

1 Article

2

Relationship between city size, coastal land use and

3

summer daytime air temperature rise with distance

4

from coast

5 **Hideki Takebayashi** ^{1,*}, **Takahiro Tanaka** ², **Masakazu Moriyama** ³, **Hironori Watanabe** ⁴, **Hiroshi**
6 **Miyazaki** ⁵ and **Kosuke Kittaka** ⁶7 ¹ Department of Architecture, Kobe University, Japan; thideki@kobe-u.ac.jp8 ² Department of Architecture, Hiroshima University, Japan; ttanaka@hiroshima-u.ac.jp9 ³ Department of Architecture, Kobe University, Japan; moriyama@kobe-u.ac.jp10 ⁴ Department of Architecture, Tohoku Institute of Technology, Japan; hwatanab@tohtech.ac.jp11 ⁵ Department of Architecture, Kansai University, Japan; h_miyazk@kansai-u.ac.jp12 ⁶ Department of Architecture, Kobe University, Japan; kittaka@bear.kobe-u.ac.jp

13 * Correspondence: thideki@kobe-u.ac.jp; Tel.: +81-78-803-6062

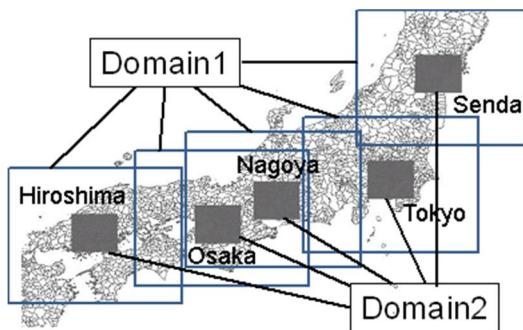
14

15 **Abstract:** The relationship between city size, coastal land use and air temperature rise with distance
16 from coast during summer day is analyzed using the meso-scale Weather Research & Forecasting
17 (WRF) model in five coastal cities in Japan with different sizes and coastal land use (Tokyo, Osaka,
18 Nagoya, Hiroshima and Sendai) and inland cities in Germany (Berlin, Essen and Karlsruhe). Air
19 temperature increased as distance from the coast increased, reached its maximum, and then
20 decreased slightly. In Nagoya and Sendai, the number of urban land use in coastal areas is less than
21 the other three cities, where air temperature is a little lower. As a result, air temperature difference
22 between coastal and inland urban area is small and the curve of air temperature rise is smaller than
23 those in Tokyo and Osaka. In Sendai, air temperature in the inland urban area is the same as in the
24 other cities, but air temperature in the coastal urban area is a little lower than the other cities, due to
25 about one degree lower sea surface temperature influenced by the latitude. In three German cities,
26 the urban boundary layer may not develop sufficiently because the fetch distance is not enough.27 **Keywords:** distance from coast; air temperature; land use; city size; Japan; Germany

28

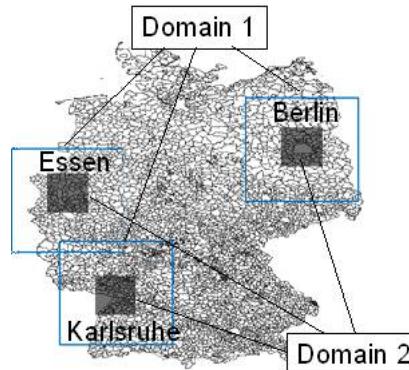
29

1. Introduction


30 Urban heat island intensity is defined by the air temperature difference between an urban area
31 and its surrounding suburbs. Oke [1] revealed that urban heat island intensity is proportional to the
32 logarithm of the population, based on observations in a number of cities in North America and
33 Europe. Fukuoka [2] and Park [3] both showed the same relationship in Japanese and Korean cities
34 and revealed that the slope of the relationship is steep for cities with more than 300,000 people.
35 Sakakibara and Kitahara [4] also showed a similar relationship for cities in Nagano Prefecture,
36 Japan; however, the change in slope, such as that found by Fukuoka [2] and Park [3], was not
37 obtained.38 In these studies, population was used to indicate the degree of urbanization. An increase in
39 population, for example, was associated with high-rise buildings and land use change, as well as
40 with an expansion of the urban area. More specific indicators, such as urban area, artificial land
41 coverage, and average building height, should be used to implement more effective heat island
42 countermeasures. The mesoscale Weather Research & Forecasting (WRF) model (Skamarock et al.
43 [5]), which is used generically worldwide, is effective for these studies (Iizuka et al. [6], Kusaka et al.
44 [7]). Moriyama et al. [8] have reported that air temperature is more influenced by the building

45 coverage rate than the building height. When the building coverage rate is small or the building
46 height is low, air temperature is low.

47 In this study, for the purpose of actual recognition of urban heat island phenomenon, as the
48 target five coastal cities in Japan with different sizes and coastal land use (Tokyo, Osaka, Nagoya,
49 Hiroshima, Sendai), we have analyzed the relationship between city size, coastal land use and air
50 temperature rise with distance from coast during summer day, while the other factors such as the
51 climatic environment depending on the surrounding topography, the shape of the coastline, the
52 location would be considered. In the previous study, the authors confirmed that air temperature
53 near ground surface observed in the daytime during the summer days in Osaka City was explained
54 by the distance from the coast, rather than building volume ratio, artificial exhaust heat, natural
55 coverage ratio, roughness length (Takebayashi et al. [9]). Kusaka et al. [10] have simulated
56 numerically the effects of land-use alternation on the sea breeze and daytime heat island in the
57 Tokyo metropolitan area. By comparison between 1900 and 1985, they pointed out the more clearly
58 definition of the sea breeze front, two hours delay of the sea breeze arrival to the inland area and the
59 maximum temperature rise in the inland area. Yamaoto et al. [11] have investigated the relationship
60 between sea breeze penetration and anomalously high summer daytime temperatures in the inland
61 suburbs of Tokyo, with consideration of the relative position of sea breeze fronts, by using data from
62 the high-density temperature observation network (Extended-METROS). The high temperature in
63 the inland area was considered based on the penetration condition of the sea breeze. The original
64 definition of urban heat island intensity by Oke [1] is the annual maximum air temperature
65 difference. However, since the higher air temperature in the summer is noticed socially, which
66 causes the deterioration of the thermal environment in outdoor space and the increase of energy
67 consumption, the higher air temperature period of summer was selected as the objective period in
68 this study. It was targeted at 14:00, when the maximum temperature is likely to occur. Hardin et al.
69 [12] have analyzed regional air temperature variability and urban heat island magnitude by using a
70 high-density network of urban and rural weather stations. They pointed out the need for
71 consideration of spatial distribution of air temperature for the analysis of urban heat island intensity.
72 The spatial distribution of air temperature was treated as the object in this study. In addition, we
73 have analyzed similarly for inland cities (Berlin, Essen and Karlsruhe in Germany).


