

1 Article

2

Design of Amphibious Vehicle for Unmanned

3

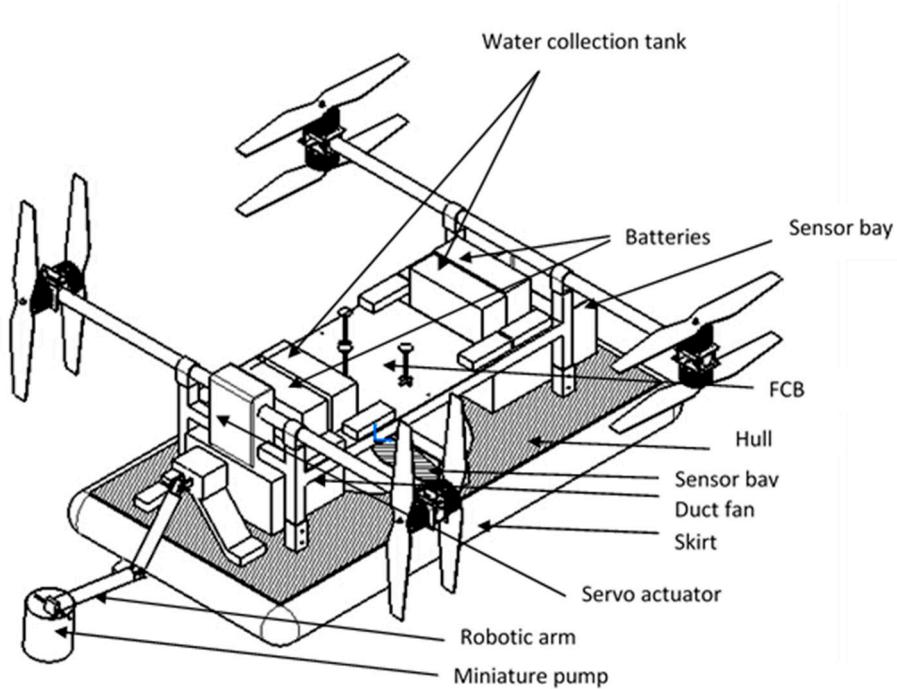
Mission in Water Quality Monitoring Using IoT

4 **Balasubramanian Esakki¹, Surendar Ganesan¹, Silambarasan Mathiyazhagan¹,**
5 **G. R. Kanagachidambaresan², Bhuvaneshwaran Gnanasekaran³, Byungrak Son^{4*}, Su Woo Park⁵,**
6 **Jae Sung Choi⁶**7 ¹ Centre for Autonomous System Research, VelTech Rangarajan Dr. Sagunthala R&D Institute of Science and
8 Technology, Avadi, Chennai, India9 ² Department of Computer Science Engineering, VelTech Rangarajan Dr Sagunthala R&D Institute of Science
10 and Technology, Avadi, Chennai, India11 ³ UCAL System Ltd., Chennai, India12 ⁴ Convergence Research Center for Wellness, DGIST, Daegu, Republic of Korea13 ⁵ Rovitek Inc, Gyungsan-si, Gyungsangbuk-do, Republic of Korea14 ⁶ Sun Moon University Chungcheongnam-do, Republic of Korea15 * Correspondence: brson@dgist.ac.kr, Tel.: +82-53-785-4772

16

17 **Abstract:** Unmanned Aerial Vehicles (UAVs) have gained significant attention in recent times due
18 to their suitability to a wide variety of civil, military and societal missions. Development of an
19 unmanned amphibious vehicle integrating the features of a multi-rotor UAV and a hovercraft is
20 focus of the present study. Components and subsystems of the amphibious vehicle are developed
21 with due consideration on aerodynamic, structural and environmental aspects. Finite element
22 analysis (FEA) on static thrust conditions and skirt pressure are performed to evaluate the strength
23 of structure. For diverse wind conditions and angles of attack (AOA), computational fluid dynamic
24 (CFD) analysis is carried out to assess the effect of drag and suitable design modification is
25 suggested. A prototype is built with a 7 kg payload capacity and successfully tested for stable
26 operations in flight and water-borne modes. Internet of Things (IoT) based water quality
27 measurement is performed in a typical lake and water quality is measured using pH, dissolved
28 oxygen (DO), turbidity and electrical conductivity (EC) sensors. The developed vehicle is expected
29 to meet functional requirements of disaster missions catering to the water quality monitoring of
30 large water bodies.31 **Keywords:** Amphibious UAV; Hovercraft; FEA; CFD; Prototype, Water quality, Sensors, Internet
32 of Things34

1. Introduction


35 The UAVs categorized based on the performance characteristics of wing movement as
36 fixed-wing, rotary and flapping-wing configurations [1]. Various applications of UAVs include
37 surveillance, traffic monitoring, active weapon engagement, wild-life survey, pollution monitoring
38 and precision agriculture etc. [2]. Authors of this paper contributed to the development of UAVs for
39 environmental monitoring [3], structural health monitoring [4] and also constructed micro aerial
40 vehicles [5-7]. Dedicated efforts on development of amphibious vehicles scarce. Collins [8] described
41 the importance of amphibious UAV in diverse applications and discussed issues pertaining to
42 control, communication and airspace management of the same. Boxerbaum et.al. [9] developed
43 robotic amphibious vehicle using the concepts of biological inspired animals to navigate in
44 underwater and rough terrains. Yayla et. al. [10] performed theoretical analysis to investigate the

45 performance characteristics such as rate-of-climb, turn radius and maximum velocity of amphibious
46 UAV. Pisнич and Morris [11] fabricated sea plane conceptual model of amphibious UAV for a 4 kg
47 payload. Autonomous flight missions are performed in air and water as a proof of concept. Hasnan
48 and Wahab [12] designed a UAV which can fly in air, glide along land and water surface. Frejek and
49 Nokleby [13] designed a four-paddle wheel amphibious vehicle with ultrasonic sensors to detect
50 obstacles. The published data indicates that development of amphibious UAVs for deployment in
51 water quality assessment is not evident from the literature. For quality evaluation of large and
52 inaccessible water bodies, amphibious vehicle provides effective and rapid solutions. Development
53 of a UAV that can land and glide on water surface while collecting water samples offers several
54 challenges related to materials, energy management, control systems and on-board sensors. Present
55 study integrates features of a multi-rotor UAV with hovercraft and this configuration for an
56 amphibious UAV is not attempted till date. The vertical-take-off and landing (VTOL) functionality is
57 also integrated into the system so that resultant amphibious vehicle offers several functional
58 advantages such as energy efficient movement on water surface, eliminating of large areas for
59 landing and take-off besides ensuring compatibility with wide variety of payloads.

60 **2. Evolving Conceptual Model**

61 The conceptual model is formulated integrating the multirotor and hovercraft configurations
62 wherein four co-axial propellers and motors that are attached to the frame act as an Octo-rotor as
63 shown in Figure 1. The entire rotor assembly is supported by a hull made of high density
64 polyurethane foam and nylon impregnated with urethane is attached beneath for functioning as a
65 skirt. Provision for pay loads, batteries, sensors, electronic accessories, flight controller board
66 (FCB), water sampler with robotic arm module and water collection tanks are made in such a way
67 that Centre of Gravity (CG) of the vehicle is maintained for stable flight.

68 The co-axial propellers are actuated during vertical take-off and landing. After landing on
69 water surface, any two co-axial propellers are rotated through 90° using a servo motor and these
70 propellers produce thrust for forward movement of the vehicle. Buoyancy of the vehicle is achieved
71 through cushioning effect of the skirt produced using a duct fan. Hover gap of 2-5 mm is maintained
72 between the skirt of amphibious vehicle and water surface. During hovering mode, all four co-axial
73 motors are powered to create lift. In addition to design requirements, following performance
74 specifications are considered for selection of aircraft components:

75

76 Figure 1, Conceptual Model of Amphibious Vehicle

77 Airborne operation

78

- Flight endurance of 20 mins
- Payload of 7 kg
- 40 km/hr cruise speed
- 2000 m of flight range

82 Hovering and moving on water body

83

- Endurance of 40 mins
- 30 km/hr cruise speed
- 2000 m range

86 Based on these design requirements and performance criteria, a mission profile for collection of
87 water samples in remote water body locations is identified. The typical mission profile has flight
88 conditions of VTOL, hovering on air, landing on water bodies, propelling along the water surface
89 and vertical landing. Sequence of these missions is varied according to the operational need.90 **3. Design Process**91 Design process of the amphibious vehicle capturing the functionalities corresponding to
92 aerodynamics, structures and compliance to performance criteria is presented in Figure 2.

