Preprint
Article

Comparative Rice Bran Metabolomics across Diverse Cultivars and Functional Rice Gene-Bran Metabolite Relationships

Altmetrics

Downloads

409

Views

254

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

14 September 2018

Posted:

15 September 2018

You are already at the latest version

Alerts
Abstract
Rice (Oryza sativa L.) processing yields ~60 million metric tons of bran annually. Rice genes producing bran metabolites of nutritional and human health importance were assessed across 17 diverse cultivars from seven countries using non-targeted metabolomics and resulted in 378-430 metabolites. Gambiaka cultivar had the highest number and Njavara had the lowest number of metabolites. The 71 rice bran compounds of significant variation by cultivar included 21 amino acids, seven carbohydrates, two metabolites from cofactors and vitamins, 33 lipids, six nucleotides, and two secondary metabolites. Tryptophan, -ketoglutarate, γ-tocopherol/β-tocopherol and γ-tocotrienol are example bran metabolites with extensive cultivar variation and genetic information. 34 rice bran components that varied between cultivars linked to 535 putative biosynthetic genes using to the OryzaCyc 4.0, Plant Metabolic Network database. Rice genes responsible for bran composition with animal and human health importance is available for rice breeding programs to utilize in crop improvement.
Keywords: 
Subject: Chemistry and Materials Science  -   Food Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated