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Abstract: People localization is a key building block in many applications. In this paper, we propose 9 
a deep learning based approach that significantly improves the localization accuracy and reduces 10 
the runtime of Wi-Fi based localization systems. Three variants of the deep learning approach are 11 
proposed, a sub-task architecture, an end-to-end architecture, and an architecture that incorporates 12 
prior knowledge. The performance of the three architectures under different conditions is evaluated 13 
and the significant improvement of the three architectures over existing approaches is 14 
demonstrated. 15 
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1. Introduction 18 

People localization is a key building block in many applications such as surveillance, activity 19 
classification, and elderly people monitoring. Video-based systems suffer from many limitations 20 
making them unable to operate in many real-world situations; for instance, they require users to be 21 
in the camera’s line-of-sight, they can’t work in the dark, through walls or smoke, and they violate 22 
users’ privacy; furthermore, video-based tracking and localization algorithms suffer from low 23 
localization accuracy and high computational cost. 24 

Wi-Fi provides an accessible source of opportunity for people localization, it doesn’t have the 25 
limitations of video-based systems; furthermore, it has reasonable bandwidth and transmitted power. 26 
The potential to provide people localization by using this ubiquitous source of opportunity, and 27 
without transmitting any additional signal, nor requiring co-operation from the users, provides 28 
interesting opportunities. The users will be localized based on the available Wi-Fi signals that are 29 
reflected from their bodies. 30 

Recently, a number of Wi-Fi based localization systems were proposed [1-3], and [7-10]. A multi-31 
person localization system was proposed by Adib et al. [1], they determined users’ locations based 32 
on the reflections of Wi-Fi signals from their bodies, the results show that their system was able to 33 
localize up to five people at the same time with an average accuracy of 11.7 cm. Colone et al. [2] 34 
studied the use of Wi-Fi signals for people localization, they have conducted an ambiguity function 35 
analysis for Wi-Fi signals. They have also studied the range resolution for both direct sequence spread 36 
spectrum (DSSS) and orthogonal frequency division multiplexing (OFDM) frames, for both the range 37 
and the Doppler dimensions, large sidelobes were detected, which explains the masking of closely 38 
spaced users. Chetty et al. [3] conducted an experiment in a high clutter indoor environment using 39 
Wi-Fi signals, they were able to detect one moving person behind a wall. 40 
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Compressive Sensing (CS) is a convenient approach to improve the accuracy and detect closely 41 
spaced users, which are difficult to separate using conventional methods. CS can also work at a lower 42 
rate than the Nyquist rate. The use of CS in radar has been recently investigated in [4, 5]. Anitori et 43 
al. [6] presented an architecture for adaptive CS radar detection with Constant False Alarm Rate 44 
(CFAR) properties, they also provided a methodology to predict the performance of the proposed 45 
detector. Researchers in [7] and [8] have shown that compressive sensing can detect objects with high 46 
accuracy using Wi-Fi signals. 47 

Recently, there is a growing interest in using Deep Learning (DL) in communication and signal 48 
processing due to its ability in adapting to many imperfections that exist in real-world environments. 49 
DL has recently shown promising results in image recognition and classification [11-13]. The key 50 
factors behind these significant results are high-performance computing systems and the use of large 51 
amount of data such as the ImageNet dataset [14] which contains more than one million images.  52 

In communication, researchers have recently used deep learning for modulation detection [15], 53 
channel encoding and decoding [16-21], and channel estimation [22-25]. Wang et al. [26] have recently 54 
surveyed the applications of DL in communication.  55 

In [22], different deep learning architectures such as Deep Neural Network (DNN), 56 
Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) were used for signal 57 
detection in a molecular communication system. Simulation results demonstrated that all these 58 
architectures were able to outperform the baseline, while the LSTM based detector has shown 59 
promising performance in the presence of Inter-Symbol Interference (ISI).  60 

In [23], a deep learning based detector called DetNet was proposed, the aim was to reconstruct 61 
a transmitted signal x using the received signal y. To test the performance of the proposed approach 62 
in complex channel environments, two scenarios were considered, the fixed channel model and the 63 
varying channel model. DetNet was compared with two algorithms, the approximate message 64 
passing (AMP), and the semi-definite relaxation (SDR) which provide close to optimal detection 65 
accuracy. In the fixed channel scenario, the simulation results showed that DetNet was able to 66 
outperform AMP and achieves comparable accuracy to SDR but with a significant reduction of the 67 
computational cost (about 30 times faster). Similarly, in the varying channel scenario, DetNet was 30 68 
times faster than the SDR and showed a close accuracy.  69 