74 2. Outline of Calculation

75 We used mesoscale Weather Research & Forecasting (WRF) model (version 3.0.1.1-ARW). For
76 the turbulence model (planetary boundary layer scheme), we used the Mellor-Yamada-Janjic model.
77 The Noah-LSM was used for the land surface model, and the urban canopy model was applied in
78 urban areas (Kusaka et al. [13]). The objective study areas are shown in Figures 1 and 2. The outer
79 square is domain 1 (3 km grid, 360 km square) and the inner filled square is domain 2 (1 km grid, 103
80 km square). The nesting technique was used in each region. The calculation results of air
81 temperature at 2 m high and wind velocity at 10 m high in domain 2 were used for the analysis.

82

83 **Figure 1.** Objective study areas in Tokyo, Osaka, Nagoya, Hiroshima, Sendai (Domain 1: 3 km grid,
84 360 km square, Domain 2: 1 km grid, 103 km square).

85

86 **Figure 2.** Objective study areas in Berlin, Essen, Karlsruhe (Domain 1: 3 km grid, 360 km square,
87 Domain 2: 1 km grid, 103 km square).

88 Calculation conditions are shown in Table 1. The period for which calculations were done was
89 from August 1 to 31, 2010 for Japanese cities, from July 23 to August 23, 2008 for German cities. In
90 Japanese cities, based on digital national land information (spatial resolution of 100 m) and a
91 normalized vegetation index (NVI) created from Landsat7 ETM+ data, urban areas were classified
92 into three categories according to the previous study (Kitao et al. [14]): high-rise and high-density,
93 middle-rise and moderate-density, and low-rise and low-density. In German cities, they were
94 classified based on USGS data as shown in Table 1.

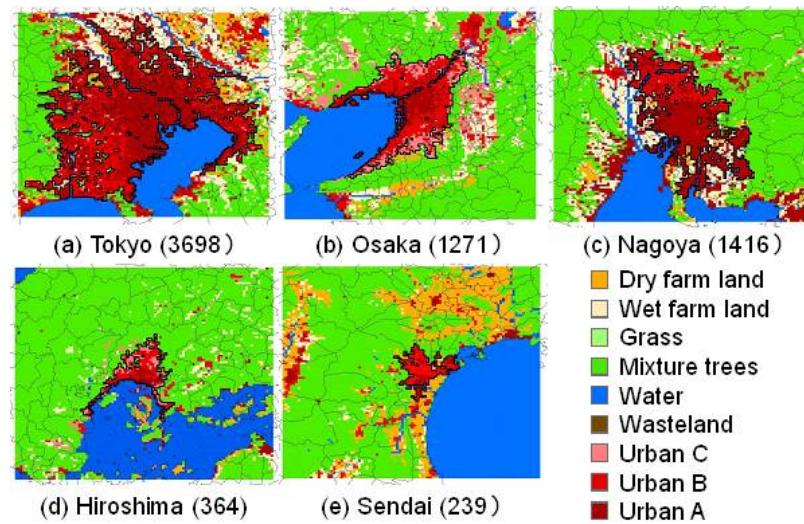
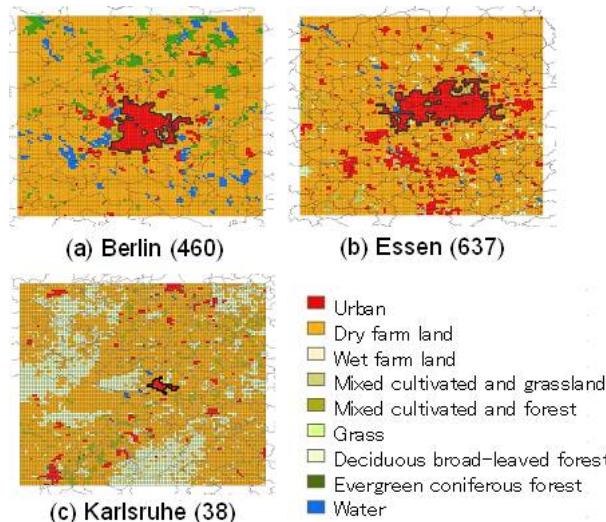
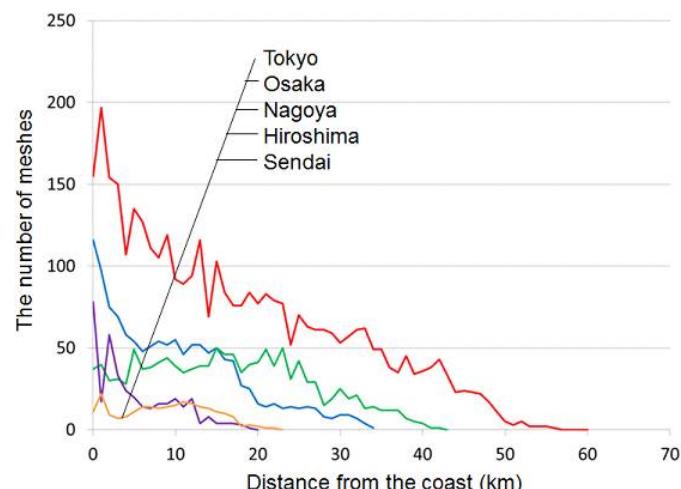

95

Table 1. Calculation conditions for WRF model.