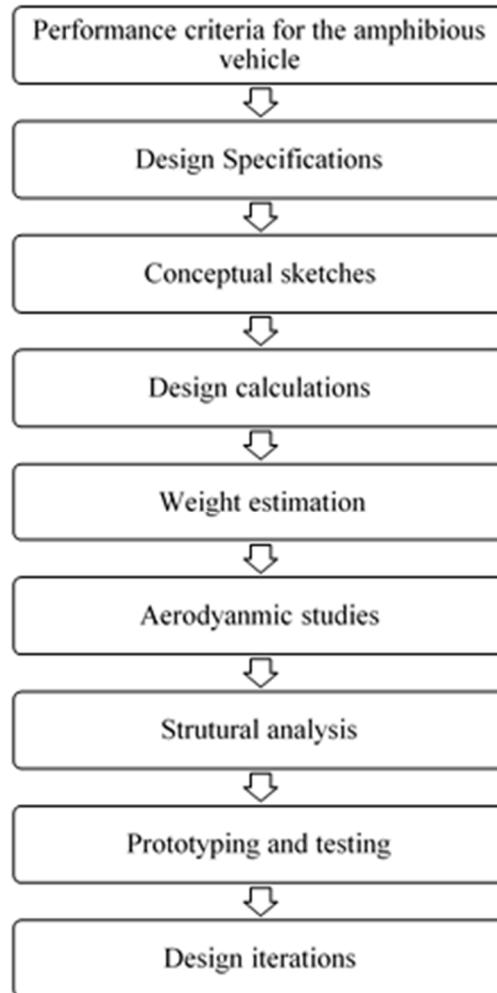

93
94

Figure 2, Design strategy of the amphibious vehicle

95 *3.1. Design of Hovercraft*

96 Hovercraft is an air cushion vehicle to move over the multiple terrains including land, water
 97 and muddy surfaces. The duct fan located at the centre produces necessary cushioning effect
 98 through forcing air down and creating air cushion between skirt and water surface. Inflation of skirt
 99 increases air pressure that acts at the base of hull. Forward motion of hovercraft is achieved through
 100 propelling the co-axial rotors. Since the skirt is considered to be a sensitive part of the hovercraft to
 101 achieve lift of the vehicle, selection of skirt material is an important aspect which is discussed in the
 102 following section. In order to design a hovercraft, various parameters have to be determined. Table 1
 103 presents the list of assumptions incorporated to perform design calculations and in Table 2,
 104 hovercraft parameters are estimated for flow analysis [14].

105 Table 1, Assumptions of hover craft parameters

Sl. No	Empirical relation	Limit
1	Length to width (l/w)	2
2	Bag pressure to cushion pressure (P_b / P_c)	1.3
3	Forward thrust to overall weight during hovering (T_f / W)	0.2
4	Propeller pitch to diameter (p / d)	0.6
5	Vertical thrust to maximum take-off weight (T_v / W)	2

106

Table 2, Calculation of hovercraft parameters

Parameter	Empirical relation	Values
Maximum take-off weight (W)	$m \times g$	269.78 N
Length of the hovercraft (l)	$2 \times w$	1.00 m
Cushion Area (A_c)	$l \times w - \pi r^2$	0.40 m ²
Cushion pressure (P_c)	$\frac{W}{A_c}$	674.44 N/m ²
Air escaping velocity (V_e)	$\sqrt{2 \frac{P_c}{\rho}}$	33.18 m/s
Air escaping area (A_e)	$2 \times (l + w) \times h$	0.038 m ²
Air flow rate (Q_e)	$A_e \times V_e$	1.26 m ³ /s
Power required (P_e)	$\frac{Q_e \times \rho \times V_e^2}{2}$	852.32 N

107 3.1.1. Selection of Skirt Material

108 The inflation of skirt functionality for realization of hovering and the skirt material should have
 109 sufficient tensile strength. Survey of various skirt materials of hovercraft given in Table 3 reveals
 110 that, nylon impregnated with urethane is the best choice due to high tensile strength, light weight
 111 and superior resistance to wear and tear characteristics.

112 Table 3, Mechanical properties of skirt

Property	Nylon impregnated with urethane	Naturalrubber coated nylon	Vinyl-coated 1000 denier polyester
Tensile strength (MPa)	45	35	3.06
Elastic modulus (MPa)	1.48	1.10	20.00
Density (kg/m ³)	900	1016	1500
Hardness	75	34	87
Flexural strength(MPa)	41	20	26

113 3.1.2. Selection of Hull Material

114 Hull is considered to be water tight body of hovercraft and it has to support various payloads,
 115 battery and other electronic systems. It has to withstand upward high pressure generated through
 116 cushion of air during inflation of skirt. Based on the survey of materials options (Table 4),
 117 polyurethane foam is selected due to high strength to weight ratio.

118 Table 4, Mechanical properties of hull

Property	Composite Material	Fiber glass	Polyurethane foam
Tensile strength (MPa)	1200	1950	1900
Compressive strength(MPa)	866	4000	48
Elastic modulus (GPa)	45	72	4

Density (kg/m ³)	7850	2540	1390
Flexural strength (MPa)	146	110	57

119 3.2. *Multicopter Design*

120 A hollow square cross section aluminium channel is considered for the horizontal and vertical
 121 frames for supporting the pair of motors. Speed and thrust of the motors are calculated (Table 5)
 122 using empirical relations.

123 Table 5, Multi-rotor structure parameters

Parameters	Empirical relation	Values
Required motor speed (N)	$\sqrt{\frac{L_m \times 10^{10}}{p \times d^3 \times 0.0283495 \times g}}$	4200 rpm
Thrust per motor (T)	$p \times d^3 \times N^2 \times 10^{-10} \times 0.0283495 \times g$	92 N
Lift required for multi-copter (L _m)	$2 \times W$	540 N

124 L_m - multicopter lift required; p - propeller pitch and d - propeller diameter;
 125 g - acceleration due to gravity

126 3.2.1. Propulsion

127 As per the initial estimation of speed of the motor, motor is selected with reference to the kv
 128 rating (125kv) having a power of 1900 W. Table 6 illustrates the necessary current rating and number
 129 of cells of a battery for 25 mins of endurance for a battery capacity of 22,000 mAh.

130 Table 6, Propulsion system parameters

Parameters	Empirical Relation	Values
Speed of motor (N)	$kV \times V$	4800 rpm
Operating current (I)	$\frac{P}{V}$	50 A
Number of battery cells (nS)	$\frac{V}{3.7}$	10
Endurance (E)	$\text{mAh} \times 0.001 \times 60 / \sum I_m$	25 mins

131 KV - motor mating; V - operating voltage; P - motor power; mAh - milliampere hour;
 132 Im - summation of current consumption

133 3.2.2. Selection of Propeller

134 Weight of amphibious system is considered to be 30 kg for selection of the propellers. A Quad
 135 with co-axial motor – propeller configuration is considered due to the demand of high payload
 136 carrying capacity and stability of vehicle. Considering thrust to weight ratio as two and 20% thrust
 137 loss due to co-axial configuration, the maximum thrust is estimated as 75 kg. At full throttle
 138 condition, propellers of various diameters and their thrust force characteristics are examined (Figure
 139 3). In order to lift 75 kg, each co-axial arms needs to produce approximately 18.5 kg of thrust. Hence,
 140 a co-axial propeller configuration with diameter 0.75–0.80 m is selected.

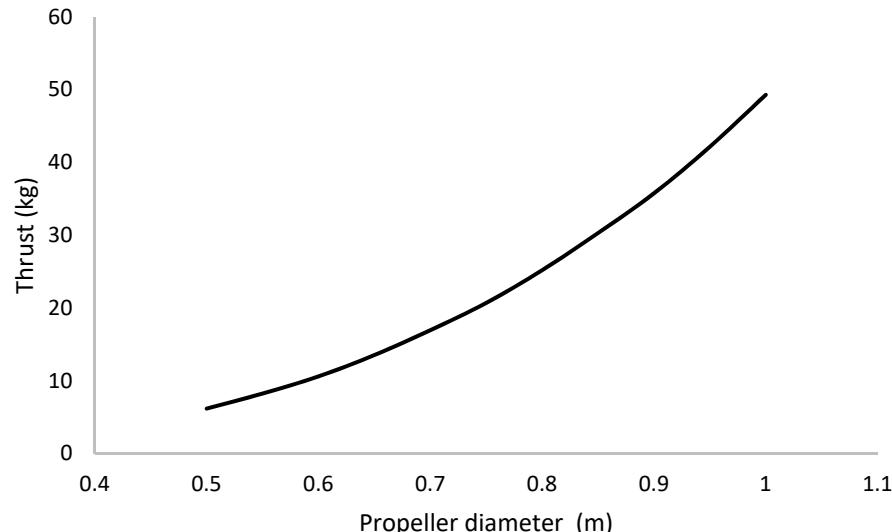
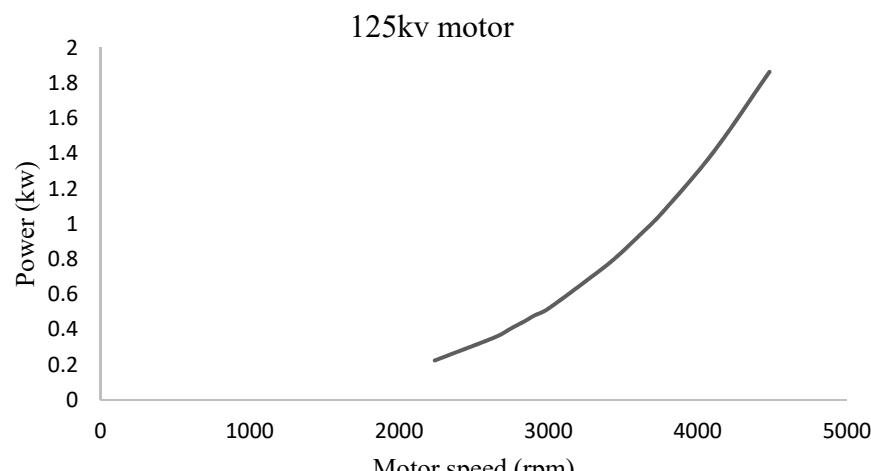



Figure 3, Selection of co-axial propeller diameter

141
142

143 3.2.3. Selection of Motor

144 Selection of motor primarily depends upon the size of the propeller for generating sufficient
 145 thrust and the selected configuration demands 10 kg thrust force per motor. Power consumption of
 146 the 125 kv motor under various speeds is determined as shown in Fig. 4. At full throttle condition,
 147 maximum power of 1.86 kw is required per each motor at a speed of 4480 rpm.

