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9 Abstract: People localization is a key building block in many applications. In this paper, we propose
10 a deep learning based approach that significantly improves the localization accuracy and reduces
11 the runtime of Wi-Fi based localization systems. Three variants of the deep learning approach are
12 proposed, a sub-task architecture, an end-to-end architecture, and an architecture that incorporates
13 prior knowledge. The performance of the three architectures under different conditions is evaluated
14 and the significant improvement of the three architectures over existing approaches is
15 demonstrated.
16 Keywords: Deep learning; Compressive sensing; People localization; Signal detection; Wi-Fi.
17

18 1. Introduction

19 People localization is a key building block in many applications such as surveillance, activity
20  classification, and elderly people monitoring. Video-based systems suffer from many limitations
21 making them unable to operate in many real-world situations; for instance, they require users to be
22 in the camera’s line-of-sight, they can’t work in the dark, through walls or smoke, and they violate
23 users’ privacy; furthermore, video-based tracking and localization algorithms suffer from low
24 localization accuracy and high computational cost.

25 Wi-Fi provides an accessible source of opportunity for people localization, it doesn’t have the
26  limitations of video-based systems; furthermore, it has reasonable bandwidth and transmitted power.
27  The potential to provide people localization by using this ubiquitous source of opportunity, and
28  without transmitting any additional signal, nor requiring co-operation from the users, provides
29  interesting opportunities. The users will be localized based on the available Wi-Fi signals that are
30  reflected from their bodies.

31 Recently, a number of Wi-Fi based localization systems were proposed [1-3], and [7-10]. A multi-
32 person localization system was proposed by Adib et al. [1], they determined users’ locations based
33 on the reflections of Wi-Fi signals from their bodies, the results show that their system was able to
34 localize up to five people at the same time with an average accuracy of 11.7 cm. Colone et al. [2]
35  studied the use of Wi-Fi signals for people localization, they have conducted an ambiguity function
36  analysis for Wi-Fi signals. They have also studied the range resolution for both direct sequence spread
37  spectrum (DSSS) and orthogonal frequency division multiplexing (OFDM) frames, for both the range
38  and the Doppler dimensions, large sidelobes were detected, which explains the masking of closely
39  spaced users. Chetty et al. [3] conducted an experiment in a high clutter indoor environment using

40  Wi-Fi signals, they were able to detect one moving person behind a wall.
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41 Compressive Sensing (CS) is a convenient approach to improve the accuracy and detect closely
42 spaced users, which are difficult to separate using conventional methods. CS can also work at a lower
43 rate than the Nyquist rate. The use of CS in radar has been recently investigated in [4, 5]. Anitori et
44 al. [6] presented an architecture for adaptive CS radar detection with Constant False Alarm Rate
45  (CFAR) properties, they also provided a methodology to predict the performance of the proposed
46  detector. Researchers in [7] and [8] have shown that compressive sensing can detect objects with high
47  accuracy using Wi-Fi signals.

48 Recently, there is a growing interest in using Deep Learning (DL) in communication and signal
49  processing due to its ability in adapting to many imperfections that exist in real-world environments.
50 DL has recently shown promising results in image recognition and classification [11-13]. The key
51  factorsbehind these significant results are high-performance computing systems and the use of large
52 amount of data such as the ImageNet dataset [14] which contains more than one million images.

53 In communication, researchers have recently used deep learning for modulation detection [15],
54 channel encoding and decoding [16-21], and channel estimation [22-25]. Wang et al. [26] have recently
55  surveyed the applications of DL in communication.

56 In [22], different deep learning architectures such as Deep Neural Network (DNN),
57  Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) were used for signal
58  detection in a molecular communication system. Simulation results demonstrated that all these
59  architectures were able to outperform the baseline, while the LSTM based detector has shown
60  promising performance in the presence of Inter-Symbol Interference (ISI).

61 In [23], a deep learning based detector called DetNet was proposed, the aim was to reconstruct
62  atransmitted signal x using the received signal y. To test the performance of the proposed approach
63 in complex channel environments, two scenarios were considered, the fixed channel model and the
64  varying channel model. DetNet was compared with two algorithms, the approximate message
65  passing (AMP), and the semi-definite relaxation (SDR) which provide close to optimal detection
66  accuracy. In the fixed channel scenario, the simulation results showed that DetNet was able to
67  outperform AMP and achieves comparable accuracy to SDR but with a significant reduction of the
68  computational cost (about 30 times faster). Similarly, in the varying channel scenario, DetNet was 30
69  times faster than the SDR and showed a close accuracy.

