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Abstract: Polar mesocyclones (MCs) are small in size marine atmospheric phenomena accompanied 12 
by extremely strong surface winds and heat fluxes and thus largely influencing deep ocean water 13 
formation in the polar regions. Accurate detection of polar mesocyclones in high-resolution satellite 14 
data, while challenging, is a time-consuming task, when performed manually. Existing algorithms 15 
for the automatic detection of polar mesocyclones are based on the conventional analysis of patterns 16 
of cloudiness and involve different empirically defined thresholds of geophysical variables. As a 17 
result, different detection methods typically reveal very different results when applied to a single 18 
dataset. We present a conceptually novel approach for the detection of MCs based upon the use of 19 
deep convolutional neural networks (DCNNs). The training dataset is based on the reference 20 
database of manually tracked from satellite mosaics MCs in the Southern Hemisphere. This dataset 21 
is further used for testing several different setups of DCNN, specifically, DCNN “from scratch”, 22 
DCNN based on VGG16 pre-trained weights engaging also the Transfer Learning technique, and 23 
DCNN based on VGG16 with Fine Tuning technique. Each of these networks is further applied to 24 
both IR and IR+WV satellite imagery. The best skills (97% of the binary classification accuracy score) 25 
is achieved with DCNN based on VGG16 pre-trained weights with both Transfer Learning and Fine 26 
Tuning techniques applied. The algorithm can be further extended to the automatic identification 27 
and tracking numerical scheme and applied to the other atmospheric phenomena characterized by 28 
a distinct signature on satellite imagery. 29 

Keywords: deep learning, convolutional neural networks, polar mesocyclones, satellite data 30 
processing, pattern recognition 31 

 32 

Nomenclature 33 
BCE - binary cross-entropy 34 
CNN - convolutional neural network 35 
DCNN - deep convolutional neural network 36 
DL - deep learning 37 
FC - fully-connected 38 
FNR - false negative rate 39 
FPR - false positive rate 40 
IR - infrared 41 
MC - mesocyclone 42 
NH - Northern Hemisphere 43 
ROC - receiver operator characteristic 44 
AUC ROC - area under the curve of receiver operator characteristic 45 
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SH - Southern Hemisphere 46 
SOMC - Shirshov Institute of Oceanology mesocyclone dataset for Southern Ocean 47 
TNR - true negative rate 48 
TPR - true positive rate 49 
WV - integrated water vapor 50 

1. Introduction 51 
Polar mesoscale cyclones (MCs) are intense high-latitude marine atmospheric vortices. Their 52 

sizes range from 200 to 1000 km with the lifetimes spanning from 6 to 36 hours [1]. Specific type of 53 
mesocyclones (the so-called polar lows, PLs) is characterized by the surface wind of more than 15 m/s 54 
and strong surface fluxes. These PLs have a significant impact on the local weather conditions causing 55 
rough sea. Being relatively small in size (compared to the extratropical cyclones), MCs contribute 56 
significantly to the generation of extreme air-sea fluxes and initialize intense surface transformation 57 
of water masses resulting in the formation of ocean deep waters [2–4]. These processes are most 58 
intense in the Weddel and Bellingshausen Seas in the Southern hemisphere and in the Labrador, 59 
Greenland, Norway and Barents Seas in the Northern Hemisphere. 60 

Being critically important for many oceanographic and meteorological applications, MCs are 61 
hardly detectable in different reanalysis datasets, mostly due to inadequate resolution of the 62 
products. 63 

The spatial resolution of the modern reanalyses still does not MCs permit for the accurate 64 
identification of MCs. In [5] it is argued for at least 10 by 10 grid points necessary for effective 65 
capturing the MC. This implies about 30 km spatial resolution in the model or reanalysis for detecting 66 
MC with the diameter of 300 km. However, in [6] demonstrated that 48% of MCs (including PLs) in 67 
the SH are characterized by the diameters smaller than 300 km. Thus, even the latest very high-68 
resolution ERA5 reanalysis [7,8] with its 31 km spatial resolution, will be unlikely effective for the 69 
detecting of MCs, as 48% of the MCs could be potentially missed or poorly resolved. In [4,6,9] it is 70 
demonstrated that both number of MCs and associated wind speeds in modern reanalyses are 71 
significantly underestimated compared to satellite observations of cloud signatures and wind speeds 72 
revealed by scatterometers in MCs. 73 

