

Peer-reviewed version available at *Biomedicines* 2018, 6, 102; doi:10.3390/biomedicines6040102

THE ROLE OF GENE THERAPY IN PREMATURE OVARIAN INSUFFICIENCY MANAGEMENT

Ihor Atabiekov, Elie Hobia, Ujala Sheikh, Abdeljabar El Andaloussi, Ayman Al-Hendy

Departments of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612

Running Title: POI and Gene Therapy

Manuscript type: literature review.

Corresponding Author:

Ayman Al-Hendy, MD, PhD, Abdeljabar El Andaloussi, PhD

aalhendy@uic.edu, aelandal@uic.edu

Departments of Obstetrics and Gynecology,

University of Illinois at Chicago,

820 South Wood Street,

Chicago, IL 60612

The authors declare no conflict of interest

Abstract:

Premature ovarian insufficiency (POI) is a highly prevalent disorder, characterized by the development of menopause before age of 40. Most cases are idiopathic; however, in some women the cause of this condition (e.g. anticancer treatment, genetic disorders, and enzymatic defects) may be identified. Although hormone replacement therapy, the principal therapeutic approach for POI, helps to alleviate the related symptoms, this does not effectively solve the issue of fertility. Assisted reproductive techniques also lack efficacy in these women. Thus, the effective approach to manage the patients with POI is highly warranted. Several mechanisms, associated with POI, have been identified, including lack of FSH receptor functioning, alterations in the apoptosis control, mutations in Sal-like 4 genes, thymulin or basonuclin-1 deficiency etc. The above-mentioned may be good targets for gene therapy in order to correct defects, leading to POI. The goal of this review is to summarize the current experience on the POI studies, that employed gene therapy, and to discuss the possible future directions in this field.

Goal of the review: to summarize the current experience of gene therapy use in treatment of premature ovarian insufficiency.

Keywords: Premature ovarian insufficiency, POI; Gene therapy; Menopause; SAL-like 4 genes, SALL4; Follicle-stimulating hormone (FSH); Basonuclin-1; Replication-incompetent adenoviral vector, Ad; Stem cells, SC.

Introduction

Premature ovarian insufficiency (POI) affects 1% of women by 40 years of age and less than 0.01% of patients younger than the age of 35 (1, 2). It is defined by the development of menopause before 40 years of age. Although the majority of cases remain idiopathic, a detailed history and physical in addition to a workup should be initiated to investigate identifiable etiologies(3). The different etiologies of POI are described in Table 1. Follicle-stimulating hormone receptor (FSHR) gene polymorphisms, chromosomal defects, autoimmune and enzymatic disorders are among the known causes. Much effort has been made in order to identify genes, responsible for POI development, and today genetic cause of this condition is found in up to 25% of patients (4). FMR1 (5), FIGLA (6), BMP15 (7), FSHR (8), FOXL2 (9), GDF9 (4), NOBOX (10), INHA (11), STAG3 (12) are the examples of genes, mutations of which are seen in some POI women.

It is important to mention also, that the most recent report of the American Cancer Society for 2016-2017, has estimated that female cancer survivors of 49 years of age and younger are estimated to be over 1 million as of January 1st 2016. This emerging population increases significantly the prevalence of women with POI and renders it a major health care problem that warrants therapy and management. (13).

Table 1. Causes of premature ovarian insufficiency.

Idiopathic
Primary
Chromosomal disease
FSHR gene polymorphism
Mutation of inhibin B
Autoimmune disorders
Enzymatic defects
Secondary
Cancer treatment (chemotherapy, radiotherapy)

Ovarian surgery
Uterine artery embolization
Infections (mumps etc)

Clinical manifestations of POI, similarly to menopause, are signs of hypoestrogenism due to ovarian dysfunction. Those include oligomenorrhea with menopausal symptoms such as vaginal dryness, decreased libido, and vasomotor symptoms. However, the absence of these symptoms does not rule out the diagnosis in the presence of appropriate laboratory findings. Since menstrual irregularities are the most common presenting manifestation of POI, other etiologies of secondary amenorrhea should be excluded. Those are illustrated in Table 2.

Table 2. Other causes of secondary amenorrhea that should be excluded.

Physiologic
Pregnancy
Intrauterine adhesions
Asherman syndrome
Tuberculous endometritis
Hypothalamic
Functional hypothalamic amenorrhea
Pituitary
Prolactinoma
Empty sella syndrome
Sheehan syndrome
Cushing syndrome
Ovarian
PCOS
Others
Hypothyroidism

Ovarian tumors
Congenital adrenal hyperplasia
Adrenal tumors

Early onset hypoestrogenism has deleterious effects on a woman's general health and wellbeing. In addition to symptoms affecting the woman's quality of life, such as vasomotor symptoms and vaginal atrophy, accelerated bone loss, leading to osteoporosis, increased cardiovascular morbidity and mortality are the main consequences of estrogen deficiency, especially when it occurs in women of reproductive age. To add, recent reports suggest a role of estrogen in mental health as well, with increased rates of dementia and neurologic disorders such as Parkinson's disease in patients with early onset menopause. (14-16). Interestingly, spontaneous ovulation can still occur in women with POI with ovaries in situ (17). Patients should be counseled that the chances of spontaneous conception, although low for age-matched controls, are still present, and can reach a lifetime probability of 10% (18).