In [24], a five layers fully connected DNN was used for channel estimation and detection of 70 
OFDM system by considering the channel as a black box. In the training phase, the data are passed 71 
through a channel model. The frequency domain signal representing the data information is then fed 72 
to the DNN detector that reconstructs the transmitted data. When comparing with the conventional 73 
minimum mean square error (MMSE) method, the DNN detector was able to achieve comparable 74 
performance. Then it was able to show better performance when fewer pilots are used, or when 75 
clipping distortion was introduced to decrease the peak-to-average power ratio.  76 

In radar, Yonel et al. [27] have recently used deep learning for the inverse problem in radar 77 
imaging, they designed a recurrent neural network architecture and used it as an inverse solver. The 78 
results show that the proposed approach was able to outperform conventional methods in terms of 79 
the computation time and the reconstructed image quality. 80 

Deep learning has been also recently used for compressive sensing [28-30]. Although 81 
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compressive sensing has revolutionized signal processing, the main challenge facing it, is the slow 82 
convergence of current reconstruction algorithms, which limits the applicability of CS systems. In 83 
[28] a new signal reconstruction framework called DeepInverse was introduced. DeepInverse uses a 84 
convolutional network to learn the inverse transformation from measurements to signals. The 85 
experiments indicated that DeepInverse was able to closely approximate the results produced by 86 
state of the art CS reconstruction algorithms; however, it is hundreds times faster in runtime. This 87 
significant improvement in the runtime requires computationally intensive off-line training. 88 
However, the training needs to be done only once. 89 

Recently, there is a trend of using deep learning for Wi-Fi based localization systems [31-35], 90 
[54]. Fang and Lin [31] proposed a system that uses a neural network with a single hidden layer to 91 
extract features from Received Signal Strength (RSS). It was able to improve the localization error to 92 
below 2.5m, which is 17% improvement over state of the art approaches. A system called DeepFi was 93 
proposed in [33] with four layers neural network. DeepFi was able to improve the accuracy by 20% 94 
over the FIFS system, which uses a probability based model. A system called CiFi was proposed in 95 
[34], it used a convolutional network for indoor localization based on Wi-Fi signals. First, the phase 96 
data was extracted from the channel state information (CSI), then the phase data is used to estimate 97 
the angle of arrival (AOA). which is used as an input to the convolutional network. The results show 98 
that CiFi has an error of less than 1 m for 40% of the test locations, while for other approaches it is 99 
30%. In addition, it has an error of less than 3 m for 87% of the test locations, while for DeepFi it is 100 
73%. In [35], A system called ConFi was proposed, which is a CNN based Wi-Fi localization technique 101 
that uses CSI as features. The CSI was organized as a CSI feature image, where the CSIs at different 102 
times and different subcarriers were arranged into a matrix. The CNN consists of three convolutional 103 
layers and two fully connected layers. The network is trained using the CSI feature images. ConFi 104 
was able to reduce the mean error by 9.2% and 21.64% over DeepFi and DANN respectively.  105 

These results show the significant improvement in the runtime and the accuracy of deep learning 106 
based systems. However, RSS provides only coarse-grained information about the wireless channel 107 
variations. CSI can capture fine-grained variations in the wireless channel. It also contains the 108 
amplitude and the phase measurements for each OFDM subcarrier. However, using the reflected 109 
signals from the bodies of the users can capture more valuable information such as the Doppler shift, 110 
therefore the latter approach will be used in this work. 111 

In this paper, we investigate the use of deep learning for Wi-Fi based localization systems. The 112 
main contribution of this paper is a deep learning based Wi-Fi localization technique that significantly 113 
improves the accuracy and reduces the runtime in comparison with existing techniques. Three 114 
architectures are proposed, an end-to-end architecture, a sub-task architecture, and an architecture 115 
that introducing prior knowledge. The performance of the proposed approach is evaluated in the 116 
presence of multipath propagation. The role of each parameter of the training set and the effect of 117 
each parameter of the network are also investigated. 118 