70 In [24], a five layers fully connected DNN was used for channel estimation and detection of
71 OFDM system by considering the channel as a black box. In the training phase, the data are passed
72 through a channel model. The frequency domain signal representing the data information is then fed
73 to the DNN detector that reconstructs the transmitted data. When comparing with the conventional
74  minimum mean square error (MMSE) method, the DNN detector was able to achieve comparable
75  performance. Then it was able to show better performance when fewer pilots are used, or when
76  clipping distortion was introduced to decrease the peak-to-average power ratio.

77 In radar, Yonel et al. [27] have recently used deep learning for the inverse problem in radar
78  imaging, they designed a recurrent neural network architecture and used it as an inverse solver. The
79  results show that the proposed approach was able to outperform conventional methods in terms of
80  the computation time and the reconstructed image quality.

81 Deep learning has been also recently used for compressive sensing [28-30]. Although
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82  compressive sensing has revolutionized signal processing, the main challenge facing it, is the slow
83  convergence of current reconstruction algorithms, which limits the applicability of CS systems. In
84  [28] a new signal reconstruction framework called DeepInverse was introduced. DeepInverse uses a
85  convolutional network to learn the inverse transformation from measurements to signals. The
86  experiments indicated that DeepInverse was able to closely approximate the results produced by
87 state of the art CS reconstruction algorithms; however, it is hundreds times faster in runtime. This
88  significant improvement in the runtime requires computationally intensive off-line training.
89  However, the training needs to be done only once.
90 Recently, there is a trend of using deep learning for Wi-Fi based localization systems [31-35],
91  [54]. Fang and Lin [31] proposed a system that uses a neural network with a single hidden layer to
92 extract features from Received Signal Strength (RSS). It was able to improve the localization error to
93 below 2.5m, which is 17% improvement over state of the art approaches. A system called DeepFi was
94 proposed in [33] with four layers neural network. DeepFi was able to improve the accuracy by 20%
95  over the FIFS system, which uses a probability based model. A system called CiFi was proposed in
96  [34], it used a convolutional network for indoor localization based on Wi-Fi signals. First, the phase
97  data was extracted from the channel state information (CSI), then the phase data is used to estimate
98  the angle of arrival (AOA). which is used as an input to the convolutional network. The results show
99  that CiFi has an error of less than 1 m for 40% of the test locations, while for other approaches it is
100 30%. In addition, it has an error of less than 3 m for 87% of the test locations, while for DeepkFi it is
101 73%.1In [35], A system called ConFi was proposed, which is a CNN based Wi-Fi localization technique
102 that uses CSI as features. The CSI was organized as a CSI feature image, where the CSIs at different
103 times and different subcarriers were arranged into a matrix. The CNN consists of three convolutional
104  layers and two fully connected layers. The network is trained using the CSI feature images. ConFi
105  was able to reduce the mean error by 9.2% and 21.64% over DeepFi and DANN respectively.
106 These results show the significant improvement in the runtime and the accuracy of deep learning
107  based systems. However, RSS provides only coarse-grained information about the wireless channel
108  variations. CSI can capture fine-grained variations in the wireless channel. It also contains the
109  amplitude and the phase measurements for each OFDM subcarrier. However, using the reflected
110 signals from the bodies of the users can capture more valuable information such as the Doppler shift,
111 therefore the latter approach will be used in this work.
112 In this paper, we investigate the use of deep learning for Wi-Fi based localization systems. The
113 main contribution of this paper is a deep learning based Wi-Fi localization technique that significantly
114  improves the accuracy and reduces the runtime in comparison with existing techniques. Three
115 architectures are proposed, an end-to-end architecture, a sub-task architecture, and an architecture
116  that introducing prior knowledge. The performance of the proposed approach is evaluated in the
117  presence of multipath propagation. The role of each parameter of the training set and the effect of
118  each parameter of the network are also investigated.
119 The paper is organized as follows: Section 2 describes the Wi-Fi signal model. An overview of
120 compressive sensing is given in Section 3. An overview of deep learning is given in Section 4. Section
121 5 introduces the detection method using the compressive sensing approach. The deep learning based

