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ABSTRACT

Malaria and Pneumonia are leading causes of serious illness in children and adults
worldwide with their death rate and prevalence on the rise. Such alarming statistics may retard
the milestones so far achieved in meeting the Millennium Development Goals 4 and 6 whose
targets are to improve child survival and reverse the high prevalence of diseases such as
pneumonia and malaria respectively. Two sub-models of malaria-pneumonia co-infection namely
malaria model and pneumonia model were considered first and then followed by the full malaria-
pneumonia co-infection model. The malaria model, pneumonia model and co-infection model
basic reproduction numbers denoted by R, R, and R, respectively was obtained using the Next
Generation Matrix method. The model disease free equilibrium’s local and global stability was
analysed using Descartes’ Rule of signs and Comparison method. The bifurcation analysis for the
malaria, pneumonia and co-infection models was studied using the Centre Manifold Theory. The
sensitivity indices of the model basic reproduction numbers R, R, and Ry, to the parameters in
the models were calculated. Optimal control theory was applied using the Pontryagins’ Maximum
Principle to investigate optimal strategies for controlling the spread of malaria, pneumonia and co-
infection models using insecticide treated bed nets (ul (t)), spraying of mosquitoes insecticides
(uz (t)), sanitation (u3 (t)), vaccination (u4 (t)), anti-malaria drugs (u5 (t)), anti-pneumonia
drugs (uG(t)), both anti-malaria drugs and anti-pneumonia drugs (u7 (t)) as the system time
control variables. Numerical simulations using a set of parameter values were provided to validate
the analytical results.
Keyword: Malaria, Mass Action, Malaria-Pneumonia, Optimal Control, Pneumonia

1.0 INTRODUCTION

Pneumonia and Malaria are two of the most deadly diseases of our time. The geographic
overlap of these diseases in sub-Saharan Africa facilitates their co-infection. Although the
consequences of the co-infection with pneumonia and malaria parasites are not fully understood in
literature, available evidence now suggests that the infections act synergistically and their
combination results in worse outcomes which poses a major public health concern. Malaria in an
individual is an illness or disease that is caused by the parasites of the genus
Plasmodium (Phylum Apicomplexa) in the blood or tissues [22]. The parasitic disease malaria is
transmitted to the human through a biting from an infected female Anopheles mosquito [3]. The
female Anopheles mosquito gets infected when it takes a blood meal from a person carrying the
malaria parasite. There are four species of the plasmodium parasites, namely Plasmodium
falciparum, Plasmodium ovale, Plasmodium vivax and Plasmodium malariae, of the four species,
Plasmodium Falciparum is the most virulent, lethal and responsible for the majority of morbidity
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and mortality due to malaria [10]. Evidence of human infections with several species
of Plasmodium from higher apes has been documented except for P. knowlesi—a zoonotic species
that causes malaria in macaques these are mostly of limited public health importance [14]. Many
children living in malaria-endemic areas are frequently exposed to other diseases such as
pneumonia. Children have a higher risk of developing pneumonia if they have weakened immune
system. A weak immune system may be as a result of prolonged malaria exposure, malnutrition
among other factors. Statistics has shown that of all children out patients suffering from respiratory
complications 25% of the cases are confirmed to be pneumonia [24].

Pneumonia is one of the forgotten killer diseases [37]. It is one of the major causes of children’s'
death in Africa and it kills more children per year than any other illness in the world [37]. The
death rates are around 2 million children worldwide; every year [37]. Pneumonia is an
inflammatory condition of the lungs; it is an airborne disease acquired through inhalation or
aspiration of pulmonary pathogenic organisms into a lung segment or lobe [26]. Pneumonia could
be caused by bacterial, virus, fungi and parasites [26]. The parasites infections usually enter the
body through the skin or the mouth and progresses through the body to the lungs, usually through
the blood [32]. Prevention of diseases such as pneumonia includes vaccination, environmental
measures and appropriate treatment of other health problems [32].

Malaria and Pneumonia account for about 8% and 19% of annual deaths in children
[21]. The combination of both diseases contributes about 40% of the deaths in children below five
years of age in sub-Saharan Africa [21]. Over six million new cases of pneumonia are estimated
annually in Nigeria while childhood fevers presumed to be malaria account for 30% of all
childhood deaths [31]. The WHO/UNICEF guidelines defines “malaria” as the presence or history
of fever and symptoms that also occur in children with pneumonia, while “pneumonia” includes
history of cough or difficulty in breathing in the presence of increased respiratory rate according to
age and symptoms that may also indicate malaria [17]. Children who have malaria-pneumonia
symptom overlap are given dual integrated management of childhood illness (IMCI) classifications
and are treated with both antimalarial and antibiotics [19]. In Eastern Africa, the extent of the
overlap has been documented but not in routine IMCI practice at the health centre level in Nigeria
[22].

Mathematical models has been widely used to study and explains the transmission
dynamics of the spread of malaria following the WHO position statement [36] that it is
important to carry out modelling studies to determine the impact of various combinations of
control strategies on the transmission dynamics of malaria. Series of studies have been done to
quantify the impact of malaria infection in humans ([8], [18] and [20]). Many of these studies
discusses only the transmission of the malaria disease in human and the vector populations,
however, recent studies by Chiyaka et al.[13] focused on a deterministic system of
differential equations involving two latent periods in the non-constant host and vector
populations in order to analytically assess the potential impact of personal protection,
treatment and possible vaccination strategies on the transmission dynamics of malaria.
Blayneh et al. [7] formulated a time dependent model to consider the effects of prevention and
treatment on malaria, while in similar fashion, Okosun et al. [28] studied a time dependent
model on the possible impact of vaccination with treatment strategies in controlling the
spread of malaria in a model that incorporate treatment and vaccination with waning
immunity. Agusto ef al. [2] studied a deterministic system of differential equations for the
transmission of malaria and thereafter considered the optimal control strategies to
investigate optimal strategies for controlling the spread of malaria disease using
treatment, insecticide treated bed nets and spraying of mosquito insecticide as the
system control variables. The possible impact of using combinations of the three
controls either one at a time or two at a time on the spread of the disease was also
examined in their study.
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Many mathematical model already exist describing malaria infection or pneumonia
infection but the best control for malaria infection, pneumonia infection and the co-infection of
both diseases still remain a subject of debate. Previous mathematical models have considered
treatment, sleeping under mosquito treated bedside nets (MTBN) and the use of insecticide coil as
controls. However, these have their limitations. The insecticides used for treating bedside nets is
lethal to the mosquitoes, other insects and also repels the mosquitoes, thus reducing the number of
mosquitoes who attempt to feed on people in the sleeping areas with the nets [2]. However, the
mosquitoes can still feed on humans outside these protective areas, hence; Agusto et al [2]
included the spraying of insecticides in their model. The latter control by [2] will be more effective
in a closed area, hence, the inclusion of sanitation as control in the present work. The preventive
and treatment controls for pneumonia includes vaccination, environmental measures and
appropriate treatment of other health problems [32]. It is believed that, if appropriate preventive
measures were instituted globally, mortality among children could be reduced by 400,000; and, if
proper treatment were universally available, childhood deaths could be decreased by another
600,000 [38].

The rest of the paper are organised in the following way: The mathematical formulation for
the full co-infection model was presented in section 2, section 3 focused on the analysis of the sub
models namely: malaria only model and pneumonia only model, this was later followed by the
analysis of the full model on malaria-pneumonia co-infection. The optimal control analysis for the
malaria only, pneumonia only and the co-infection model was considered in section 4 while the
numerical simulations and the discussion of results was presented in section 5.

2.0 MATHEMATICAL FORMULATION
Lawi et al [24] studied the following model on malaria-pneumonia co-infection with
standard incidence:

' afml )
Sy'(®) = Ay — %5,1 — Bpc(Ip + klp)Sn — tnSp + Tl + Tl + Pl
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Cai et al [11] replaced the standard incidence with the mass action incidence in their study
of malaria model with partial immunity to reinfection. Thus, following the modification of the
work of Lawi et al [24], Oluyo and Adeniyi [29] studied the following model (2.2) on the co-
infection of malaria-pneumonia using the mass action incidence.
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One intervention recommended to control malaria transmission in the work of [29] was
keeping clean environment. For pneumonia, intervention can be in two ways: reducing the number
of susceptible individuals through vaccination or reducing the rate of contact by good sanitation.
Based on the above submission, the model in (2.2) was further extended to include the exposed
classes for malaria, pneumonia and malaria-pneumonia, vaccination for those exposed to
pneumonia and the sanitation function for malaria and pneumonia. Thus, the improved model is:
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The model (2.3) subdivides the total human population of interest into two sub
population depending on the malaria and pneumonia status of individuals. The classes
consist of Susceptible (S) representing the number of individuals who are at risk of
acquiring malaria or pneumonia or both infections, Individuals Exposed to malaria or
pneumonia or both infections (E), Infective (/) representing infectious malaria individuals or
infectious pneumonia individuals or infectious malaria-pneumonia individuals capable of
transmitting infection to susceptible individuals. The constant per capita recruitment rate into
susceptible human population is A; while humans die naturally at a rate u,, the modification
parameter according to the increased susceptibility to infection with pneumonia is denoted 9,
humans die as a result of malaria infection at rate g,, while humans die of pneumonia infection at a
rate 0,,. Individual become infected with pneumonia by coming in contact with one infectious
individual at rate 8,,. Malaria and pneumonia induced mortality occur at rate oy, rate of recovery
from malaria, pneumonia and malaria-pneumonia back to the susceptible class are denoted by 7, T
and ¢ respectively while a denote the number of bites per human per mosquito. The per capita rate

of progression of humans from the exposed class E,, to the infectious class I, is k,, with ki

m
taking as the average duration of the latent period, k,, represent the per capita rate of progression
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of humans from the exposed class E,, to the infectious class I, with ki denoting the average
p

duration of the latent period while k), is the per capita rate of progression of humans from the

exposed class Ep,, to the infectious class I,,. kL is the average duration of the latent period.

mp
Exposed individuals to pneumonia are vaccinated at constant rate V},.The mosquitoes (vector)
population are sub-divided into susceptible mosquitoes(S,,), mosquitoes exposed to malaria (E,)
and infected mosquitoes (I,) respectively. The per capita recruitment rate of mosquitos into
susceptible vector population is 4,,, mosquito become infected with malaria after taking a blood
from any infected human with malaria at a rate f,, exposed mosquitoes (E,) progress to the

. . . 1 . . .
infectious class (I,,) at a constant rate k,, with P being the average duration of the latent period,
v

the mosquito natural death rate is u,. €, denote the expected decrease in contact due to ill health as
a result of pneumonia disease such that 0 < ¢ < 1. The modification parameters accounting for the
relative infectiousness of the co-infected individual as compared to their counterparts are § and k
respectively. S(H) is the transmission rate of malaria in humans expressed as function (linearly
decreasing function) of the effectiveness of sanitation H and is defined by

B(H) = ﬁmax —YH (2.4)

y represent the expected reduction / increase in transmission rate of malaria as sanitation level H
increases / decreases. H is the sanitation level of the community and is defined to be H € [0,1], so
that if H = 0, then there is maximum transmission of malaria in the community and if H =1
means there is access to maximum sanitation facilities in the community, hence, minimum
transmission rate of malaria is achieved. C(H) is the contracting rate of pneumonia expressed as
function (linearly decreasing function) of the effectiveness of sanitation H and is defined by

C(H) = Cnax —YH (2.5)

when H = 0, then there is maximum transmission of pneumonia in the community and when H =
1 means there is minimum contacting rate of pneumonia in the community.
The assumptions for the model in system of equations (2.3) are as follows:

i.  This model assumes a homogeneous mixing of individuals in the population where all
individuals have equal likelihood of contracting the infection if they come into
effective contact with infectious individuals or infectious mosquitoes and that
transmission of the infection occurs with a mass action incidence rate.

ii.  Infected individuals are assumed to recover with no permanent immunity and return to
the susceptible class.

iii.  Human population is assumed not to be constant since birth, immigration, emigration and
death occur in the population.

iv.  The probability of survival till the infectious state for individual exposed to malaria as
well as those exposed to pneumonia is less or equal to unity.

v.  That as a result of the assumption (iv) above, the exposed class of individuals in the
population are therefore included.