Hormone replacement therapy (HRT) is the mainstay in the treatment of POI from the time of diagnosis until the average age of menopause, at least. Contemporary studies and reports do not fully support its use beyond that age. HRT helps counteract the effects of hypoestrogenism by promoting bone and cardiovascular health, in addition to improved quality of life through the resolution and vasomotor symptoms and vaginal atrophy. In terms of reproductive outcomes, HRT may improve spontaneous ovulation rates, but is not the standard of care for women desiring conception. Assisted reproductive technologies are seldom futile due to diminished ovarian reserve in addition to poor ovarian response. Adoption or oocyte donation are commonly recommended for patients who haven't completed child bearing at time of diagnosis (19). In women with newly diagnosed cancer, in vitro fertilization with oocyte and embryo banking is an option prior to initiation of medical or radiation cytotoxic therapy and the induction of POI (20, 21). Cryopreservation of fresh ovarian tissue prior to cytotoxic treatment with subsequent

Peer-reviewed version available at *Biomedicines* 2018, 6, 102; doi:10.3390/biomedicines6040102

transplantation is not fully implemented yet, but results of pilot studies have been promising (22).

Nevertheless, the concern of simultaneous cryopreservation of carcinogenic cells in the ovarian cortex, mainly in the case of lymphomas and leukemia, leading to cancer recurrence after autologous transplantation has always been a major concern with this technique.

The data on effectiveness and teratogenicity of other agents for POI patients (bisphosphonates, raloxifene, strontium ranelate, herbal remedies) is currently lacking (23).

Thereby, effective treatment of POI is needed, especially to restore reproductive function. Gene therapy is a potentially promising avenue, which has been attracting interest recently. The goal of this review is to summarize the available information on gene therapy attempts in the management of POI and to underline the potential target genes that may be influenced in future studies.

GENE THERAPY FOR FSH RECEPTOR DEFECT CORRECTION

Females are born with approximately one million primordial follicles, arrested at prophase of the first meiotic division. The majority will undergo atresia and only 600,000 are present at puberty.

When the girl is born, all the follicles are arrested at the early stage of development, this changes with puberty, when stimulation of the ovaries by follicle-stimulating hormone (FSH) occurs (24).

FSH signaling through its receptor (FSHR) is essential for this process, as well as for spermatogenesis in adult males (25). Folliculogenesis is a lengthy process, involving growth and maturation of the follicle from primordial to the preovulatory stage. Approximately 400 follicles of the total ovarian follicle pool will ovulate during the reproductive years of a woman.

Aittomaki et al. identified a point mutation (C566T) in FSHR gene and showed the substantial decrease of FSH/FSHR binding and, thus, failure to increase intracellular cAMP levels in mutated FSHR transfection experiments (24). Males with C566T mutation of both alleles had decreased fertility, whereas homozygous females had POI due to resistant ovary syndrome (ROS) (25).

Usually this is seen as primary amenorrhea with high serum FSH, somewhat decreased secondary sex features, normal karyotype and genitalia (24). Similar signs are seen in other mutations of

Peer-reviewed version available at *Biomedicines* 2018, 6, 102; doi:10.3390/biomedicines6040102

FSHR gene (8, 26-28). The follicles in these women are not developing and continuous atresia occurs (24). There is no effective therapy for these conditions nowadays and chance of spontaneous pregnancy is very low. FSH stimulation of the ovaries is ineffective (29). The only method that allows to become pregnant is in vitro fertilization (IVF) using donated eggs, which is very expensive, ethically unacceptable for many women and results in genetically unrelated fetus. One of the most commonly used vectors for gene therapy are replication-incompetent adenoviruses (Ad) that are proved to be safe (30). Al-Hendy et al. used Ad to transfect both human and Eker rat uterine fibroid cells (ELT3) with dominant negative estrogen receptor (ER) to inhibit estrogen pathway and observed shrinkage of leiomyoma size (31-33). No safety issues have been observed. Ghadami et al. developed Ad vector, carrying full-length human FSHR (hFSHR) gene (Ad-hFSHR), and demonstrated its ability to restore FSH activity in C566T mutated cells (34). Interestingly, follitropin receptor knockout mice (FORKO), a good model of hypergonadotropic hypogonadism with infertility and hypoplastic internal genitalia secondary to deleted FSHR gene and resembling human ROS, when injected with Ad-hFSH bilaterally into ovaries, demonstrated folliculogenesis, 2-3-fold rise in estrogens, serum FSH reduction, body and genitalia weight increase. In addition, ovaries of these animals started to show FSHR expression (35-37). The intraovarian injection of Ad-LacZ didn't show systemic viral spread or fertility disturbances in mice, corroborating previous observations. Viral genes were not detected in pups of mice, injected into the ovaries with Ad-LacZ, thus germ line transmission was also excluded. Unfortunately, ovulation or pregnancy was not achieved in injected mice after 12 weeks of observation. This didn't occur also after injection of both, study and control groups, with PMSG, followed by hCG. Mice were mated with normal males, but no pregnancies were observed. This may be explained by the use of strong dominant CMV5 promoter in Ad-hFSHR vector, not allowing downregulation of FSHR in the later stages of follicular development (luteal phase). This may be fixed with the rebuilt Ad-hFSHR, using authentic human promoter. The data from this study show that Ad-hFSHR injection into the ovaries of FORKO mice lead to partial hormonal

Peer-reviewed version available at *Biomedicines* 2018, 6, 102; doi:10.3390/biomedicines6040102

correction and mobilization of follicles up to antral phase with subsequent arrest, thus not reaching ovulation (35). This is a promising direction of future investigations in the area of POI, related to defective ovarian FSH action, where gene therapy may play an important role.