The paper is organized as follows: Section 2 describes the Wi-Fi signal model. An overview of 119 
compressive sensing is given in Section 3. An overview of deep learning is given in Section 4. Section 120 
5 introduces the detection method using the compressive sensing approach. The deep learning based 121 
localization technique is introduced in Section 6. Simulation results are listed in Section 7. Section 8 122 
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discusses the results and future research directions, and the paper is concluded in Section 9. 123 

2. Wi-Fi Signal Model 124 

Wi-Fi standards IEEE 802.11 [36] use both DSSS modulation in the 802.11b standard with 11MHz 125 
bandwidth and OFDM with 20MHz bandwidth in the newer a/g/n standards. In OFDM, the signal is 126 
divided into Ns symbols, then these symbols are modulated onto multiple subcarriers. The duration 127 
of each OFDM symbol is T. The spacing of the subcarrier is ∆f = 1/T and the bandwidth is B = Ns∆f. fc 128 
is the carrier frequency, and fm = fc + m∆f is the frequency of the mth subcarrier. A cyclic prefix (CP) 129 
is used to avoid inter-symbol interference, Tcp denotes the length of the CP. One OFDM symbol in the 130 
baseband is given by 131 

x(t) = ෌ S[m]e୨ଶ஠୫∆୤୲୫ q(t)   (1) 132 
 133 
Where s[m] is the symbol of the mth subcarrier and q(t) is a rectangular window of length Tcp + T. We 134 
consider a uniform linear array with N elements and P signals impinge on the array from directions 135 
θ1, θ2, ..., θP, respectively, the received Wi-Fi signals can be expressed by  136 
 137 

y(t) =෍ a(θ୮)A୮e୨ଶ஠୤ౙୟ౦୲x(t −
୮

τ୮) + w(t)  (2) 138 

 139 
Where w(t) is white Gaussian noise and Ap is the attenuation which includes the path loss and the 140 
reflection, τp is the delay and ap is the range rate of the pth path divided by the speed of light, x(t) is 141 
an OFDM symbol and the steering vector a(θp) is expressed by 142 
 143 

a(θp) = [eି୨ଶ஠ୢୡ୭ୱ(஘୮)/஛		. .		eି୨ଶ஠୐ୢୡ୭ୱ(஘୮)/஛]    (3) 144 
 145 
Where λ is the signal wavelength, d is the array inter-element spacing and L is the number of 146 
antennas. 147 

3. Compressive Sensing 148 

Consider a discrete-time signal x of length N. x can be represented in terms of basis vectors ѱi 149 

x = ∑ s୧ѱ୧
୒
୧ୀ଴   (4) 150 

Where si is weighting coefficients. When x is a linear combination of a small number of K basis 151 
vectors, with K < N, i.e., only K vectors of si in (4) are non-zero; then, compressive sensing allows to 152 
sample x with a smaller number of measurements than the Nyquist rate. Measurements y with M < 153 
N are performed by linear projections 154 

y = Φx + n  (5) 155 

With a measurement matrix Φ and additive noise n. When x is sparse with only a small number of 156 
non-zero entries K < N, compressive sensing can reconstruct x given that the measurement matrix Φ 157 
is incoherent with the basis ѱ, i.e., the vectors {φj} cannot sparsely represent the vectors {ψi}. The 158 
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compressive sensing reconstruction problem then can be formulated as a convex optimization 159 
problem  160 

   x` = minx˜ ||x˜||1 subject to ||y - Φx˜||2  ≤  ε  (6) 161 

Where ε bounds the noise in the signal. 162 

4. Deep Learning 163 

Deep learning [37, 38] is inspired from neural systems in biology, where the weighted sum of many 164 
inputs is fed to an activation function such as the sigmoid function, to produce an output. The neural 165 
network is then built by linking many neurons to form a layered architecture. A loss function, such 166 
as the mean square error should be used to get the weights that minimize the loss function between 167 
the expected output and output of the network. Optimization algorithms such as the Gradient 168 
Descent (GD) are typically used in the training to find the best parameters. In [39] it has been shown 169 
that neural network can be used as a universal function approximator by introducing hidden layers 170 
between the output and the input layers.  171 