3.0  Malaria — only sub model

Before the full model of system (2.3) is analysed, it is important to gain insight into the
dynamics of the malaria — only sub model obtained by setting E,(t) = Ep,,(t) = L,(t) =
Ly (t) = 0in (2.3) given by
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Let the total human population and vector population at any time t be denote by N, (t) and
N, (t) respectively, then the total human and vector population for the malaria — only model of
(3.1) are given by

Np(t) = Sp(t) + Eq(t) + I (1) (3.2)
and
N, (t) = S,(t) + Ey(t) + L,(D) (3.3)

respectively. It is easy to show that both human and vector population will reach a constant value

over time. i.e. Nu(t) = Zhand N,(t) = Lo
Hh Hy

For system (3.1), it is straightforward to verify that the region [}, = {(Sh, Epm, L, Sy, Ep, I,) €
RSy +Ep+1, < %, S, +E,+1, < %} is positively invariant and attracting. Thus the
h v

dynamics of malaria — only model will be analysed in [},,.
The malaria — only model of (3.1) has a disease-free equilibrium point given by
* * * * * * A A‘U
Mo = (Sno"+ Emo"s Imo" Suo” Ewo"+ 1™ = (,0,0,22,0,0) (3.4)
and endemic equilibriums My* = (Sp1*, Em1> Im1 »Sp1 ' Ey 5 Iy ) and

* *

My" = (Sna Emz Iz »Sv2’ 5 Eva’ Iz ) given by the positive roots of

AlL,** +BL,"+C =0 (3.5)
with

A= aPBH)B,  kmky Ay (O + T+ up) + @3By kpym — (kpy + 7 + ) (0 + 1 +
)@ BUD By kyly = (ki + 0+ ) (O + 10 + )@ By sty (ke + 1)

B = agﬁ(H)ﬁvzkmkvAvAh + a?B(H)Bykmky Aptty (0 + 7 + pt) +
azﬁ(H)ﬁvkmzkvAvﬂvﬂ - Z(km t+m+ ﬂh) (Um +m+ .uh)aﬂv:uvz,uh(kv + .uv) -
azﬁ(H):Bv.uvkvAv(km +m+ ,uh)(o-m +m+ .uh)

C= kmkvazﬁ(H)ﬁvAvAh.uv - HhﬂvS(km +m+ ﬂh)(am +m+ /v‘h)(kv + .uv)

The local stability of the equilibrium M, is governed by the basic reproduction number R,,,.
The basic reproduction number for the malaria model of (3.1) will be investigated using the next
generation approach ( [15], [35]). Using the notations in [35] on system (3.1), the matrices F and
V, representing the new infections terms and transferred terms respectively are given by

0 0 0 (aB,Ay/p)
F=| 0 0 0 0 ;

0 (@Bolo/iy) O 0

0 0 0 0
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(kpy + T+ up) 0 0 0

V= —km (Um +m+ .uh) 0 0
0 0 (ky + 1) O

0 0 —k, Hy

Thus, the basic reproduction number for system (3.1), denoted by R,,, is given by the spectral
radius p of FV ™! (the dominant eigenvalue in magnitude)

2

Rm — p(FV_l) — a :B(H)kamkv/lh/lv

.uh.uvz(kv + /f‘v)(o-m +m+ .uh)(km +m+ .uh)

The reproduction number R,, is the average number of secondary malaria infectious cases

produced by a single infected mosquito during its infectious period when introduced in a
population of mostly malaria susceptible individuals.
Theorem 3.1: The malaria disease - free equilibrium M, of system (3.1) is locally asymptotically
stable if R,, < 1 and unstable if R,,;, > 1.
Proof: The Jacobian matrix of system (3.1) evaluated at M, is

(3.6)

J(Mp) =
—Up s T 0 0 (—aB(H)Ap/ 1)
/ 0 —Cm + 7+ ) 0 0 0 (@B /) \
0 k., —(om+m+uy) 0 0 0 3.7
0 0 (_aﬁv/lv/ﬂv) —Uy 0 0 ( . )
0 0 (@Bolo/ty) 0 —(ky +ity) 0
0 0 0 0 k, —LUy,
The characteristic equation of equation (3.7) is
(=pn = D(=py —Dg) = 0 (3.8)
where

g) = A* + (ky, + 2 + 2up + 21y, + 0y + kA3 (kyy + T+ pp) (0, + T+ 1) +
(kpy + 21+ 2uy + 0py) (ky + 1) + (ki + 21 + 2y + 20y, + 00y + k) i) Az+(yv((km + 7+
.uh)(o-m +1T+ ﬂh) + (km + 21 + 2tu'h + Um)(kv + .uv)) + (km +m+ .uh)(o-m +1T+ ﬂh)(kv +

2 (H) vkmkvA AV
1)) 2ty (K + 1) (O + 70+ ) Ui + 7+ py) — P

Clearly, A, = —uy, 1, = —p,, while A5, A4, A5 and A4 are obtained from g(1) = 0 i.e
A+ (ke + 21+ 20, + 24ty + 0 + k)23 + ((kpy + T+ pp) (O + 70+ p) + (ki + 27 +

2/v‘h + Gm)(kv + .uv) + (km + 21 + 2.uh + 2/”‘17 + Om + kv).uv)/lz + (.uv((km +m+ /v‘h)(o-m +
T+ .uh) + (km +2m+ Z”h + O-m)(kv + ,uv)) + (km +m+ ﬂh)(o_m +m+ .uh)(kv + .uv))/1 +

2 (H) 'Vkmk'VA AV
o Uy + 1) O + 70+ 1) U + 7 4 ) — SERLEmE e — (3.9)

Equation (3.9) will have four negative real roots (by Descartes rule of positive solutions) if

a2 (H) Byk kA A
J;i"h”<nﬂm+u»®m+n+uwwm+n+nu
v

= azﬁ(H)ﬁvkmkvAhAv <
Upty?(ky + ) (O + T+ pp) (ki + 1T+ 1)

Rp2<1

1

“ Ry<1
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Hence, the malaria disease — free equilibrium M, of system (3.1) is locally asymptotically
stable if R,, < 1. The result follows immediately that M, is unstable if R,,, > 1.
Theorem 3.2: The malaria disease - free equilibrium M, of system (3.1) is globally asymptotically
stable if R,, < 1 and unstable if R,;, > 1.

Proof:The Comparison method as implemented in Lashmkantham, ef a/ [23] and Mushayabasa et
al [27] is used here. The rate of change of the exposed and infected components of system (3.1)
can be written as

dE,,
dt
dl,, E,. En,
i ool )00
=(F-V —(1—-——]||1——)F 3.10
dE, ( ) E, N, N, E, (3.10)
dt L, L,
dl,
dt

where F and V are as defined above. Since at the disease free E,, = I,, = E, =1, = 0 - (0,0,0,0)
and S, < Ny, S, < N, as t — oo in [},,. Thus,

dE,,
dt

dl,, En

dt B I,

dE, <(F-V) E, (3.11)
dt I,

dl,

dt

Then all eigenvalues of the matrix (F — V') have negative real parts i.e
A+ (ke + 21 4 20, + 24ty + 0 + k)23 + ((kpy + T+ pp) (O + 70+ pp) + (ki + 21 +

2/v‘h + Gm)(kv + .uv) + (km + 21 + 2.uh + 2/”‘17 + Om + kv).uv)/lz + (.uv((km +m+ /v‘h)(o-m +
T+ .uh) + (km +2m+ Z”h + O-m)(kv + ,uv)) + (km +m+ ﬂh)(o_m +m+ .uh)(kv + .uv))/1 +

2B(H)BykmkyApdy
oy + 1) (O + 70+ ) e + 7+ py) — Pl — (3.12)

Equation (3.12) have four negative roots by Descartes rule of signs if R,, < 1. It follows
that the linearized differential inequality (3.11) is stable whenever R,, < 1. Consequently,
(Em, Im, E,,, I,) = (0,0,0,0) as t - oo. Evaluating system (3.1) at E,, = I,,, = E, = I, = 0 gives,
Sy~ 1land S, — 1 for R,, < 1. Hence, the malaria diseases free equilibrium M, of system (3.1)
is globally asymptotically stable if R,, < 1. The result also follow immediately that the malaria
disease — free equilibrium M, of system (3.1) is unstable if R,,, > 1.

3.1 Local Asymptotic Stability of Malaria Endemic Equilibrium

The Centre Manifold theorem is now applied to study the local stability of the malaria endemic
equilibrium.

Let B(H) = B(H)* be a bifurcation parameter and if the case R,,, = 1 is considered, then

3 . Baty?(ky + ) (ki + 10+ 1) (O, + 0+ i)
B(H) = B(H)" = Bk kA (3.13)

Firstly, the Jacobian matrix of system (3.1) at point (M, B(H)*) is
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J(Mo, B(H)")

—HUn T U 0 0 (—af(H) An/un)
0 —(ky +m+up) 0 0 0 (aB(H) Ay /up)
_| 0 k., —(Om+mT+pr) 0 0 0 |314
| o 0 (—aBoly/ity) —py O 0 (3.14)
0 0 (aBphp/py) 0 —(ky + ) 0
0 0 0 0 k, — Uy

The characteristic equation of (3.14) has a simple zero eigenvalue i.e.
A = —up, 1, = —u,, A3 = 0, while the remaining equation is written as
B+ (ko + 21+ 20 + 20y + 0y + kA2 + (ki + T4 ) (O + 0+ pi) + (b + 27 +

20t + ) Uty + 1) + Gy + 2 + 201, + 241, + Gy + )t )A + (11 (ki + 70 + 1) (03 +

T+ ) + U + 2 + 20t + ) Gy + 1)) + (R + 7+ 1) (O + 70+ ) Uy + 1)) = 0
(3.15)

Equation (3.15) has three negative eigenvalues as its roots (by Descartes rule of signs). Thus, 1; =

0 is a simple zero eigenvalue and the other eigenvalues are real and negative, then the assumptions

of theorem A.1 (Centre Manifold theorem) in the appendix is then verified. Furthermore, the right

and left eigenvectors associated with the zero eigenvalue 1; = 0 are

w

[ (T[.uh.uvz(kv + /f‘v)(o-m +m+ .uh) + T[.uh.uvzkm(kv + .uv) - aZB(H)*ﬁvkmkvAhAv)WZ w ]
) 20

ﬂh(kv + ,le)(O'm +m+ .uh)
kaZ aﬁvAvkaZ aﬁvAvkaZ aﬁvkmkv/lvwz ]

(O +m+u) 120 + 7+ 1) oy + 1) (0 + T+ 1) 12 (ky + 11,) (O + 0 + 1)

T

and
_ (et + v, py(ky + 1+ up) (O + T+ )0,
0, vz; ] )
,,7 — km Avkmaﬁv
(kv + :uv)(km +m+ ,uh)(o-m +m+ .uh)ﬂvﬁz
Avkvkmaﬁv

where w, > 0 and v, > 0 are free right and left eigenvectors.

Computation of the Coefficient a and b for the Malaria Model
After some rigorous mathematical manipulations using the associated partial non-zero partial
derivatives of (3.1) at My, it can be shown that
Zﬁzawzzﬁv(km + 7+ .uh) — azﬁvkmkvwz
= [aO - 1]' b = Uy
”v(o—m +m+ .u'h) :uv(kv + ,U,,,)(O'm +m+ ﬂh)

where
_ (ﬂ#h.uvz(kv + ,le)(O'm +m+ ﬂh) + n.uhﬂvzkm(kv + ﬂv) - azﬁ(H)*,kamkvAhAv)

0" Anlenn ey + 12,) o
According to theorem A.1 in the appendix it is the sign of the coefficient a - which depend on a; -
that decides the local dynamics around the disease free equilibrium for S(H) = B(H)*. Thus,

1. Ifay > 1, then a > 0, thus a backward bifurcation occurs
2. Ifay <1,then a < 0, thus a forward bifurcation occurs
The foregoing discussion is summarized in the following results from theorem A.1 items (a) and

(d):

Lemma 3.1: The malaria only model of (3.1) has a positive endemic equilibrium which is unstable
9
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if R,, < 1 otherwise stable.
Lemma 3.2: The malaria only model of (3.1) has a unique positive endemic equilibrium which is
locally asymptotically stable (LAS) if R,,, > 1 otherwise unstable.

