ሿ + 𝜆ଷൣ𝑘௠𝐸௠ − (1 − 𝑢ସ)𝜗𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝐼௠ −(𝜎௠ + 𝑢ହ + 𝜇௛)𝐼௠൧ + 𝜆ସൣ(1 − 𝑢ଷ − 𝑢ସ)𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝑆௛ − ൫𝑘௣ + 𝑢ସ + 𝑢଺ + 𝜇௛൯𝐸௣൧ +𝜆ହൣ𝑘௣𝐸௣ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ − ൫𝜎௣ + 𝑢଺ + 𝜇௛൯𝐼௣൧ + 𝜆଺ൣ(1 − 𝑢ଵ − 𝑢ଶ −𝑢ଷ)𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ + (1 − 𝑢ସ)𝜗𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝐼௠ − ൫𝑘௠௣ + 𝑢଻ + 𝜇௛൯𝐸௠௣൧ + 𝜆଻ൣ𝑘௠௣𝐸௠௣ −൫𝜎௠ + 𝜎௣ + 𝜎௠௣ + 𝑢଻ + 𝜇௛൯𝐼௠௣൧ + 𝜆଼ൣ𝛬௩ − (1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩൫𝐼௠ + 𝛿𝐼௠௣൯𝑆௩ −(𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝑆௩൧ + 𝜆ଽൣ(1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽௩൫𝐼௠ + 𝛿𝐼௠௣൯𝑆௩ − (𝑘௩ + 𝑢ଵ + 𝑢ଶ + 𝑢ଷ +𝜇௩)𝐸௩൧+𝜆ଵ଴ሾ𝑘௩𝐸௩ − (𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝜇௩)𝐼௩ሿ      (3.76)                   
with the following adjoint variables (or co-state variables) satisfying the Pontryagin Maximum 
Principle condition: 
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𝑑𝜆ଵ𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝑆௛ = (𝜆ଵ − 𝜆ଶ)(1 − 𝑢ଵ − 𝑢ଶ − 𝑢ଷ)𝛼𝛽(𝐻)𝐼௩ + (𝜆ଵ − 𝜆ସ)(1 − 𝑢ଷ − 𝑢ସ)𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯ + 𝜆ଵ𝜇௛𝑑𝜆2𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐸𝑚 = 𝜆2൫𝑘𝑚 + 𝑢5 + 𝜇ℎ൯ − 𝜆1𝑢5 − 𝜆3𝑘𝑚                                                                                               𝑑𝜆3𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐼𝑚 = (𝜆3 − 𝜆6)(1 − 𝑢4)𝜗𝛽𝑝𝑐(𝐻)൫𝐼𝑝 + 𝑘𝐼𝑚𝑝൯ + (𝜆8 − 𝜆9)(1 − 𝑢1 − 𝑢2 − 𝑢3)𝛼𝛽𝑣𝑆𝑣                  +𝜆3൫𝜎𝑚 + 𝑢5 + 𝜇ℎ൯ − 𝜆1𝑢5 − 𝑀                                                                           𝑑𝜆4𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐸𝑝 = 𝜆4൫𝑘𝑝 + 𝑢4 + 𝑢6 + 𝜇ℎ൯ − 𝜆1(𝑢4 + 𝑢6) − 𝜆5𝑘𝑝                                                                           𝑑𝜆5𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐼𝑝 = (𝜆3 − 𝜆6)(1 − 𝑢4)𝜗𝛽𝑝𝑐(𝐻)𝐼𝑚 + (𝜆5 − 𝜆6)(1 − 𝑢1 − 𝑢2 − 𝑢3)𝜀𝛼𝛽(𝐻)𝐼𝑣                            +(𝜆1 − 𝜆4)(1 − 𝑢3 − 𝑢4)𝛽𝑝𝑐(𝐻)𝑆ℎ + 𝜆3൫𝜎𝑝 + 𝑢6 + 𝜇ℎ൯ − 𝜆1𝑢6 − 𝐷           𝑑𝜆6𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐸𝑚𝑝 = 𝜆6൫𝑘𝑚𝑝 + 𝑢7 + 𝜇ℎ൯ − 𝜆1𝑢7 − 𝜆7𝑘𝑚𝑝                                                                                         𝑑𝜆7𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐼𝑚𝑝 = (𝜆1 − 𝜆4)(1 − 𝑢3 − 𝑢4)𝛽𝑝𝑐(𝐻)𝑘𝑆ℎ + (𝜆3 − 𝜆6)(1 − 𝑢4)𝜗𝛽𝑝𝑘𝑐(𝐻)𝐼𝑚                                               +(𝜆8 − 𝜆9)(1 − 𝑢1 − 𝑢2 − 𝑢3)𝛼𝛽𝑣𝛿𝑆𝑣 + 𝜆7൫𝜎𝑚 + 𝜎𝑝 + 𝜎𝑚𝑝 + 𝑢7 + 𝜇ℎ൯ − 𝜆1𝑢7 − 𝑄𝑑𝜆8𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝑆𝑣 = (𝜆8 − 𝜆9)(1 − 𝑢1 − 𝑢2 − 𝑢3)𝛼𝛽𝑣൫𝐼𝑚 + 𝛿𝐼𝑚𝑝൯ + 𝜆8൫𝑢1 + 𝑢2 + 𝑢3 + 𝜇𝑣൯                            𝑑𝜆9𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐸𝑣 = 𝜆9൫𝑘𝑣 + 𝑢1 + 𝑢2 + 𝑢3 + 𝜇𝑣൯ − 𝜆10𝑘𝑣                                                                                          𝑑𝜆10𝑑𝑡 = − 𝜕𝐻ഥ𝜕𝐼𝑣 = (𝜆1 − 𝜆2)(1 − 𝑢1 − 𝑢2 − 𝑢3)𝛼𝛽(𝐻)𝑆ℎ + (𝜆5 − 𝜆6)(1 − 𝑢1 − 𝑢2 − 𝑢3)𝜀𝛽(𝐻)𝐼𝑝            +𝜆10൫𝑢1 + 𝑢2 + 𝑢3 + 𝜇𝑣൯ − 𝑁                                                                             ⎭⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎬⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎫

 