148
149 Figure 4, Power consumption characteristics of selected motor

150 3.2.4. Selection of Battery

151 Selection of battery depends upon the consumption of current with sufficient voltage and
 152 discharge rate requirements. Total current consumption for the electronic components is calculated
 153 as 2.73 Amps (Table 7). Considering 8 motors, the total power and current required for the vehicle to
 154 fly in the air are estimated as 3.78 kw and 79.13 Amps (Table 8) respectively. However, when the
 155 vehicle lands on water and glides along the water surface, two pairs of motors need to be actuated.
 156 Estimation of current and power consumption during the gliding of vehicle on the water surface is
 157 given in Table 9 and it is evident that only half of the power is required for amphibious mode as
 158 compared to flight mode.

159

160

Table 7, Estimation of power and current of on-board electronics

Sl.NO	Component Name	Power required (W)	Current Consumption (A)
1	Flight controller board	16	0.34
2	ESC	40	0.83
3	Video telemetry	15	0.34
4	Camera	10	0.21
5	On board processor	50	1.01
Total		131	2.73

161

Table 8, Power consumption (Airborne mode)

Sl.No	Components	Power (W)	Total Power Consumption (W)	Total Current Consumption (A)
1	Electronics components	95.30	95.30	2.73
2	Motors (8 Nos)	460.80	3686.40	76.40
Total		3781.70	79.13	

162

Table 9, Power consumption (Gliding on water)

Sl.No	Components	Power (W)	Total Power Consumption (W)	Total Current Consumption (A)
1	Electronics components	95.30	95.30	2.73
2	Motors (4 Nos)	240.00	1920.00	40.00
3	Ducted Motor	100.00	100.00	2.08
Total		2115.30	44.81	

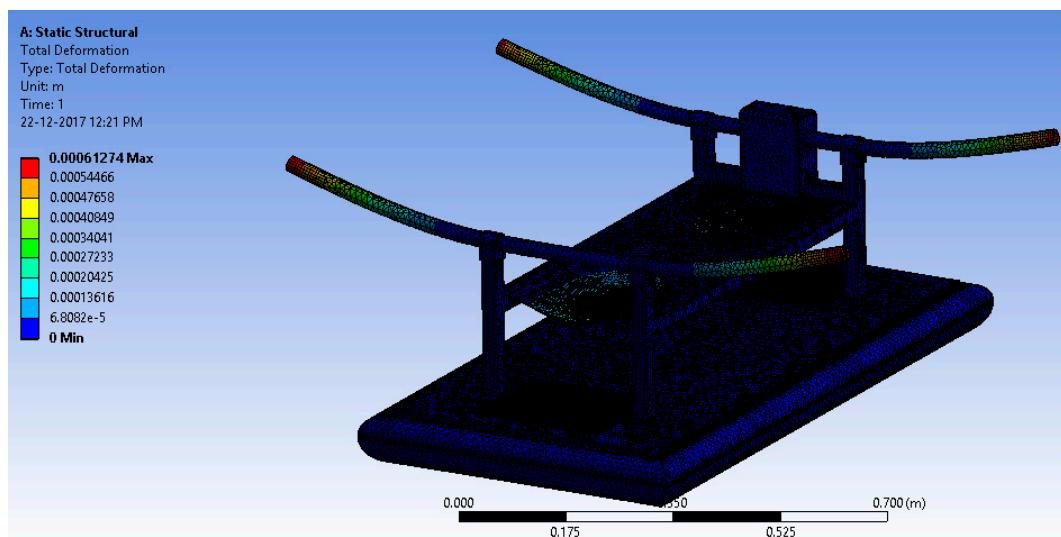
163
164
165

In order to meet these power and current consumption requirements, a 22000 mAh capacity battery is selected. It is expected to have estimated endurance of 22 minutes while in air flight and 46 minutes during hovering or gliding along the water body.

166 3.3. Weight Estimation

Based upon earlier selection of materials for hovercraft and multirotor components, weight of the amphibious vehicle is estimated as 27.31 kg inclusive of 7 kg payload. Table 10 shows the weight of various components of hovercraft and multirotor systems.

170


Table 10, Weight of each components

Sl. No.	Components	Weight (kg)
1	Multicopter Frames (Aluminum Alloy 6061)	1.40

2	Hull (Polyurethane foam)	0.80
3	Skirt (Nylon impregnated with urethane)	1.70
4	Control system	0.45
5	Multicopter motor	3.36
6	Multicopter propeller	0.31
7	Multicopter Electronic Speed Controller (ESC)	0.88
8	Servo	0.50
9	Electronic Duct fan (EDF)	0.40
10	EDF ESC	0.11
11	Li-Po Batteries	10.00
12	Miscellaneous	0.40
13	Payload	7.00
Total Weight		27.31

171 4. Structural analysis of amphibious vehicle

172 Multirotor configuration has vertical and horizontal frames which are made of aluminium
 173 channels owing to its light weight characteristics. At the tip of the horizontal frames, motor and
 174 co-axial propellers are attached. The vertical frames are anchored to the top surface of hovercraft
 175 hull. Thrust produced by the propellers is considered to be acting at the fixed support of horizontal
 176 frame and the same vertical axial loading is applied at the four corners of the horizontal frame. An
 177 axial load is applied at the tip of frame and the effect of cushion pressure generated through the duct
 178 fan located at the centre of hull is analysed. The pressure load is applied at the inner surface of skirt
 179 and bottom of the hull. Effect of these loading conditions is evaluated through structural analysis.
 180 Displacement of 0.6 mm is experienced at the tip of horizontal frame (Figure 5). The von-Mises stress
 181 plot (Figure 6) shows that the junction of horizontal and vertical frames experiences maximum stress
 182 regions about 25 MPa. Other portions of amphibious structure experience considerably lower level.

183
 184

Figure 5, Deformation plot of amphibious structure

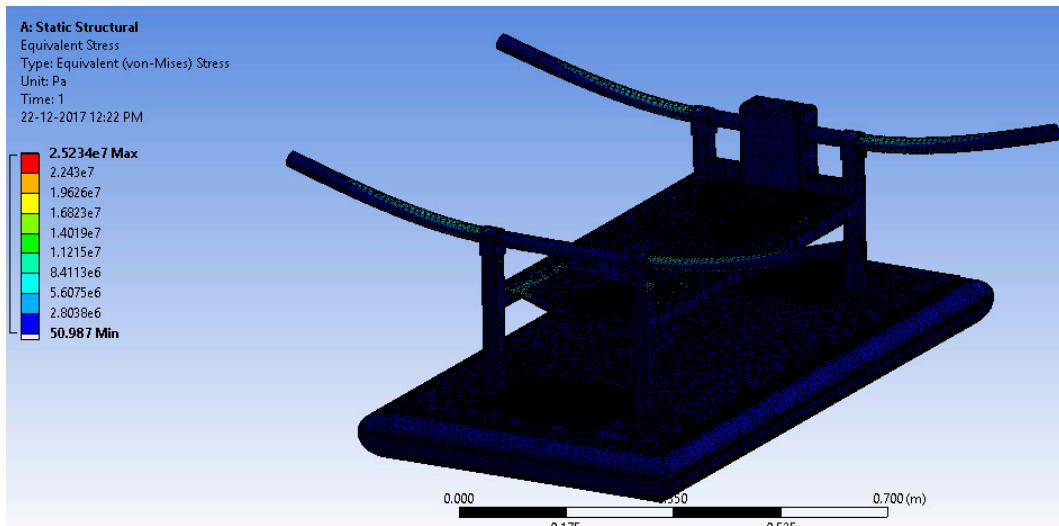

185
186

Figure 6, Stress contour of amphibious structure

187 **5. Aerodynamic analysis**

188 Aerodynamic evaluation of amphibious vehicle is performed through varying the wind speeds
 189 in the range of 5 to 10 m/s with different angles of attack (AOA) (0° and 8°). Computational fluid
 190 dynamic (CFD) analysis using ANSYS FLUENT platform is used to examine the velocity and
 191 pressure contours during forward flight conditions and also aerodynamic co-efficients are
 192 determined. Quality of meshing (Figure 7) is evaluated through performing orthogonality and
 193 skewness characteristics (0.9). Inlet as velocity and outlet as a pressure is considered and boundaries
 194 are defined far away (10 times) to reduce horizontal buoyancy effect and wall inference. Symmetry
 195 plane and no heat transfer are assumed to perform simulations.