3.2 Sensitivity Analysis of (R,,)

The sensitivity index of the reproduction number is used to assess the impact on the relevant
parameters to disease transmission. The sensitivity of the reproduction number, R,, is analysed to
determine the parameter that are most sensitive to R,,,. Following the approach in [6], the forward
sensitivity index with respect to biting rates of the mosquitoes, a and treatment rate,  used in the
malaria only model is presented below using the following formula

Rm _ aRm q

r X — (3.16)

OR,, qu

—X—=1 3.17
da R, (3.17)
oR,, m w(ky + oy + 27 + 2py)

— X — = — 3.18
ot R, 200 + 1+ pup) (kypy + 1+ 1) (3.18)

From the calculation in (3.17), it was observed that R,,, is most sensitive to changes in the
biting rates of the mosquitoes, a. An increase in number of mosquito bites a will bring about an
increase of the same proportion in R, and a decrease in a will result in a decrease in R,, with
about an equivalent magnitude. Equation (3.18) imply that an increase in treatment of malaria
infected individuals have a positive impact in controlling malaria in the population.

3.3  Pneumonia only Disease Transmission Model
Here, pneumonia disease transmission model only are investigated and analysed.
Let Ep(t) = I,(t) = E,(¢) = I,(t) = Epp(t) = Inp(t) = 0 in model system (2.3), then we
have the following system of equations is obtained
Sh’(t) = Ah - ﬁpC(H)IpSh - l’thh + TEp + Tlp + VpEp\
E,' (t) = Bpc(HD)L,Sy — (kp + T+ Vy + pp)Ey
L'(©) = kyE, — (0, + T+ pp) 1,
Sv,(t) =Ny — UySy

(3.19)

Note that the fourth equation in system (3.19) is independent of the other three equations then
equation (3.19) can be re-written as

Sh,(t) = Ah - BPC(H)IPS}'L - IJ.hSh + TEp + TIp + ]/pEp

Ey' (8) = Bpc(H)1,Sy — (kp + T+ Vy + 1y Ep (3.20)

L' (©) = kyE, — (0p + T+ un)1,

with Ny (t) = Sp(t) + Ep(t) + L,(t). For system (3.20) it can be shown that the region I' = [}, ©
Ry* with I, = {(Sy, Ep I,) € Ry Sy + By +1, < 22}

Hh
is positively invariant. Thus, in this region the model system (3.20) can be considered to be

epidemiologically well-posed. The pneumonia free equilibrium is obtained to be
* * * A
Py = (Sno™ Epo” Ipo") = G, 0.0) (3.21)

Following the approach in [15] and [35] as in section 3.0 on the analysis of malaria model.
It can be shown that the reproduction number for system (3.20) denoted by R, is given by

10
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_ k, ,ch(H )Ay
P un(op + 7+ pp)(ky + T+, + wy)
The basic reproduction number R,, is the average number of new infections caused by a single

pneumonia infected individual (but not infected with malaria) during his or her infectious period
in a population of pneumonia susceptible s who have no malaria.

R

(3.22)

3.4.1 Sensitivity Analysis of the Reproduction Number, R,
Here, the impact of treatment on pneumonia is investigated using the sensitivity of the
reproduction number for pneumonia Ry,. It follows from (3.22), that the sensitivity of R, with
respect to T can be obtained as

oR, q _ T(kp +o0, + 27+ Z,uh)

dq R, (kp + 7+ un)(0p + 7+ pp)
Hence, the treatment of pneumonia patients will have a positive impact in reducing pneumonia
burden. Thus the foregoing discussion is summarized in the following result:
Theorem 3.3: The pneumonia disease - free equilibrium P, of system (3.20) is locally
asymptotically stable if R, < 1 and unstable if R, > 1.

(3.23)

Theorem 3.3 implies that pneumonia can be eliminated from the population (when R, < 1) if the
initial size of the sub-population of the model system (3.20) are in the basin of attraction of the
disease free equilibrium P,. In order to ensure that pneumonia elimination does not depend on the
initial size of the sub-populations, it is important to establish that the DFE is globally
asymptotically stable.

3.4.2 Global Stability of Pneumonia - Free Equilibrium
The rate of change of the exposed and the infected components of system (3.25) can be written as

dE,
dt Ep Sn\ - (Ep
— () - (1= () 21
al, I Ny Ip
a Bpc(H)
_ (o B4 (U + T+ + ) 0
where F = (0 ;81 , V= —kp (Gp +r+uh)
Since at the disease free E,, = I, = 0 > (0,0) and S, < Nj, as t - o in [},. Thus,
dE,
ar E
dt _ p
i s E-n (Ip) (3.25)
dt

Then all eigenvalues of the matrix (F — V') have negative real parts i.e
224 (ky + 2T+ Vy + 2up + 0p)A + (kp + T+ V, + ) (0p + T+ un) — kpBpc(H) =0

(3.26)
Equation (3.26) has its entire roots negative and real if R, < 1
It follows that the linearized differential inequality (3.25) is stable whenever R, <1.
Consequently, (E,, I,,) - (0,0) as t - co. Evaluating system (3.20) at E, = I,, = 0 gives Sy - 1
for R, < 1. The result is summarized in the following theorem:

Theorem 3.4: The pneumonia diseases free equilibrium P, of system (3.20) is globally
asymptotically stable if R, < 1 and unstable if R, > 1.

11
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3.4.3 Local Asymptotic Stability of Pneumonia Endemic Equilibrium

The Centre Manifold Theorem as used in [9] is employed here to establish the local
asymptotic stability of the endemic equilibrium. The following change of variables are made in
order to apply the Centre Manifold theory: Let S, = x4, E, = x;, [, = X3; so that x; + x, + x3 =
N, (t). Furthermore, let the vector X = (x;,x,,x3)T , then the model in system (3.20) can now be

written in the form

% = f(x) , where f = (fy, f2, fs)T. It implies that system (3.20) can be written in term of the new

variables as

dx \

d_tl == f1 = Ah - BpC(H)x3x1 - ﬂhxl + sz + ]/pxz + Tx3

dx

d_tz = fo = Bpc(H)x3x; — (kp + T+ Vpy + )X, ( (3.26)
dxs

E:f3:kpx2_(o-p+‘[+#h)x3 )

It can be shown that system (3.26) has a right and left eigenvectors associated with zero eigenvalue
at c(H) = c(H)" given by

w
T
(lih(T +V,)(0p + 7+ up) + kp(unt — BpC(H)*Ah)) Wy " k,w, (327)
= ) 27 "
un?(op + 7+ pp) (0 + 7+ un)
and
k,+t+V,+ 1%
v = (U, 7y, V3) = (0, 172;( . . 2 Mh) 2> (3.28)
P
where w, > 0 and v, > 0 are free right eigenvector and left eigenvector.
Computation of the coefficient a and b
For system (3.26), the associated non-zero partial derivatives at P, can be shown to be
0*f
= H)* 3.29
From (3.29), it follows that
2U,(k, + T+ V, + up )wy2a ok, Byw
— 2( 14 P .uh) 2 11 ' h= 172W3Bp — 2 pﬁp 2 (3.30)

Ah(ap +7+ ,uh) (ap +7+ uh)
where a; = u,(t + Vp)(ap +T+u,)+ k, (pnt — Ahﬁpc(H)*)
Thus, (i) If a; > 0, a backward bifurcation occurs (ii) If a; < 0, a forward bifurcation occurs.
The above analysis is summarized in the following results from theorem A.1 item (d):

Lemma 3.3: The pneumonia only model of (3.20) has a unique positive endemic equilibrium
which is locally asymptotically stable (LAS) if R, > 1 otherwise unstable.

3.5 Analysis of Malaria-Pneumonia Co-infection Disease Transmission Model

The full model on the co-infection of Malaria and Pneumonia disease transmission (2.3) is now
considered. Firstly, the co-infection dynamics of the full model system (2.3) is reduced to an eight
dimensional system by neglecting the susceptible classes for both human and vector populations
respectively and also using the fact that

Sh(t) =1- Em(t) - Im(t) - Ep (t) - Ip(t) - Emp(t) - Imp(t) and

S,(t) =1—-E,(t) — I,(t). Thus,

12
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En'®) =af(IDL,(1—Ep — Iy —E, — I, — Eppp — Lnp) — (ki + 0+ pp)Eny )
L' (8) = kyEm — 9B, c(H) (I + klpp) Iy — (0 + T + ) Iy

E,' (t) = Bpc(H)(Iy + klpp)(1 — Eyy — Iy — Ep — Iy — Eypp — Imp) — (kp + T+ Vy + 1y )E,,
L, () = kyE, — eap(H)1,1, — (0, + T + uy)1,
Emp' (t) = eaB(H) L1, + 9Bc(H) (I + klpp ) — (kmp + ¢ + in) Emyp

Imp' (8) = kmpEmyp — (am +0,+ Omp + ¢+ uh)lmp

E,'(t) = aBy(Iy + 8Lnp)(1 — Ey — 1) — kyE, — 1y E,,

Iv’(t) = kyEy — ol %
(3.31)

The disease-free equilibrium is given by
Prps = (En® 1% Ep° 1, Eny, Iy, E°, 1,°) = (0,0,0,0,0,0,0,0) (3.32)

It can be shown that the basic reproduction number, denoted by Ry, for the full malaria-
pneumonia co-infection model (3.31) by using the next generation matrix approach is given by
Rinp = max{Ry, R} (3.33)
So that the following result follows from theorem 2 in [35]:

Theorem 3.5: The malaria-pneumonia free equilibrium Py, of system (3.31) is locally
asymptotically stable if R,, <1, R, < 1 and unstable if R,, > 1 and R,, > 1.

3.5.1 Global Stability of Malaria-Pneumonia Free Equilibrium P, Model
Theorem 3.6: The malaria-pneumonia free equilibrium Py, of system (3.31) is globally
asymptotically stable if R, < 1, R,;, < 1, otherwise unstable.
Proof:
The rate of change of the exposed and infected components of system (3.31) can be written as
dE,,
dt
dl,,
dt
dE,
dt
al,
dt
dEp,
dt
ALy,
dt
dE,
dt
dl,
dt
where F and V are given by

T
3

< 3

—(F-V) (3.39)

(35
3 S
3
|
VS
—_

I
=\
N——
VN
—_

I
F|&
N———
~

&5}
3
3

3
=
3
=

~

<
~

<
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0 0 0 0 0 0 0 aBf(H)
0 O 0 0 0 0 0 0
0 O 0 pByc(H) 0 Ppkc(H) 0 0
F_l0 0 0 0 0 0 0 0
0 O 0 0 0 0 0 0
0 O 0 0 0 0 0 0
0 aBf, O 0 0 aB,s O 0
0 0 0 0 0 0 0 0
and
D, 0 0 0 0 0 0 0
—k,, D; O 0 0 0 0 0
0 0 D, 0 0 0 0 0
v=| 0 0 —k Ds 0 0 0 0
0 0 0 0 D, 0 0 0
0 0 0 0 —kmp Ds 0 0
0o 0 o0 O 0 0 (kytw) O
0 0 0 0 0 0 —k, Mo

with Dy = (k,, + T+ py), Dy = (o, + T+ up), D, = (kp +7+V, + [n),

D3 =(0p+T+un), Dy = (kmp + ¢ + 1), Ds = (Gm+0p + Oy + & + )

Since at the disease free E, = I,, = E, = I, = Eppp = Iy, = E, = I, = 0 > (0,0,0,0,0,0,0,0)

with S, < N, and S, < Nyast = oo in I". Thus,

dE,,
dt
dl,,
dt
dE,
dt
ar,
dt

dEp,

dt
ALy

dt
dE,

dt
dl,

dt

o
3

SRICCER

<(F-V) (3.35)

o
3

3
=

é\n

According to [35], all eigenvalues of the matrix (F — V) have negative real parts i.e.
|[((F=V)—=AI| =0 (3.36)
Equation (3.41) simplifies to give

(=D4y = D)(=Ds = D[(=Dg — D)(—=Dy = D(—pty, = D (=(ky, + ) — 1) —
a? B, B(H)kmk,[(=Dy — D)(=D3 — A) — kypByc(H)] = 0

Clearly, Ay = —D,, A, = —D5 and

(=Do = D)(=Dy = D)(—pty, = V(= (ky + 1) = A) — @*B,Brmkimk, = 0
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A*+ (Do + Dy + py + (ky + 1)) A + (DoDy + Doty + Doy + 1) + Dty + Dy (ky + ) +
.uv(kv + .uv))ﬂ'z + (DODL“U + DO.uv(kv + /Jv) + DODl (kv + /Jv));{ + DODl.uv(kv + ﬂv) -
a?B,B(H)ky,k, =0 (3.37)
Equation (3.37) will have all its eigenvalues to be real and negative (Descartes Rule of signs) if
R,, <1and R, < 1. Therefore, all eigenvalues of the linearized differential inequality are
negative if R, < 1 and R, < 1. Consequently, (Em, I, Ep, Iy, Evpy Iy E, 1,,) -
(0,0,0,0,0,0,0,0) as t = oo. Evaluating system (3.31) atE,,, = I,,, = E,=1,=Eyy =1Ly =E,=
I, =0gives S, - 1,5, » 1forR, <1 and R,, < 1. Hence, the malaria-pneumonia disease free
equilibrium P, is globally asymptotically stable if R, < 1 and R,;, < 1. The result follows that
the malaria-pneumonia disease free equilibrium Py, ¢ is unstable if R, > 1 and R, > 1.