122 localization technique is introduced in Section 6. Simulation results are listed in Section 7. Section 8
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123 discusses the results and future research directions, and the paper is concluded in Section 9.
124 2. Wi-Fi Signal Model

125 Wi-Fi standards IEEE 802.11 [36] use both DSSS modulation in the 802.11b standard with 11MHz
126  bandwidth and OFDM with 20MHz bandwidth in the newer a/g/n standards. In OFDM, the signal is
127  divided into Ns symbols, then these symbols are modulated onto multiple subcarriers. The duration
128  of each OFDM symbol is T. The spacing of the subcarrier is Af = 1/T and the bandwidth is B = NGAf. fc
129 s the carrier frequency, and fm = fc + mAf is the frequency of the mth subcarrier. A cyclic prefix (CP)
130 s used to avoid inter-symbol interference, Tep denotes the length of the CP. One OFDM symbol in the
131  baseband is given by

132 x(t) = 3. S[m]el2™mAft q(t) 1)

133

134 Where s[m] is the symbol of the mth subcarrier and q(t) is a rectangular window of length Tcp + T. We
135  consider a uniform linear array with N elements and P signals impinge on the array from directions

136 61, 0, ..., Op, respectively, the received Wi-Fi signals can be expressed by
137

138 y(©) = Z a(0,)A, e et (t — 1)) +w(t)  (2)
p

139
140  Where w(t) is white Gaussian noise and Ap is the attenuation which includes the path loss and the
141  reflection, tp is the delay and ay is the range rate of the pth path divided by the speed of light, x(t) is

142 an OFDM symbol and the steering vector a(6p) is expressed by

143
144 a(ep) — [e—jZHdCOS(GD)/A . e—jZHdeos(ep)/A] (3)

145
146  Where A is the signal wavelength, d is the array inter-element spacing and L is the number of

147  antennas.
148 3. Compressive Sensing

149 Consider a discrete-time signal x of length N. x can be represented in terms of basis vectors i
150 x =Zosil; (4)

I51  Where si is weighting coefficients. When x is a linear combination of a small number of K basis
152 vectors, with K< N, i.e., only K vectors of si in (4) are non-zero; then, compressive sensing allows to
153  sample x with a smaller number of measurements than the Nyquist rate. Measurements y with M <

154 N are performed by linear projections
155 y=®x +n (5)

156  With a measurement matrix ® and additive noise n. When x is sparse with only a small number of
157  non-zero entries K <N, compressive sensing can reconstruct x given that the measurement matrix ®

158  is incoherent with the basis j, i.e., the vectors {¢j} cannot sparsely represent the vectors {{i}. The
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159  compressive sensing reconstruction problem then can be formulated as a convex optimization

160  problem

161 x' =minx | X7 l1subjectto | ly-dx7I12 < & (6)
162  Where ¢ bounds the noise in the signal.

163 4. Deep Learning

164  Deep learning [37, 38] is inspired from neural systems in biology, where the weighted sum of many
165  inputsis fed to an activation function such as the sigmoid function, to produce an output. The neural
166  network is then built by linking many neurons to form a layered architecture. A loss function, such
167  as the mean square error should be used to get the weights that minimize the loss function between
168  the expected output and output of the network. Optimization algorithms such as the Gradient
169  Descent (GD) are typically used in the training to find the best parameters. In [39] it has been shown
170  that neural network can be used as a universal function approximator by introducing hidden layers
171  between the output and the input layers.

172 In the fully connected feedforward neural network, each neuron is linked to the adjacent layers.
173 Efficient algorithms such as the backpropagation were proposed for training such networks. Many
174  problems could arise during the training process, such as converging to a local minimum. To address
175  this problem, many adaptive learning algorithms such as the Adam algorithm were proposed.
176  However, although the trained network can perform well using the training data, the network might
177  perform very poorly using the testing data because of overfitting. Many techniques have been
178  proposed to reduce overfitting such as dropout.