SAL-LIKE 4 GENES AS A TARGET OF GENE THERAPY IN POI

Sal-like 4 (SALL4) genes are highly expressed in vertebrates' embryonic and adult stem cells, giving rise to their stemness. Postpartum they are found only in adult stem/stemlike cells of bone marrow and gonadal origin (38-40). As these genes are involved in cell growth and development, they may be a reasonable target for gene therapy. It's worth mentioning that some disorders, including POI, may be seen in patients with mutated Sall4 gene (38). The sequence screening for Chinese patients with SALL4-related syndromes (ventricular septal defects and POI) has identified several distinct variants of SALL4 genes (41, 42). The chromosomal locus of human SALL4 is 20q13.13-q13.2, for mice it's chromosome 2H3 (39, 40).

Aguila et al. have shown that SALL4 is able to facilitate the regeneration of bone marrow and division of hematopoietic stem cells (HSCs) in vitro and in vivo (43).

Interestingly, C.541G>A(p.Val181Met) and c.2449A>G(p.Thr817Ala) SALL4 mutations were found in 100 women with POI versus 300 healthy controls (41). The thorough look into the SALL4 pathway and study of its client proteins may clear up the appropriate approach for stem cell-based treatment of many disorders, including POI, in future. However, caution must be used as SALL4 is known to function as oncogene in various germ cell-related tumors (44-47) and neoplasms of gastrointestinal origin (48-52). Sall4-related cell stemness concept for example is used in Sall4-HSC transplantation. Nevertheless, the data on the connections between SALL4 functions and the possibility of their clinical use are still lacking.

PROGRAMMED CELL DEATH AND SPHINGOMYELINASE GENE

Peer-reviewed version available at *Biomedicines* 2018, 6, 102; doi:10.3390/biomedicines6040102

According to the recent data, apoptosis is considered to be the leading mechanism of oocyte loss, both developmental and secondary to malignancy treatment (53). This information may provide us with the new tools to delay menopause, reducing apoptosis-related follicular atresia, or protect ovarian function during anti-cancer treatment (54, 55). Apoptotic pathway is complex, it includes multiple steps, that can potentially be targeted by therapeutic intervention (56). However, several studies reported that targeting final apoptotic stages (e.g. inhibiting caspases) lead to switch from apoptotic pathway in cells, destined to death, to the process similar to primary necrosis, putting the potential benefit of such measures under doubt (57-59). Thus, inhibiting the earlier steps of programmed cell death may theoretically be more effective in cell preservation.

One of such potential targets is ceramide, a secondary messenger, involved in proapoptotic signaling (60). The multistep process of ceramide utilization is partially regulated by sphingosine kinase and finally results in sphingosine-1-phosphate (SP) production, which counteracts ceramide, blocking apoptosis progression (61-63). Morita et al. (2000) studied sphingomyelin pathway in ovaries with the goal to develop a new approach of early-step apoptosis control in prospect (64). Sphingomyelin phosphodiesterase 1 (SPD1) is a crucial enzyme needed for programmed death initiation, as it hydrolyzes sphingomyelin, thus unblocking ceramide signaling. The neonatal female mice deficient in SPD1 (SPD1^{-/-}) had significantly higher content of primordial follicles per ovary compared to the wild type controls, primary and small preantral follicles' hyperplasia and greater egg reserve were also observed in SPD1^{-/-} mice. Moreover, explainable symptoms, resembling human Niemann-Pick syndrome were observed in the murine study group in postnatal life (65). When fetal ovaries from both groups of mice were collected for in vitro culture, wild-type fetal ovaries demonstrated time-dependent apoptosis initiation in germ cells, whereas in SPD1^{-/-} mice it was significantly retarded, serving as a logical explanation for larger egg pool in newborn mutant mice (64).

It's worth mentioning that sphingomyelin degradation is crucial for apoptosis initiation rather than de novo ceramide synthesis, which was proved in experiments with fumonisin-B1, a selective

Peer-reviewed version available at *Biomedicines* 2018, 6, 102; doi:10.3390/biomedicines6040102

blocker of ceramide synthase (66, 67). Morita et al. (2000) also observed similar results in fetal ovarian culture morphology in both SPD1-deficient and non-deficient, but treated with SP, samples (64). When isolated oocytes from SPD-/- and wild type mice were cultured in the presence of doxorubicin (anticancer drug) the study group demonstrated resistance to it, whereas the control group showed robust apoptosis (64, 68). Several studies showed that protective action of SP on neurons and oocytes was not dependent on GI-coupled endothelial differentiation and growth receptors (69-71). SP has also a radioprotective action on gonads, as its administration prior to radiation therapy in mice showed dose-dependent preservation of follicular reserve, whereas almost complete loss of primordial follicles was observed in control group. Observation for two weeks after treatment proved that the follicles in SP-treated mice were totally functional and viable (64).