3.5.2  Local Asymptotic Stability of Malaria-Pneumonia Endemic Equilibrium P,,,,

We establish the stability of the endemic equilibrium of the malaria — pneumonia model (3.31),
using the Centre Manifold theory. The following result follows.

Theorem 3.6: The full malaria — pneumonia co-infection model of (3.31) has a unique endemic
equilibrium which is locally asymptotically stable if R,,,, > 1 and unstable if R,,,,, < 1 whenever
item (d) of theorem A.1 in the appendix is satisfied.

Proof:

To apply the Centre Manifold theory, the following change of variables is made. Let E,, = x4,
I = X2, Epy = X3, Iy = X4, Eypyy = X5, Ly = X6, Eyy = X7, [, = Xg

Furthermore, introducing the vector X = (xq, X5, X3, X4, X5, X, X7, Xg) T ,

and then the model in system (3.31) can now be written in the form

Z—f = F(x) , where F = (fy, f2, f5, fu f5: for f7, fo)T - It implies that system (3.31) can be written in

term of the new variable as follow:

da
== fi = aB(H)xa(1 — Xy — X5 = X3 — X4 — X5 — Xg) — (e + 7 + )% )

d

f = fo = kmxy — 9Bpc(H) (x4 + kxe)xy — (O + T + pp)x;

d

f = f3 = Bpc(H) (x4 + kxe) (1 — 21 — X5 — X3 — X4 — X5 — Xg) — (kp tT+h+ ,uh)x3
dX4_

— =fi=k,x3 —eaf(H)xgxy — (0, + T+ Up ) x4
- b (@ ) - (3.38)

=2 = f5 = eaB(H)xgxy + 9Bc(H) (x4 + kxg)xy — (kmp + & + 1tn)xs

d.X'G

?:fG = kmpxs — (am + 0, + 0+ +,uh)x6

d
% = f7 = aﬁv(xZ + 6x6)(1 - X7 - xg) - (kv + ”V)x7
d
%szZkUJW_HvxS g
It can be shown that system (3.39) has the right and left eigenvectors given by
D a afB., k T
w= <—1 oy ,0,0,0,0,— 00y, _ APk WZ) 559
Ko (ky + 1) 7 oy (ky + 1)
and
- <k—m17 5 azﬁu6ﬁ(H)*kmkvkmp 7 az.Bv(S.B(H)*kmkvﬁ af (H)" kmky 7 a'B(H)*kmﬁ )
DO 2, V2, Y,Y, l,l_v(kv + IJ.U)DoD4D5 2 #v(kv + #U)DoDS 2 ‘uU(kU + #U)DO 2 ,uUDO 2
(3.40)

where w, > 0 and v, > 0 are free right and left eigenvector.
Computation of the coefficient a and b
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For system (3.43), the associated non-zero partial derivatives of (3.38) at Py, can be shown to be
0’ 0*H ’f; _ 0°fy 0’ fi

— = —aB(H)*, = = — ————— = 341
oxidn, a5y - P Gax Tamang - P axapan T © (3.41)

From (3.41), it follows that

a = —2a(U,w,wgf(H)" + 7ywowgB(H)* + Uywow, By, + Uywowef,) < 0 (3.42)

b == 1.71W8a > 0 (3.43)

3.6 The Effect of Sanitation on Disease Transmission Dynamics

The aim and ultimate goal of a public health worker is to change the transmission dynamics of a
disease in such a way that if an infected individual enters into a community he/she will not trigger
an epidemic in the community. Mathematically, it is reasonable to assume that if

Ry <1, then

dl
=<0 (3.44)

For malaria, intervention can be in the following ways: (i) Treatment using anti-malaria drugs

(i) Reducing the rate of contact between susceptible individuals and infected mosquitoes and vice-
versa. The latter can be achieved through sleeping under the mosquito treated nets, clean
environment (maintaining high level of sanitation), etc. The system of equations in (2.3) introduces
the functions S(H) and c(H) to describe the effect of sanitation on the malaria and pneumonia
transmission respectively.

The functions S(H) and c(H) in equations (2.4) and (2.5) predicts that malaria and pneumonia
transmissions are reduced proportionally to the improvement of sanitation conditions. Using the
functions defined in (2.4) and (2.5), a required level of sanitation to prevent the outbreak and low
transmission of malaria and pneumonia respectively are established as follows:

IfR, <1
azﬁvﬁ(H)kmkvAhAv <1
Hnity? (ky + pp) (R + 70+ i) (O + T + )
2(ky + up) (kyy + 1 + Om + 1+
() < Hrk (ky + py) (ki Hn) (Om Hn) (3.45)
azﬁvkmkv/lh/lv
8 H < pnity? (ky + ) (ki + 70+ 1) (0 + 1 + 1)
e Y azﬁvkmkv/lh/lv
Thus, the level of sanitation required for malaria reduction / eradication is
gt 8 by (ky + p) (ki + 7+ ) (O + T+ ) (3.46)
Y max azﬁvkmkv/lh/lv .
Also, if R, <1
(o) + T+ un)(kp + T+V, + py) Ay
c(H) <
,uhkpﬁp
¢ yH< (ap +7+ ,uh)(kp + T+, + ,uh)/lh
max ﬂhkpﬁp
Thus, the level of sanitation required pneumonia reduction / eradication is
1 o, +T+ k, +1+V, + uy)A
H> = _( P #n) (Fep b + 1) An (3.47)
)4 ﬂhkpﬁp
4.0 Application of Optimal Control to the Co-infection of Malaria-Pneumonia
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The main objective of this study is to suggest possible(s) optimal method of reducing/minimizing
malaria and pneumonia transmission. Many mathematical model already exist describing malaria
infection or pneumonia infection but the best control for malaria infection, pneumonia infection
and the co-infection of both diseases still remain a subject of debate. Previous mathematical
models have considered treatment, sleeping under mosquito treated bedside nets (MTBN) and the
use of insecticide coil as controls. However, these have their limitations. The insecticides used for
treating bedside nets is lethal to the mosquitoes, insects and also repels the mosquitoes, thus
reducing the number of mosquitoes who attempt to feed on people in the sleeping areas with the
nets [2]. However, the mosquitoes can still feed on humans outside these protective areas, hence;
Agusto et al [2] included the spraying of insecticides in their model. The latter control by Agusto
et al [2] will be more effective in a closed area, hence, the inclusion of sanitation as control in the
present work.

The preventive and treatment control for pneumonia includes vaccination, environmental
measures and appropriate treatment of other health problems [32]. It is believed that, if appropriate
preventive measures were instituted globally, mortality among children could be reduced by
400,000; and, if proper treatment were universally available, childhood deaths could be decreased
by another 600,000 [37].

4.1 Formulation of Optimal Control Model for the Co-infection of Malaria-Pneumonia
with Mass Action Incidence

We now introduce into system (2.3) time dependent preventive measures
(u1 (), uy(t), us(t), uy (t)) and treatment efforts (u5 (), ug(t), u, (t)) as controls to curtail the
spread of malaria and pneumonia infection. Thus, system (2.3) becomes

Sp' () = Ap — (1 —uy —up —uz)af(H)I,S, )

_(1 — Uz — u4).8pC(H)(Ip + kImp)Sh — UnSh
tusly, + usEp + ugl, + Ukl + usEy + Uyl + uzEp,

Em,(t) = (1 —Up —Up — u3)aﬁ(H)IvSh - (km +us + .uh)Em

Im,(t) = kmEm - (1 - u4)19ﬁpc(H)(1p + klmp)lm - (Jm + Us + .uh)lm

E,"(©) = (1 — uz — uy) Bpc(H) (I + klnp)Sn — (kp + tg + ug + 1) E,

L' (¢) = kpyE, — (1 —uy — uy — ug)eaB(H1,1, — (0, + ug + pp)1,

Emp'(®) = (1 —uy —uy —ug)eaB(H)L,L, + (1 — u)9B,c(H) (I, + klpp ) I

—(kmp +u; + uh)Emp
Imp' (8) = kmpEmp — (am + 0, + Opmp +u; + ,uh)lmp
Sv’(t) =A,—(1—-u; —u, — u3)aﬁv(1m + 6Imp)5v
—(uy +up +us + 1,)Sy

Ev,(t) = (1 —U; — Uy — u3)a,8v(1m + SImp)Sv - (kv +uy +u; tuz+ .uv)Ev
Iv’(t) = kyEy — (uy +up +uz + )l J
where
u, (t): is the time preventive control using mosquito treated bedside nets (MTBN) for malaria
u, (t): is the time preventive control using insecticides spray on mosquitoes
u5(t): is the time preventive control through sanitation for malaria and pneumonia control
u, (t): is the time preventive control using vaccine for pneumonia control
us(t): is the treatment effort using anti-malaria drugs for malaria

ug(t): is the treatment effort using anti-pneumonia drugs for pneumonia
u,(t): is the treatment effort using both anti-malaria and anti-pneumonia drugs

» (3.48)
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The following cases are considered:

Case 1: The optimal control strategy for malaria transmission model

Case 2: The optimal control strategy for pneumonia transmission model

Case 3: The optimal control strategy for the co-infection of malaria and pneumonia disease
transmission model

4.2 The Optimal Control Strategy for Malaria Transmission Model Case 1

Here, the formulation of the optimal control problem, analysis of the optimal control problem,
adjoint conditions, optimality conditions and the optimality system for the malaria model are
considered. Let I,(t) = Lyy,(t) = E,(t) = Epp(t) = 0 in model system (3.48) gives the
following system of equations

Sp'(t) = Ap — (1 —uy —up — uz)aB(H)I,S, — ppSp + usly, + usEp,

Eml(t) = (1 — Uy — Uz — us)aﬁ(H)IvSh - (km +us + /v‘h)Em

L)' (£) = kinEpy — (O + s + pip) Iy

S,/ () = Ay — (1 = uy — Uy — uz)aPpliySy — (Ug + up +uz + 1,5,

Ev,(t) = (1 U T Uz~ us)aﬁvlmsv - (kv tu tu; +uzt .uv)Ev

Iv’(t) = kyEy — (ug + Uz +uz + W)l (3.49)

The controls u in (3.49) is defined to be u € [0,1], where u ranges from no control (u = 0) to
maximum control (u = 1). Note that u,, u,, us, us € u.

The main objective of this research is to find the optimal control strategy u throughout the length
of 0 <t < tf such that the numbers of infected humans I, and infected vectors are minimized

while minimizing the cost of control u. Thus, the objective function is
t
J(ug, up, uz, us) = fof(MIm + NI, + myu,? + myuy? + myuz? + msug?)dt (3.50)
where coefficients M, m,, m,, m3 and mg are positive weights to balance the factors. Thus, we
seek an optimal control u* = {u;*, u,*, u3*, us*} such that

J(ui*,up", uz", us*) =  min {](ulruZ'u3:u5)|u1,u2,u3,u5 € u} (3.51)
Uq,Uz,U3,Us

where

u= {(ulﬂuZ'u3'u5)|u1,u2,u3,u5: [0; tf] - [0:1]} (3.52)

is Lebesgue measurable and convex on u, then there exist an optimal control u satisfying the
conditions in Appendix A.2

Since there exist an optimal control for minimizing the functional (3.50) subject to system
of equations (3.49), the Pontryagins’ Maximum Principle [16] is used to derive necessary
conditions for this optimal control. The Hamiltonian is defined as follows:
H = ML, + NI, + mju;? + myuy? + maus? + meus? + 444, — (1 —uy —u, —
uz)af (H)L,Sy — upSp + ushy + usEp] + 25[(1 — wy — uy —uz)af(H) LSy, — (kyy + us +
.uh)Em] + /13 [kmEm - (am +us + ﬂh)lm] + /14[/117 - (1 — U — Uy — u3)aﬁvlm5v -
(uy +up +ug + p)Sp] + As[(1 —uy —up —uz)apfy,lnS, — (ky + ug + up +uz + p,))E,] +
AelkyEy — (ug + ug + ug+uy)1l ] (3.53)
where A4, 4, 43, 4,4, A5 and A4 are the adjoint variables or co-state variables.