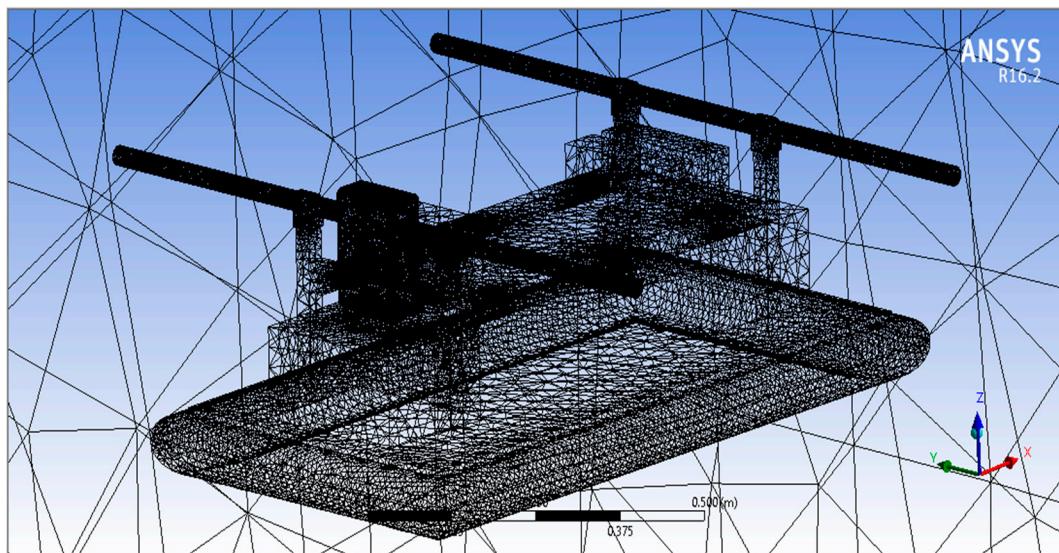

196
197

Figure 7, Meshed geometry

198 Simulation results indicated that at various angle of attack collision of air with frontal body
 199 surface causes velocity drop (Figure 8) due to stagnation pressure (Figure 9) and there is a loss of
 200 kinetic energy. At the middle of amphibious vehicle low pressure region is formed that creates
 201 vortex and flow separation. This phenomenon may create unbalance of the vehicle which can be
 202 streamlined through providing riblets. At the rear of vehicle recirculation flow occurs due to
 203 non-uniformity and blunt profile of UAV structure.

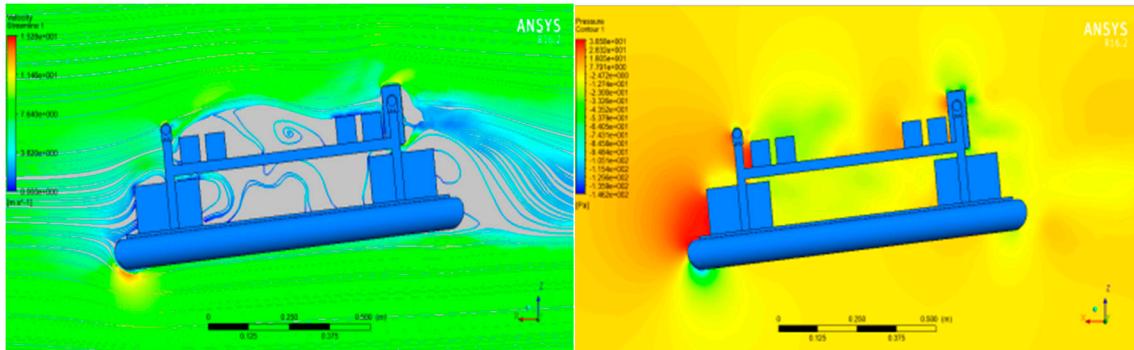
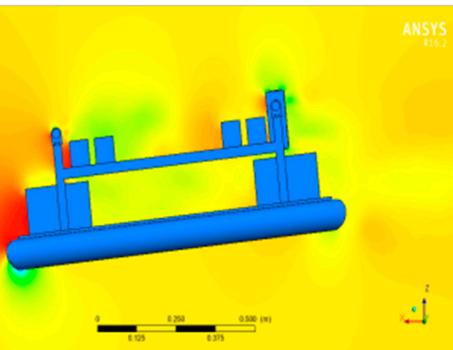


204
205 Figure 8, Velocity streamline at 4° AoA

Figure 9, Pressure contour at 4° AoA

206 For various angles of attach, co-efficient of drag is estimated and corresponding drag force is
 207 calculated (Table 11). It is evident that substantial drag is experienced which reduces endurance of
 208 UAV. In order to reduce the effect of drag, inclined front panel (Figure 10) and blended nose
 209 configurations (Figure 11) are considered.

210 Table11, Drag Estimation

α Angle of Attack	C_d Drag Coefficient	D Drag (N)
0°	5.89	38.3
4°	5.65	36.8
8°	5.50	35.8

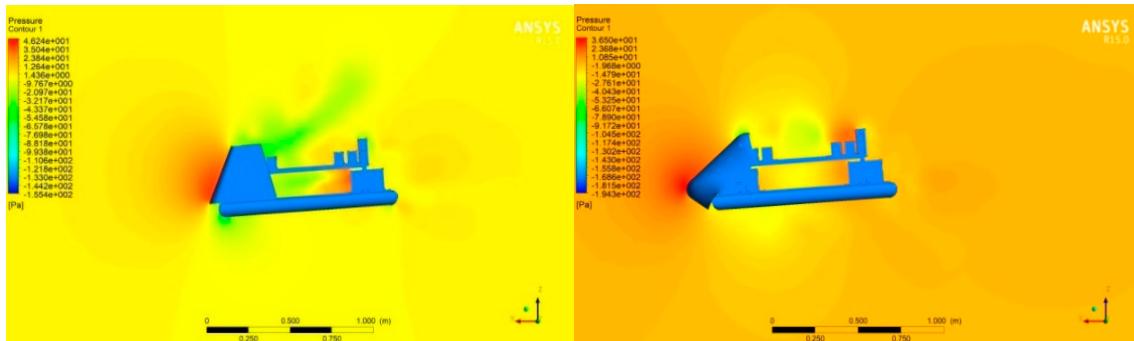
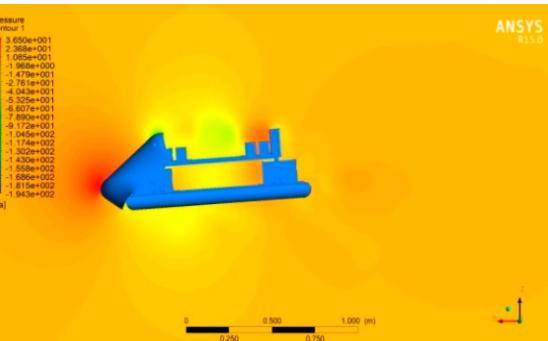


211
212 Figure 10, Flat panel - Pressure contour

Figure 11, Blended nose - Pressure contour

213 **6. Water sample collection using robotic arm**

214 A 2 degree of freedom (DOF) manipulator actuated using servo motor is used to collect water
 215 samples as shown in Figure 12. End-effector carries a water sucking pump which in turn connected
 216 through a hose. Drawn water is collected in the respective storage tank of 1 litre capacity. The depth
 217 of water collection is controlled using a rope drive through a stepper motor. Encoder feedback is
 218 sent to Arduino based controller to monitor the depth of collection of water. The arm of robot
 219 manipulator is made up of carbon fibre and water proof servo motor is attached at each link of the
 220 robotic arm. During water sample collection, stability of the vehicle is assured through distributing
 221 water using a two way control value. Water level sensor is used to measure the quantity of water
 222 and corresponding feedback is sent to control the pump and retraction of robotic arm. Buffer plates
 223 are placed in the water storage tank to dampen the vibration caused due to turbulence of water in
 224 the storage tank.

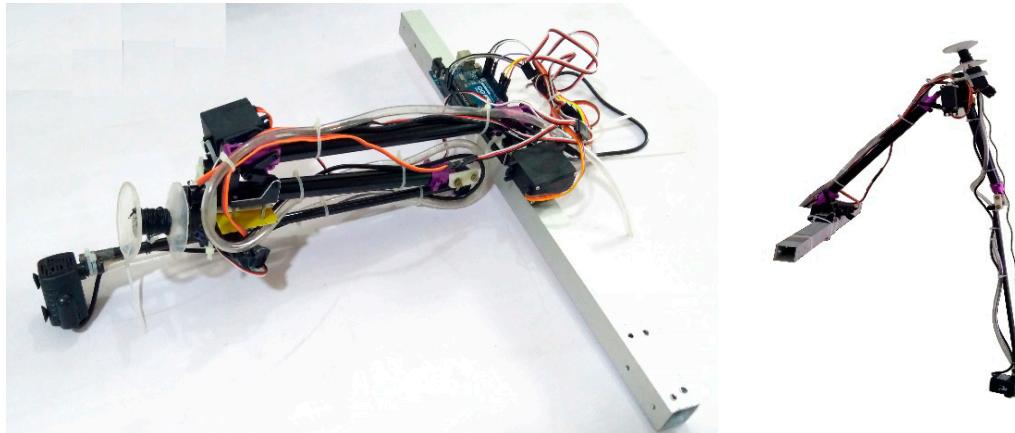

225
226

Figure 12, Robotic arm with suction pump assembly

227 Figure 13, illustrates the payload control unit in which pulse width modulated (PWM) signals
 228 are sent to actuate the servo motors. Water level sensors, water quality monitoring sensors, pump,
 229 and encoder are used to provide feedback in analog and digital forms.

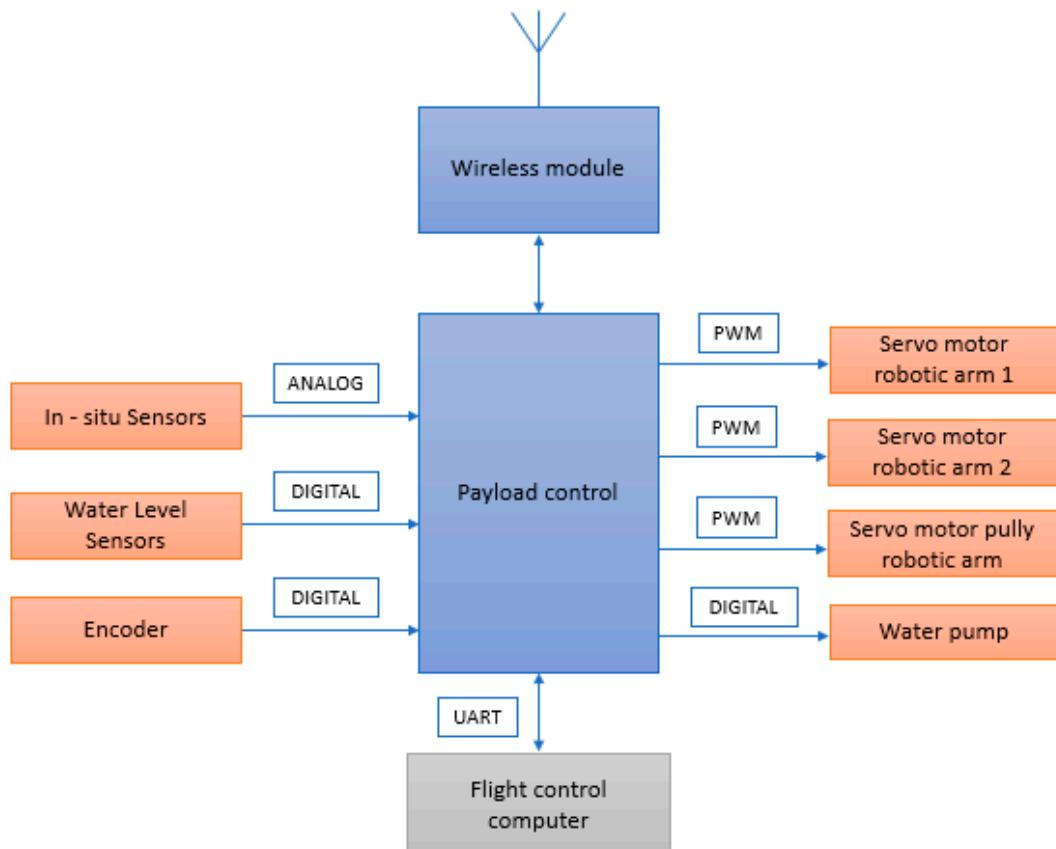
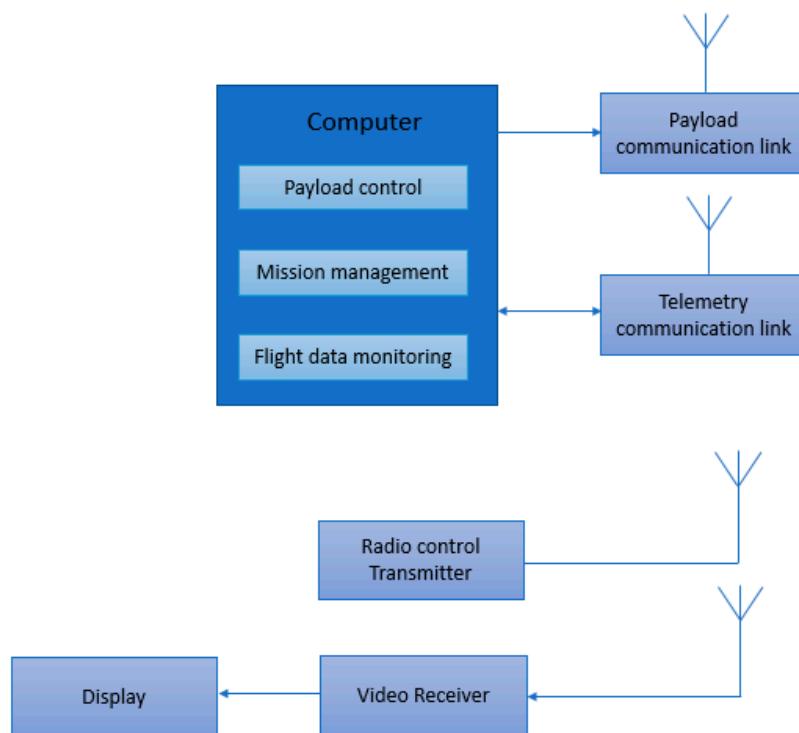
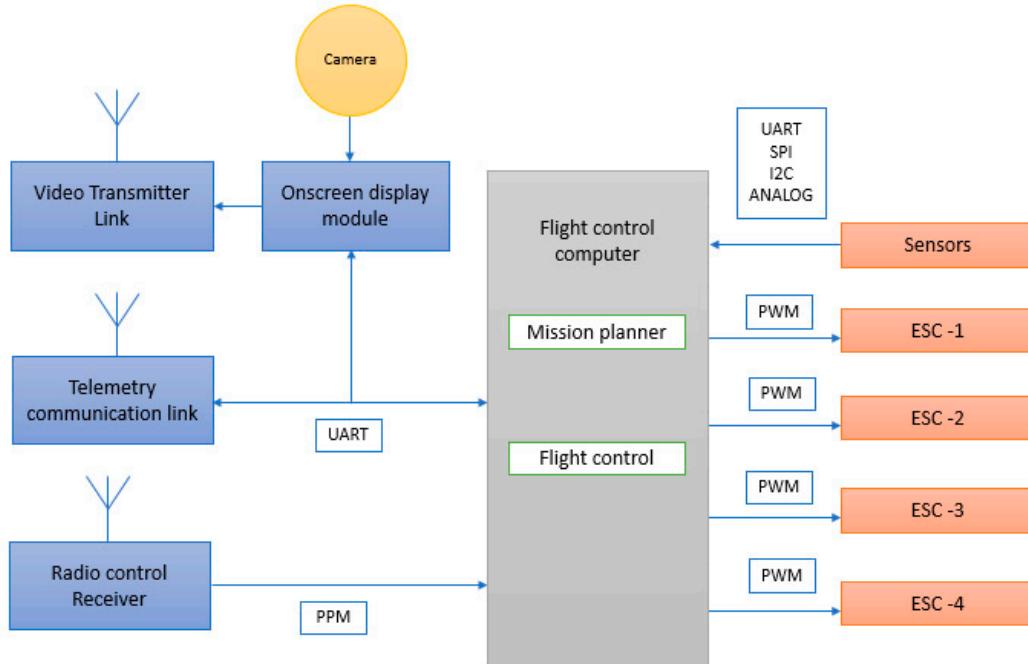


230
231

Figure 13, Main control unit


232 **7. Development of ground control station**

233 The ground control station (Figure 14) consist of a portable computer with payload control,
 234 mission management and flight data monitoring with corresponding communication links. The
 235 mission of amphibious vehicle is pre-planned in the ground control station wherein, vehicle is flown
 236 as multi rotor to identify contaminated regions of water body and on-line video is streamed using
 237 5.8GHz video data link. Once contaminated regions are identified, the vehicle is landed on water
 238 surface through hover craft mode. Water samples are collected using a robotic arm with suction

239 pump and rope mechanism structure. Radio frequency signals in universal asynchronous receiver -
 240 transmitter (UART) carrier mode are used to communicate and actuate the servos, sensors and other
 241 actuators to collect required water samples with precise feedback.

242
243 Figure 14, Ground control station

244
245 Figure 15, Flight control computer module

246 A typical flight control computer is presented in Figure 15. It will act as central hub of system
 247 through which position, orientation and heading direction of the vehicle are controlled. In addition,
 248 the receiving and transmission of data, battery power monitoring, and actuation of servos, motors
 249 and robotic arm are performed.

250 The airborne mode of mission is depicted in Figure 16 describes that radio frequency signals at
 251 2.4GHz are transmitted and received through telemetry modules. The received signals are sent in
 252 pulse position modulated (PPM) form to the flight controller. The flight controller computer handles
 253 control and navigation of the vehicle during flying and hovering modes. PWM signal from flight
 254 control computer is sent to the electronic speed controller (ESC) to actuate the brushless direct
 255 current (BLDC) motor to lift and navigate the vehicle in the desired attitude and altitude. The on-line
 256 video streaming is achieved through RF mode and on-screen display module is integrated to
 257 monitor the water surface in real time during flying mode. Autonomous capability is achieved
 258 through way point navigation, guidance and control with prior mission planning.

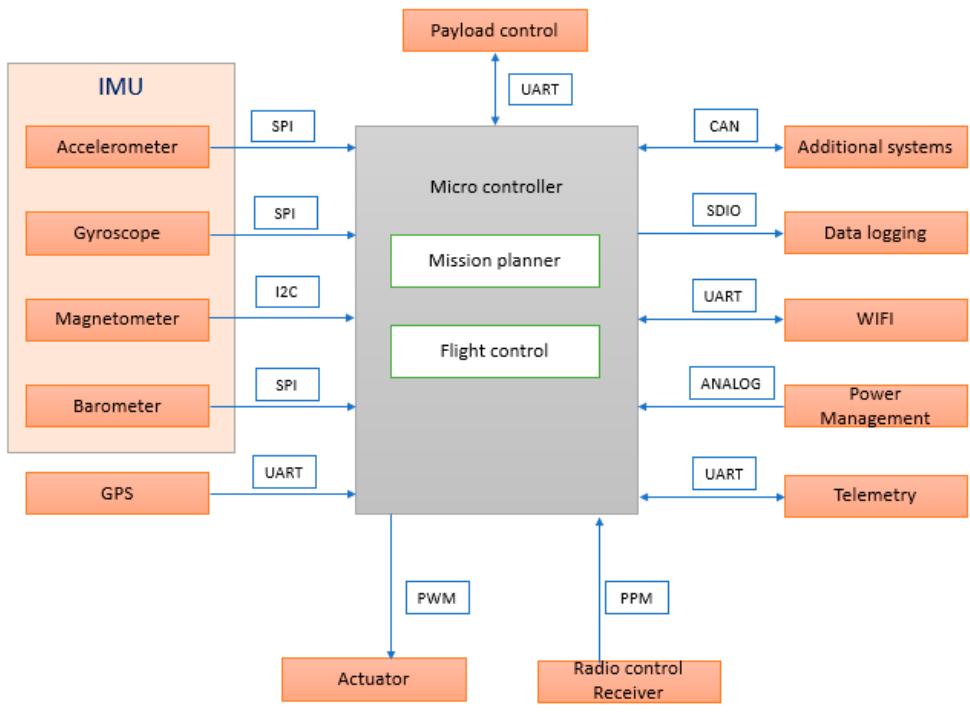


Figure 16, Airborne mission

259
 260

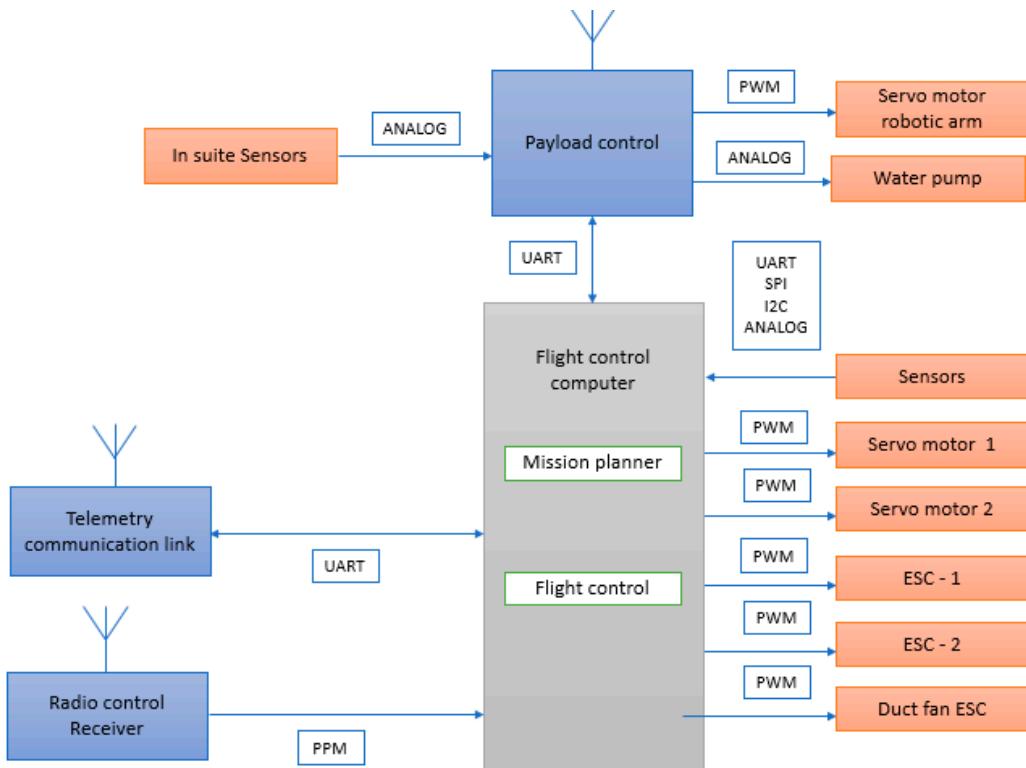

261
262

Figure 17, Water sampling mission

263 During hover mode of vehicle (Figure 17), the pay load control unit is triggered to actuate the
 264 robotic arm, water pump and water quality sensors to collect water samples and perform in-situ
 265 water quality analysis.

266 8. Fabrication and assembly of amphibious structure

267 An amphibious vehicle structure is fabricated (Figure 18) based upon the selected motors,
 268 propellers, battery, hull and skirt materials. On top of the hull, vertical hollow aluminum frames are
 269 mounted upon which horizontal frames are fixed. At the four corners of horizontal frame, 3D
 270 printed knuckle joints are used and motor-propeller configuration is mounted on it. A servo motor is
 271 attached to rotate the motor-propeller configuration. At the center of the hull, a propeller is mounted
 272 which produces necessary pressure to lift the vehicle through inflating the skirt. An open source
 273 advanced level controller is utilized to control and navigate the vehicle. The constructed amphibious
 274 vehicle is tested in an ambient environment and stable flight is observed (Figure 19a). Preliminary
 275 testing of the vehicle is also taken up in a water tank (Figure 19b) and water is collected through
 276 actuating the suction pump.

277
278

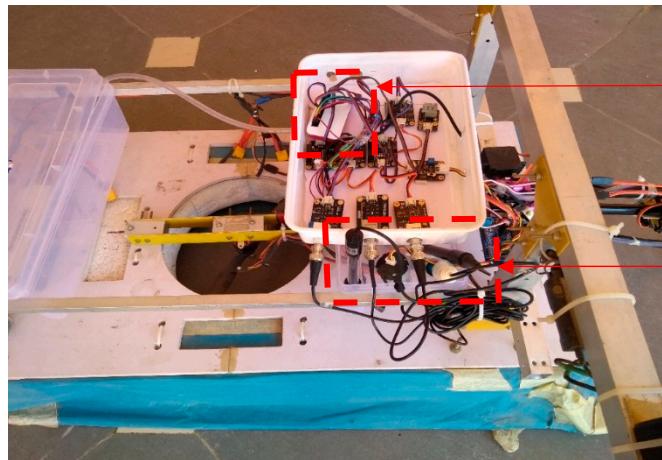
Figure 18, Prototype of amphibious UAV

279
280

(a)

(b)

281
282Figure 19, Field testing of Amphibious UAV: (a) Amphibious UAV (Air borne);
(b) Amphibious UAV (gliding above water)283
284
285
286

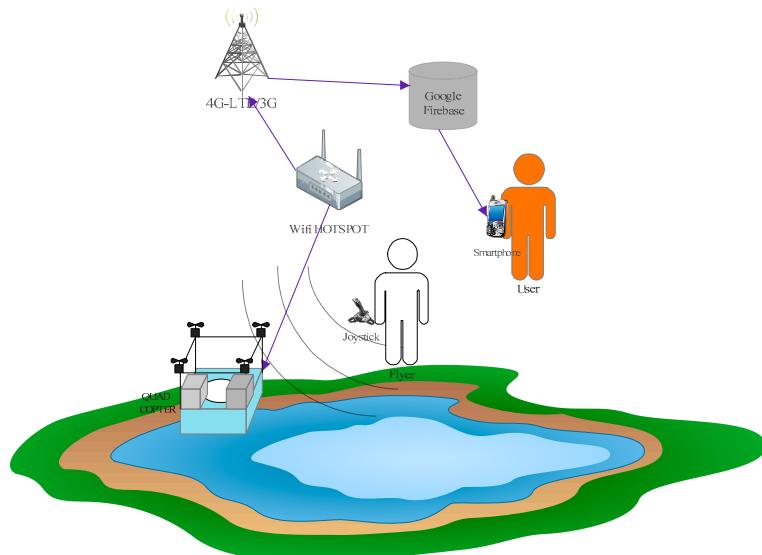

The folded robotic arm is extended through a servo actuator after landing the vehicle on water surface and a rope mechanism attached with a suction pump is actuated to suck the water at the desired depth of water channel. After performing water borne mission, the robotic arm assembly is retracted to initial folded configuration for compactness and stability of the vehicle.