In the fully connected feedforward neural network, each neuron is linked to the adjacent layers. 172 
Efficient algorithms such as the backpropagation were proposed for training such networks. Many 173 
problems could arise during the training process, such as converging to a local minimum. To address 174 
this problem, many adaptive learning algorithms such as the Adam algorithm were proposed. 175 
However, although the trained network can perform well using the training data, the network might 176 
perform very poorly using the testing data because of overfitting. Many techniques have been 177 
proposed to reduce overfitting such as dropout. 178 

Recurrent Neural Network (RNN) was introduced to provide neural networks with memory, 179 
where in many situations, the outputs need also to depend on the input from previous time steps. 180 
One example is translation, where the knowledge of previous words in the sentence would 181 
significantly help in producing a better translation of the current word. Some recently used RNN 182 
architectures that are showing promising results include Gated Recurrent Unit (GRU), and LSTM. 183 

The convolutional neural network is another promising architecture. The basic idea of the CNN 184 
is to use convolutional and pooling layers before the fully connected network. In the convolutional 185 
layer, a number of filters are learned to represent local spatial patterns along the input channels. The 186 
pooling layer performs down-sampling, where the number of parameters is significantly decreased 187 
before the fully connected layers.  188 

With the promising results of the CNN architecture in computer vision, many researchers have 189 
attempted to improve the CNN architecture proposed by Krizhevsky et al. [11] to achieve better 190 
accuracy. For example, the highest accuracy architecture submitted to the ImageNet Large Scale 191 
Visual Recognition Competition (ILSVRC) in 2013 [12] used smaller stride and smaller window size 192 
for the convolutional layers. In [40], the researchers have addressed another important architecture 193 
design aspect, which is the network depth. Recent evidence [40, 41] shows that the network depth is 194 
of crucial importance. However, the main challenge of using deeper networks is the vanishing 195 
gradients problem [42, 43], which affects the convergence significantly. To address the vanishing 196 
gradient problem, new activation functions such as the Rectified Linear Units (ReLU) were 197 
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introduced instead of the sigmoid function. The problem was also addressed by introducing 198 
normalized initialization [43, 44] and batch normalization layers [45], which were able to make 199 
networks with tens of layers to begin converging. However, with the increased network depth, the 200 
accuracy gets saturated and then rapidly degrades [46, 47]. In [46], the researchers have addressed 201 
the degradation problem by proposing a deep residual learning approach. To maximize the 202 
information flow, skip connections were introduced. The 152 layers residual network was applied on 203 
the ImageNet dataset, it was able to win the first place in the ILSVRC 2015 competition. To ensure 204 
maximum information flow between different layers of the network, all layers are connected to each 205 
other directly in [49]. Where each layer connects its output to all subsequent layers and gets inputs 206 
from all preceding layers. 207 

5. Wi-Fi based localization Using Compressive Sensing 208 

In this section, we describe a Wi-Fi localization method using compressive sensing, where the works 209 
of [7] and [8] are extended to also include the angle of arrival estimation. The number of objects is 210 
often very small compared to the number of points in the scene, this implies that the scene is sparse, 211 
which enable us to formulate a CS reconstruction problem and solve it using convex optimization. 212 
The received signal should be matched to delay-Doppler-angle combinations, corresponding to 213 
objects detections. A sufficient delay-Doppler-angle resolution should be considered; however, a very 214 
high resolution may lead to a large number of combinations, many of them are highly correlated. The 215 
delay-Doppler-angle scene is divided into a P × V × Z matrix, in which each point represents a unique 216 
delay-Doppler-angle point, the sparse vector x is composed of P data points in the range dimension 217 
and Z data points in the angle dimension at all considered Doppler shifts with V data points in the 218 
Doppler dimension. The size of vector x is Q = PVZ. The pvz index will be nonzero if an object exists 219 
at the point (p, v, z). The measurements vector y contains the data from L antennas at time tl. The 220 
measurement matrix Φ is generated by creating time-shifted versions of the transmitted signal 221 
(represented by (7)) for each Doppler frequency and each angle of arrival. 222 

F = [	s(t)			s(t − τଵ)	… .		s(t − τ୮)	]  (7) 223 

We assume that s(t) is known. The measurement matrix Φ establishes a linear relation between the 224 
measurements at multiple antennas [y1 y2 … yL] with the range profile [x1, x2 …. xQ] at different 225 
Doppler shifts ωv and different angles θz.  226 