In order to attach the system of ordinary differential equation in (3.49) on to the objective
function in (3.50), the adjoint functions (or co-state variables) were used. The Pontryagins’
Maximum Principle gives the necessary conditions that the adjoint functions must satisfy. Thus,
the differential equations satisfied by system (3.49) are:

dA o0H

d_tl = —a—Sh = A — ) —uy —up —ug)af(H)L, + Ay
dA, oH

e T 3E, = Aa(km + us + pp) — Ayus — Askp,
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dl;  of

dt oI, (g = A5)(1 = uy — Up — uz)aBySy + A3 (O + us + pp) — Ayis — M
m

di,  oH

o = )1 =t~y = Ul + At + 3+ s + 1)
v

dls  oH

E= _aE =15(kv+u1+u2 + uj +Hv)_l6kv
v

dlg

Py
a _G_Z = (A —2)A —uy —up; —uz)af(H)Sy + Ag(ug +uy + uz+p,) — N (3.54)

with the boundary conditions (or Transversality conditions) at the final time, t;:

M(tr) =0, 2,(t) =0, 25(t;) = 0, ,(¢) =0, A5(tr) = 0,26(t) = 0 (3.55)

The Hamiltonian in (3.53) is minimized with respect to the controls u,, u,, u; and ug separately in
order to obtain the optimal value of u;*,u,*, us*, us*. At these controls values, the maximum
Hamiltonian is obtained. The derivative of the Hamiltonian with respect to u4, u,, u3 and us is thus

zero, since at the absolute minimum or maximum the slope of a function is zero. Thus,
_ (AZ - Al)aﬁ(H)IvSh + (/15 - 14)aﬁvlm5v + /15Ev + A6I1J + A4Sv

3.56
Uq 2m, ( )
_ (AZ - Al)aﬁ(H)IvSh + (AS - 14)aﬁvlm5v + /15E17 + /16117 + A4Sv
u, = oI (3.57)
2
_ (/12 B Al)aﬁ(H)IvSh + (AS B A4)“:8v1m5v + AsE, + A6, + 145,
Uy = (3.58)
2m,
(/13 - /11)Im + (/12 - /11)Em
Us = 2 (3.59)
At the absolute minimum u = u*, therefore the optimality conditions are
u* = min{l,max(0,u,)}
u,” = min{l, max(0,u,)} (3.60)

us* = min{1, max(0,us )}
us* = min{1, max(0,us)}
4.3 The Optimal Control Strategy for Pneumonia Transmission Model Case 2
If Ep(t) = L (t) = Epp(t) = Iy (t) = Ey,(t) = L,(t) = 0 in model system (3.48) gives

the following system of equations

Sp'(t) = Ap — (1 = ug — uy) Bpc(H),Sy — upSp + ugE, + ugl, + uyE,

E,) () = (1 —u3 —uy) Bpc(H)L,S, — (kp + ug + uy + /,th)Ep

L, (©) = kyE, — (0, + ug + pp)1, (3.61)

Svl(t) = AU - (ul + Uy + Us + llv)Sv J

Observe that the fourth differential equation in (3.61) is independent of the first three differential
equations; hence, system (3.67) can then be written as

Shl(t) = Ah — (1 — Uz — U4) ﬁpC(H)IpSh - ,Lthh + u6Ep + u61p + U4_Ep

E,"(©) = (1 —uz — uy) Bpc(H)L,Sy — (kp + ug + uy + up )E, (3.62)
L, (©) = kyE, — (0 + us + pn) 1

where the controls usz, u, and ug retain their original meaning as defined in system (3.48) The

controls u in (3.62) is defined to be u € [0,1], for us, Uy, Ug € U
The objective is such that the numbers of infected humans with pneumonia I, is minimized

while minimizing the cost of control u. Hence
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](U,3, Uy, u6) = fotf(DIp + m3u32 + m4U42 + m6u62)dt (363)
where coefficients D, ms, m, and m are positive weights to balance the factors.
Thus, we seek an optimal control u* = {us*, u,*, us*} such that

J(us™, uy", ug™) = min {](uz;u4;u6)|u2,u4,u6 € u} (3.64)
U2,Ug,Ue

where

u= {(uz,u4,u6)|u2,u4,u63 [0; tf] - [0:1]} (3.65)

is Lebesgue measurable and convex on u, then there exist an optimal control u satisfying the
conditions in Appendix A.2. We define an Hamiltonian as follows:

H = DI, + maus® + myus? + mgue? + 4[4y, — (1 — uz — uy) Bpc(H)L,Sy — ppSp + ueE, +
(0 + ug + pn) 1| (3.66)
with A,, 4,, 45 defined as the adjoint variables or co-state variables and obtained as

dA oH )
2t = 35, = (a2~ s —uBpc (Dl + dapy
dAi, oH
W = _ﬁ = 12 (kp + u4 + u6 + ‘Llh) - (U4 + u6)/11 — A3kp > (367)
P
dAz oH
rriniar e (4 — )1 — uz — uy)Bpc(H)Sy + A3(0p + ug + pp) — D
p J
with the boundary conditions (or Transversality conditions) at the final time, t¢:
M(t) =0, 2,(¢,) =0, A3(¢,) =0 (3.68)

The Hamiltonian in (3.72) is minimized with respect to the controls us,u, and ug
separately in order to obtain the optimal value of u3*, u,*, ug*. Thus,

_ (AZ - Al)ﬁpC(H)IpSh

“ Lo (3.69)
Ay — 24 c(H)L,S, + (A, — L)E
u4=( 2 = A)Bpc(H) Sy + (A — 1) Ep (3.70)
2m,
A, —A)E, + (A3 — A1
u6=( 2 = M)Ey + (A3 — ), (3.71)

2mg
The optimality conditions in this case are

u;* = min{1, max(0,us3)}
u,” = min{l,max(0,u,)} (3.72)
ug* = min{1, max(0,uy)}

4.4 The Optimal Control Model for the Co-infection of Malaria-Pneumonia with Mass
Action Incidence Model Case 3
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Recall the system of equations in (3.48) written below as

Sp'(6) = Ay — (1 —uy — up —uz)aB(H)L,S, )
_(1 — Uz — u4)ﬁpC(H)(Ip + kImp)Sh - :uhSh
tusly, + usEp, + ugl, + ugk)y + usEy + Uyl + usEp,
Em,(t) = (1 —U; —Up — u3)aﬂ(H)IvSh - (km + us + .uh)Em
Im,(t) = kmEm - (1 - u4)19ﬁpC(H)(Ip + klmp)lm - (O-m + us + .uh)lm
E,’(t) = (1 —us — ug)Bpc(H)(I + klp)Sn — (kp + Ug + ug + up)Ep
L' (¢) = kyE, — (1 —uy — uy — uz)eaf(,1, — (0, + ug + pp)1,

Emp' () = (1 —uy —uy —uz)eaf ()1, + (1 — u)9B,c(H) (I, + klpp ) Im ((373)
—(kmp + U7 + pn)Emp
Iy (t) = kppEmyp — (om + Op + Omp + Uy + uh)lmp
S,'(©) = Ay — (1 —uy —uy — uz)aBy(In + 6lnp)Sy
—(uy +up +uz + u,)S,
E/S ) =0—-u, —u, — u3)a,8v(1m + 5Imp)Sv — (ky, + uq +uy +us + u,)E,
L'(t) = kyE, — (ug + uy + uz + p,)1, J

where the controls uq, u,, Uz, Uy, Us, Ug and u, retain their original meaning as defined in system
(3.48). The objective functional is

J(ug, up, uz, us) = fotf(MIm + DI, + Qlyyp + NI, + myuy® + myuy® + mauz® + myu,® +
msus? + meug? + myu,?)dt (3.74)
where the coefficients D, M, N, Q, m,, m,, m3, m,, ms, my and m, are positive weights to balance
the factors. Thus, an optimal control u* = {u,*, u,", us*, u,*, us*, ug*, u,*} is sought

such that

J(ui' u" us™, us", us™, ug", u;") = - min {](ul: Uy, Us, Uy, Us, Ug, Uy) |u1,u2,u3,u5 € u}
Uq,Up,U3,Us

where

u= {(ull Uz, U3, Uy, Us, Ug, u7) Iul,uz,ug,u4,u5,u6,u7: [OI tf] - [Oll]} (375)

is Lebesgue measurable and convex on u, then there exist an optimal control u satisfying the
conditions in section 2.7. The Hamiltonian is defined as

H = MLy, + DI, + Qlypy, + NI, + mquy® + myu,? + maus? + myuy® + msus? + mgug® +
myuy® +A (A — (1 = uy — up — uz)aBH)1,S, — (1 — uz — ug) Bpc(H) (I + klyy )Sy —
UnSn + Usly + usEpy + ugly + UEy + UsEp + Uslmy + UrEpp | + 2,[(1 — uy —uy —
uB)a,B(H)IvSh - (km + Us + ﬂh)Em] + A3 [kmEm - (1 - u4)19,8pC(H)(Ip + kImp)Im -

(O +us + ,uh)Im] + /14[(1 — Uz — u4)ﬁpc(H)(1p + klmp)Sh — (kp +u, +ug + ,uh)Ep] +
AslkpEp — (1 —uy — uy — ug)eaB(HD11, — (0, + ug + pn) | + A6[(1 —uy —u, —
ug)eaf (1,1, + (1 — u)9B,c(H) (I + klmp) I — (kmp + U7 + ) Emp| + A7 [KmpEmp —
(O’m +0p + Omp +uy + ,uh)lmp] + g [/1,, —-(1-u; —u, — u3)aﬁv(1m + 6Imp)Sv -

(uy +up, +us + ,u,,)SU] + Ag[(l —U; — U, — u3)aﬁv(lm + Slmp)Sv —(ky, +uy +u, +us +
W) Ey |+ 210 kp By — (uy + p + uz + 1)1, (3.76)

with the following adjoint variables (or co-state variables) satisfying the Pontryagin Maximum
Principle condition:
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dA oH
d_tl = _O_Sh = (/11 - /12)(1 —U; — Uz — u3)a.B(H)Iv + (/11 - /14-)(1 — Uz — u4).BpC(H)(Ip + klmp) + Al“h
da o0H
d—tz = —m = Az(km + Usg + ‘Llh) - /11U5 - Agkm
dA o0H
d_t3 =—3 = (A3 —26)(1 — u4)19,3pC(H)(1p + ki) + (g — 29)(1 — uq — up — uz)af,S,
m

+A3(om +us + pp) — Lqus — M

dr,  oH

W = _a_Ep = /14(kp + Uy + Ug + ‘Llh) — /11(11,4 + u6) — /15kp

da JH

d_t5 =3 = (A3 —26)(A — U—4)19ﬁ’pc(H)1m + (A5 — Ae) (1 —uy —up —uz)eaf(H)I,
P

+(/11 — /14)(1 — Uz — u4)ﬁpC(H)Sh + /13(O'p + Ug + ,Uh) — /11“'6 —D

dAg oH

E = — aEmp = /16(kmp + u7 + ,Uh) —_ /1171.7 —_ A7kmp

dA 0H

L= — = (4 — A (1 — uz — uy) B, c(HKS), + (A3 — A6)(1 — ug)9B, kc(H)I,,
dt 0lmp p P