		for Japanese cities	for German cities
Period		August 1 - 31, 2010	July 23 - August 23, 2008
Vertical grid		28 layers (surface - 100 hPa)	
Horizontal grid		Domain 1: 3 km (120 x 120 grids) Domain 2: 1 km (103 x 103 grids)	
Meteorological data		JMA: Meso-scale analysis (3 hourly, 10 km grid, 20 layer) NECP: final analysis (6 hourly, 1 degree grid, 17 layer)	
Geographical data	Terrain height	Digital map (50m x 50m resolution)	United States Geological Survey (about 100m x 100m resolution)
	Land use	Digital national land information (about 100m x 100m resolution) + NVI	
Microphysics process		Purdue Lin et al. scheme	
Radiation process	Long wave	RRTM long wave scheme	
	Short wave	Dudhia short wave scheme	
Planetary boundary layer process		Mellor-Yamada-Janjic PBL scheme	
Surface process	Urban area	UCM (Urban Canopy Model)	
	Non urban area	Noah LSM	
Cumulus parameterization		None	
Four-dimensional data assimilation		None	


96

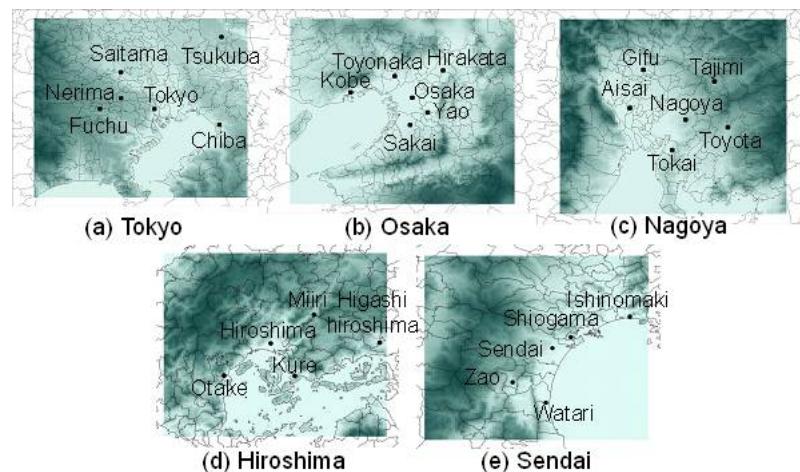
97 Land use conditions and number of urban meshes in Tokyo, Osaka, Nagoya, Hiroshima, Sendai
98 and Berlin, Essen, Karlsruhe are shown in Figures 3 and 4. The numbers of urban land use meshes
99 are 3,698 in Tokyo, 1,271 in Osaka, 1,416 in Nagoya, 364 in Hiroshima, 239 in Sendai, 460 in Berlin,
100 637 in Essen and 38 in Karlsruhe. Frequency of urban land use at each distance point from the coast
101 for Japanese cities is shown in Figure 5. Main wind direction is not specified for German cities where
102 the natural land use is located around the city. Frequency of urban land use in Japanese cities is
103 larger in the coastal area and decreased gradually in the inland area. The number of urban land use
104 meshes along the coastal area in Nagoya and Sendai is slightly smaller compared to those for Tokyo,
105 Osaka and Hiroshima.


106

107 **Figure 3.** Land use conditions and number of urban meshes in Tokyo, Osaka, Nagoya, Hiroshima,
108 Sendai (1 km grid, 103 km square).

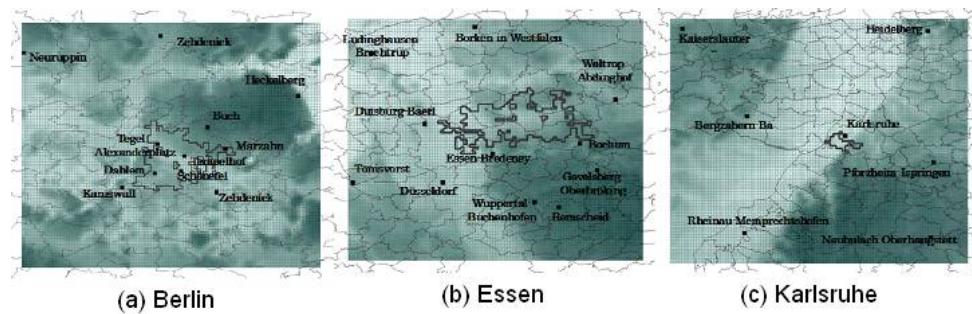
109

110 **Figure 4.** Land use conditions and number of urban meshes in Berlin, Essen, Karlsruhe (1 km grid,
111 103 km square).



112

113 **Figure 5.** Frequency of urban land use at each distance point from the coast.


114 **3. Calculation Accuracy**

115 Fine days conditions were selected according to weather conditions as follows; weather: mostly
 116 sunny and sunny, sunlight hours: more than 7.0 hours, solar radiation: more than 19 MJ/m²,
 117 precipitation: less than 0.5 mm. Sea breeze conditions only for Japanese cities were selected
 118 according to weather conditions as follows; wind velocity: more than 2.0 m/s at observatory, wind
 119 direction: main wind direction at each observatory, duration time: more than 6 hours under the
 120 above conditions. The calculated values and observed values, which are instantaneous values every
 121 hour, are compared using observation station data in domain 2 of each city. Position of measurement
 122 sites are shown in Figures 6 and 7. Since the number of measurement sites was limited, observation
 123 data in land use other than the urban land use were also used for verification. The calculation
 124 accuracies of air temperature and wind velocity at Tokyo, Osaka, Nagoya, Hiroshima, Sendai and
 125 Berlin, Essen, Karlsruhe observatories are shown in Tables 2 and 3. For Japanese five cities,
 126 calculation accuracy is comparable to previous studies (Kitao et al., 2009 and Moriyama et al., 2014).
 127 A comparison of observed and calculated period average air temperatures at the Tokyo, Osaka,
 128 Nagoya, Hiroshima, Sendai and Berlin, Essen, Karlsruhe observatories are shown in Figures 8 and 9.
 129 The difference was a little large in Sendai, but it was not noticeable in Table 2. It was recognized that
 130 the difference was large in Karlsruhe since the comparison could be carried out only in the land use
 131 other than urban, while it was done in the urban land use in Berlin and Essen.