179 Recurrent Neural Network (RNN) was introduced to provide neural networks with memory,
180  where in many situations, the outputs need also to depend on the input from previous time steps.
181  One example is translation, where the knowledge of previous words in the sentence would
182  significantly help in producing a better translation of the current word. Some recently used RNN
183  architectures that are showing promising results include Gated Recurrent Unit (GRU), and LSTM.
184 The convolutional neural network is another promising architecture. The basic idea of the CNN
185 s to use convolutional and pooling layers before the fully connected network. In the convolutional
186  layer, a number of filters are learned to represent local spatial patterns along the input channels. The
187  pooling layer performs down-sampling, where the number of parameters is significantly decreased
188  before the fully connected layers.

189 With the promising results of the CNN architecture in computer vision, many researchers have
190  attempted to improve the CNN architecture proposed by Krizhevsky et al. [11] to achieve better
191  accuracy. For example, the highest accuracy architecture submitted to the ImageNet Large Scale
192 Visual Recognition Competition (ILSVRC) in 2013 [12] used smaller stride and smaller window size
193 for the convolutional layers. In [40], the researchers have addressed another important architecture
194 design aspect, which is the network depth. Recent evidence [40, 41] shows that the network depth is
195  of crucial importance. However, the main challenge of using deeper networks is the vanishing
196  gradients problem [42, 43], which affects the convergence significantly. To address the vanishing

197  gradient problem, new activation functions such as the Rectified Linear Units (ReLU) were
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198  introduced instead of the sigmoid function. The problem was also addressed by introducing
199  normalized initialization [43, 44] and batch normalization layers [45], which were able to make
200  networks with tens of layers to begin converging. However, with the increased network depth, the
201  accuracy gets saturated and then rapidly degrades [46, 47]. In [46], the researchers have addressed
202  the degradation problem by proposing a deep residual learning approach. To maximize the
203  information flow, skip connections were introduced. The 152 layers residual network was applied on
204  the ImageNet dataset, it was able to win the first place in the ILSVRC 2015 competition. To ensure
205  maximum information flow between different layers of the network, all layers are connected to each
206  other directly in [49]. Where each layer connects its output to all subsequent layers and gets inputs
207  from all preceding layers.

208 5. Wi-Fi based localization Using Compressive Sensing

209  In this section, we describe a Wi-Fi localization method using compressive sensing, where the works
210  of [7] and [8] are extended to also include the angle of arrival estimation. The number of objects is
211  often very small compared to the number of points in the scene, this implies that the scene is sparse,
212 which enable us to formulate a CS reconstruction problem and solve it using convex optimization.
213 The received signal should be matched to delay-Doppler-angle combinations, corresponding to
214 objects detections. A sufficient delay-Doppler-angle resolution should be considered; however, a very
215  high resolution may lead to a large number of combinations, many of them are highly correlated. The
216  delay-Doppler-angle scene is divided into a P x V x Z matrix, in which each point represents a unique
217  delay-Doppler-angle point, the sparse vector x is composed of P data points in the range dimension
218  and Z data points in the angle dimension at all considered Doppler shifts with V data points in the
219  Doppler dimension. The size of vector x is Q = PVZ. The pvz index will be nonzero if an object exists
220  at the point (p, v, z). The measurements vector y contains the data from L antennas at time t.. The
221  measurement matrix @ is generated by creating time-shifted versions of the transmitted signal

222 (represented by (7)) for each Doppler frequency and each angle of arrival.

223 F=[s(t) stt—1y) ... s(t—1,)] (7)

224 We assume that s(t) is known. The measurement matrix @ establishes a linear relation between the
225  measurements at multiple antennas [y1 y2 ... yi] with the range profile [x1, x2 .... xq] at different

226  Doppler shifts wv and different angles 6.

227
V1 X1

228 Pl=o || ©
Yy Xq

229  Where @ is expressed by

230
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232

233 Toimprove the detection probability, the results of 10 signals are combined before the threshold step,
234  where the final value of the object is equal to the count of its appearance across all the 10 reconstructed

235  scenes.

236 6. Method

237  Most signal processing techniques in communications and radar have solid foundations in
238  information theory and statistics, and are optimal using some assumptions such as linearity, and
239  Gaussian statistics. However, many imperfections exist in real-world environments. Deep learning is
240  a very appealing option because it can adapt to real-world imperfections, which can’t be always
241  captured by analytical models.