+(18 - Ag)(l — Uy — Uy — u3)aﬁv55v + A7(O’m + Op + Omp + u; + ,Llh) - /11117 - Q

da oH
T = "3 = (s = )1 —us —uz = u)aB, (I + Slwp) + Ag(ur + 1z +uz +p1,)

v
dA oH
d—tg = _a_EU = Ag(ku +uq +uy +uj +.uv) _/110k17
dA o0H

dio =—57. = = A)A —u —up —uz)afH)Sh + (As — 26) (1 —ws — Uz —uz)ef(H)])
v
+/110(U1 +u; +uz+ ,le) - N J
(3.77)

with boundary conditions

M(tr) = A2(tr) = A5(tr) = Aa(ty) = As(tr) = A6(tr) = 25 (t7) = As(ts) = Ao(ts) =

/110(tf) = 0

The derivative of the Hamiltonian with respect to u,, u,, u3, Uy, Us, Ug and u, is thus zero, since at
the absolute minimum or maximum the slope of a function is zero. Then

Uq

(/12 - Al)aﬁ(H)IvSh + (/16 - /15)80!,3(1‘1)11717, + (/19 - /18)0(,31,(11” + Slmp)sv + /18511 + /19Ev + /110[11
B 2m,
U,
(A2 — 2)aB(HD1,S, + (Ag — As)eaB(H)L, 1, + (Ag — Ag)aB, (I + 81y)S, + AgS, + A9E,, + Ay,
B 2m,
us(/lz = A)aB(HISy + (A — 2By C(H)(Iy + klmp)Sh + (A6 — As)eaB(HDL,1, + (A9 — Ag) @By (I + SLmp) Sy + AgSy, + AE, + A10l,
2my
L (Ag — A1) Bpc(H) (I + klyp)Sh + (A — 1) Ep + (Ag — A3)9Bpc(H) (I, + klp)
* 2m,
w = A3 — Al + (A — A Ep,
> 2msg
" = (4s — AL, + (A — L)E,
6~ 2mg

22


http://dx.doi.org/10.20944/preprints201809.0186.v1

doi:10.20944/preprints201809.0186.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2018

(A7 - Al)lmp + (/16 - /11)Emp
2m,
Therefore the optimality conditions are

u7:

ul = mln{l, max(O; ul)}\

*

u,” = min{1,max(0, u,)}
us* = min{1, max(0, us)}
u,” = min{1, max(0, u,)}
us* = min{1, max(0, us)}
ug” = min{1, max(0, uy)}
u,* = min{1, max(0, u,)}/

~~

(3.78)

5.0 Numerical Results and Discussion

In this section, we study numerically for the purpose of illustration the malaria only model,
pneumonia only model, the malaria-pneumonia co-infection model and their corresponding
optimal control models. The numerical computations were performed using MAPEL 18 program
with computation times of 5.0s on a windows 7 operating system core i5. The optimal control was
obtained by solving the optimality systems for malaria only, pneumonia only and malaria-
pneumonia co-infection models respectively. An iterative forward and backward finite difference
scheme are used to solve the optimality system; the forward finite difference was used to solve the
state equations and the backward finite difference scheme was used to solve the co-state (adjoint)
equations using the current iterations solutions of the state equations because of the transversality
conditions. Then the controls are updated by using a convex combination of the previous controls
and the value from the characterization (3.60), (3.72) and (3.78). Thus, the process is repeated and
the iterations are stopped at the final time¢ .

The analytical results of the study are illustrated by simulating the model systems using
values from other literature. The scarcity of data on the malaria-pneumonia co-infection limits our

ability to scale our analytical results, however, for the purpose of illustration, other parameter
values are assumed to vary within realistic means as given in Table 1

Table 1 Values of Parameters for the Malaria, Pneumonia and Co-infection Model

Parameters Value Sources
1
km = [4]
Bmax 0.003 Assumed
Y 0.009 Assumed
By 0.001 [5]
Un 0.0000457 [39]
Uy 0.04 [13]
1
ky m [33]
Ap 0.00011 [40]
a 0.5 [5]
Om 0.01 Assumed
4y 0.071 [4]
T 0.5 Assumed
k, 0.5 Assumed
Cmax 0.005 Assumed
By 0.5 Assumed
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/4 0.5 Assumed
T 0.5 Assumed
9 0.1 Assumed
£ 0.1 Assumed
o) 0.5 Assumed
Omp 0.1 Assumed
Oy 0.01 Assumed
k 0.5 Assumed
kmp 0.5 Assumed

It was observed that as the biting rate, a of the infected mosquitoes increase, there is a
rapid decline in the number of susceptible human population as shown in Figure 1. This is
expected from the result of the sensitivity analysis on the malaria model in case 1 that the biting
rates of the mosquitoes, a, is the most sensitive of all the parameters in the malaria model being
considered. This explains the rapid reduction in the number of susceptible individuals in the
population as the rate of mosquito biting rates & increases. This result is also in perfect agreement
with the result obtained in Tumwiine et al [34] that reduction in contact between infected
mosquitoes and humans was necessary in bringing the basic reproduction number below unity.
The effect of treatment rate m using anti-malaria drugs on infected individual with malaria were
also considered and it can be seen from Figure 2 that as treatment rate m of malaria infected
individuals increases, the proportion of infected humans decreases because treated individual leave
the infected class and move to the susceptible class upon recovery from the malaria disease, a
result which is in agreement with those obtained in [34] that there was need for effective drugs to
reduce the spread of malaria disease.

Figure 3 is the backward bifurcation diagram for the malaria model where an endemic
equilibrium co-exist (dotted lines) with the disease-free equilibrium. The backward bifurcation
phenomenon explains that for total malaria eradication in the population R,, < 1 is not sufficient
rather R,,, must be brought below certain threshold R, such that R, <R, < 1. R,, is defined
here as the basic reproduction number for malaria. The impact of backward bifurcation on malaria
transmission is to ensure that proper diagnosis are carried out on patients rather than treating
patients based on symptoms and individuals who had being diagnosed to have malaria should go
through complete treatment. From Figure 4, it was observed that if the contact rate ¢ = 0 between
susceptible and an infected individual with pneumonia, it was noticed that the number of
susceptible human population increases considerably, however, as the rate of contact ¢ increases,
there was a sharp decline in the number of susceptible human population into the exposed human
to pneumonia and subsequently progress to infected pneumonia class. This affirms the result of the
sensitivity analysis that the contact rates ¢ between susceptible individuals and infected individual
is the most sensitive parameter. This claim was also supported by Mandell et al/ [25]. Therefore,
reduction in effective contacts between susceptible and an infected individual is recommended
through good sanitation among other measures.

The effect of treatment rate T was considered in Figure 5. It was observed that the number
of treated individuals with pneumonia decreases as the treatment rate T using anti — pneumonia
drugs on the infected individuals in the population increases. Figure 6 explains the role
vaccination played in individuals exposed to pneumonia disease. The anti-pneumonia vaccines
prevent exposed individuals from progressing to the infectious class. Increase in the vaccination
rate, V), result in decrease in the number of exposed individuals. This result is supported by the
claim of ([30], [32]).

The pneumonia model discussed in case 2 exhibited a forward bifurcation which suggest
that it is sufficient to reduce R, below unity to guarantee total eradication of pneumonia disease in
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the population while the disease persist in the population if R,, is greater than unity as shown in
Figure 7. As established in the malaria model and pneumonia model of this study, that increase in
treatment rate of malaria and pneumonia diseases reduce the transmission rates of the two diseases,
hence, Figure 8 also establish that using the combination of anti-malaria and anti-pneumonia
drugs reduces the co-infection of malaria - pneumonia diseases. The result of [22] affirm our
assertion that individual with malaria — pneumonia symptoms overlap are treated with both anti —
malaria and anti — biotics. The bifurcation diagram for the malaria — pneumonia co — infection is
presented in Figure 9. The diagram above is in perfect agreement with our analytical result; that
where malaria and pneumonia co — exist the condition R, < R, < R, <1 is required for malaria

and pneumonia to be eradicated in the population. Note that Ry, = max{Rm, Rp}, where Ry, is
defined to be the basic reproduction number for co — infection of mlaria and pneumonia.
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pneumonia model

We further explore an optimal control model with time preventive (sleeping under treated
mosquito nets u,(t), Insecticide spray u,(t) and sanitation uz(t)) and treatment (use of anti-
malaria drug us(t)) strategies as control measures on the transmission of malaria disease. Various
combinations of the controls are considered as follows:

(a) Optimal control using: sleeping under treated mosquito nets u, (t), insecticide
spray u,(t), sanitation u;(t) and treatment us(t).
Here, all the four controls are used to optimize the objective function J. It was observed in Figure
10 and Figure 11 that the combination of the four controls resulted in significant decrease in both
the number of infected humans with malaria (I,,,) and infected mosquitoes (I,,) (represented by the
green solid line) as against the increased number of infected humans (I,,,) and infected mosquitoes
(I,) (denoted by the red dash dot line) in the uncontrolled case.
(b) Optimal control using: sleeping under treated mosquito nets u, (t), sanitation

u;(t) and treatment us(t).
In this case, the control on spraying insecticide u,(t) is set to zero while the controls on sleeping
under treated mosquito nets u, (t), good sanitation u;(t) and treatment ug(t) are used to optimize
the objective function J. Using this strategy, it was observed in Figure 12 and Figure 13 that the
number of infected humans with malaria (I,,) and infected mosquitoes (I,,) decreases as against
the increase observed in the uncontrolled case.
() Optimal control using: insecticide spray u,(t), sanitation u;(t) and treatment us(t).
Here, the controls on spraying insecticide u,(t), good sanitation u;(t) and treatment ug(t) are
used to optimize the objective function J while the control on sleeping under mosquito treated nets
u, (t) is set to zero. Considering this strategy, it was observed in Figure 14 and Figure 15 that the
number of infected humans with malaria (I,,) and infected mosquitoes (I,,) decreases as against
the increase observed in the uncontrolled case respectively.
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(d) Optimal control using: sleeping under treated mosquito nets u, (t), insecticide
spray u,(t) and treatment us(t).
The control on sleeping under mosquito treated nets u,(t), insecticide spray u,(t) and treatment
us(t) are used to optimize the objective function J while the control on sanitation was set to zero.
It was observed in Figure 16 that the control measure employed here decreases the number of
infected humans with malaria (I,,,) but not to the level of the controls involving good sanitation as
against the increase observed in the uncontrolled case. Although, a decrease in the number of
infected mosquitoes (I,,) was observed as against the uncontrolled case in Figure 17 but due to
poor or no sanitation, the number of infected mosquitoes (I,,) began to rise.
(e) Optimal control using: sleeping under treated mosquito nets 1, (t) and treatment
uS(t).
With this strategy, the controls sleeping under treated mosquito nets u, (t) and treatment us(t) are
used to optimize the objective function J with the control on insecticide spray u,(t) and good
sanitation u5(t) all set to zero. For this strategy, it was shown in Figure 18 and Figure 19 that the
number of infected humans with malaria (I,,;) and infected mosquitoes (I,,) reduces considerably
from the uncontrolled case
® Optimal control using: insecticide spray u,(t) and treatment us(t)
With this strategy, the controls insecticide spray u,(t) and treatment us(t) are used to optimize
the objective function J, while the control on sleeping under mosquito treated nets u, (t) and good
sanitation us(t) all set to zero. The result in Figure 20 and Figure 21 showed a significant
difference in the number of infected humans with malaria (I,,,) and infected mosquitoes (I,,) with
optimal strategy compared to (I,,,) and (I,,) without control. It was observed in Figure 20 that the
control strategies resulted in a decrease in the number of infected humans with malaria (solid green
line) as against an increase in the uncontrolled case (red dash dot line). Also, in Figure 21, the
uncontrolled case resulted in increased number of infected mosquitoes (I,,), while the control
strategy lead to a drastic decrease in the number of infected mosquitoes (I,,).
(2 Optimal control using: sanitation u;(t) and treatment us(t).
The objective function J are optimized in this case using the control strategy on good sanitation
u;(t) and treatment us(t), while the control on sleeping treated mosquito nets u,(t) and
insecticide spray u,(t) are set to zero. It was observed in Figure 22 that the control strategies
resulted in a decrease in the number of infected humans (I,,,) with malaria as against increase in
the uncontrolled case. Similarly, in Figure 23, the uncontrolled case resulted in increased number
of infected mosquitoes (I,,), while the control strategy lead to a decrease in the number of infected
mosquitoes.
(h) Comparing all the control strategies
A comparison of all the control strategies for our malaria model case 4 was considered on both
infected humans (I,,) and mosquitoes (I,) in Figure 24 and Figure 25 respectively. It was
observed that all the four controls led to a decrease in the number of infected humans (I,,,) and
mosquitoes (I,,) respectively. The control strategies (uq (t), us(t), us(t)) and (u,(t), us(t), us(t))
also led to a decrease in the number of infected humans and mosquitoes respectively. The strategy
(uq1(t), uy(t), us(t)) yield a poorer result on both the infected humans and mosquitoes. This result
showed that with individuals sleeping under mosquito treated nets, spraying of insecticide in the
sleeping area and have access to treatment may not be sufficient to control the spread of the
disease in the community if poor sanitation is encouraged. The optimal strategies involving two
controls namely: (u; (t), us(t)), (u,(t), us(t)) and (u3(t), us(t)) decreases the number of infected
humans (I,,,) and mosquitoes (I,,). From Figure 24 and Figure 25, it was also observed that the
optimal control strategies involving good sanitation gave a better result in terms of reducing the
number of infected humans (/,,,) and mosquitoes ().
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The result of the optimal control for pneumonia is discussed using time dependent preventive
and treatment controls to investigate the effect of these controls on the transmission dynamics of
pneumonia disease. The following scenarios of the controls are considered:

(a) Optimal control using: sanitation u3(t), vaccination u,(t) and treatment u4(t)

The objective function J is optimized here using all the three controls sanitation us(t), vaccination
u,(t) and treatment ug(t). We observed from Figure 26 that the combination of the three controls
resulted in significant reduction in the number of infected humans with pneumonia (Ip)
(represented by solid green line) as against the increased number of infected humans with
pneumonia disease (Ip) (denoted by red dash dot line) in the uncontrolled case.