132

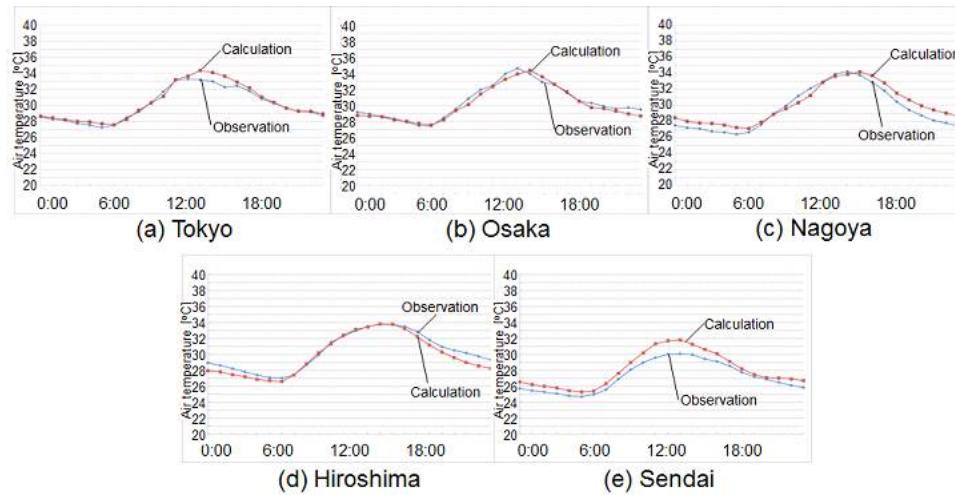
133 **Figure 6.** Position of measurement sites in Tokyo, Osaka, Nagoya, Hiroshima, Sendai (103 km
 134 square).

135

136 **Figure 7.** Position of measurement sites in Berlin, Essen, Karlsruhe (103 km square).

137 **Table 2.** The calculation accuracies of air temperature and wind velocity for Japanese cities.

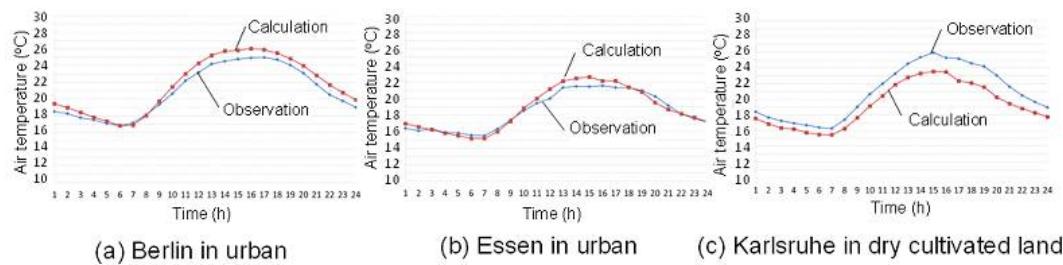
	Temperature	Bias[°C]	RMSE[°C]	Correlation	Wind speed	Bias[m/s]	RMSE[m/s]	Correlation
Tokyo area	Tokyo	0.50	0.72	0.92	Tokyo	-0.38	0.54	0.78
	Nerima	0.72	0.79	0.92	Nerima	1.74	1.85	0.63
	Fuchu	1.80	2.14	0.90	Fuchu	0.01	0.72	0.70
	Saitama	1.13	1.19	0.91	Saitama	0.41	0.72	0.69
	Tsukuba	0.82	0.88	0.94	Tsukuba	0.73	0.95	0.74
	Chiba	-0.24	0.28	0.90	Chiba	-0.97	1.03	0.78
Osaka area	Osaka	0.20	0.31	0.92	Osaka	-0.13	0.43	0.67
	Kobe	0.30	0.45	0.89	Kobe	-1.14	1.19	0.59
	Sakai	0.40	1.15	0.91	Sakai	0.28	0.71	0.58
	Toyonaka	0.43	0.54	0.91	Toyonaka	-0.18	0.52	0.62
	Yao	0.92	0.98	0.92	Yao	-0.71	0.92	0.56
	Hirakata	0.42	0.63	0.87	Hirakata	0.86	0.94	0.47
Nagoya area	Nagoya	0.71	0.80	0.90	Nagoya	-0.46	0.56	0.64
	Tokai	0.24	0.48	0.89	Tokai	0.97	1.02	0.53
	Aisai	-0.18	0.32	0.93	Aisai	1.37	1.52	0.62
	Toyota	0.59	0.75	0.93	Toyota	0.42	0.58	0.33
	Gifu	0.97	1.01	0.90	Gifu	-0.29	0.40	0.64
	Tajimi	0.47	0.84	0.93	Tajimi	0.46	0.59	0.53
Hiroshima area	Hiroshima	0.01	0.02	0.91	Hiroshima	-0.56	0.77	0.56
	Kure	-0.05	0.06	0.93	Kure	0.04	0.55	0.59
	Otake	0.05	0.05	0.86	Otake	-0.70	0.74	0.41
	Higashihiroshima	-0.08	0.08	0.94	Higashihiroshima	-0.50	0.77	0.30
	Miuri	0.03	0.03	0.89	Miuri	-1.38	1.68	0.01
	Sendai	-0.03	0.04	0.90	Sendai	-0.19	0.44	0.46
Sendai area	Watari	-0.06	0.06	0.81	Watari	-0.36	0.62	0.31
	Shiogama	0.47	1.08	0.91	Shiogama	1.38	1.45	0.32
	Zao	-0.02	0.04	0.83	Zao	-0.82	0.90	0.12
	Ishinomaki	-0.05	0.06	0.83	Ishinomaki	-0.74	0.82	0.57


138

139

Table 3. The calculation accuracies of air temperature and wind velocity for German cities.

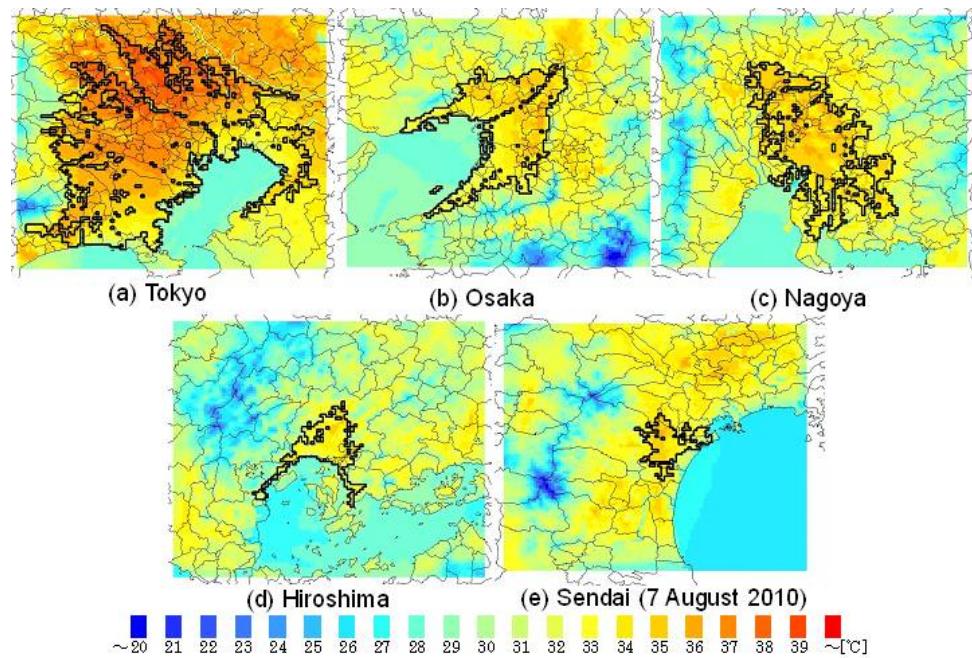
	Temperature			Wind speed		
	Bias[°C]	RMSE[°C]	Correlation	Bias[m/s]	RMSE[m/s]	Correlation
Berlin area	Alexanderplatz	0.11	0.61	0.93	-	-
	Buch	-0.3	0.58	0.93	-	-
	Dahlem	1.44	1.84	0.94	-	-
	Marzahn	0.47	0.73	0.93	-	-
	Teigel	0.59	0.78	0.94	1.29	1.35
	Tempelhof	0.73	0.84	0.94	0.97	1.08
	Neuruppin	-0.15	1.27	0.9	2.08	2.14
	Potsdam	-0.74	1.88	0.91	0.86	0.9
	Zehdenick	-0.28	0.95	0.91	-	-
	Heckelberg	0.02	0.94	0.91	-	-
Essen area	Bochum	-0.15	0.73	0.87	-	-
	Borken in Westfalen	-0.53	1.84	0.90	-	-
	Essen-Bredeney	0.47	0.76	0.92	1.37	1.40
	Toenniesvorst	-0.69	0.95	0.92	-	-
	Wuppertal-Buchenhofen	1.19	1.34	0.91	-	-
	Remscheid	-0.56	0.82	0.90	-	-
	Luedinghausen-Brochtrup	-0.82	0.92	0.92	-	-
	Duisburg-Baerl	-1.00	1.32	0.91	-	-
	Waltrop-Abdinghof	-0.12	0.45	0.92	-	-
	Gevelsberg-Oberboeking	-0.60	0.88	0.90	-	-
Karlsruhe area	Bergzabern-Ba	-1.63	1.70	0.91	-	-
	Heidelberg	-2.93	3.00	0.91	-	-
	Kaiserslautern	-0.99	1.15	0.93	-	-
	Karlsruhe	-1.60	1.73	0.92	-0.54	0.61
	Pforzheim-Ispringen	-0.13	0.72	0.92	0.46	0.66
	Rheinau-Memprechshofen	-0.44	0.71	0.91	-	-
	Neubulach-Oberhaugstett	0.12	0.94	0.91	-	-


140

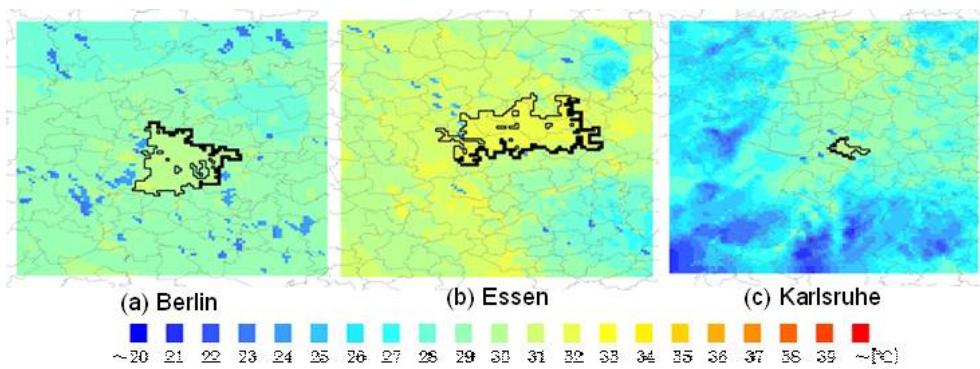
141

142
143

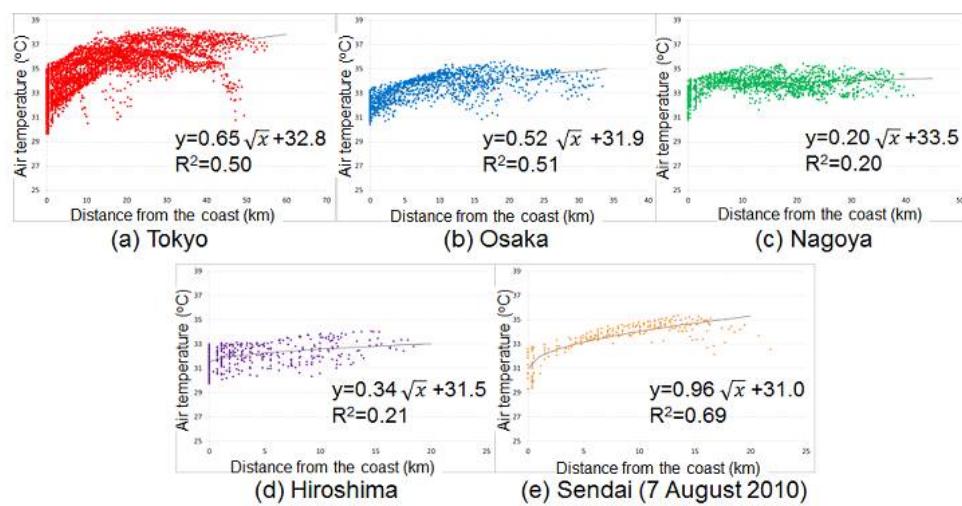
Figure 8. A comparison of observed and calculated period average air temperatures at the Tokyo, Osaka, Nagoya, Hiroshima and Sendai observatories.