242 Choosing the suitable architecture and its parameters, which best suit the problem is an
243 important question. We have tried many architectures with different number and size of layers, the
244 best performing architecture is shown in Table 1. The roles of different parameters of the proposed
245  architecture will be evaluated in the next section. The network has three convolutional layers and
246  three fully connected layers. The input of the network is the received signal y. Different kernels
247  (filters) can detect different features from the input signal and will construct different feature maps.
248 50 kernels and kernels of size 5 were found to work best in our model. For the fully connected layers,
249  the width of each layer is 800, and a 25% dropout is used to avoid overfitting. Dropout [48] means
250  temporarily removing units from the network with all their connections, the choice of which units to
251  remove is random. This will make each unit more robust and reduces its dependence on other units
252 to create useful features. To introduce non-linearity into the network, the ReLU is used as an
253  activation function. ReLU has shown higher performance than the sigmoid function and is more
254  plausible in biological systems. To accelerate the training process and to further reduce the
255  overfitting, batch normalization [45] is used in the proposed architecture. Vanishing gradients or
256  getting trapped in a local minimum may occur when using a high learning rate. However, by
257  normalizing the activations throughout the network, small changes are prevented from amplifying
258  tolarge changes in activations in gradients. Batch normalization has also shown promising results in
259  reducing overfitting. Softmax is used as an activation function in the output layer, softmax takes the
260  advantage that the locations are mutually exclusive, i.e. the object can be at one location only, softmax

261  will also output a probability for each location.
262
263  Table 1. The architecture of the network

Layer type Parameters Activation Function

Convolutional layer Kernels number = 50 ReLU

Kernel size =5

Batch normalization
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Convolutional layer Kernels number = 50 ReLU
Kernel size =5

Batch normalization

Convolutional layer Kernels number = 50 ReLU
Kernel size =5

Batch normalization

Fully connected layer 800 neurons ReLU
Batch normalization

25% dropout

Fully connected layer 800 neurons ReLU
Batch normalization

25% dropout

Fully connected layer 800 neurons ReLU
Batch normalization

25% dropout

Fully connected layer 30 neurons Softmax

264
265  The Adam optimizer is used to train the network and the training rate is set to 0.01. The used accuracy

266  metric is given by (9)
267

TP
268 Accuracy = 5 (9)

269

270  Where TP is the number of correct detections, and P is the number of positive cases. To be able to
271  compare the results of the deep learning approach with the compressive sensing approach, the same
272 accuracy metric will be also used to evaluate the performance of the compressive sensing approach.
273 Three variants of the above architecture will be used. The first one seeks to simplify the problem
274  and reduces its dimensionality by using several copies of the above network to estimate the location
275 of each user alone, where the first network will be trained to estimate the location of the first user,
276 the second network will be trained to estimate the location of the second user, and so on. The second
277  variant will use an end-to-end approach where the performance of the whole system can be
278  optimized. The above network will be used to estimate the locations of all users at the same time;
279  however, several output layers are added to estimate the locations of different users. The third variant
280  will introduce prior knowledge to the network by feeding the used pilot signal as an input to the
281  network, where the above network is modified by adding one more input layer for the used pilot
282  signal, followed by three convolutional layers, then the two branches are merged and the same fully
283  connected layers are used. Fig. 1 shows the modified architecture. The performance of these three
284  variants will be compared in the next section. Similar to the CS based approach, the output of the

285  network for 10 signals will be combined.
286
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Fig 1. A DL architecture where prior knowledge is incorporated

The training data is obtained by simulation. In each simulation, an OFDM frame is formed. The
training data consists of 250000 examples, the input represents the received signal, which is described
in section 2, and the output represents the locations of the users in the scene, where the output will
be one at the user position and zero elsewhere. The training approach in [51] is used to train the
network by starting the training at high Signal to Noise Ratio (SNR) and then gradually reducing it.
The network is trained to minimize the difference between the output data and output of the neural
network. A test set will be used after the training to test the performance of the network, the size of
the test set is chosen to be 15% of the size of the training set. Since the network hasn’t seen the test set
during the training phase, using the test set in calculating the accuracy would be a good

approximation of the generalization ability of the network.

7. Results

Computer simulations were performed to evaluate the proposed approach. We consider the 2.4GHz
industrial, scientific, and medical (ISM) band. The delay profile is represented by 30 samples, the
Doppler resolution is represented by 30 samples. The proposed approaches will be used to localize
users with random positions in the scene under different conditions. Training of the network took 12
hours on a standard Intel i3-4030U processor. First, we will compare the deep learning approach with
existing methods, then the performance of the proposed architectures will be compared. After that,
the performance of the deep learning approach is evaluated in the presence of multipath propagation.
Then, the role of each parameter of the training set is evaluated, and finally, the effect of each

parameter of the network is investigated.