(b)  Optimal control using: vaccination u,(t) and treatment ug(t)

In this case, the control on using vaccination u,(t) and treatment uy(t) are used to optimize the
objective function J while the control on sanitation us(t) is set to zero. For this strategy, it was
observed in Figure 27 that the number of infected human with pneumonia reduce considerably and
maintain a constant level over time while the number of infected humns with pneumonia increases
in the uncontrolled case.

() Optimal control using: sanitation u3(t) and treatment ug(t)

Here, the control on using sanitation uz(t) and treatment u,4(t) are used to optimize the objective
function J with the control on vaccination u,(t) set to zero. The number of infected humans with
pneumonia was observed to be decreasing as shown in Figure 28 while the number of infected
humans with pneumonia increases considerably in the uncontrolled case.

(d)  Optimal control using: treatment ug(t)

With this strategy, the control on using only treatment u,(t) was used to optimize the objective
function / while the controls on sanitation u3(t) and vaccination u,(t) are set to zero. The result
in Figure 29 revealed that for the controlled case, the number of infected humans with pneumonia
reduces (green line) while the number of infected human with pneumonia increases for the
uncontrolled case (red dash dot line).

(e) Comparing all the control strategies

A comparison of all the control strategies for the pneumonia model case 5 was considered on the
infected humans (Ip) Figure 30. It was observed that all the four controls led to a decrease in the

number of infected humans (Ip) this was closely followed by the strategy of using anti-pneumonia
as treatment. The strategy involving vaccination and treatment also gave a good result in reducing
the number of infected humans (Ip) and also ensure that exposed humans do not progress to the
infected class. Lastly, the strategy involving the use of good sanitation and treatment also gave a
good result in decreasing the number of infected humans (Ip).

The malaria-pneumonia model with time dependent preventive and treatment control
strategies is considered in this section. The following scenarios are considered as follows:
(a) Optimal control using: sleeping under mosquito treated nets u,(t), insecticide
spray u, (t), sanitation u3(t), vaccination u,(t), treatment for malaria us(t), treatment for
pneumonia u4(t), treatment for both malaria and pneumonia u,(t)
The objective function J for malaria-pneumonia model is optimized in this case using all the seven
controls. It was seen in Figure 31 that the combinations of the seven controls resulted in
significant decrease in the number of infected humans with malaria-pneumonia (Imp) (solid green
line) as against the increase observed in the number of infected humans (Imp) (dash dot red line)
in the uncontrolled case.
(b) Optimal control using: sleeping under mosquito treated nets u,(t), sanitation
u3(t), vaccination u,(t), treatment for malaria us(t), treatment for pneumonia u4(t),
treatment for both malaria and pneumonia u,(t)
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In this case, the control on insecticide spray u,(t) is set to zero while the controls on sleeping
under mosquito treated nets u,(t), sanitation us(t), vaccination u,(t), treatment for malaria
us(t), treatment for pneumonia ug(t), treatment for both malaria and pneumonia u,(t) are used
to optimize the objective function J. Using this strategy, it was observed in Figure 32 that the
number of infected humans with malaria-pneumonia (Imp) decreases as against the increase
observed in the number of infected humans (Imp) in the uncontrolled case.
(c) Optimal control using: sleeping under mosquito treated nets u, (t), insecticide
spray u,(t), vaccination u,(t), treatment for malaria us;(t), treatment for pneumonia
u4(t), treatment for both malaria and pneumonia u,(t)
Here, the control on sleeping under mosquito treated nets wu,(t), insecticide spray u,(t),
vaccination u,(t), treatment for malaria ug(t), treatment for pneumonia u,(t), treatment for both
malaria and pneumonia u,(t) are used to optimize the objective function J while sanitation us(t)
is set to zero. For this strategy, it was observed in Figure 33 that the number of infected humans
with malaria-pneumonia (Imp) decreases as against the increase observed in the number of
infected humans (Imp) in the uncontrolled case.
(d)  Optimal control using: insecticide spray u, (t), sanitation u3(t), vaccination
u,(t), treatment for malaria us(t), treatment for pneumonia u4(t), treatment for both
malaria and pneumonia u-(t)
The control on sleeping under mosquito treated nets u,(t) is set to zero while the controls on
insecticide spray u,(t), sanitation u;(t), vaccination u,(t), treatment for malaria us(t),
treatment for pneumonia uy(t), treatment for both malaria and pneumonia u,(t) are used to
optimize the objective function J. Using this strategy, it was observed in Figure 34 that the number
of infected humans with malaria-pneumonia (Imp) decreases as against the increase observed in
the number of infected humans (Imp) in the uncontrolled case.
(e) Optimal control using: sanitation u3(t), vaccination u,(t), treatment for malaria
us(t), treatment for pneumonia ug(t), treatment for both malaria and pneumonia u-(t)
For this strategy, the controls on sanitation us(t), vaccination u,(t), treatment for malaria ug(t),
treatment for pneumonia ug(t), treatment for both malaria and pneumonia u,(t) are used to
optimize the objective function J while the controls on sleeping under mosquito treated nets u, (t)
and insecticide spray u, (t) are set to zero. It was observed as shown in Figure 35 that this strategy
decreases the number of infected humans with malaria-pneumonia (Imp) while the number of
infected humans with malaria-pneumonia (Imp) increases for the uncontrolled case.
® Optimal control using: insecticide spray u,(t), vaccination u,(t), treatment for
malaria ug(t), treatment for pneumonia ug(t), treatment for both malaria and pneumonia
u;(t)
The control on insecticide spray u,(t), vaccination u,(t), treatment for malaria us(t), treatment
for pneumonia u4(t), treatment for both malaria and pneumonia u,(t) optimizes the objective
function J/ with the controls on sleeping under mosquito treated nets u,(t) and good sanitation
u5(t) set to zero. For this control measure, it was shown in Figure 36 that the number of infected
humans with malaria-pneumonia (Imp) reduces significantly from the uncontrolled case.
(2 Optimal control using: sleeping under mosquito treated nets u4(t), vaccination u,(t),
treatment for malaria us(t), treatment for pneumonia u4(t), treatment for both malaria
and pneumonia u-(t)
With this strategy, the control on sleeping under mosquito treated nets u, (t), vaccination u,(t),
treatment for malaria us(t), treatment for pneumonia ug(t), treatment for both malaria and
pneumonia u,(t) are used to optimize the objective function J, while the control on insecticide
spray u,(t) and sanitation u5(t) are all set to zero. The results in Figure 37 revealed a significant
difference in the number of infected humans with malaria-pneumonia (Imp) compared to infected
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humans with malaria-pneumonia (Imp) without control. It was observed in Figure 37 that the

control strategies resulted in a decrease in the number of infected humans (Imp) as against an
increase in the uncontrolled case.
(h)  Optimal control using: vaccination u,(t), treatment for malaria ug(t), treatment for
pneumonia u4(t), treatment for both malaria and pneumonia u,(t)
The objective function J is optimized in this case using the control strategy on vaccination u,(t),
treatment for malaria us(t), treatment for pneumonia ug(t), treatment for both malaria and
pneumonia u,(t), while the controls on sleeping under mosquito treated nets u,(t), insecticide
spray u,(t) and sanitation us(t) are all set to zero. We observed in Figure 38 that the control
strategies resulted in a decrease in the number of infected humans with malaria-pneumonia (Imp).
Similarly, From Figure 38, the uncontrolled case resulted in increased number of infected humans
with malaria-pneumonia (Imp).
@) Optimal control using: sanitation u3(t), treatment for malaria us(t), treatment for
pneumonia u4(t), treatment for both malaria and pneumonia u,(t)
Using this strategy, the control on using sleeping under mosquito treated nets u, (t), insecticide
spray u,(t) and vaccination u,(t) are all set to zero, while the control on sanitation us(t),
treatment for malaria us(t), treatment for pneumonia ug(t), treatment for both malaria and
pneumonia u,(t) are used to optimize the objective function J. The number of infected humans
with malaria-pneumonia (Imp) was observed to be increasing for the uncontrolled case (dash dot
red line) as shown in Figure 39 while the number of infected humans with malaria-pneumonia
(Imp) decreases for the controlled case (solid green line).
G) Optimal control using: insecticide spray u,(t), treatment for malaria wus(t),
treatment for pneumonia ug(t), treatment for both malaria and pneumonia u,(t)
The objective function J here is optimized using insecticide spray u,(t), treatment for malaria
us(t), treatment for pneumonia ug(t), treatment for both malaria and pneumonia u,(t) as
controls while the controls on sleeping under mosquito treated nets u,(t), sanitation us(t) and
vaccination u,(t) are all set to zero. It was observed in Figure 40 that this strategy resulted in
significant decrease in the number of infected humans with malaria-pneumonia (Imp) while an
increase was observed in the uncontrolled case.
(k) Optimal control using: sleeping under mosquito treated nets u;(t), treatment for
malaria us(t), treatment for pneumonia uq(t), treatment for both malaria and pneumonia
u;(t)
For this strategy, the control on insecticide spray u, (t), sanitation u;(t) and vaccination u,(t) are
set to zero while the controls on sleeping under mosquito treated nets u, (t), treatment for malaria
us(t), treatment for pneumonia ug(t), treatment for both malaria and pneumonia u, (t) was used
to optimize the objective function J. It was shown in Figure 41 that the controlled strategies
resulted in a decrease in the number of infected humans with malaria-pneumonia (Imp) as against
an increase observed in the uncontrolled case.
() Comparing all the control strategies
A comparison of all the control strategies for the malaria-pneumonia model case 3 was considered
on infected humans with malaria-pneumonia (Imp) in Figure 42. It was observed that all the seven
controls, followed by the combinations of six controls ( (u,(t), us(t), u,(t), us(t), ug(t), u,(t))
and (u,(t), us(t), ua(t), us(t), us(t), uy(t)), five controls (uz(t), uy(t), us(t), ug(t), u;(t))
and four controls (us(t), us(t), ug(t), u,(t)) all led to a significant decrease in the number of
infected humans with malaria-pneumonia (Imp). The strategies (uq (t),us(t), ug(t), u,(t)) and
(u, (1), us(t), ug(t), u,(t)) yield a poorer result on the infected humans with malaria-pneumonia
(Imp) because of poor or no sanitation. This result showed that with individuals sleeping under
mosquito treated nets, spraying of insecticide in the sleeping area, vaccination and access to
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treatment may not be sufficient to control the spread of the disease in the community if poor or no
sanitation is encouraged.