144

145
146


Figure 9. A comparison of observed and calculated period average air temperatures at the Berlin, Essen and Karlsruhe observatories.

147 4. Analysis on Air Temperature Distribution


148 Air temperature distribution at 2 m height in Japanese cities, at 14:00, 25 August 2010 is shown
 149 in Figure 10. However, it is 7 August only in Sendai, due to weather condition. Air temperature was
 150 lower in the coastal areas and higher in the inland areas. Number of higher air temperature points in
 151 Tokyo was larger than those in the other cities, which are located mainly in the inland areas. Air
 152 temperature distribution at 2 m height at 14:00, in 25 July for Berlin and Karlsruhe, in 24 July for
 153 Essen, 2008 is shown in Figure 11. Air temperature was lower in the boundary areas with the
 154 suburbs and higher in inner urban areas. Relationship between distance from the coast and air
 155 temperature in Japanese cities at 14:00, 25 August 2010 is shown in figure 12. In all five cities, as the
 156 distance from the coast increases, air temperature rose. The curve of air temperature rise varies in
 157 five cities. It is also different from day to day in a city. It is considered that the cause is the cloud
 158 amount during the night and the sea surface temperature during the day. Relationship between
 159 distance from the windward boundary with the suburbs and air temperature at 14:00, in 25 July for
 160 Berlin and Karlsruhe, in 24 July for Essen, 2008 is shown in figure 13. In all three cities, as the
 161 distance from the suburb increases, air temperature rose.

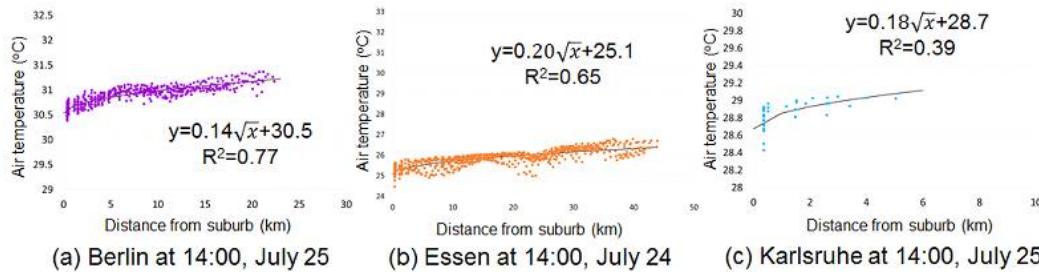
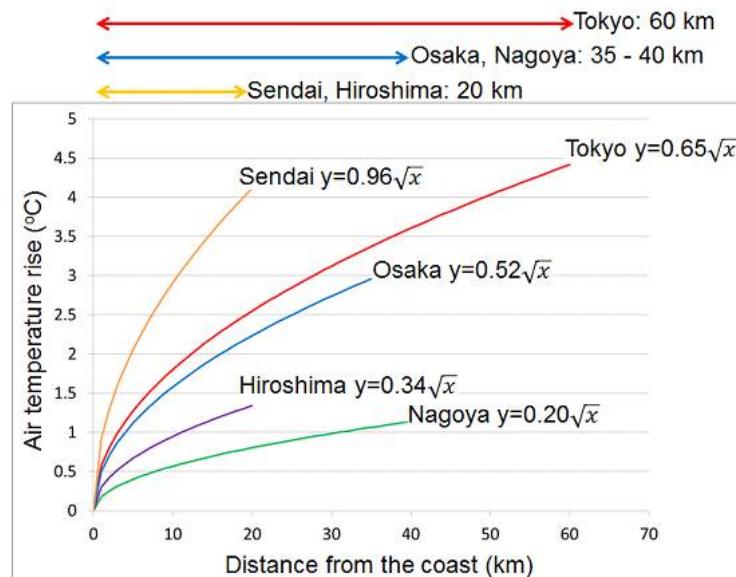
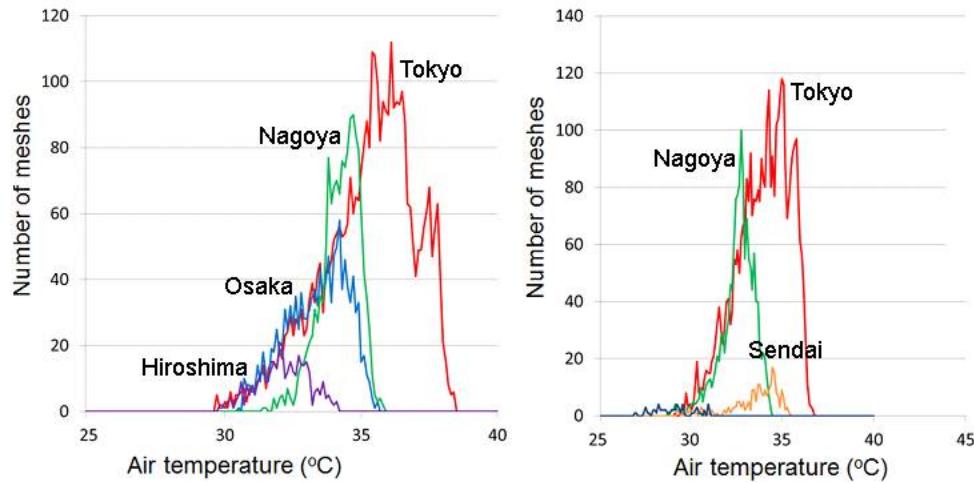

Figure 10. Air temperature distribution at 2 m height in Japanese cities (103 km square).

Figure 11. Air temperature distribution at 2 m height in German cities (103 km square).


Figure 12. Relationship between distance from the coast and air temperature in Japanese cities.

168

169 **Figure 13.** Relationship between distance from the suburb and air temperature in German cities.