      (3.77) 
with boundary conditions 𝜆ଵ൫𝑡௙൯ = 𝜆ଶ൫𝑡௙൯ = 𝜆ଷ൫𝑡௙൯ = 𝜆ସ൫𝑡௙൯ = 𝜆ହ൫𝑡௙൯ = 𝜆଺൫𝑡௙൯ = 𝜆଻൫𝑡௙൯ = 𝜆଼൫𝑡௙൯ = 𝜆ଽ൫𝑡௙൯ = 𝜆ଵ଴൫𝑡௙൯ = 0     
The derivative of the Hamiltonian with respect to 𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ସ, 𝑢ହ, 𝑢଺ and 𝑢଻ is thus zero, since at 
the absolute minimum or maximum the slope of a function is zero. Then 𝑢ଵ= (𝜆ଶ − 𝜆ଵ)𝛼𝛽(𝐻)𝐼௩𝑆௛ + (𝜆଺ − 𝜆ହ)𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ + (𝜆ଽ − 𝜆଼)𝛼𝛽௩൫𝐼௠ + 𝛿𝐼௠௣൯𝑆௩ + 𝜆଼𝑆௩ + 𝜆ଽ𝐸௩ + 𝜆ଵ଴𝐼௩2𝑚ଵ   𝑢ଶ= (𝜆ଶ − 𝜆ଵ)𝛼𝛽(𝐻)𝐼𝑣𝑆ℎ + (𝜆଺ − 𝜆ହ)𝜀𝛼𝛽(𝐻)𝐼𝑣𝐼𝑝 + (𝜆ଽ − 𝜆଼)𝛼𝛽𝑣൫𝐼𝑚 + 𝛿𝐼𝑚𝑝൯𝑆𝑣 + 𝜆8𝑆𝑣 + 𝜆9𝐸𝑣 + 𝜆10𝐼𝑣2𝑚2    𝑢ଷ= (𝜆ଶ − 𝜆ଵ)𝛼𝛽(𝐻)𝐼௩𝑆௛ + (𝜆ସ − 𝜆ଵ)𝛽௣𝐶(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝑆௛ + (𝜆଺ − 𝜆ହ)𝜀𝛼𝛽(𝐻)𝐼௩𝐼௣ + (𝜆ଽ − 𝜆଼)𝛼𝛽௩൫𝐼௠ + 𝛿𝐼௠௣൯𝑆௩ + 𝜆଼𝑆௩ + 𝜆ଽ𝐸௩ + 𝜆ଵ଴𝐼௩2𝑚ଷ  𝑢ସ = (𝜆ସ − 𝜆ଵ)𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝑆௛ + (𝜆ସ − 𝜆ଵ)𝐸௣ + (𝜆଺ − 𝜆ଷ)𝜗𝛽௣𝑐(𝐻)൫𝐼௣ + 𝑘𝐼௠௣൯𝐼௠2𝑚ସ  𝑢ହ = (𝜆ଷ − 𝜆ଵ)𝐼௠ + (𝜆ଶ − 𝜆ଵ)𝐸௠2𝑚ହ  𝑢଺ = (𝜆ହ − 𝜆ଵ)𝐼௣ + (𝜆ସ − 𝜆ଵ)𝐸௣2𝑚଺  
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𝑢଻ = (𝜆଻ − 𝜆ଵ)𝐼௠௣ + (𝜆଺ − 𝜆ଵ)𝐸௠௣2𝑚଻  

Therefore the optimality conditions are  𝑢ଵ∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0,  𝑢ଵ)ሽ𝑢ଶ∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0,  𝑢ଶ)ሽ𝑢ଷ∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0,  𝑢ଷ)ሽ𝑢ସ∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0,  𝑢ସ)ሽ𝑢ହ∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0,  𝑢ହ)ሽ𝑢଺∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0,  𝑢଺)ሽ𝑢଻∗ = 𝑚𝑖𝑛ሼ1, 𝑚𝑎𝑥(0,  𝑢଻)ሽ⎭⎪⎪
⎬⎪
⎪⎫

          (3.78)  

 
5.0   Numerical Results and Discussion 
 In this section, we study numerically for the purpose of illustration the malaria only model, 
pneumonia only model, the malaria-pneumonia co-infection model and their corresponding 
optimal control models. The numerical computations were performed using MAPEL 18 program 
with computation times of 5.0s on a windows 7 operating system core i5. The optimal control was 
obtained by solving the optimality systems for malaria only, pneumonia only and malaria-
pneumonia co-infection models respectively. An iterative forward and backward finite difference 
scheme are used to solve the optimality system; the forward finite difference was used to solve the 
state equations and the backward finite difference scheme was used to solve the co-state (adjoint) 
equations using the current iterations solutions of the state equations because of the transversality 
conditions. Then the controls are updated by using a convex combination of the previous controls 
and the value from the characterization (3.60), (3.72) and (3.78). Thus, the process is repeated and 
the iterations are stopped at the final time ft . 
 The analytical results of the study are illustrated by simulating the model systems using 
values from other literature. The scarcity of data on the malaria-pneumonia co-infection limits our 
ability to scale our analytical results, however, for the purpose of illustration, other parameter 
values are assumed to vary within realistic means as given in Table 1 

Table 1 Values of Parameters for the Malaria, Pneumonia and Co-infection Model  

Parameters    Value    Sources                                    𝑘௠     ଵଵ଻        [4] 𝛽௠௔௫     0.003   Assumed 𝛾     0.009   Assumed 𝛽௩     0.001         [5] 𝜇௛     0.0000457       [39] 𝜇௩     0.04        [13] 𝑘௩      ଵଵ଼        [33] 𝛬௛      0.00011       [40] 𝛼      0.5        [5] 𝜎௠      0.01   Assumed 𝛬௩      0.071         [4] 𝜋      0.5   Assumed 𝑘௣      0.5   Assumed 𝑐௠௔௫      0.005   Assumed 𝛽௣      0.5   Assumed 
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𝑉௣      0.5   Assumed 𝜏     0.5   Assumed 𝜗      0.1   Assumed 𝜀      0.1   Assumed 𝛿      0.5   Assumed 𝜎௠௣      0.1   Assumed 𝜎௣      0.01   Assumed 𝑘      0.5   Assumed 𝑘௠௣      0.5   Assumed 
 

It was observed that as the biting rate, 𝜶 of the infected mosquitoes increase, there is a 
rapid decline in the number of susceptible human population as shown in Figure 1.  This is 
expected from the result of the sensitivity analysis on the malaria model in case 1 that the biting 
rates of the mosquitoes, 𝜶, is the most sensitive of all the parameters in the malaria model being 
considered. This explains the rapid reduction in the number of susceptible individuals in the 
population as the rate of mosquito biting rates 𝜶 increases. This result is also in perfect agreement 
with the result obtained in Tumwiine et al [34] that reduction in contact between infected 
mosquitoes and humans was necessary in bringing the basic reproduction number below unity.  
The effect of treatment rate 𝜋 using anti-malaria drugs on infected individual with malaria were 
also considered and it can be seen from Figure 2 that as treatment rate 𝜋 of malaria infected 
individuals increases, the proportion of infected humans decreases because treated individual leave 
the infected class and move to the susceptible class upon recovery from the malaria disease, a 
result which is in agreement with those obtained in [34] that there was need for effective drugs to 
reduce the spread of malaria disease. 