6.0  Conclusion

A nonlinear mathematical model has been developed and analyzed to study the dynamics
of the co-infection of malaria-pneumonia using the mass action incidence. Here we incorporated
the dynamics of sanitation by means of a linearly decreasing function both in terms of the
transmission rate for malaria and contracting rate for pneumonia. The analysis of the model
systems were performed using stability theory. Qualitative analysis of the model showed that the
disease free equilibrium is locally asymptotically stable at threshold parameter less than unity
and unstable at threshold greater than unity. Global stability of the model disease free
equilibrium points were established using the comparison approach. Furthermore, the local
stability of the model endemic equilibrium points were investigated by using Centre Manifold
theory which showed that the malaria, pneumonia and the full malaria-pneumonia models
endemic equilibriums are locally asymptotically stable whenever the associated basic
reproduction number is greater than unity.

Sensitivity analysis of the model showed that the biting rate of mosquitoes, a, contact

rate ¢ and transmission rate 3, of pneumonia are the most sensitive parameters in the present
study, which suggest that more attention should be focused on these parameters. As a result, an
optimal control strategy to curtail the spread of malaria, pneumonia and their co-infection was
further studied in this work by incorporating treatments, sleeping under insecticide nets, spraying
of insecticides and good sanitation as controls measures. The optimal analysis was carried out
using the Pontryagin’s Maximum Principle.

Finally, numerical results are provided to validate the analytical results.
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APPENDIX A
1. Centre Manifold Theorem [9]

Consider a general system of ODEs with a parameter ¢

x=f(x,¢); f:R*"XR > R" f €C?R"%XR) (A.1)
Without loss of generality, assume that x = 0 is equilibrium for system (A.1).
Theorem A.1

Assume:

(i) A = D,f(0,0) is the linearization matrix of system (2.1) around the equilibrium x = 0
with ¢ evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A
have negative real parts.

(i1) Matrix A has a (nonnegative) right eigenvector w and a left eigenvector v corresponding
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to the zero eigenvalue. Let f,,, denote the mth complements of

92 £,(0,0) 9% fm(0,0)
—_ n . X m\‘, . — n . i m\Y,
f and a = 2m,j,i=1vleW] x;0x; ’ b m,j,i=1 UmW; 9x;0¢

Then the local dynamics of system (2.1) around x = 0 are totally determined by a and b

(iiiya > 0, b > 0. When ¢ < 0, with |¢| < 1, x = 0 is locally asymptotically stable and
there exist a positive unstable equilibrium; when 0 < ¢ << 1, x = 0 is unstable and
there exist a negative and locally asymptotically stable equilibrium

(iv)a <0, b < 0. When ¢ < 0, with |¢p| < 1, x = 0 is unstable; when0 < ¢ <K 1, x =0

is locally asymptotically stable and there exist a positive unstable equilibrium.

(v) a>0, b <0. When ¢ <0, with |¢p| < 1, x = 0 is unstable and there exist a locally
asymptotically stable negative equilibrium; when0 < ¢ < 1, x = 0 is stable and a
positive unstable equilibrium appears

(vi) a < 0, b > 0. When ¢ changes from negative to positive, x = 0 changes its stability

from stable to unstable. Correspondingly, a unstable equilibrium becomes positive and
locally asymptotically stable.
The proof of theorem A.1 is found in [12].

2. Pontryagin’s Maximum Principle

Theorem A.2: The necessary conditions that (xo*, u* (t)) be an optimal initial condition and
optimal control for the optimal control problem are the existence of a non-zero k-dimensional
vector A with 2; < 0 and an n-dimensional vector function P(t) such that for t € [t,, t;]:

(i) P@) =—=P@) f(t,x*(®),u*(©)); for t € (to,t;) andu € U

(i) PO [f (&, x* (), w) = f(t,x* (), uw* ()] < 0;

(i) P(t1)" = 'y, (e);

(V)P (to)" = —A' ¢y, (e);

(v) P(t1)’f(t1» x*(ty),u” (t1)) = —A¢y, (e);

(Vi)P(to)’f(tm x* (o), U*(to)) = Aoy, (e);

If f(t, x,u) has a continuous partial derivative f;(t, x, 1), then the condition
i) P(O) f(t, x*(©), u* (1)) = X'y, (to, t1, %7 (£0), x*(t1)) + ftto P(s) f(s,x*(s),u*(s))ds

holds for each t € [ty, t,].
The prove of theorem A.2 can be found in [15]

REFERENCE

[1] Adeniyi M.O (2018). “Optimal Control Model for the Transmission Dynamics of
Malaria-Pneumonia Co-infection with Mass Action Incidence” Abstract submitted to
3rd International Conference on Infection, Disease Control and Prevention, June 25-26,
2018 Vancouver, Canada

[2] Agusto F. B, Marcus N, Okosun K. O. (2012). Application of optimal
control to the epidemiology of malaria. Electronic Journal of Differential Equations,
Vol. 2012, No. 81, pp. 1-22

[3] Allman E.S. and Rhodes J.A., (2004): Mathematical models in Biology an introduction.
New York: Cambridge University press.

[4] Anderson Rm and May RM (1991). Infectious Diseases of Humans Dynamics and
Control, Oxford University Press, Oxford

[5] Ariey F; Robert V (2003). The puzzling links between malaria transmission and drug

41


http://dx.doi.org/10.20944/preprints201809.0186.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2018 d0i:10.20944/preprints201809.0186.v1

resistance, Trends in Parasitology,19,158-160

[6] Arriola L., Hyman J, (2005): Lecture notes, forward and adjoint sensitivity analysis: with
Application in Dynamical Systems, Linear Algebra and Optimization Mathematical and
Theoretical Biology Institute, summer, 2005

[7] Blayneh K.W, Cao Y, Kwon H.D (2009).” Optimal control of vector-borne diseases:
treatment and Prevention”.DCDS Ser. B.;Vol. 11, No. 3, pp587-611

[8] Brown, C. W, Kahoui, M. E. 1, Novotni, D. (2006); Weber, A.“Algorithmic
methods for investigating equilibria in epidemic modelling”, Journal of
Symbolic Computation, 41, 1157-1173.

[9] Buonomo B. and Lacitignola D., (2011): On the backward bifurcation of a vaccination
model with nonlinear incidence. Nonlinear Analysis: Modelling and Control, Vol.16, No.1,
pp 30-46

[10] Burke A.C., (2010): Infectious diseases in Critical care Medicine. New York. Informal
Health care U.S.A. Inc.

[11]  Cai Li-Ming, Lashari Abid Ali, Jung II Hyo, Kazeem Oare Okosun and Young II Seo,
(2013): Mathematical Analysis of Malaria Model with Partial Immunity to Re-
infection. Journal of Abstract and Applied Analysis, Hindawi Publishing Corporation

[12] Chavez-Castillo and Song, B., (2004): Dynamical Models of Tuberculosis and their

Applications. Mathematical Biosciences and Engineering, 1 (2): pp 361-
404.
[13] Chiyaka C, Tchuenche J.M, Garira W, Dube S (2008a).” A mathematical analysis of the
effects of control strategies on the transmission dynamics of malaria”. App. Math.
Comput. Vol. 195, pp 641-662

[14] Collins W.E (2012). "Plasmodium knowlesi: A malaria parasite of monkeys and
humans". Annual Review of Entomology Vol. 57, pp. 107-121

[15] Diekmann O, J.A.P Heesterbeek, (2000): Mathematical Epidemiology of Infectious
Diseases. John Wiley 171 & Son, Ltd

[16] Fleming W.H , Rishell R.W. Deterministic and Stochastic Optimal Control. Springer
Verlag, New York, 1975.

[17] Gove S (1997). Integrated Management of childhood illness by outpatient health
workers: technical basis and overview. Bull. WHO Vol. 75, (Supp 1), pp. 7-24

[18] Greenhalgh, D. (1992); Some results for an SEIR epidemic model with
density dependent in the death rate. IMA, Journal Math. Appl. Med. Bio.
Vol.9, pp. 67-106.

[19] Kallander K, Nsungwa-Sabiti J, Peterson S (2004). Symptoms overlap of malaria and
Pneumonia-Policy implications for home management strategies. Acta Tropica Vol. 90,
pp. 211-214

[20] Kermack, W. O.; McKendrick, A. G. (1991); Contributions to the Mathematical
theory of epidemics- II. The Problem of endemicity. Bulletin of Mathematical
Biolooy, Vol. 53, No. (1/2), pp. 57-87

[21] Kingsley N.U, Olufemi B.A, Ademola A.T (2011).” Clinical overlap between malaria
and pneumonia: Can malaria rapid diagnostic test play a role?” Journal of Infection in
Developing Countries. Vol. 5, No. 3, pp. 199-203

[22] Koram K.A, Molyneux M.E (2007), The Different Burden of Malaria Infection,
Malaria Disease and Malaria-like Illnesses. Am. J. Trop.Med. Hyg., Vol. 77, Suppl. 6,
pp. 1-5

[23] Lakshmkantham V, Leela S. and Martynyuk A.A., (1989): Stability Analysis of
Nonlinear Systems, Marcel Dekker, New York. ISBN 0-8247-8067-1. Pure and
Applied Mathematics: A series of Monographs and Textbooks, Vol. 125.

[24] Lawi G.O, Mugisha J.Y.T and Omolo-Ongati N., (2013): Modelling Co-infection of

42


http://dx.doi.org/10.20944/preprints201809.0186.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2018 d0i:10.20944/preprints201809.0186.v1

Paediatric Malaria and Pneumonia. Int. Journal of Math. Analysis, Vol. 7, no. 9, pp.
413-424

[25] Mandell L.A., Wunderink R.G., Anzueto A. (2007): Infectious Diseases Society of
America / American Thoracic Society Consensus Guidelines on the Management of
Community Acquired Pneumonia in Adults. Clinical Infectious Diseases, 44: S27-S72

[26] McLuckie, A., (2009): Respiratory Disease and its Management. New York. Springer,
pp: S1.

[27] Mushayabasa S., Tchuenche J.M.,Bhunu C.P., Ngarakana-Gwasira E., (2011): Modelling
Gonorrhoea and HIV Co-interaction. Journal of Biological and Information Processing
Sciences Vol. 103, pp. 27-37

[28] Okosun KO, Ouifki R, Marcus N (2011). Optimal control analysis of a malaria disease
transmission model that includes treatment and vaccination with waning immunity.
Biosystems Vol. 106, Issue 2-3, pp 136-145.

[29] Oluyo T.O. and Adeniyi M.O. (2014): Mathematical Analysis of Malaria-Pneumonia
Model with Mass Action. International Journal of Applied Mathematics, ISSN: 2051-5227,
Vol.29, Issue. 2

[30] Ranganathan, S.C; Sonnappa, S (February 2009). "Pneumonia and other respiratory
infections". Pediatric clinics of North America Vol. 56, No. 1, pp. 135-56

[31] Rudan I, Boschi-Pinto C, Biloglav Z, Mulholland K, Campbell H (2008). Epidemiology
and Etiology of childhood pneumonia. Bull WHO Vol. 86, pp. 408-416

[32] Singh, V., Aneja, S., (2011): Pneumonia - Management in the Developing World.
Paediatric Respiratory Reviews, Vol. 12, No. 1, pp. 52-59

[33] Snow R.W; Omumbo J (2006). Malaria, in Diseases and Mortality in Sub-Saharan
Africa, D.T et al Jamison,ed.,The World Bank:195-213

[34] Tumwiine J., Mugisha J.Y.T and Luboobi L.S. (2007): Computational and
Mathematical Methods in Medicine, Vol. 8, No. 3, 191-203

[35] Van den Driessche, P. and Watmough, J., (2002): Reproduction numbers and Sub-
threshold Endemic Equilibria for Compartmental models of Disease Transmission.
Mathematical Bio-sciences, Vol. 180, pp. 29-48

[36] WHO, (2009). Global Malaria Programme: Position Statement on Insecticide Treated
Nets (ITNs).

[37] WHO, (2005). Technical Basis for the WHO Recommendations on the Management of
Pneumonia in children at first-level health facilities. WHO/ARI/91-20

[38] WHO (2012): Pneumonia fact sheet

[39] Yang H. M (2001). A mathematical model for malaria transmission relating global
warming and local socioeconomic conditions. Rev. Saude Publica, 35(3), 224-231.

[40]  U.S. Bureau (2007), International database

43


http://dx.doi.org/10.20944/preprints201809.0186.v1