170 Relationship between distance from the coast and air temperature at 14:00 averaged in fine
 171 weather condition for Japanese cities is shown in Figure 14. Air temperature rise increases with
 172 distance from coast and they are nearly the same in Tokyo and Osaka. Number of higher air
 173 temperature points in Tokyo was larger than those in Osaka and Nagoya, which are located mainly
 174 in the inland areas. The heat island intensities of Osaka and Tokyo were almost the same at the same
 175 distance points from the coast regardless of different urban areas. There is no relationship between
 176 city size and air temperature rise. City size is indicated by the distance from the coast to the inland
 177 edge of each city as shown in Figure 14; Tokyo 60 km, Osaka and Nagoya 35-40 km, Hiroshima and
 178 Sendai 20 km. In Hiroshima, urban area is spreading along coastal line as in Tokyo and Osaka, and
 179 inland urban area is less than these cities, where air temperature is a little higher. As a result, the
 180 curve of air temperature rise in Hiroshima is smaller than those in Tokyo and Osaka.

181

182 **Figure 14.** Relationship between distance from the coast and air temperature at 14:00 averaged in fine weather
183 condition for Japanese cities.

184 Frequencies of air temperature at 14:00 on August 25 and 7, 2010 are shown in figure 15. In
 185 these days the cities indicated in the figure were fine and sea breeze condition. In Nagoya and
 186 Sendai, the number of urban land use in coastal areas is less than the other three cities, where air
 187 temperature is a little lower. As a result, air temperature difference between coastal and inland
 188 urban area is small and the curve of air temperature rise is smaller than those in Tokyo and Osaka. In
 189 Sendai, air temperature in the inland urban area is the same as in the other cities, but air temperature
 190 in the coastal urban area is a little lower than the other cities, due to about 1 degree lower sea surface
 191 temperature influenced by the latitude. As a result, air temperature difference between coastal and
 192 inland urban area is large and the curve of air temperature rise is larger than those in Tokyo and
 193 Osaka. As described above, coastal land use has a large influence on air temperature rise.

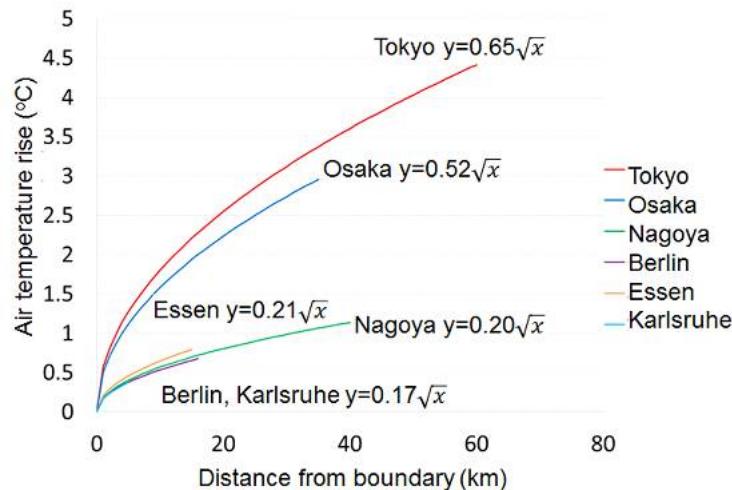
194

195 **Figure 15.** Relationship between distance from the coast and air temperature at 14:00 averaged in fine weather
 196 condition for Japanese cities.

197 **5. Discussion**

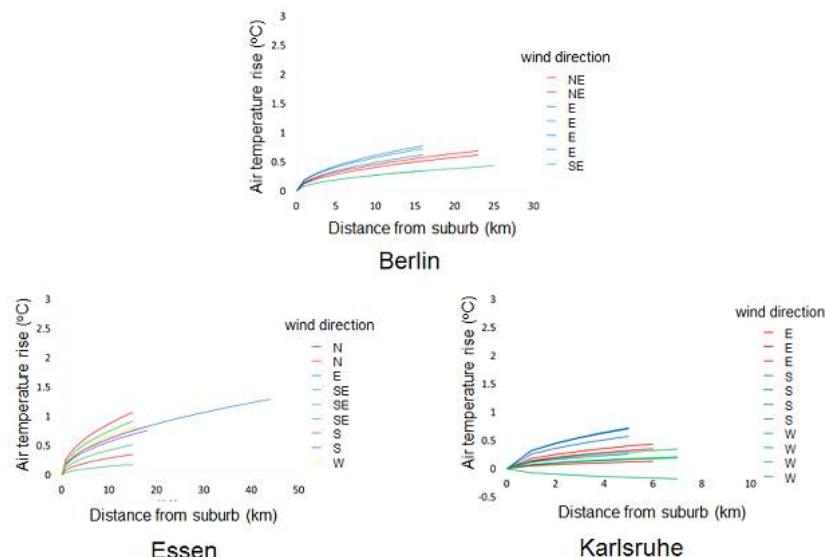
198 Distance from boundary and air temperature rise in Tokyo, Osaka, Nagoya, Berlin, Essen,
 199 Karlsruhe is shown in Figure 16. Air temperature rises in three German cities are almost the same as
 200 that in Nagoya. The development of the urban boundary layer is expressed by following equation
 201 (1), if the advection by the sea breeze is dominant, as a function of the distance from the boundary L
 202 (m).

$$203 \quad \Delta T = \sqrt{\frac{2(1+k)HL\alpha}{C_p \rho U}} \quad (1)$$


204 where k is the ratio of entrainment (0 to 1), H is the sensible heat flux from the ground surface
 205 (W/m²), which is calculated reflecting the advection effect on upper air by the sea breeze, α is air
 206 temperature gradient (K/m), C_p is the specific heat of air (=1000 J/(kgK)), ρ is air density (=1.2 kg/m³),
 207 and U is wind velocity (m/s). Assuming $\alpha = 0.006$ (K/m), it becomes following equation (2).

$$208 \quad \Delta T = (0.0032 \sim 0.0045) \sqrt{H/U} \sqrt{L} \quad (2)$$

209 Assuming $H = 150$ (W/m²), $U = 5$ (m/s), it becomes following equation (3).


$$210 \quad \Delta T = (0.55 \sim 0.78) \sqrt{x} \quad (3)$$

211 where x (= 1000L) is the distance from the boundary (km). Air temperature rises in Tokyo and
 212 Osaka are almost consistent with equation (3). Approximate curves of air temperature rise of each
 213 day in fine days in German cities are shown in Figures 17. Although the distance from the inflow
 214 boundary to the outflow points in urban area differs according to the wind direction, they are almost
 215 15 km in Berlin and Essen, 5 km in Karlsruhe. In three German cities, the urban boundary layer may
 216 not develop sufficiently because the fetch distance is not enough.