Figure 3 is the backward bifurcation diagram for the malaria model where an endemic 
equilibrium co-exist (dotted lines) with the disease-free equilibrium. The backward bifurcation 
phenomenon explains that for total malaria eradication in the population 𝑹𝒎 < 𝟏 is not sufficient 
rather 𝑹𝒎 must be brought below certain threshold 𝑹𝒄 such that  𝑹𝒎 < 𝑹𝒄 < 𝟏. 𝑹𝒎 is defined 
here as the basic reproduction number for malaria. The impact of backward bifurcation on malaria 
transmission is to ensure that proper diagnosis are carried out on patients rather than treating 
patients based on symptoms and individuals who had being diagnosed to have malaria should go 
through complete treatment. From Figure 4, it was observed that if the contact rate 𝑐 = 0 between 
susceptible and an infected individual with pneumonia, it was noticed that the number of 
susceptible human population increases considerably, however, as the rate of contact 𝑐 increases, 
there was a sharp decline in the number of susceptible human population into the exposed human 
to pneumonia and subsequently progress to infected pneumonia class. This affirms the result of the 
sensitivity analysis that the contact rates 𝑐 between susceptible individuals and infected individual 
is the most sensitive parameter. This claim was also supported by Mandell et al [25]. Therefore, 
reduction in effective contacts between susceptible and an infected individual is recommended 
through good sanitation among other measures.  

The effect of treatment rate 𝜏 was considered in Figure 5. It was observed that the number 
of treated individuals with pneumonia decreases as the treatment rate 𝜏 using anti – pneumonia 
drugs on the infected individuals in the population increases. Figure 6 explains the role 
vaccination played in individuals exposed to pneumonia disease. The anti-pneumonia vaccines 
prevent exposed individuals from progressing to the infectious class. Increase in the vaccination 
rate, 𝑽𝒑, result in decrease in the number of exposed individuals. This result is supported by the 
claim of ([30], [32]). 

The pneumonia model discussed in case 2 exhibited a forward bifurcation which suggest 
that it is sufficient to reduce 𝑹𝒑 below unity to guarantee total eradication of pneumonia disease in 
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the population while the disease persist in the population if 𝑹𝒑 is greater than unity as shown in 
Figure 7. As established in the malaria model and pneumonia model of this study, that increase in 
treatment rate of malaria and pneumonia diseases reduce the transmission rates of the two diseases, 
hence, Figure 8 also establish that using the combination of anti-malaria and anti-pneumonia 
drugs reduces the co-infection of malaria - pneumonia diseases. The result of [22] affirm our 
assertion that individual with malaria – pneumonia symptoms overlap are treated with both anti – 
malaria and anti – biotics. The bifurcation diagram for the malaria – pneumonia co – infection is 
presented in Figure 9. The diagram above  is in perfect agreement with our analytical result; that 
where malaria and pneumonia co – exist the condition  𝑹𝒎 < 𝑹𝒄 < 𝑹𝒑 < 𝟏 is required for malaria 
and pneumonia to be eradicated in the population. Note that 𝑹𝒎𝒑 = 𝒎𝒂𝒙൛𝑹𝒎, 𝑹𝒑ൟ, where 𝑹𝒎𝒑 is 
defined to be the basic reproduction number for co – infection of mlaria and pneumonia. 

  
Figure 1: The variation of proportion of     Figure 2: The variation of proportion of malaria 
Susceptible Human population for different     infected humanpopulation for different values of π 
values of α 

 
Figure 3: The backward bifurcation   Figure 4: The variation of proportion of  
diagram for malaria infection                         susceptible human population for different values of c 
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Figure 5: The variation of proportion  Figure 6: The variation of proportion of  
of susceptible human population for   exposed human population to pneumonia for different 
different values of τ    values of vaccination rates ൫𝑉௣൯ 
 

 
Figure 7: The forward bifurcation   Figure 8: The variation of proportion of malaria- 
diagram for pneumonia infection  pneumonia infected human population for different 

values of 𝜙 
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Figure 9: The co-infection bifurcation   Figure 10: The variation of proportion of 
diagram for malaria and pneumonia infection malaria infected population with and without  
       control  
 

 
 
Figure 11: The variation of proportion of     Figure 12: The variation of proportion of  
mosquito infected population with and without   malaria infected population with and without  
control         control 
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Figure 13: The variation of proportion          Figure 14: The variation of proportion of  
of mosquito infected population with and        malaria infected population with and without 
without control           control 
 

  
Figure 15: The variation of proportion  Figure 16: The variation of proportion of malaria 
of mosquito infected population with  infected population with and without control 
and without control 
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Figure 17: The variation of proportion of  Figure 18: The variation of proportion of 
mosquitoes infected population with and   malaria infected population with and without  
without control     control 
 

  
Figure 19: The variation of proportion    Figure 20: The variation of proportion of 
of mosquito infected population with     malaria infected population with and without  
and without control       control 
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Figure 4.21: The variation of proportion       Figure 4.22: The variation of proportion of 
Of mosquito infected population with      malaria infected population with and without  
and without control         control 
 

 
Figure 23: The variation of proportion      Figure 24: The comparison of the effect of  
of mosquito infected population with       the different control strategies on infected humans  
and without control        with malaria for the malaria model  
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Figure 25: The comparison of the effect   Figure 4.26: The variation of proportion of  
Of the different control strategies on    pneumonia infected population with and  
infected mosquitoes for the malaria model  without control 
 

  
Figure 27: The variation of proportion of  Figure 28: The variation of proportion of 
pneumonia infected population with and  pneumonia infected population with and  
without control     without control 
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Figure 29: The variation of proportion  Figure 30: The comparison of the effect of 
of pneumonia infected population with  the different control strategies on infected  
and without control humans with pneumonia for the pneumonia 

model 
 
 