 227 

൦

ଵݕ
ଶݕ
⋮
௅ݕ

൪ = Φ ൦

ଵݔ
ଶݔ
⋮
ொݔ

൪ (8) 228 

Where Φ is expressed by 229 

 230 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2018                   doi:10.20944/preprints201809.0213.v1

http://dx.doi.org/10.20944/preprints201809.0213.v1


 7 of 19 

 

⎝

⎜⎜
⎛
݁ି

௝ଶగௗ௖௢௦(ఏଵ)
ఒ ݁௝ఠభ௧భܨ						. .						݁ି

௝ଶగௗ௖௢௦(ఏ௭)
ఒ ݁௝ఠభ௧భܨ 				… ݁ି

௝ଶగௗ௖௢௦(ఏଵ)
ఒ ݁௝ఠೇ௧భܨ	. . ݁ି

௝ଶగௗ௖௢௦(ఏ௭)
ఒ ݁௝ఠೇ௧భܨ

݁ି
௝ଶగଶௗ௖௢௦(ఏଵ)

ఒ ݁௝ఠభ௧భܨ					. .							݁ି
௝ଶగଶௗ௖௢௦(ఏ௭)

ఒ ݁௝ఠభ௧భܨ 				⋯ ݁ି
௝ଶగଶௗ௖௢௦(ఏଵ)

ఒ ݁௝ఠೇ௧భܨ	. . ݁ି
௝ଶగଶௗ௖௢௦(ఏ௭)

ఒ ݁௝ఠೇ௧భܨ
⋮ 					⋱ ⋮

݁ି
௝ଶగ௅ௗ௖௢௦(ఏଵ)

ఒ ݁௝ఠభ௧భܨ				. .								݁ି
௝ଶగ௅ௗ௖௢௦(ఏ௭)

ఒ ݁௝ఠభ௧భܨ 											⋯					 ݁ି
௝ଶగ௅ௗ௖௢௦(ఏଵ)

ఒ ݁௝ఠೇ௧భܨ	. . ݁ି
௝ଶగ௅ௗ௖௢௦(ఏ௭)

ఒ ݁௝ఠೇ௧భܨ⎠

⎟⎟
⎞

 231 

 232 

To improve the detection probability, the results of 10 signals are combined before the threshold step, 233 
where the final value of the object is equal to the count of its appearance across all the 10 reconstructed 234 
scenes. 235 

6. Method 236 

Most signal processing techniques in communications and radar have solid foundations in 237 
information theory and statistics, and are optimal using some assumptions such as linearity, and 238 
Gaussian statistics. However, many imperfections exist in real-world environments. Deep learning is 239 
a very appealing option because it can adapt to real-world imperfections, which can’t be always 240 
captured by analytical models. 241 

Choosing the suitable architecture and its parameters, which best suit the problem is an 242 
important question. We have tried many architectures with different number and size of layers, the 243 
best performing architecture is shown in Table 1. The roles of different parameters of the proposed 244 
architecture will be evaluated in the next section. The network has three convolutional layers and 245 
three fully connected layers. The input of the network is the received signal y. Different kernels 246 
(filters) can detect different features from the input signal and will construct different feature maps. 247 
50 kernels and kernels of size 5 were found to work best in our model. For the fully connected layers, 248 
the width of each layer is 800, and a 25% dropout is used to avoid overfitting. Dropout [48] means 249 
temporarily removing units from the network with all their connections, the choice of which units to 250 
remove is random. This will make each unit more robust and reduces its dependence on other units 251 
to create useful features. To introduce non-linearity into the network, the ReLU is used as an 252 
activation function. ReLU has shown higher performance than the sigmoid function and is more 253 
plausible in biological systems. To accelerate the training process and to further reduce the 254 
overfitting, batch normalization [45] is used in the proposed architecture. Vanishing gradients or 255 
getting trapped in a local minimum may occur when using a high learning rate. However, by 256 
normalizing the activations throughout the network, small changes are prevented from amplifying 257 
to large changes in activations in gradients. Batch normalization has also shown promising results in 258 
reducing overfitting. Softmax is used as an activation function in the output layer, softmax takes the 259 
advantage that the locations are mutually exclusive, i.e. the object can be at one location only, softmax 260 
will also output a probability for each location. 261 
 262 
Table 1. The architecture of the network 263 