287

9. IoT based water quality measurement

288
289
290
291
292
293
294
295
296
297
298
299
300
301

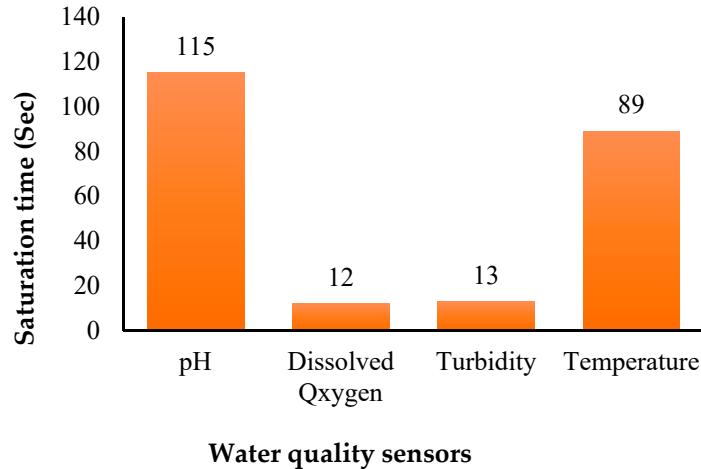
It is essential to perform water quality inspection in a regular interval at the water reservoirs such as dams, lakes, rivers and ponds. Collection of water samples in remote water bodies is challenging and time consuming. Traditional methods of collecting water samples using boats is cumbersome and it is very difficult to access remote water locations. In this work, developed amphibian vehicle can measure the water quality using various on-board water quality sensors such as pH, Dissolved oxygen (DO), Electrical conductivity (EC), Temperature and Turbidity. A Raspberry pi zero BCM 2835, 1 GHz ARM 11 core, 512MB of LPDDR2 SDRAM is utilized to process the sensor data and send via 4G dongle –LTE network at 2300 MHz. The IoT setup shown in Figure 20, is embedded into the designed Amphibious UAV and in-situ water quality measurement is performed. The sensor data are sampled at 160 MHz sampling speed using Arduino pro mini and transmitted to the Raspberry pi UART section. The Raspberry pi is connected with 4G LTE dongle, and the UAV is operated with 2.4GHz radio frequency to avoid inference. Each sensor is calibrated and it provides an analog signal (0 - 5 V) with reference to the measurement. The measured analog signal is sent to the embedded computer as a 16bit digital data.


Raspberry pi
with wi-fi
router

Water quality
sensors
(pH, DO,
Turbidity)

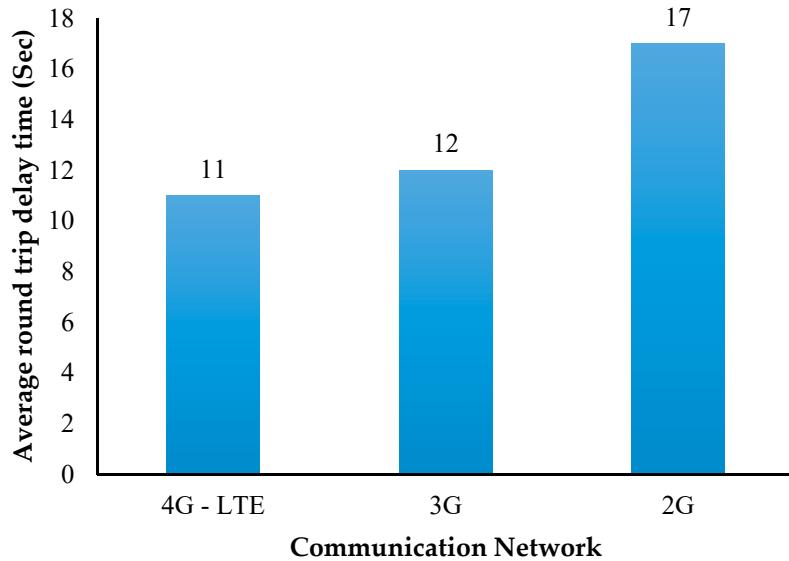
302
303

Figure 20, Sensor interface with Raspberry pi


304 A typical Internet of Things (IoT) based network is shown in Figure 21, demonstrates the
305 working principle of UAV based water quality measurement and transmission of data.

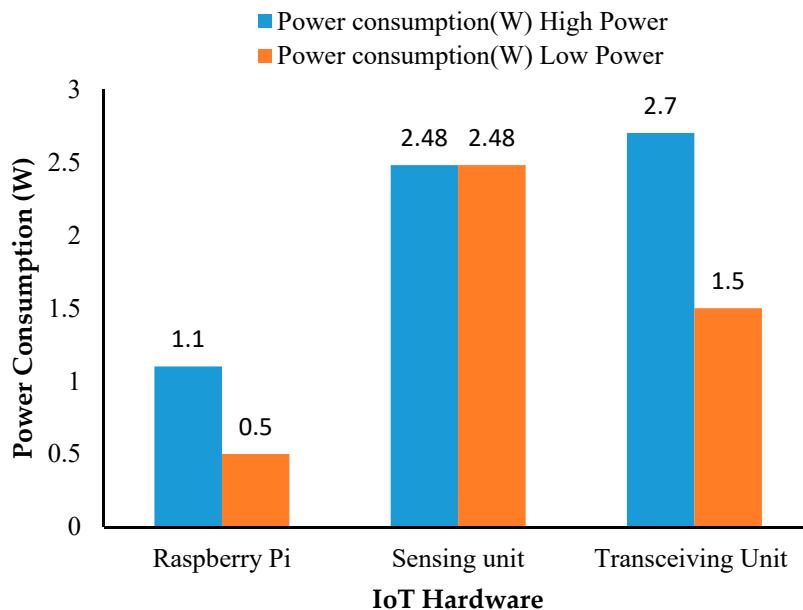
306
307

Figure 21, IoT architecture for water quality measurement


308 The ARM based computer process the sensor data and provide the useful information of
309 measurable quantities in standard units. The water quality information is transferred to the cloud
310 database for real time monitoring and post processing. The link between cloud data base server and
311 real time on-board embedded computer are created with the 4G broadband cellular network
312 because it provides better speed in comparison to 2G and 3G. The water quality data in cloud are
313 accessed through the smart devices with internet service in anywhere in the world. Preliminary
314 experiments are conducted to examine the performance characteristics of sensor network. The
315 saturation time taken for each sensor is obtained and pH took more time to arrive the saturation in
316 comparison with other sensors as shown in Figure 22.

317
318

Figure 22, Sensor saturation time


319 The average delay (500 set transmissions) in water quality data is monitored with different
320 network conditions (4G, 3G and 2 G). The round-trip delay time seems to be better for 4G-LTE
321 communication and it took 11 seconds' in an average to reach the destination (Figure 23).

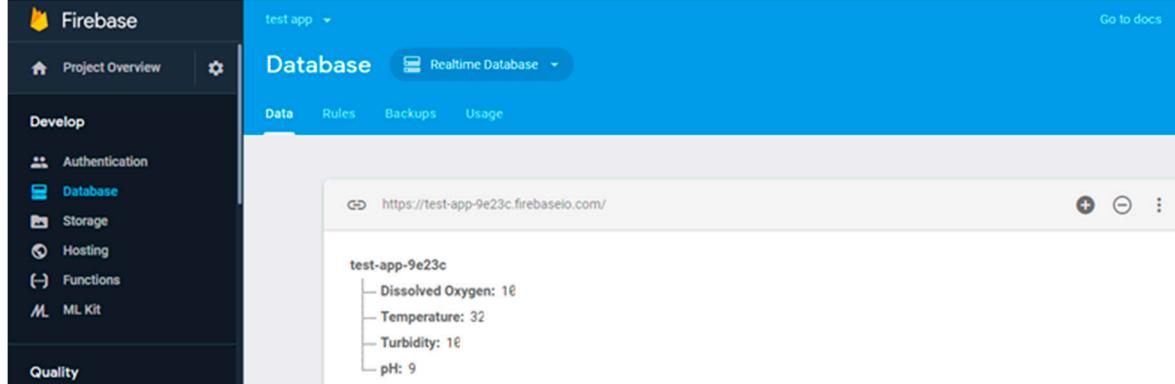
322
323

Figure 23, Round trip time

324 In addition, power consumption of various sensors, transmitting and receiving unit is
325 calculated and it is shown in Figure 24.

326

327


Figure 24, Power consumption of IoT system

328

The transmitted sensor data is collected in the Google firebase cloud as shown in Figure 25 and it can be synchronized with cloud messaging service and shared across the globe through firebase cloud services.

329

330

331

332

Figure 25, Google fire database

333

Water quality analysis is performed using various sensors shown in Figure 26. Water sample is collected at a typical lake near to Ambattur, Chennai, India ($13^{\circ}06'27.9''\text{N}$ $80^{\circ}08'42.0''\text{E}$) extends over an area approximately 1.57 km^2 and has a total length of 6.06 km. A Robotic arm with a water sucking pump is used to collect the water and stored in a container. The complete sensor module is isolated to avoid interference of the signal and their probes are immersed into the container. The real time data is transmitted for a period of time until saturation occurs. The measured data is compared with their upper limit (Table 12) based on the IS 10500 water quality standards. It is observed that, the lake water is of poor quality and it needs water treatment to improve the quality of water.