  
Figure 31: The variation of proportion   Figure 32: The variation of proportion of 
of malaria-pneumonia infected population  malaria-pneumonia infected population with  
with and without control    and without control 
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Figure 33: The variation of proportion      Figure 34: The variation of proportion of malaria 
of malaria-pneumonia infected      -pneumonia infected population with and without  
 population with and without control      contro 
 
 

  
Figure 35: The variation of        Figure 36: The variation of proportion of malaria- 
Proportion of malaria-pneumonia       pneumonia infected population with and without control 
infected population with and  
without control 
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Figure 37: The variation of proportion           Figure 38: The variation of proportion of  
of malaria-pneumonia infected             malaria-pneumonia infected population with  
population with and without control          and without control 
 
 

  
Figure 39: The variation of proportion Figure 40: The variation of proportion of malaria- 
of malaria-pneumonia infected   pneumonia infected population with and without  
population with and without control  control 
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Figure 4.41: The variation of proportion       Figure 4.42: The comparison of the effect of the  
of malaria-pneumonia infected       different control strategies on infected humans  
population with and without control  with malaria-pneumonia for the malaria-  

 pneumonia model 
 
We further explore an optimal control model with time preventive (sleeping under treated 

mosquito nets 𝑢ଵ(𝑡), Insecticide spray 𝑢ଶ(𝑡) and sanitation 𝑢ଷ(𝑡)) and treatment (use of anti-
malaria drug 𝑢ହ(𝑡)) strategies as control measures on the transmission of malaria disease. Various 
combinations of the controls are considered as follows: 
(a) Optimal control using: sleeping under treated mosquito nets 𝑢ଵ(𝑡), insecticide  
spray 𝑢ଶ(𝑡), sanitation 𝑢ଷ(𝑡) and treatment 𝑢ହ(𝑡). 
Here, all the four controls are used to optimize the objective function 𝐽. It was observed in Figure 
10 and Figure 11 that the combination of the four controls resulted in significant decrease in both 
the number of infected humans with malaria (𝐼௠) and infected mosquitoes (𝐼௩) (represented by the 
green solid line) as against the increased number of infected humans (𝐼௠) and infected mosquitoes (𝐼௩) (denoted by the red dash dot line) in the uncontrolled case. 
(b) Optimal control using: sleeping under treated mosquito nets 𝑢ଵ(𝑡), sanitation  
 𝑢ଷ(𝑡) and treatment 𝑢ହ(𝑡). 
In this case, the control on spraying insecticide 𝑢ଶ(𝑡) is set to zero while the controls on sleeping 
under treated mosquito nets 𝑢ଵ(𝑡), good sanitation 𝑢ଷ(𝑡) and treatment 𝑢ହ(𝑡) are used to optimize 
the objective function 𝐽. Using this strategy, it was observed in Figure 12 and Figure 13 that the 
number of infected humans with malaria (𝐼௠) and infected mosquitoes (𝐼௩) decreases as against 
the increase observed in the uncontrolled case. 
(c) Optimal control using: insecticide spray 𝑢ଶ(𝑡), sanitation 𝑢ଷ(𝑡) and treatment 𝑢ହ(𝑡). 
Here, the controls on spraying insecticide 𝑢ଶ(𝑡), good sanitation 𝑢ଷ(𝑡) and treatment 𝑢ହ(𝑡) are 
used to optimize the objective function 𝐽 while the control on sleeping under mosquito treated nets 𝑢ଵ(𝑡) is set to zero. Considering this strategy, it was observed in Figure 14 and Figure 15 that the 
number of infected humans with malaria (𝐼௠) and infected mosquitoes (𝐼௩) decreases as against 
the increase observed in the uncontrolled case respectively. 
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(d) Optimal control using: sleeping under treated mosquito nets 𝑢ଵ(𝑡), insecticide  
spray 𝑢ଶ(𝑡) and treatment 𝑢ହ(𝑡). 