217

218 **Figure 16.** Distance from boundary and air temperature rise in Tokyo, Osaka, Nagoya, Berlin, Essen,
 219 Karlsruhe.

220

221 **Figure 17.** Approximate curves of air temperature rise of each day in fine days in German cities.

222 **6. Conclusions**

223 The relationship between city size, coastal land use and air temperature rise with distance from
 224 coast during summer day is analyzed using the meso-scale Weather Research & Forecasting (WRF)
 225 model in five coastal cities in Japan with different sizes and coastal land use (Tokyo, Osaka, Nagoya,
 226 Hiroshima and Sendai). In addition, the similar analysis is carried out for inland cities (Berlin, Essen
 227 and Karlsruhe in Germany). Air temperature increased as distance from the coast / the suburb
 228 increased, reached its maximum, and then decreased slightly. Air temperature rise increases with
 229 distance from coast and they are nearly the same in Tokyo and Osaka. Number of higher air
 230 temperature points in Tokyo was larger than those in Osaka and Nagoya, which are located mainly
 231 in the inland areas. The heat island intensities of Osaka and Tokyo were almost the same at the same
 232 distance points from the coast regardless of different urban areas. There is no relationship between
 233 city size and air temperature rise. In Nagoya and Sendai, the number of urban land use in coastal
 234 areas is less than the other three cities, where air temperature is a little lower. As a result, air
 235 temperature difference between coastal and inland urban area is small and the curve of air
 236 temperature rise is smaller than those in Tokyo and Osaka. In Sendai, air temperature in the inland
 237 urban area is the same as in the other cities, but air temperature in the coastal urban area is a little

238 lower than the other cities, due to about 1 degree lower sea surface temperature influenced by the
239 latitude. Coastal land use has an influence on air temperature rise. In three German cities, the urban
240 boundary layer may not develop sufficiently because the fetch distance is not enough.

241 **Author Contributions:** H. T. supervised the entire study. T. T. analyzed mainly in Hiroshima city. M. M.
242 analyzed mainly in Tokyo and Nagoya cities. H. W. analyzed mainly in Sendai city. H. M. analyzed mainly in
243 Osaka city. K. K. analyzed mainly in German cities.

244 **Funding:** This work was supported by JSPS KAKENHI Grant Number 16H04464.

245 **Conflicts of Interest:** The authors declare no conflict of interest.

246 References

- 247 1. Oke, T. R. City size and the urban heat island. *Atmospheric Environment* **1973**, *7*, 769-779.
- 248 2. Fukuoka, Y. Physical climatological discussion on causal factors of urban temperature. *Memories of the*
249 *Faculty of Integrated Arts and Sciences, Hiroshima University* **1983**, *IV*, *8*, 157-178.
- 250 3. Park, H.C. Features of the heat island in Seoul and its surrounding cities, *Atmospheric Environment* **1986**, *20*,
251 1859-1866.
- 252 4. Sakakibara, Y.; Kitahara, Y. Relationship between Population and Heat Island Intensity in Japanese Cities,
253 *Tenki* **2003**, *50*, 625-633.
- 254 5. Skamarock, W. C.; Klemp, J. B.; Dudhia, J.; Gill, D. O.; Barker, D. M.; Duha, M. G.; Huang, X. Y.; Wang, W.;
255 Powers, J. G. A description of advanced research WRF version 3, *NCAR/TN-475+STR* **2008**.
- 256 6. Iizuka, S.; Xuan Y.; Kondo, Y. Impacts of disaster mitigation / prevention urban structure models of future
257 urban thermal environment, *Sustainable cities and society* **2015**, *19*, 414-420.
- 258 7. Kusaka, H.; Iijima, N.; Ihara, T.; Hara, M.; Takane, Y.; Iizuka, S. Future projection of heat stroke and sleep
259 disturbance for 2070's August in Tokyo, Nagoya, and Osaka, Dynamical downscale experiments from
260 multiple CMIP3-GCMs and health impact assessment by mid-point type methodology, *J. Environ., Eng.,
261 AIJ* **2013**, *693*, 873-881.
- 262 8. Moriyama, M.; Inui, Y.; Takebayashi, H. Study on Thermal Environmental Mitigation Effects Caused by
263 Changes of Urban Form on a Large Scale Area, *Proc. 7th Japanese-German Meeting on Urban Climatology*
264 **2014**.
- 265 9. Takebayashi, H.; Moriyama, M. Urban heat island phenomena influenced by sea breeze, *AIJ J. Technol. Des.*
266 **2005**, *21*, 199-202. (in Japanese)
- 267 10. Kusaka, H.; Kimura, F.; Hirakuchi, H.; Mizutori, M. The effects of land-use alternation on the sea breeze
268 and daytime heat island in the Tokyo metropolitan area, *J. Meteor. Soc. Japan* **2000**, *78*, 405-420.
- 269 11. Yamamo, H.; Mikami, T.; Takahashi, H. Impact of sea breeze penetration over urban areas on midsummer
270 temperature distributions in the Tokyo metropolitan area, *Int. J. Climatol.* **2017**, *37*, 5154-5169.
- 271 12. Hardin, A. W.; Liu, Y.; Gao, G.; Vanos, J. K. Urban heat island intensity and spatial variability by synoptic
272 weather type in the northeast U.S., *Urban Climate* **2018**, *24*, 747-762.
- 273 13. Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A simple single-layer urban canopy model for
274 atmospheric models, Comparison with multi-layer and slab models, *Boundary-Layer Meteorology* **2001**, *101*,
275 261-304.
- 276 14. Kitao, N.; Moriyama, M.; Nakajima, S.; Tanaka, T.; Takebayashi, H. The characteristics of urban heat island
277 based on the comparison of temperature and wind field between present land cover and potential natural
278 land cover, *Proc. Seventh International Conference on Urban Climate* **2009**.