334

335

336

337

338

339

340

(a) pH

(b) Dissolved oxygen

(c) Electrical conductivity

(d) Turbidity

341

342

Figure 26, Water quality sensors

343

Table 12, Comparison of water quality with reference to IS 10500 standards

SI.No	Sensors	Results	Maximum Allowable limit	Remark
1	pH	6.06	(acceptable range = 6.5 to 8.5) 7.0+ = alkalinity 7.0 - = acidity	Below the limit
2	Turbidity (NTU)	8.47	5.0	Above the limit
3	Electric conductivity(ms/cm)	12.73	0 -0.5 mS/cm Good 0.5 - 1.5 mS/cm Normal >1.5 mS/cm High	Above the limit
4	Dissolved oxygen (mg/l)	8.34	Above 6mg/l	Above the limit

344

10. Conclusion

345

An amphibious vehicle is developed for achieving a mission endurance of 25 minutes while carrying a payload of 7kg. Design of the vehicle combines the functionalities of multi-rotor UAV and a hovercraft. Through engineering analysis and simulations, performance of the vehicle is evaluated with reference to deformation, stresses, forward velocity and stagnation pressure corresponding to expected operational conditions. Appropriate selection of materials for obtaining superior strength characteristics, motors and propeller to generate sufficient thrust forces and considering 2 DOF

346

347

348

349

350

351 robotic arm integrated with water sucking pump, a prototype is built and tested in airborne
352 condition (open field) and also in a water body to evaluate the stability and response. The developed
353 amphibious system is able to collect water samples of 500 ml through actuating the suction pump
354 attached at the end-effector of the robotic arm. IoT based water quality analysis revealed that within
355 11 milliseconds 4G – LTE network transmitted the data to the ground station through firebase cloud
356 services. The developed IoT hardware unit consumed 7.58W power and each sensor saturation
357 limit is measured. pH sensor consumed 115 sec to reach saturation and dissolved oxygen required
358 12 sec to attain saturation of sensed data. Water quality analysis results suggested that as per IS
359 10500 water quality standards the inspected lake water is having impurity which may not be
360 suitable for drinking purpose.

361 **Acknowledgement:** Authors would like to thank the funding supported by NRF Korea-India
362 Science and Technology Cooperation Expansion Project (NRF – 017K1A3A1A57093906) and the
363 DGIST R & D program of the Ministry of Science and ICT (18-IT-02, 20180463) and also from DST –
364 GITA (Ref: 2015RK0201103).

365 **Author Contributions:** Balasubramanian Esakki developed the conceptual design of amphibious
366 vehicle, finite element analysis and prepared the entire manuscript, Surendar Ganesan calculated
367 the motor, propeller and hovercraft system parameters using empirical relations, design calculations
368 and computational fluid dynamic analysis, Silambarasan Mathiyazhagan and Bhuvaneshwaran
369 Gnanasekaran involved in the prototype development, testing of amphibious vehicle and water
370 quality analysis, Kanagachidambaresan and Jae Sung Choi formulated IoT protocols and real time
371 performance testing, Su Woo Park and Byungrak Son designed robotic arm for water sampling and
372 water quality analysis using various sensor modules.

373 **Conflicts of Interest:** The authors declare no conflict of interest.

374 References

- 375 1. Valavanis, K. P.;& Vachtsevanos, G. J. (2015). Future of unmanned aviation. In Handbook of unmanned
376 aerial vehicles (pp. 2993-3009). Springer, Dordrecht.
- 377 2. Hassanalian, M.;& Abdelkefi, A. B. (2017). Classifications, applications, and design challenges of drones: a
378 review. *Progress in Aerospace Sciences*, 91, 99-131.
- 379 3. Prakash, N. U.; Vasantha, R.; Balasubramanian, E.; Bhushan, G.; Das, S.;& Eqbal, F. (2014). Design,
380 development and analysis of air mycoflora using fixed wing unmanned aerial vehicle (UAV). *Journal of
381 Applied Science and Engineering*, 17(1), 1-8.
- 382 4. Sankarasrinivasan, S.; Balasubramanian, E.; Karthik, K.; Chandrasekar, U.;& Gupta, R. (2015). Health
383 monitoring of civil structures with integrated UAV and image processing system. *Procedia Computer
384 Science*, 54, 508-515.
- 385 5. Yang, L. J.; Esakki, B.; Chandrasekhar, U.; Hung, K. C.;& Cheng, C. M. (2015). Practical flapping
386 mechanisms for 20 cm-span micro air vehicles. *International Journal of Micro Air Vehicles*, 7(2), 181-202.
- 387 6. Udayagiri, C.; Kulkarni, M.; Esakki, B.; Pakiriswamy, S.;& Yang, L. J. (2016). Experimental Studies on 3D
388 Printed Parts for Rapid Prototyping of Micro Aerial Vehicles. *Journal of Applied Science and Engineering*,
389 19(1), 17-22.
- 390 7. Chandrasekhar, U.; Yang, L. J.; Esakki, B.; Suryanarayanan, S.;& Salunkhe, S. (2017). Rapid prototyping of
391 flapping mechanisms for monoplane and biplane ornithopter configurations. *International Journal of
392 Modern Manufacturing Technologies* 9 (2), 18-22.
- 393 8. Collins, K. A. (1993). A concept of unmanned aerial vehicles in amphibious operations (Doctoral
394 dissertation, Monterey, California. Naval Postgraduate School).
- 395 9. Boxerbaum, A. S.; Werk, P.; Quinn, R. D.;& Vaidyanathan, R. (2005, July). Design of an autonomous
396 amphibious robot for surf zone operation: Part I mechanical design for multi-mode mobility. In
397 *Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics*. (pp.
398 1459-1464). IEEE.

399 10. Yayla, M.; Sarsilmaz, S. B.; Mutlu, T.; Cosgun, V.; Kurtulus, B.; Kurtulus, D. F.;& Tekinalp, O. (2013).
400 Dynamic Stability Flight Tests of Remote Sensing Measurement Capable Amphibious Unmanned Aerial
401 Vehicle (A-UAV). AIAC, 7th Ankara International Aerospace Conference, Ankara, Türkiye.
402 11. Pisanich, G.;& Morris, S. (2002). Fielding an amphibious UAV: development, results, and lessons learned.
403 In Digital Avionics Systems Conference, 2002. Proceedings. The 21st (Vol. 2, pp. 8C4-8C4). IEEE.
404 12. Hasnan, K.;& Ab Wahab, A. (2012). First Design and Testing of an Unmanned Three-mode Vehicle.
405 International Journal on Advanced Science, Engineering and Information Technology, 2(1), 13-20.
406 13. Frejek, M.;& Nokleby, S. (2008, May). Design of a small-scale autonomous amphibious vehicle. In
407 Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on (pp. 000781-000786).
408 IEEE.
409 14. Amyot, J. R. (Ed.). (2013). Hovercraft technology, economics and applications (Vol. 11). Elsevier.
410 15. Koko, M. I. A. A. (2014). Design of a Typical Multi-Role Vehicle Using Quad-Rotor Theory (Doctoral
411 dissertation, Sudan University of Science and Technology).
412 16. Detweiler, C.; Griffin, B.;& Roehr, H. (2012, October). Omni-directional hovercraft design as a foundation
413 for MAV education. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on
414 (pp. 786-792). IEEE.
415 17. Schleigh, J. (2006). Construction of a Hovercraft Model and Control of its Motion (Doctoral dissertation).
416 18. Rashid, M. Z. A.; Aras, M. S. M.; Kassim, M. A.; Ibrahim, Z.;& Jamali, A. (2012). Dynamic Mathematical
417 Modeling and Simulation Study of Small Scale Autonomous Hovercraft. International Journal of
418 Advanced Science and Technology, 46, 95-114.
419 19. Fuller, S. B.;& Murray, R. M. (2011, December). A hovercraft robot that uses insect-inspired visual
420 autocorrelation for motion control in a corridor. In Robotics and Biomimetics (ROBIO), 2011 IEEE
421 International Conference on (pp. 1474-1481). IEEE.
422 20. Amiruddin, A. K.; Sapuan, S. M.;& Jaafar, A. A. (2011). Development of a hovercraft prototype with an
423 aluminium hull base. International Journal of Physical Sciences, 6(17), 4185-4194.
424 21. Haider, A.;& Sajjad, M. (2012). Structural design and non-linear modeling of a highly stable multi-rotor
425 hovercraft. Control Theory and Informatics, 2(4), 24-35.
426 22. Frejek, M.;& Nokleby, S. (2008, May). Design of a small-scale autonomous amphibious vehicle. In
427 Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on (pp. 000781-000786).
428 IEEE.
429 23. Weerasinghe, R.;& Monasor, M. (2017). Simulation and experimental analysis of hovering and flight of a
430 quadrotor.
431 24. Ozdemir, U.; Aktas, Y. O.; Vuruskan, A.; Dereli, Y.; Tarhan, A. F.; Demirbag, K.;& Inalhan, G. (2014).
432 Design of a commercial hybrid VTOL UAV system. Journal of Intelligent & Robotic Systems, 74(1-2),
433 371-393.
434 25. Kuantama, E.; Craciun, D.;& Tarca, R. (2016). Quadcopter Body Frame Model and Analysis. Annals of the
435 University of Oradea, 71-74.