The control on sleeping under mosquito treated nets 𝑢ଵ(𝑡), insecticide spray 𝑢ଶ(𝑡) and treatment 𝑢ହ(𝑡) are used to optimize the objective function 𝐽 while the control on sanitation was set to zero. 
It was observed in Figure 16 that the control measure employed here decreases the number of 
infected humans with malaria (𝐼௠) but not to the level of the controls involving good sanitation as 
against the increase observed in the uncontrolled case. Although, a decrease in the number of 
infected mosquitoes (𝐼௩) was observed as against the uncontrolled case in Figure 17 but due to 
poor or no sanitation, the number of infected mosquitoes (𝐼௩) began to rise. 
(e) Optimal control using: sleeping under treated mosquito nets 𝑢ଵ(𝑡) and treatment  𝑢ହ(𝑡). 
With this strategy, the controls sleeping under treated mosquito nets 𝑢ଵ(𝑡) and treatment 𝑢ହ(𝑡) are 
used to optimize the objective function 𝐽 with the control on insecticide spray 𝑢ଶ(𝑡) and good 
sanitation 𝑢ଷ(𝑡) all set to zero. For this strategy, it was shown in Figure 18 and Figure 19 that the 
number of infected humans with malaria (𝐼௠) and infected mosquitoes (𝐼௩) reduces considerably 
from the uncontrolled case 
(f) Optimal control using: insecticide spray 𝑢ଶ(𝑡) and treatment 𝑢ହ(𝑡) 
With this strategy, the controls insecticide spray 𝑢ଶ(𝑡) and treatment 𝑢ହ(𝑡) are used to optimize 
the objective function 𝐽, while the control on sleeping under mosquito treated nets 𝑢ଵ(𝑡) and good 
sanitation 𝑢ଷ(𝑡) all set to zero. The result in Figure 20 and Figure 21 showed a significant 
difference in the number of infected humans with malaria (𝐼௠) and infected mosquitoes (𝐼௩) with 
optimal strategy compared to (𝐼௠) and (𝐼௩) without control. It was observed in Figure 20 that the 
control strategies resulted in a decrease in the number of infected humans with malaria (solid green 
line) as against an increase in the uncontrolled case (red dash dot line). Also, in Figure 21, the 
uncontrolled case resulted in increased number of infected mosquitoes (𝐼௩), while the control 
strategy lead to a drastic decrease in the number of infected mosquitoes (𝐼௩). 
(g) Optimal control using: sanitation 𝑢ଷ(𝑡) and treatment 𝑢ହ(𝑡). 
The objective function 𝐽 are optimized in this case using the control strategy on good sanitation 𝑢ଷ(𝑡) and treatment 𝑢ହ(𝑡), while the control on sleeping treated mosquito nets 𝑢ଵ(𝑡) and 
insecticide spray 𝑢ଶ(𝑡) are set to zero. It was observed in Figure 22 that the control strategies 
resulted in a decrease in the number of infected humans (𝐼௠) with malaria as against increase in 
the uncontrolled case. Similarly, in Figure 23, the uncontrolled case resulted in increased number 
of infected mosquitoes (𝐼௩), while the control strategy lead to a decrease in the number of infected 
mosquitoes.  
(h) Comparing all the control strategies 
A comparison of all the control strategies for our malaria model case 4 was considered on both 
infected humans (𝐼௠) and mosquitoes (𝐼௩) in Figure 24 and Figure 25 respectively. It was 
observed that all the four controls led to a decrease in the number of infected humans (𝐼௠)  and 
mosquitoes (𝐼௩) respectively. The control strategies (𝑢ଵ(𝑡), 𝑢ଷ(𝑡), 𝑢ହ(𝑡)) and (𝑢ଶ(𝑡), 𝑢ଷ(𝑡), 𝑢ହ(𝑡)) 
also led to a decrease in the number of infected humans and mosquitoes respectively. The strategy 
(𝑢ଵ(𝑡), 𝑢ଶ(𝑡), 𝑢ହ(𝑡)) yield a poorer result on both the infected humans and mosquitoes. This result 
showed that with individuals sleeping under mosquito treated nets, spraying of insecticide in the 
sleeping area and have access to treatment may not be sufficient to control the spread of the 
disease in the community if poor sanitation is encouraged. The optimal strategies involving two 
controls namely: (𝑢ଵ(𝑡), 𝑢ହ(𝑡)), (𝑢ଶ(𝑡), 𝑢ହ(𝑡)) and (𝑢ଷ(𝑡), 𝑢ହ(𝑡)) decreases the number of infected 
humans (𝐼௠) and mosquitoes (𝐼௩). From Figure 24 and Figure 25, it was also observed that the 
optimal control strategies involving good sanitation gave a better result in terms of reducing the 
number of infected humans (𝐼௠) and mosquitoes (𝐼௩). 
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The result of the optimal control for pneumonia is discussed using time dependent preventive 
and treatment controls to investigate the effect of these controls on the transmission dynamics of 
pneumonia disease. The following scenarios of the controls are considered: 

(a) Optimal control using: sanitation 𝒖𝟑(𝒕), vaccination 𝒖𝟒(𝒕) and treatment 𝒖𝟔(𝒕) 
The objective function 𝐽 is optimized here using all the three controls sanitation 𝑢ଷ(𝑡), vaccination 𝑢ସ(𝑡) and treatment 𝑢଺(𝑡). We observed from Figure 26 that the combination of the three controls 
resulted in significant reduction in the number of infected humans with pneumonia ൫𝐼௣൯ 
(represented by solid green line) as against the increased number of infected humans with 
pneumonia disease ൫𝐼௣൯ (denoted by red dash dot line) in the uncontrolled case. 
(b) Optimal control using: vaccination 𝒖𝟒(𝒕) and treatment 𝒖𝟔(𝒕) 
In this case, the control on using vaccination 𝑢ସ(𝑡) and treatment 𝑢଺(𝑡) are used to optimize the 
objective function 𝐽 while the control on sanitation 𝑢ଷ(𝑡) is set to zero. For this strategy, it was 
observed in Figure 27 that the number of infected human with pneumonia reduce considerably and 
maintain a constant level over time while the number of infected humns with pneumonia increases 
in the uncontrolled case. 
(c) Optimal control using: sanitation 𝒖𝟑(𝒕) and treatment 𝒖𝟔(𝒕) 
Here, the control on using sanitation 𝑢ଷ(𝑡) and treatment 𝑢଺(𝑡) are used to optimize the objective 
function 𝐽 with the control on vaccination 𝑢ସ(𝑡) set to zero. The number of infected humans with 
pneumonia was observed to be decreasing as shown in Figure 28 while the number of infected 
humans with pneumonia increases considerably in the uncontrolled case. 
(d) Optimal control using: treatment 𝒖𝟔(𝒕) 
With this strategy, the control on using only treatment 𝑢଺(𝑡)  was used to optimize the objective 
function 𝐽 while the controls on sanitation 𝑢ଷ(𝑡) and vaccination 𝑢ସ(𝑡) are set to zero. The result 
in Figure 29 revealed that for the controlled case, the number of infected humans with pneumonia 
reduces (green line) while the number of infected human with pneumonia increases for the 
uncontrolled case (red dash dot line). 
(e) Comparing all the control strategies 
A comparison of all the control strategies for the pneumonia model case 5 was considered on the 
infected humans ൫𝐼௣൯  Figure 30. It was observed that all the four controls led to a decrease in the 
number of infected humans ൫𝐼௣൯  this was closely followed by the strategy of using anti-pneumonia 
as treatment. The strategy involving vaccination and treatment also gave a good result in reducing 
the number of infected humans ൫𝐼௣൯  and also ensure that exposed humans do not progress to the 
infected class. Lastly, the strategy involving the use of good sanitation and treatment also gave a 
good result in decreasing the number of infected humans ൫𝐼௣൯. 

The malaria-pneumonia model with time dependent preventive and treatment control 
strategies is considered in this section. The following scenarios are considered as follows: 
(a) Optimal control using: sleeping under mosquito treated nets 𝒖𝟏(𝒕), insecticide  
spray 𝒖𝟐(𝒕), sanitation 𝒖𝟑(𝒕), vaccination 𝒖𝟒(𝒕), treatment for malaria 𝒖𝟓(𝒕),  treatment for 
pneumonia 𝒖𝟔(𝒕), treatment for both malaria and pneumonia 𝒖𝟕(𝒕) 
The objective function 𝐽 for malaria-pneumonia model is optimized in this case using all the seven 
controls. It was seen in Figure 31 that the combinations of the seven controls resulted in 
significant decrease in the number of infected humans with malaria-pneumonia ൫𝐼௠௣൯ (solid green 
line) as against the increase observed in the number of infected humans ൫𝐼௠௣൯ (dash dot red line) 
in the uncontrolled case. 
(b) Optimal control using: sleeping under mosquito treated nets 𝒖𝟏(𝒕), sanitation 𝒖𝟑(𝒕), vaccination 𝒖𝟒(𝒕), treatment for malaria 𝒖𝟓(𝒕),  treatment for pneumonia 𝒖𝟔(𝒕), 
treatment for both malaria and pneumonia 𝒖𝟕(𝒕) 
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In this case, the control on insecticide spray 𝑢ଶ(𝑡) is set to zero while the controls on sleeping 
under mosquito treated nets 𝑢ଵ(𝑡), sanitation 𝑢ଷ(𝑡), vaccination 𝑢ସ(𝑡), treatment for malaria 𝑢ହ(𝑡),  treatment for pneumonia 𝑢଺(𝑡), treatment for both malaria and pneumonia 𝑢଻(𝑡) are used 
to optimize the objective function 𝐽. Using this strategy, it was observed in Figure 32 that the 
number of infected humans with malaria-pneumonia ൫𝐼௠௣൯ decreases as against the increase 
observed in the number of infected humans ൫𝐼௠௣൯ in the uncontrolled case. 
(c) Optimal control using: sleeping under mosquito treated nets 𝒖𝟏(𝒕), insecticide  
spray 𝒖𝟐(𝒕), vaccination 𝒖𝟒(𝒕), treatment for malaria 𝒖𝟓(𝒕),  treatment for pneumonia 𝒖𝟔(𝒕), treatment for both malaria and pneumonia 𝒖𝟕(𝒕) 
Here, the control on sleeping under mosquito treated nets 𝑢ଵ(𝑡), insecticide spray 𝑢ଶ(𝑡), 
vaccination 𝑢ସ(𝑡), treatment for malaria 𝑢ହ(𝑡),  treatment for pneumonia 𝑢଺(𝑡), treatment for both 
malaria and pneumonia 𝑢଻(𝑡) are used to optimize the objective function 𝐽 while sanitation 𝑢ଷ(𝑡) 
is set to zero. For this strategy, it was observed in Figure 33 that the number of infected humans 
with malaria-pneumonia ൫𝐼௠௣൯ decreases as against the increase observed in the number of 
infected humans ൫𝐼௠௣൯ in the uncontrolled case. 
(d) Optimal control using: insecticide spray 𝒖𝟐(𝒕), sanitation 𝒖𝟑(𝒕), vaccination  𝒖𝟒(𝒕), treatment for malaria 𝒖𝟓(𝒕),  treatment for pneumonia 𝒖𝟔(𝒕), treatment for both 
malaria and pneumonia 𝒖𝟕(𝒕) 
The control on sleeping under mosquito treated nets 𝑢ଵ(𝑡) is set to zero while the controls on 
insecticide spray 𝑢ଶ(𝑡), sanitation 𝑢ଷ(𝑡), vaccination 𝑢ସ(𝑡), treatment for malaria 𝑢ହ(𝑡),  
treatment for pneumonia 𝑢଺(𝑡), treatment for both malaria and pneumonia 𝑢଻(𝑡) are used to 
optimize the objective function 𝐽. Using this strategy, it was observed in Figure 34 that the number 
of infected humans with malaria-pneumonia ൫𝐼௠௣൯ decreases as against the increase observed in 
the number of infected humans ൫𝐼௠௣൯ in the uncontrolled case. 
(e) Optimal control using: sanitation 𝒖𝟑(𝒕), vaccination 𝒖𝟒(𝒕), treatment for malaria 𝒖𝟓(𝒕),  treatment for pneumonia 𝒖𝟔(𝒕), treatment for both malaria and pneumonia 𝒖𝟕(𝒕) 
For this strategy, the controls on sanitation 𝑢ଷ(𝑡), vaccination 𝑢ସ(𝑡), treatment for malaria 𝑢ହ(𝑡),  
treatment for pneumonia 𝑢଺(𝑡), treatment for both malaria and pneumonia 𝑢଻(𝑡) are used to 
optimize the objective function 𝐽 while the controls on sleeping under mosquito treated nets 𝑢ଵ(𝑡) 
and insecticide spray 𝑢ଶ(𝑡) are set to zero. It was observed as shown in Figure 35 that this strategy 
decreases the number of infected humans with malaria-pneumonia ൫𝐼௠௣൯ while the number of 
infected humans with malaria-pneumonia ൫𝐼௠௣൯ increases for the uncontrolled case. 
(f) Optimal control using: insecticide spray 𝒖𝟐(𝒕), vaccination 𝒖𝟒(𝒕), treatment for 
malaria 𝒖𝟓(𝒕),  treatment for pneumonia 𝒖𝟔(𝒕), treatment for both malaria and pneumonia 𝒖𝟕(𝒕) 
The control on insecticide spray 𝑢ଶ(𝑡), vaccination 𝑢ସ(𝑡), treatment for malaria 𝑢ହ(𝑡),  treatment 
for pneumonia 𝑢଺(𝑡), treatment for both malaria and pneumonia 𝑢଻(𝑡) optimizes the objective 
function 𝐽 with the controls on sleeping under mosquito treated nets 𝑢ଵ(𝑡) and good sanitation 𝑢ଷ(𝑡) set to zero. For this control measure, it was shown in Figure 36 that the number of infected 
humans with malaria-pneumonia ൫𝐼௠௣൯ reduces significantly from the uncontrolled case. 
(g) Optimal control using: sleeping under mosquito treated nets 𝒖𝟏(𝒕), vaccination 𝒖𝟒(𝒕), 
treatment for malaria 𝒖𝟓(𝒕),  treatment for pneumonia 𝒖𝟔(𝒕), treatment for both malaria 
and pneumonia 𝒖𝟕(𝒕) 