A. Comparison with other methods in terms of accuracy and runtime

d0i:10.20944/preprints201809.0213.v1
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To compare the proposed deep learning approach with the compressive sensing approach described
in section 5, 1000 Monte Carlo runs were performed to evaluate the compressive sensing approach
under different SNR values where the locations of the users are generated randomly. Both the
Orthogonal Matching Pursuit (OMP) [52] and the Interior Point Method (IPM) [53] were used to
reconstruct the scene. Each reconstructed scene is the result of combining 10 signals. The same
accuracy metric described in section 6 will be used to evaluate the CS approach. Fig. 2 shows the
percentage of correctly detecting four users for the OMP and the IPM versus the first DL architecture
which estimates the location of each object alone, the comparison is done for different SNR values,
and when a different number of signals is combined. The DL based approach is showing a significant
improvement in the accuracy, particularly for low SNR signals. This shows that the DL based

approach has a higher ability to adapt to noisy environments where the conventional approaches are

d0i:10.20944/preprints201809.0213.v1
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Fig 2. The percentage of correctly detecting the persons for the OMP and the IPM versus the DL

approach for different SNR values and a different number of combined signals.

B. Comparing with an end-to-end approach

Two DL approaches will be compared, the first one tries to simplify the problem and reduces its
dimensionality by estimating the location of each user alone as described in section 6. The second
approach is an end-to-end approach where the locations of all users are estimated at the same time.
The end-to-end approach has shown a better performance, which suggests that the gain from
dividing this particular problem into simpler sub-tasks is lower than the gain from the overall
optimization of the whole problem. Fig. 3 shows the probability of correctly detecting the users under

different SNR values for the two approaches.
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Fig 3. The probability of correctly detecting the users under different SNR values for the sub-task

approach and the end-to-end approach.

C. Comparing with an approach where prior knowledge is incorporating

Here we compare the end-to-end architecture with an architecture where prior knowledge is fed to

the network. The used pilot signal is also used as an input to the network to see whether it will

improve the performance of the network. The two approaches showed comparable results with a

very small improvement of the prior knowledge approach, which means that there is no much gain

from using additional information as an input to the network and the network is able to extract the

needed information from the received signal. Fig. 4 shows the probability of correctly detecting the

users under different SNR values for the two architectures.

Table. 2 shows the runtime for the end-to-end approach versus the two CS approaches using a

standard Intel i3-4030U processor. The DL approach has significantly lower runtime than the CS

based approaches. Where, once the network is trained and the weights are calculated, predicting new

output involves relatively simple calculations.

Table 2. The runtime for the DL, the OMP, and the IPM methods.

Method Runtime

DL 0.1803 seconds
OMP 0.4618 seconds
IPM 22.099 seconds
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Fig 4. The probability of correctly detecting the users under different SNR values for the end-to-end

approach and the approach when prior knowledge is incorporated.

D. The effect of multipath

To investigate the effect of multipath signals, the proposed approach will be compared when 4, 8 and

12 multipath signals are added to the received signal. Fig. 5 shows that the end-to-end approach is

relatively robust to multipath propagation, where the network was able to cancel the multipath effect

and correctly detect the users.
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Fig 5. The probability of correctly detecting the users under different SNR values when 4, 8 and 12

multipath signals are used.

d0i:10.20944/preprints201809.0213.v1


http://dx.doi.org/10.20944/preprints201809.0213.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 d0i:10.20944/preprints201809.0213.v1

13 of 19

377  E.The effect of the SNR of the training set

378

379  Tocompare the effect of the SNR of the training samples, five sets will be tested. The first one contains
380  signals with 20dB SNR, the second one contains signals with 0dB SNR, the third one contains signals
381  with -12dB SNR, the fourth one contains signals with varying SNR starting from high SNR values to
382  low SNR values i.e. from 20dB to -12dB, and the final set contains signals with varying SNR, however
383  the signals here are sorted randomly. Fig. 6 shows the probability of correctly detecting the users
384  under different SNR values for the five sets. Using the fourth and the fifth set have resulted in higher
385  accuracy than the other sets, which means that the network should see examples from different SNR
386  values. The -12dB set has shown higher accuracy at -12dB since there are more training samples at