Layer type Parameters Activation Function 

Convolutional layer  Kernels number = 50 

Kernel size = 5 

Batch normalization 

ReLU 
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Convolutional layer  Kernels number = 50 

Kernel size = 5 

Batch normalization 

ReLU 

Convolutional layer  Kernels number = 50 

Kernel size = 5 

Batch normalization 

ReLU 

Fully connected layer 800 neurons 

Batch normalization 

25% dropout 

ReLU 

Fully connected layer 800 neurons 

Batch normalization 

25% dropout 

ReLU 

Fully connected layer 800 neurons 

Batch normalization 

25% dropout 

ReLU 

Fully connected layer 30 neurons 

 

Softmax 

 264 
The Adam optimizer is used to train the network and the training rate is set to 0.01. The used accuracy 265 
metric is given by (9) 266 
 267 

ݕܿܽݎݑܿܿܣ =
ܶܲ
ܲ 					(9) 268 

 269 
Where TP is the number of correct detections, and P is the number of positive cases. To be able to 270 
compare the results of the deep learning approach with the compressive sensing approach, the same 271 
accuracy metric will be also used to evaluate the performance of the compressive sensing approach. 272 

Three variants of the above architecture will be used. The first one seeks to simplify the problem 273 
and reduces its dimensionality by using several copies of the above network to estimate the location 274 
of each user alone, where the first network will be trained to estimate the location of the first user, 275 
the second network will be trained to estimate the location of the second user, and so on. The second 276 
variant will use an end-to-end approach where the performance of the whole system can be 277 
optimized. The above network will be used to estimate the locations of all users at the same time; 278 
however, several output layers are added to estimate the locations of different users. The third variant 279 
will introduce prior knowledge to the network by feeding the used pilot signal as an input to the 280 
network, where the above network is modified by adding one more input layer for the used pilot 281 
signal, followed by three convolutional layers, then the two branches are merged and the same fully 282 
connected layers are used. Fig. 1 shows the modified architecture. The performance of these three 283 
variants will be compared in the next section. Similar to the CS based approach, the output of the 284 
network for 10 signals will be combined. 285 
 286 
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 287 
Fig 1. A DL architecture where prior knowledge is incorporated  288 
 289 
The training data is obtained by simulation. In each simulation, an OFDM frame is formed. The 290 
training data consists of 250000 examples, the input represents the received signal, which is described 291 
in section 2, and the output represents the locations of the users in the scene, where the output will 292 
be one at the user position and zero elsewhere. The training approach in [51] is used to train the 293 
network by starting the training at high Signal to Noise Ratio (SNR) and then gradually reducing it. 294 
The network is trained to minimize the difference between the output data and output of the neural 295 
network. A test set will be used after the training to test the performance of the network, the size of 296 
the test set is chosen to be 15% of the size of the training set. Since the network hasn’t seen the test set 297 
during the training phase, using the test set in calculating the accuracy would be a good 298 
approximation of the generalization ability of the network. 299 

7. Results 300 

Computer simulations were performed to evaluate the proposed approach. We consider the 2.4GHz 301 
industrial, scientific, and medical (ISM) band. The delay profile is represented by 30 samples, the 302 
Doppler resolution is represented by 30 samples. The proposed approaches will be used to localize 303 
users with random positions in the scene under different conditions. Training of the network took 12 304 
hours on a standard Intel i3-4030U processor. First, we will compare the deep learning approach with 305 
existing methods, then the performance of the proposed architectures will be compared. After that, 306 
the performance of the deep learning approach is evaluated in the presence of multipath propagation. 307 
Then, the role of each parameter of the training set is evaluated, and finally, the effect of each 308 
parameter of the network is investigated. 309 
 310 
A. Comparison with other methods in terms of accuracy and runtime 311 
 312 
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To compare the proposed deep learning approach with the compressive sensing approach described 313 
in section 5, 1000 Monte Carlo runs were performed to evaluate the compressive sensing approach 314 
under different SNR values where the locations of the users are generated randomly. Both the 315 
Orthogonal Matching Pursuit (OMP) [52] and the Interior Point Method (IPM) [53] were used to 316 
reconstruct the scene. Each reconstructed scene is the result of combining 10 signals. The same 317 
accuracy metric described in section 6 will be used to evaluate the CS approach. Fig. 2 shows the 318 
percentage of correctly detecting four users for the OMP and the IPM versus the first DL architecture 319 
which estimates the location of each object alone, the comparison is done for different SNR values, 320 
and when a different number of signals is combined. The DL based approach is showing a significant 321 
improvement in the accuracy, particularly for low SNR signals. This shows that the DL based 322 
approach has a higher ability to adapt to noisy environments where the conventional approaches are 323 
challenged.  324 
 325 