With this strategy, the control on sleeping under mosquito treated nets 𝑢ଵ(𝑡), vaccination 𝑢ସ(𝑡), 
treatment for malaria 𝑢ହ(𝑡),  treatment for pneumonia 𝑢଺(𝑡), treatment for both malaria and 
pneumonia 𝑢଻(𝑡) are used to optimize the objective function 𝐽, while the control on insecticide 
spray 𝑢ଶ(𝑡) and sanitation 𝑢ଷ(𝑡) are all set to zero. The results in Figure 37 revealed a significant 
difference in the number of infected humans with malaria-pneumonia ൫𝐼௠௣൯ compared to infected 
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humans with malaria-pneumonia ൫𝐼௠௣൯ without control. It was observed in Figure 37 that the 
control strategies resulted in a decrease in the number of infected humans ൫𝐼௠௣൯ as against an 
increase in the uncontrolled case. 
(h) Optimal control using: vaccination 𝒖𝟒(𝒕), treatment for malaria 𝒖𝟓(𝒕),  treatment for 
pneumonia 𝒖𝟔(𝒕), treatment for both malaria and pneumonia 𝒖𝟕(𝒕) 
The objective function 𝐽 is optimized in this case using the control strategy on vaccination 𝑢ସ(𝑡), 
treatment for malaria 𝑢ହ(𝑡),  treatment for pneumonia 𝑢଺(𝑡), treatment for both malaria and 
pneumonia 𝑢଻(𝑡), while the controls on sleeping under mosquito treated nets 𝑢ଵ(𝑡), insecticide 
spray 𝑢ଶ(𝑡) and sanitation 𝑢ଷ(𝑡) are all set to zero. We observed in Figure 38 that the control 
strategies resulted in a decrease in the number of infected humans with malaria-pneumonia ൫𝐼௠௣൯. 
Similarly, From Figure 38, the uncontrolled case resulted in increased number of infected humans 
with malaria-pneumonia ൫𝐼௠௣൯. 
(i) Optimal control using: sanitation 𝒖𝟑(𝒕), treatment for malaria 𝒖𝟓(𝒕),  treatment for 
pneumonia 𝒖𝟔(𝒕), treatment for both malaria and pneumonia 𝒖𝟕(𝒕) 
Using this strategy, the control on using sleeping under mosquito treated nets 𝑢ଵ(𝑡), insecticide 
spray 𝑢ଶ(𝑡) and vaccination 𝑢ସ(𝑡) are all set to zero, while the control on sanitation 𝑢ଷ(𝑡), 
treatment for malaria 𝑢ହ(𝑡),  treatment for pneumonia 𝑢଺(𝑡), treatment for both malaria and 
pneumonia 𝑢଻(𝑡) are used to optimize the objective function 𝐽. The number of infected humans 
with malaria-pneumonia ൫𝐼௠௣൯ was observed to be increasing for the uncontrolled case (dash dot 
red line) as shown in Figure 39 while the number of infected humans with malaria-pneumonia ൫𝐼௠௣൯ decreases for the controlled case (solid green line). 
(j) Optimal control using: insecticide spray 𝒖𝟐(𝒕), treatment for malaria 𝒖𝟓(𝒕),  
treatment for pneumonia 𝒖𝟔(𝒕), treatment for both malaria and pneumonia 𝒖𝟕(𝒕) 
The objective function 𝐽 here is optimized using insecticide spray 𝑢ଶ(𝑡), treatment for malaria 𝑢ହ(𝑡),  treatment for pneumonia 𝑢଺(𝑡), treatment for both malaria and pneumonia 𝑢଻(𝑡) as 
controls while the controls on sleeping under mosquito treated nets 𝑢ଵ(𝑡), sanitation 𝑢ଷ(𝑡) and 
vaccination 𝑢ସ(𝑡) are all set to zero. It was observed in Figure 40 that this strategy resulted in 
significant decrease in the number of infected humans with malaria-pneumonia ൫𝐼௠௣൯ while an 
increase was observed in the uncontrolled case. 
(k) Optimal control using: sleeping under mosquito treated nets 𝒖𝟏(𝒕), treatment for 
malaria 𝒖𝟓(𝒕),  treatment for pneumonia 𝒖𝟔(𝒕), treatment for both malaria and pneumonia 𝒖𝟕(𝒕) 
For this strategy, the control on insecticide spray 𝑢ଶ(𝑡), sanitation 𝑢ଷ(𝑡) and vaccination 𝑢ସ(𝑡) are 
set to zero while the controls on sleeping under mosquito treated nets 𝑢ଵ(𝑡), treatment for malaria 𝑢ହ(𝑡),  treatment for pneumonia 𝑢଺(𝑡), treatment for both malaria and pneumonia 𝑢଻(𝑡) was used 
to optimize the objective function 𝐽. It was shown in Figure 41 that the controlled strategies 
resulted in a decrease in the number of infected humans with malaria-pneumonia ൫𝐼௠௣൯ as against 
an increase observed in the uncontrolled case. 
(l) Comparing all the control strategies 
A comparison of all the control strategies for the malaria-pneumonia model case 3 was considered 
on infected humans with malaria-pneumonia ൫𝐼௠௣൯ in Figure 42. It was observed that all the seven 
controls, followed by the combinations of six controls ( (𝑢ଵ(𝑡), 𝑢ଷ(𝑡), 𝑢ସ(𝑡), 𝑢ହ(𝑡), 𝑢଺(𝑡),  𝑢଻(𝑡)) 
and (𝑢ଶ(𝑡), 𝑢ଷ(𝑡), 𝑢ସ(𝑡), 𝑢ହ(𝑡), 𝑢଺(𝑡), 𝑢଻(𝑡)), five controls (𝑢ଷ(𝑡), 𝑢ସ(𝑡), 𝑢ହ(𝑡), 𝑢଺(𝑡),  𝑢଻(𝑡)) 
and four controls (𝑢ଷ(𝑡),  𝑢ହ(𝑡), 𝑢଺(𝑡),  𝑢଻(𝑡)) all led to a significant decrease in the number of 
infected humans with malaria-pneumonia ൫𝐼௠௣൯. The strategies (𝑢ଵ(𝑡),𝑢ହ(𝑡), 𝑢଺(𝑡),  𝑢଻(𝑡)) and 
(𝑢ଶ(𝑡), 𝑢ହ(𝑡), 𝑢଺(𝑡),  𝑢଻(𝑡)) yield a poorer result on the infected humans with malaria-pneumonia ൫𝐼௠௣൯ because of poor or no sanitation. This result showed that with individuals sleeping under 
mosquito treated nets, spraying of insecticide in the sleeping area, vaccination and access to 
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treatment may not be sufficient to control the spread of the disease in the community if poor or no 
sanitation is encouraged. 
 