387 this SNR, however; the accuracy is much lower for other SNR values.
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390  Fig 6. The probability of correctly detecting the users using training sets with different SNR values.
391
392 F. The effect of the number of examples
393

394  To investigate the effect of the number of the training examples on the performance of the proposed
395 network, five sets with 10000, 50000, 100000, 250000, and 500000 training examples are compared.
396  Fig. 7 shows the probability of correctly detecting the users under different SNR values for the five
397  sets, the results show that the accuracy increases when a higher number of examples is used;

398  however, the improvement becomes very small after 250000.

399
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402  of the training set are used.
403
404  G. The effect of different parameters of the network
405
406  Here we analyze the effect of different parameters on the performance of the network. First, we
407  compare using a different number of neurons, then we compare using different number and sizes of
408  kernels, and finally, we compare the role of dropout.
409
410 1. The effect of the number of neurons in each layer
411
412  Here we compare using a different number of neurons in each layer. 80, 200, 800, 1200 neurons are
413 compared. Fig. 8 shows the probability of correctly detecting the users under different SNR values
414  for the four cases. Increasing the number of neurons increases the accuracy; however, the difference
415  between 200, 800 and 1200 is very small.

416
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Fig 8. The probability of correctly detecting the users under different SNR values when a different

number of neurons is used.

Then we compare changing the number of the kernels in the convolutional layers. 25, 50, and 100

kernels are compared. Fig. 9 shows the probability of correctly detecting the users under different

SNR values for the three cases. Increasing the number of kernels has not resulted in increasing the

accuracy where the three cases have shown comparable results.. Fig. 10 shows the results for different

sizes of the kernels, where kernels of size 9 are found to be slightly better in capturing useful features

from the signal.
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Fig 9. The probability of correctly detecting the users under different SNR values when a different

number of kernels is used.
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432 Fig 10. The probability of correctly detecting the users under different SNR values when different
433 sizes of the kernels are used.

434

435 2. The effect of dropout

436

437  Here we compare the performance of the network for four cases, the first one is with no dropout, the
438  second one is with 10% dropout, the third one is with 25% dropout, and the fourth one is with 40%
439  dropout. Fig. 11 shows that increasing the dropout has resulted in more ability of the network to
440  create useful features where 25% and 40% dropout are showing slightly higher accuracy.
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443 Fig 11. The probability of correctly detecting the users under different SNR values when different

444  percentages of dropout are used.
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447 8. Discussion

448 The proposed deep learning approach has shown higher performance with less runtime in

449  comparison with the CS approach. The proposed approach has also shown a high ability to adapt to
450  challenging environments. For the studied problem, using deep learning for each sub-task and

451  hence reducing the curse of dimensionality has resulted in less accurate results in comparisons with
452  the end-to-end approach where the performance of the whole system is optimized. Introducing

453  prior knowledge by using the pilot signal as an input to the network has not resulted in much

454  improvement in the accuracy, where the network seems to be able to extract the needed

455  information from the received signal. The proposed approach has also shown that it is relatively
456  robust in multipath environments.

457 Increasing the number of examples in the training stage has resulted in higher accuracy;

458  however, the improvement was very small after 250000. Using training examples from different
459  SNR values has resulted in more accurate results in comparison of using the same SNR value for all
460  the examples, whether that SNR is low or high. The results have also shown the role of different
461 network parameters in improving the accuracy.

462 This work along with many other recent works have shown that deep learning has many
463  potential applications in future signal processing, communication, and radar systems where

464  conventional approaches are challenged. It represents a promising research direction that is still in
465  its early stage. Some challenges still worth further investigations. Further research must be

466  conducted to propose deep learning architectures that best suit signal processing, communication,
467  and radar systems.

468 9. Conclusions

469 This paper has presented a Wi-Fi based localization technique based on deep learning, where
470  three different architectures were proposed. Simulation results demonstrated the significant
471  improvement in the accuracy and in the runtime of the proposed approaches over existing
472  approaches. The end-to-end architecture was found to be more accurate than the other two
473  architectures. The proposed approach has also shown that it is relatively robust in multipath
474  environments. Future work will investigate further improvement in the localization accuracy by
475  building architectures that best suit localization systems.
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