 326 
Fig 2. The percentage of correctly detecting the persons for the OMP and the IPM versus the DL 327 
approach for different SNR values and a different number of combined signals.  328 
 329 
B. Comparing with an end-to-end approach 330 
 331 
Two DL approaches will be compared, the first one tries to simplify the problem and reduces its 332 
dimensionality by estimating the location of each user alone as described in section 6. The second 333 
approach is an end-to-end approach where the locations of all users are estimated at the same time. 334 
The end-to-end approach has shown a better performance, which suggests that the gain from 335 
dividing this particular problem into simpler sub-tasks is lower than the gain from the overall 336 
optimization of the whole problem. Fig. 3 shows the probability of correctly detecting the users under 337 
different SNR values for the two approaches. 338 
 339 
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 340 
Fig 3. The probability of correctly detecting the users under different SNR values for the sub-task 341 
approach and the end-to-end approach. 342 
 343 
C. Comparing with an approach where prior knowledge is incorporating  344 
 345 
Here we compare the end-to-end architecture with an architecture where prior knowledge is fed to 346 
the network. The used pilot signal is also used as an input to the network to see whether it will 347 
improve the performance of the network. The two approaches showed comparable results with a 348 
very small improvement of the prior knowledge approach, which means that there is no much gain 349 
from using additional information as an input to the network and the network is able to extract the 350 
needed information from the received signal. Fig. 4 shows the probability of correctly detecting the 351 
users under different SNR values for the two architectures. 352 

Table. 2 shows the runtime for the end-to-end approach versus the two CS approaches using a 353 
standard Intel i3-4030U processor. The DL approach has significantly lower runtime than the CS 354 
based approaches. Where, once the network is trained and the weights are calculated, predicting new 355 
output involves relatively simple calculations. 356 

 357 
Table 2. The runtime for the DL, the OMP, and the IPM methods. 358 

Method Runtime 

DL 0.1803 seconds 

 

OMP 0.4618 seconds 

 

IPM 22.099 seconds 

 

 359 
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 360 
Fig 4. The probability of correctly detecting the users under different SNR values for the end-to-end 361 
approach and the approach when prior knowledge is incorporated. 362 
 363 
D. The effect of multipath  364 
 365 
To investigate the effect of multipath signals, the proposed approach will be compared when 4, 8 and 366 
12 multipath signals are added to the received signal. Fig. 5 shows that the end-to-end approach is 367 
relatively robust to multipath propagation, where the network was able to cancel the multipath effect 368 
and correctly detect the users. 369 
 370 

 371 
Fig 5. The probability of correctly detecting the users under different SNR values when 4, 8 and 12 372 
multipath signals are used. 373 
 374 
 375 
 376 
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E. The effect of the SNR of the training set 377 
 378 
To compare the effect of the SNR of the training samples, five sets will be tested. The first one contains 379 
signals with 20dB SNR, the second one contains signals with 0dB SNR, the third one contains signals 380 
with -12dB SNR, the fourth one contains signals with varying SNR starting from high SNR values to 381 
low SNR values i.e. from 20dB to -12dB, and the final set contains signals with varying SNR, however 382 
the signals here are sorted randomly. Fig. 6 shows the probability of correctly detecting the users 383 
under different SNR values for the five sets. Using the fourth and the fifth set have resulted in higher 384 
accuracy than the other sets, which means that the network should see examples from different SNR 385 
values. The -12dB set has shown higher accuracy at -12dB since there are more training samples at 386 
this SNR, however; the accuracy is much lower for other SNR values. 387 
 388 