NEONATAL THYMULIN GENE THERAPY

Congenitally athymic (nude) mice have pituitary-gonadal axis developmental abnormalities, resulting in delayed sexual maturation, decreased fertility and shorter reproductive period, related to accelerated ovarian follicular atresia with subsequent POI (72-75). When neonatal mice undergo thymectomy similar features occur (76, 77). Thymulin is known to demonstrate gonadotropin-releasing action, regulate sexual development in females and modulate gonadotropin-dependent steroidogenesis in the gonads (78-82).

Reggiani et al. (2012) showed that immunoneutralization of thymulin in normal mice postnatally results in lower levels of gonadotropins at puberty. They also used neonatal thymulin gene therapy (NTGT) in nude mice, which resulted in thymulin production and release into bloodstream in these animals and prevented gonadotropin deficiency, that typically occurs in nude mice (83, 84). NTGT used recombinant adenovirus (RAd), carrying methionine-FTS (5'-ATGCAGGCCAAGTCGCAGGGGGGTCG-AACTAGTAG-3') gene (metFTS). RAd-green fluorescent protein (GFP) was used for control group. Both groups were injected with

Peer-reviewed version available at *Biomedicines* 2018, 6, 102; doi:10.3390/biomedicines6040102

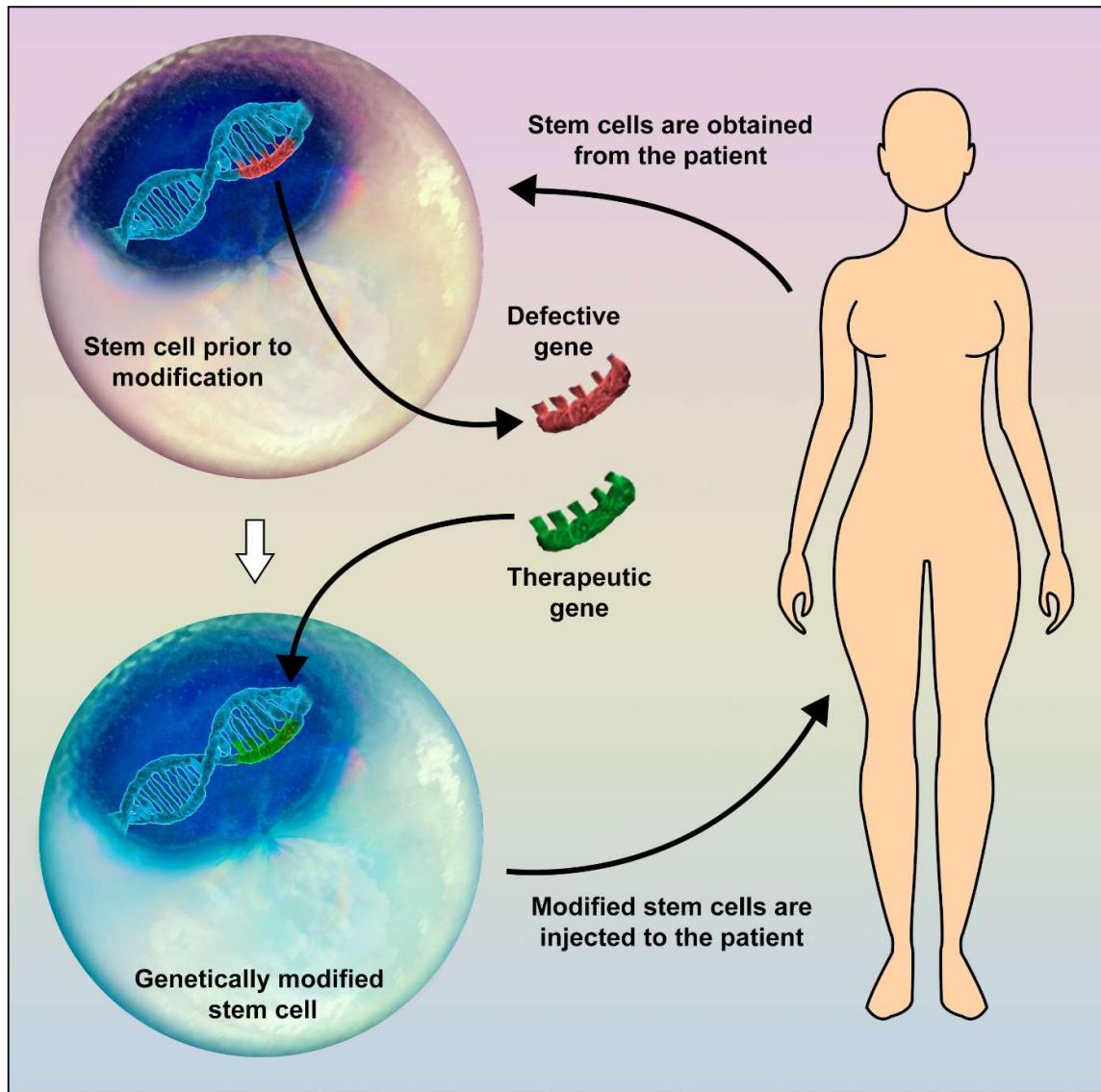
corresponding RAd on day 1 after birth. Nude mice were tested at day 70 and active circulating serum thymulin was increased only in the study group of both homo- and heterozygous nude mice. The levels of thymulin were only slightly lower in RAd-FTS nu/nu mice compared to nu/+ controls, and RAd-FTS heterozygotes had comparable thymulin levels with controls. NTGT was able to prevent gonadotropin-releasing hormone (GnRH) neuronal deficiency (anterior hypothalamus and preoptic nucleus), typical for nude mice. Nu/+ mice had normal gonads with follicles in all stages of development and normal corpora lutea, whereas nu/nu controls had anomalous ovaries with low follicle count, no preovulatory follicles and high amount of atretic follicles compared to normal controls. Treated nu/nu showed ovarian picture comparable to nu/+ controls. Also nu/nu, who received NTGT, had normal serum estrogens versus untreated nu/nu. NTGT was also able to attenuate the vaginal opening delay, observed in nude mice (83).