6.0 Conclusion 

A nonlinear mathematical model has been developed and analyzed to study the dynamics 
of the co-infection of malaria-pneumonia using the mass action incidence. Here we incorporated 
the dynamics of sanitation by means of a linearly decreasing function both in terms of the 
transmission rate for malaria and contracting rate for pneumonia. The analysis of the model 
systems were performed using stability theory. Qualitative analysis of the model showed that the 
disease free equilibrium is locally asymptotically stable at threshold parameter less than unity 
and unstable at threshold greater than unity. Global stability of the model disease free 
equilibrium points were established using the comparison approach. Furthermore, the local 
stability of the model endemic equilibrium points were investigated by using Centre Manifold 
theory which showed t h a t  the malaria, pneumonia and the full malaria-pneumonia models 
endemic equilibriums are locally asymptotically stable whenever the associated basic 
reproduction number is greater than unity.   

Sensitivity analysis of the model showed that the biting rate of mosquitoes, 𝛼, contact 
rate 𝑐 and transmission rate  𝛽௣ of pneumonia are the most sensitive parameters in the present 
study, which suggest that more attention should be focused on these parameters. As a result, an 
optimal control strategy to curtail the spread of malaria, pneumonia and their co-infection was 
further studied in this work by incorporating treatments, sleeping under insecticide nets, spraying 
of insecticides and good sanitation as controls measures. The optimal analysis was carried out 
using the Pontryagin’s Maximum Principle. 

Finally, numerical results are provided to validate the analytical results. 
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APPENDIX A 

1 .  Centre Manifold Theorem [9] 

Consider a general system of ODEs with a parameter 𝟇  𝑥ሶ = 𝑓(𝑥, 𝜙); 𝑓: 𝑅௡ × 𝑅 → 𝑅௡; 𝑓 ∈ 𝐶ଶ(𝑅௡ × 𝑅)               (A.1) 
Without loss of generality, assume that 𝑥 = 0 is equilibrium for system (A.1). 

   Theorem A.1  
Assume: 

(i) 𝐴 = 𝐷௫𝑓(0,0) is the linearization matrix of system (2.1) around the equilibrium 𝑥 = 0 
with 𝜙 evaluated at 𝑂. Zero is a simple eigenvalue of 𝐴 and all other eigenvalues of 𝐴 
have negative real parts. 

(ii) Matrix 𝐴 has a (nonnegative) right eigenvector 𝑤 and a left eigenvector 𝑣 corresponding 
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to the zero eigenvalue. Let 𝑓௠ denote the 𝑚𝑡ℎ complements of   𝑓 and  𝑎 = ∑ 𝑣௠𝑤௜𝑤௝ డమ௙೘(଴,଴)డ௫೔డ௫ೕ௡௠,௝,௜ୀଵ  ;  𝑏 = ∑ 𝑣௠𝑤௜ డమ௙೘(଴,଴)డ௫೔డథ௡௠,௝,௜ୀଵ   

Then the local dynamics of system (2.1) around 𝑥 = 0 are totally determined by 𝑎 and 𝑏 
(iii) 𝑎 > 0, 𝑏 > 0. When 𝜙 < 0, with |𝜙| ≪ 1, 𝑥 = 0 is locally asymptotically stable and 

there exist a positive unstable equilibrium; when 0 < 𝜙 ≪ 1, 𝑥 = 0 is unstable and 
there exist a negative and locally asymptotically stable equilibrium (iv) 𝑎 < 0, 𝑏 < 0. When 𝜙 < 0, with |𝜙| ≪ 1, 𝑥 = 0 is unstable; when 0 < 𝜙 ≪ 1, 𝑥 = 0 
is locally asymptotically stable and there exist a positive unstable equilibrium. 

(v) 𝑎 > 0, 𝑏 < 0. When 𝜙 < 0, with |𝜙| ≪ 1, 𝑥 = 0 is unstable and there exist a locally 
asymptotically stable negative equilibrium; when 0 < 𝜙 ≪ 1, 𝑥 = 0 is stable and a 
positive unstable equilibrium appears (vi) 𝑎 < 0, 𝑏 > 0. When 𝜙 changes from negative to positive, 𝑥 = 0 changes its stability 
from stable to unstable. Correspondingly, a unstable equilibrium becomes positive and 
locally asymptotically stable. 

The proof of theorem A.1 is found in [12]. 

2. Pontryagin’s Maximum Principle  

Theorem A.2: The necessary conditions that ൫𝑥଴∗, 𝑢∗(𝑡)൯ be an optimal initial condition and 
optimal control for the optimal control problem are the existence of a non-zero 𝑘-dimensional 
vector λ with 𝜆ଵ ≤ 0 and an 𝑛-dimensional vector function 𝑃(𝑡) such that for 𝑡 ∈ ሾ𝑡଴, 𝑡ଵሿ: 
(i) 𝑃(𝑡)ᇱ = −𝑃(𝑡)ᇱ𝑓௫൫𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡)൯; for 𝑡 ∈ (𝑡଴, 𝑡ଵ) and 𝑢 ∈ 𝑈 
(ii) 𝑃(𝑡)ᇱൣ𝑓(𝑡, 𝑥∗(𝑡), 𝑢) − 𝑓൫𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡)൯൧ ≤ 0; 
(iii) 𝑃(𝑡ଵ)ᇱ = 𝜆ᇱ𝜙௫భ(𝑒); 
(iv) 𝑃(𝑡଴)ᇱ = −𝜆ᇱ𝜙௫బ(𝑒); 
(v) 𝑃(𝑡ଵ)ᇱ𝑓൫𝑡ଵ, 𝑥∗(𝑡ଵ), 𝑢∗(𝑡ଵ)൯ = −𝜆ᇱ𝜙௧భ(𝑒); 
(vi) 𝑃(𝑡଴)ᇱ𝑓൫𝑡଴, 𝑥∗(𝑡଴), 𝑢∗(𝑡଴)൯ = 𝜆ᇱ𝜙௧బ(𝑒); 
If 𝑓(𝑡, 𝑥, 𝑢) has a continuous partial derivative 𝑓௧(𝑡, 𝑥, 𝑢), then the condition 
(vii) 𝑃(𝑡)ᇱ𝑓൫𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡)൯ = 𝜆ᇱ𝜙௧బ൫𝑡଴, 𝑡ଵ, 𝑥∗(𝑡଴), 𝑥∗(𝑡ଵ)൯ + ׬ 𝑃(𝑠)ᇱ௧௧బ 𝑓௧൫𝑠, 𝑥∗(𝑠), 𝑢∗(𝑠)൯𝑑𝑠 
holds for each 𝑡 ∈ ሾ𝑡଴, 𝑡ଵሿ. 
The prove of theorem A.2 can be found in [15] 
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