 389 
Fig 6. The probability of correctly detecting the users using training sets with different SNR values. 390 
 391 
F. The effect of the number of examples  392 
 393 
To investigate the effect of the number of the training examples on the performance of the proposed 394 
network, five sets with 10000, 50000, 100000, 250000, and 500000 training examples are compared. 395 
Fig. 7 shows the probability of correctly detecting the users under different SNR values for the five 396 
sets, the results show that the accuracy increases when a higher number of examples is used; 397 
however, the improvement becomes very small after 250000. 398 
 399 
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 400 
Fig 7. The probability of correctly detecting the users under different SNR values when different sizes 401 
of the training set are used. 402 
 403 
G. The effect of different parameters of the network 404 
 405 
Here we analyze the effect of different parameters on the performance of the network. First, we 406 
compare using a different number of neurons, then we compare using different number and sizes of 407 
kernels, and finally, we compare the role of dropout. 408 
 409 
1. The effect of the number of neurons in each layer 410 
 411 
Here we compare using a different number of neurons in each layer. 80, 200, 800, 1200 neurons are 412 
compared. Fig. 8 shows the probability of correctly detecting the users under different SNR values 413 
for the four cases. Increasing the number of neurons increases the accuracy; however, the difference 414 
between 200, 800 and 1200 is very small. 415 
 416 
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 417 
Fig 8. The probability of correctly detecting the users under different SNR values when a different 418 
number of neurons is used. 419 
 420 
Then we compare changing the number of the kernels in the convolutional layers. 25, 50, and 100 421 
kernels are compared. Fig. 9 shows the probability of correctly detecting the users under different 422 
SNR values for the three cases. Increasing the number of kernels has not resulted in increasing the 423 
accuracy where the three cases have shown comparable results.. Fig. 10 shows the results for different 424 
sizes of the kernels, where kernels of size 9 are found to be slightly better in capturing useful features 425 
from the signal. 426 
 427 

 428 
Fig 9. The probability of correctly detecting the users under different SNR values when a different 429 
number of kernels is used. 430 
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 431 
Fig 10. The probability of correctly detecting the users under different SNR values when different 432 
sizes of the kernels are used. 433 
 434 
2. The effect of dropout  435 
 436 
Here we compare the performance of the network for four cases, the first one is with no dropout, the 437 
second one is with 10% dropout, the third one is with 25% dropout, and the fourth one is with 40% 438 
dropout. Fig. 11 shows that increasing the dropout has resulted in more ability of the network to 439 
create useful features where 25% and 40% dropout are showing slightly higher accuracy. 440 
 441 

 442 
Fig 11. The probability of correctly detecting the users under different SNR values when different 443 
percentages of dropout are used. 444 
 445 
 446 
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8. Discussion 447 

The proposed deep learning approach has shown higher performance with less runtime in 448 
comparison with the CS approach. The proposed approach has also shown a high ability to adapt to 449 
challenging environments. For the studied problem, using deep learning for each sub-task and 450 
hence reducing the curse of dimensionality has resulted in less accurate results in comparisons with 451 
the end-to-end approach where the performance of the whole system is optimized. Introducing 452 
prior knowledge by using the pilot signal as an input to the network has not resulted in much 453 
improvement in the accuracy, where the network seems to be able to extract the needed 454 
information from the received signal. The proposed approach has also shown that it is relatively 455 
robust in multipath environments. 456 

Increasing the number of examples in the training stage has resulted in higher accuracy; 457 
however, the improvement was very small after 250000. Using training examples from different 458 
SNR values has resulted in more accurate results in comparison of using the same SNR value for all 459 
the examples, whether that SNR is low or high. The results have also shown the role of different 460 
network parameters in improving the accuracy. 461 

This work along with many other recent works have shown that deep learning has many 462 
potential applications in future signal processing, communication, and radar systems where 463 
conventional approaches are challenged. It represents a promising research direction that is still in 464 
its early stage. Some challenges still worth further investigations. Further research must be 465 
conducted to propose deep learning architectures that best suit signal processing, communication, 466 
and radar systems.  467 

9. Conclusions 468 
This paper has presented a Wi-Fi based localization technique based on deep learning, where 469 

three different architectures were proposed. Simulation results demonstrated the significant 470 
improvement in the accuracy and in the runtime of the proposed approaches over existing 471 
approaches. The end-to-end architecture was found to be more accurate than the other two 472 
architectures. The proposed approach has also shown that it is relatively robust in multipath 473 
environments. Future work will investigate further improvement in the localization accuracy by 474 
building architectures that best suit localization systems. 475 
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