BASONUCLIN-1 DEFICIT AS A CAUSE OF POI

Huang et al. (2018) identified another causative gene, responsible for POI development in some of the patients. BNC1 is located on chromosome 15 and is known to be expressed in oocytes. Its defect produces truncated protein, leading to haploinsufficiency or gain of abnormal function. This abnormal basonuclin-1 causes reduced meiosis in oocytes.

Using whole-exome sequencing, the above-mentioned group of scientists identified a 5 bp deletion in BNC1 gene, encoding basonuclin-1. This frameshift mutation has an autosomal dominant type of inheritance and causes POI, running in families. In vivo experiments support these data: *Bnc1*^{tr/tr} mice did not produce pups after mating with wild-type males, *Bnc1*^{tr/+} group were subfertile, whereas *Bnc1*⁺⁺ mice (control group) showed normal fertility. Hormonal level of the latter three groups of animals showed no difference at 8 weeks, however, at 36 weeks significantly lower estrogens and higher FSH and LH in *Bnc1*^{tr/tr} and *Bnc1*^{tr/+} groups were detected, compared to controls. Expectedly, *Bnc1* mutant mice showed smaller ovaries with lower follicular count (85).

FUTURE DIRECTIONS


Ad vector and its delivery were safe and well tolerated by mice. Still, as was said earlier, the pregnancy did not occur in treated animals, probably due to the dominance of Ad-hFSHR vector promoter, leading to the lack of FSHR downregulation in the further stages of follicular development and, thus, arrest at the antral stage. The future work is likely to be done on the modification of this vector in order to unblock the later stages of follicular development and reach ovulation.

Distinct mutations of SALL4 genes, associated with POI development, are theoretically good targets for gene therapy. Not much is known about SALL4 functioning and signaling pathways, which need to be studied thoroughly. In addition, the caution should be used, as SALL4 are powerful proto-oncogenes and are known to play role in various tumors.

Targeting genes, responsible for apoptosis, may potentially prevent POI, as it is known that programmed cell death is a leading mechanism of follicular atresia. Undoubtedly, this must be very specific and well-controlled, as apoptosis is the major process of every cell's functioning and its defect may lead to variety of pathologic conditions, including neoplasia.

The other genes, known to be involved in POI development may be also targeted by gene therapy. However, more investigation of their functioning and ways of correction of their defects are needed.

We believe that much effort should be made in future in the field of stem cell (SC) therapy. Since they have multiple mechanisms of affecting the tissues, including paracrine regulation of cell functioning, stimulation of cellular growth and division, ability to differentiate into target cells, SC attract great interest of many researchers all over the World. Theoretically, target genes of SC may be altered in vitro and re-injected back, thus giving the opportunity to avoid the use of viral vector (Fig.1). The resultant SC may potentially give rise to a new, modified pool of cells, functioning in desired way. This would open an exciting field in regenerative medicine. Unfortunately, today the available data is deficient, thus, motivating us for new investigations.

Figure 1. Gene therapy in combination with the use of stem cells may open a new field in regenerative medicine. The possible way to modify human genes without using the viral vector is SC therapy. Different types of SC may be obtained from various tissues of human body. The target gene is replaced with the therapeutic one and the modified SC then will be injected back into the patient's body (e.g. peripheral blood, target organ). These altered SC may produce a colony of new specific cells or influence the surrounding tissue functioning.

REFERENCES

1. Menopause Terminology. International Menopause Society.
2. Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. *Obstetrics and gynecology*. 1986;67(4):604-6.
3. Rees M SJ, Hope S, Rozenberg S, Palacios S. Management of the menopause. 2009;5th ed.
4. Persani L, Rossetti R, Caciatore C. Genes involved in human premature ovarian failure. *Journal of molecular endocrinology*. 2010;45(5):257-79.
5. Wittenberger MD, Hagerman RJ, Sherman SL, McConkie-Rosell A, Welt CK, Rebar RW, et al. The FMR1 premutation and reproduction. *Fertility and sterility*. 2007;87(3):456-65.
6. Zhao H, Chen ZJ, Qin Y, Shi Y, Wang S, Choi Y, et al. Transcription factor FIGLA is mutated in patients with premature ovarian failure. *American journal of human genetics*. 2008;82(6):1342-8.
7. Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. *American journal of human genetics*. 2004;75(1):106-11.
8. Touraine P, Beau I, Gougeon A, Meduri G, Desroches A, Pichard C, et al. New natural inactivating mutations of the follicle-stimulating hormone receptor: correlations between receptor function and phenotype. *Molecular endocrinology*. 1999;13(11):1844-54.
9. Nallathambi J, Moumne L, De Baere E, Beysen D, Usha K, Sundaresan P, et al. A novel polyalanine expansion in FOXL2: the first evidence for a recessive form of the blepharophimosis syndrome (BPES) associated with ovarian dysfunction. *Human genetics*. 2007;121(1):107-12.
10. Shibanuma K, Tong ZB, Vanderhoof VH, Vanevski K, Nelson LM. Investigation of KIT gene mutations in women with 46,XX spontaneous premature ovarian failure. *BMC women's health*. 2002;2(1):8.
11. Chand AL, Harrison CA, Shelling AN. Inhibin and premature ovarian failure. *Human reproduction update*. 2010;16(1):39-50.
12. Caburet S, Arboleda VA, Llano E, Overbeek PA, Barbero JL, Oka K, et al. Mutant cohesin in premature ovarian failure. *The New England journal of medicine*. 2014;370(10):943-9.
13. Hegenkamp WJ, Volkers NA, Broekmans FJ, de Jong FH, Themmen AP, Birnie E, et al. Loss of ovarian reserve after uterine artery embolization: a randomized comparison with hysterectomy. *Human reproduction*. 2007;22(7):1996-2005.
14. Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Rocca WA. Premature menopause or early menopause: long-term health consequences. *Maturitas*. 2010;65(2):161-6.
15. Rivera CM, Grossardt BR, Rhodes DJ, Brown RD, Jr., Roger VL, Melton LJ, 3rd, et al. Increased cardiovascular mortality after early bilateral oophorectomy. *Menopause*. 2009;16(1):15-23.
16. Rocca WA, Grossardt BR, de Andrade M, Malkasian GD, Melton LJ, 3rd. Survival patterns after oophorectomy in premenopausal women: a population-based cohort study. *Lancet Oncol*. 2006;7(10):821-8.
17. Nelson LM. Clinical practice. Primary ovarian insufficiency. *N Engl J Med*. 2009;360(6):606-14.
18. Nelson LM, Anasti JN, Kimzey LM, Defensor RA, Lipetz KJ, White BJ, et al. Development of luteinized graafian follicles in patients with karyotypically normal spontaneous premature ovarian failure. *The Journal of clinical endocrinology and metabolism*. 1994;79(5):1470-5.
19. Popat VB, Vanderhoof VH, Calis KA, Troendle JF, Nelson LM. Normalization of serum luteinizing hormone levels in women with 46,XX spontaneous primary ovarian insufficiency. *Fertility and sterility*. 2008;89(2):429-33.
20. Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hagerty K, et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2006;24(18):2917-31.
21. Anchan RM, Ginsburg ES. Fertility concerns and preservation in younger women with breast cancer. *Crit Rev Oncol Hematol*. 2010;74(3):175-92.
22. Silber S, Kagawa N, Kuwayama M, Gosden R. Duration of fertility after fresh and frozen ovary transplantation. *Fertility and sterility*. 2010;94(6):2191-6.
23. Herbal medicines for menopausal symptoms. *Evid Based Nurs*. 2010;13(1):29-33.
24. Aittomaki K, Lucena JL, Pakarinen P, Sistonen P, Tapanainen J, Gromoll J, et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. *Cell*. 1995;82(6):959-68.

25. Tapanainen JS, Aittomaki K, Min J, Vaskivuo T, Huhtaniemi IT. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. *Nat Genet.* 1997;15(2):205-6.

26. Beau I, Touraine P, Meduri G, Gougeon A, Desroches A, Matuchansky C, et al. A novel phenotype related to partial loss of function mutations of the follicle stimulating hormone receptor. *The Journal of clinical investigation.* 1998;102(7):1352-9.

27. Doherty E, Pakarinen P, Tiitinen A, Kiilavuori A, Huhtaniemi I, Forrest S, et al. A Novel mutation in the FSH receptor inhibiting signal transduction and causing primary ovarian failure. *The Journal of clinical endocrinology and metabolism.* 2002;87(3):1151-5.

28. Allen LA, Achermann JC, Pakarinen P, Kotlar TJ, Huhtaniemi IT, Jameson JL, et al. A novel loss of function mutation in exon 10 of the FSH receptor gene causing hypergonadotropic hypogonadism: clinical and molecular characteristics. *Human reproduction.* 2003;18(2):251-6.

29. Talbert LM, Raj MH, Hammond MG, Greer T. Endocrine and immunologic studies in a patient with resistant ovary syndrome. *Fertility and sterility.* 1984;42(5):741-4.

30. Hallenbeck PL, Stevenson SC. Targetable gene delivery vectors. *Adv Exp Med Biol.* 2000;465:37-46.

31. Al-Hendy A, Lee EJ, Wang HQ, Copland JA. Gene therapy of uterine leiomyomas: adenovirus-mediated expression of dominant negative estrogen receptor inhibits tumor growth in nude mice. *American journal of obstetrics and gynecology.* 2004;191(5):1621-31.

32. Hassan MH, Othman EE, Hornung D, Al-Hendy A. Gene therapy of benign gynecological diseases. *Adv Drug Deliv Rev.* 2009;61(10):822-35.

33. Hassan M, Zhang D, Salama S, Hamada F, Arafa H, Fouad H, et al. Towards fibroid gene therapy: adenovirus-mediated delivery of herpes simplex virus 1 thymidine kinase gene/ganciclovir shrinks uterine leiomyoma in the Eker rat model. *Gynecol Obstet Invest.* 2009;68(1):19-32.

34. Ghadami M, Salama SA, Khatoon N, Chilvers R, Nagamani M, Chedrese PJ, et al. Toward gene therapy of primary ovarian failure: adenovirus expressing human FSH receptor corrects the Finnish C566T mutation. *Mol Hum Reprod.* 2008;14(1):9-15.

35. Ghadami M, El-Demerdash E, Salama SA, Binhazim AA, Archibong AE, Chen X, et al. Toward gene therapy of premature ovarian failure: intraovarian injection of adenovirus expressing human FSH receptor restores folliculogenesis in FSHR(-/-) FORKO mice. *Mol Hum Reprod.* 2010;16(4):241-50.

36. Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, et al. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. *Proceedings of the National Academy of Sciences of the United States of America.* 1998;95(23):13612-7.

37. Danilovich N, Babu PS, Xing W, Gerdes M, Krishnamurthy H, Sairam MR. Estrogen deficiency, obesity, and skeletal abnormalities in follicle-stimulating hormone receptor knockout (FORKO) female mice. *Endocrinology.* 2000;141(11):4295-308.

38. Sweetman D, Munsterberg A. The vertebrate spalt genes in development and disease. *Dev Biol.* 2006;293(2):285-93.

39. Deloukas P, Earthrow ME, Grafham DV, Rubenfield M, French L, Steward CA, et al. The DNA sequence and comparative analysis of human chromosome 10. *Nature.* 2004;429(6990):375-81.

40. Kohlhase J, Heinrich M, Liebers M, Frohlich Archangelo L, Reardon W, Kispert A. Cloning and expression analysis of SALL4, the murine homologue of the gene mutated in Okihiro syndrome. *Cytogenet Genome Res.* 2002;98(4):274-7.

41. Wang B, Li L, Ni F, Song J, Wang J, Mu Y, et al. Mutational analysis of SAL-Like 4 (SALL4) in Han Chinese women with premature ovarian failure. *Mol Hum Reprod.* 2009;15(9):557-62.

42. Wang B, Li L, Xie X, Wang J, Yan J, Mu Y, et al. Genetic variation of SAL-Like 4 (SALL4) in ventricular septal defect. *International journal of cardiology.* 2010;145(2):224-6.

43. Aguila JR, Liao W, Yang J, Avila C, Hagag N, Senzel L, et al. SALL4 is a robust stimulator for the expansion of hematopoietic stem cells. *Blood.* 2011;118(3):576-85.

44. Rabban JT, Zaloudek CJ. A practical approach to immunohistochemical diagnosis of ovarian germ cell tumours and sex cord-stromal tumours. *Histopathology.* 2013;62(1):71-88.

45. Cao D, Guo S, Allan RW, Molberg KH, Peng Y. SALL4 is a novel sensitive and specific marker of ovarian primitive germ cell tumors and is particularly useful in distinguishing yolk sac tumor from clear cell carcinoma. *Am J Surg Pathol.* 2009;33(6):894-904.

46. Cao D, Humphrey PA, Allan RW. SALL4 is a novel sensitive and specific marker for metastatic germ cell tumors, with particular utility in detection of metastatic yolk sac tumors. *Cancer*. 2009;115(12):2640-51.

47. Cao D, Li J, Guo CC, Allan RW, Humphrey PA. SALL4 is a novel diagnostic marker for testicular germ cell tumors. *Am J Surg Pathol*. 2009;33(7):1065-77.

48. Gnemmi V, Leteurtre E, Sudour-Bonnange H, Devisme L, Guettier C, Buob D, et al. SALL4 is a marker of the embryonal subtype of hepatoblastoma. *Histopathology*. 2013;63(3):425-8.

49. Gonzalez-Roibon N, Katz B, Chaux A, Sharma R, Munari E, Faraj SF, et al. Immunohistochemical expression of SALL4 in hepatocellular carcinoma, a potential pitfall in the differential diagnosis of yolk sac tumors. *Hum Pathol*. 2013;44(7):1293-9.

50. Oikawa T, Kamiya A, Zeniya M, Chikada H, Hyuck AD, Yamazaki Y, et al. Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. *Hepatology*. 2013;57(4):1469-83.

51. Zeng SS, Yamashita T, Kondo M, Nio K, Hayashi T, Hara Y, et al. The transcription factor SALL4 regulates stemness of EpCAM-positive hepatocellular carcinoma. *J Hepatol*. 2014;60(1):127-34.

52. Yong KJ, Chai L, Tenen DG. Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. *N Engl J Med*. 2013;369(12):1171-2.

53. Morita Y, Tilly JL. Oocyte apoptosis: like sand through an hourglass. *Dev Biol*. 1999;213(1):1-17.

54. Perez GI, Robles R, Knudson CM, Flaws JA, Korsmeyer SJ, Tilly JL. Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. *Nat Genet*. 1999;21(2):200-3.

55. Reynolds T. Cell death genes may hold clues to preserving fertility after chemotherapy. *J Natl Cancer Inst*. 1999;91(8):664-6.

56. Rudin CM, Thompson CB. Apoptosis and disease: regulation and clinical relevance of programmed cell death. *Annu Rev Med*. 1997;48:267-81.

57. Thornberry NA, Lazebnik Y. Caspases: enemies within. *Science*. 1998;281(5381):1312-6.

58. Cryns V, Yuan J. Proteases to die for. *Genes Dev*. 1998;12(11):1551-70.

59. Xiang J CD, Korsmeyer S. BAX-induced cell death may not require interleukin-1 β -converting enzyme-like proteases. *Proc Natl Acad Sci USA* 93. 1996;14559-63.

60. Kolesnick RN, Kronke M. Regulation of ceramide production and apoptosis. *Annu Rev Physiol*. 1998;60:643-65.

61. Spiegel S, Cuvillier O, Edsall LC, Kohama T, Menzelev R, Olah Z, et al. Sphingosine-1-phosphate in cell growth and cell death. *Ann N Y Acad Sci*. 1998;845:11-8.

62. Olivera A, Kohama T, Edsall L, Nava V, Cuvillier O, Poulton S, et al. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. *J Cell Biol*. 1999;147(3):545-58.

63. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. *Nature*. 1996;381(6585):800-3.

64. Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. *Nat Med*. 2000;6(10):1109-14.

65. Horinouchi K, Erlich S, Perl DP, Ferlinz K, Bisgaier CL, Sandhoff K, et al. Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. *Nat Genet*. 1995;10(3):288-93.

66. Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH, Jr. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with *Fusarium* moniliforme. *J Biol Chem*. 1991;266(22):14486-90.

67. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. *Cell*. 1995;82(3):405-14.

68. Perez GI, Tao XJ, Tilly JL. Fragmentation and death (a.k.a. apoptosis) of ovulated oocytes. *Mol Hum Reprod*. 1999;5(5):414-20.

69. Van Brocklyn JR, Lee MJ, Menzelev R, Olivera A, Edsall L, Cuvillier O, et al. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. *J Cell Biol*. 1998;142(1):229-40.

70. Van Brocklyn JR, Tu Z, Edsall LC, Schmidt RR, Spiegel S. Sphingosine 1-phosphate-induced cell rounding and neurite retraction are mediated by the G protein-coupled receptor H218. *J Biol Chem*. 1999;274(8):4626-32.

Peer-reviewed version available at *Biomedicines* 2018, 6, 102; doi:10.3390/biomedicines6040102

71. Edsall LC, Pirianov GG, Spiegel S. Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. *J Neurosci*. 1997;17(18):6952-60.
72. Rebar RW, Morandini IC, Erickson GF, Petze JE. The hormonal basis of reproductive defects in athymic mice: diminished gonadotropin concentrations in prepubertal females. *Endocrinology*. 1981;108(1):120-6.
73. Besedovsky HO, Sorkin E. Thymus involvement in female sexual maturation. *Nature*. 1974;249(455):356-8.
74. Flanagan SP. 'Nude', a new hairless gene with pleiotropic effects in the mouse. *Genet Res*. 1966;8(3):295-309.
75. Lintern-Moore S, Pantelouris EM. Ovarian development in athymic nude mice. The size and composition of the follicle population. *Mech Ageing Dev*. 1975;4(5-6):385-90.
76. Michael SD, Taguchi O, Nishizuka Y. Effect of neonatal thymectomy on ovarian development and plasma LH, FSH, GH and PRL in the mouse. *Biol Reprod*. 1980;22(2):343-50.
77. Nishizuka Y, Sakakura T. Ovarian dysgenesis induced by neonatal thymectomy in the mouse. *Endocrinology*. 1971;89(3):886-93.
78. Brown OA, Sosa YE, Dardenne M, Pleau JM, Goya RG. Studies on the gonadotropin-releasing activity of thymulin: changes with age. *J Gerontol A Biol Sci Med Sci*. 2000;55(4):B170-6.
79. Hinojosa L, Garcia L, Dominguez R, Romano MC, Damian-Matsumura PG, Castillo L, et al. Effects of thymulin and GnRH on the release of gonadotropins by in vitro pituitary cells obtained from rats in each day of estrous cycle. *Life Sci*. 2004;76(7):795-804.
80. Zaidi SA, Kendall MD, Gillham B, Jones MT. The release of luteinizing hormone from pituitaries perfused with thymic extracts. *Thymus*. 1988;12(4):253-64.
81. Hinojosa L, Chavira R, Dominguez R, Rosas P. Effects of thymulin on spontaneous puberty and gonadotrophin-induced ovulation in prepubertal normal and hypothymic mice. *J Endocrinol*. 1999;163(2):255-60.
82. Wise T. In vitro and in vivo effects of thymulin on rat testicular steroid synthesis. *J Steroid Biochem Mol Biol*. 1998;66(3):129-35.
83. Reggiani PC, Barbeito CG, Zuccolilli GO, Console GM, Flamini AM, Dardenne M, et al. Neonatal thymulin gene therapy prevents ovarian dysgenesis and attenuates reproductive derangements in nude female mice. *Endocrinology*. 2012;153(8):3922-8.
84. Goya RG, Reggiani PC, Vesenbeckh SM, Pleau JM, Sosa YE, Console GM, et al. Thymulin gene therapy prevents the reduction in circulating gonadotropins induced by thymulin deficiency in mice. *Am J Physiol Endocrinol Metab*. 2007;293(1):E182-7.
85. Zhang D, Liu Y, Zhang Z, Lv P, Liu Y, Li J, et al. Basonuclin 1 Deficiency is a Cause of Primary Ovarian Insufficiency. *Human molecular genetics*. 2018.