One might argue for the usage of operational analyses for detecting MCs, however these 74 
products are influenced by the changing over time model setting, performance of data assimilation 75 
system and the volume of assimilated data, thus leading to artificial trends in climatological time 76 
scales. Several studies adopted for MCs identification and tracking automated cyclone tracking 77 
algorithms originally developed for mid-latitude cyclones [9–12]. These algorithms were applied to 78 
the preprocessed (typically hi-pass filtered) reanalysis data and delivered climatological assessments 79 
of MC activity in reanalyses. However, reported estimates of MCs numbers, sizes and lifecycle 80 
characteristics vary significantly in these studies. 81 

In Zappa et al. [11] demonstrated that ECMWF operational analysis makes it possible to detect 82 
up to 70% of the observed PLs, that is much better, than ERA40 and ERA-Interim reanalyses (24% 83 
and 45% respectively [9]). Importantly, different hi-pass filters and combinations of criteria used for 84 
the post-processing of the MC tracking results may result in 30% spread in the number of PLs [11]. 85 
The chosen set of criteria typically represents a compromise between MC definition and data 86 
resolution. Laffineur et al. [9] used high-resolution model output (12 km, Meso-NH) with the the 87 
threshold on MC size being 500 km, and found the mean diameter of MC to be about 300 km. These 88 
results are in agreement with observational studies of [13] and [6], where reported the mean MC 89 
diameter of 350 and 300 km respectively. In a number of studies [11,12,14] the upper limit of MC 90 
diameter was set to 1000 km, resulting in the mean values between 500 and 800 km. Thus, the level 91 
of uncertainty in characteristics of MCs derived with automated tracking algorithms is still high, 92 
especially when compared to scheme-to-scheme uncertainties in identification and tracking 93 
midlatitude cyclones [15]. 94 

Satellite imagery of cloudiness represents another data source for identification and tracking of 95 
MCs. These data allow for visual identification of cloud signatures associated of MCs, however 96 
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manual procedure requires enormous effort for build long enough dataset. Pioneering work of 97 
Wilhemsen [16] used ten years of consecutive synoptic weather maps, coastal observational stations 98 
and several satellite images over the Norwegian and Barents Seas to describe local MCs activity. Later 99 
in the 1990s the number of instruments and satellite crossovers increased. This provoked many 100 
studies [17–23] evaluating characteristics of MCs in different regions of NH and SH. These studies 101 
identified of the major MCs generation regions, their dominant migration directions and cloudiness 102 
signature types associated with MCs. Increase in the amount of satellite data allowed for the 103 
development of the robust regional climatologies of MCs occurrence and characteristics. For the SH 104 
Carleton [22] used twice daily cloudiness imagery of the Western Antarctica and classified for the 105 
first time four types of cloud signatures associated with PLs (comma, spiral, transitional type, and 106 
merry-go-round). This classification has been confirmed later in a many works and is widely used 107 
now. Harold et al. [20,21] used daily images for building one of the most detailed dataset of MC 108 
characteristics for the Nordic Seas (Greenland, Norwegian, Iceland and Northern Seas). Also Harold 109 
et al. [20,21] developed a detailed description of the conventional methodology for the identification 110 
and tracking of MCs and PLs using satellite IR imageries. 111 

Importantly, most of studies of MCs activity are regional [13,24–27] and cover relatively short 112 
time periods [6] due to very costly and time consuming procedure of visual identification and 113 
tracking of MCs. Thus, development of the reliable long-term (multiyear) dataset covering the whole 114 
circumpolar Arctic or still remains a challenge. 115 

In the last years machine learning methods were found to be quite effective for the classification 116 
of different cloud characteristics such as solar disk state and cloud types. In [28–30] different machine 117 
learning techniques was used for recognizing cloud types. Methodologies employed included deep 118 
convolutional neural networks (DCNNs [31,32]), k-nearest-neighbor classifier and Support Vector 119 
Machine and fully-connected neural networks (FCNNs). Krinitskiy [33] used FCNNs for the 120 
detection of solar disk state and reported very high accuracy (96.4%) of his method. Liu et al. [34] 121 
applied DCNNs to the fixed-size multichannel images to detect extreme weather events and reported 122 
the success score of the detection of 89 to 99%. Huang et al. [35] applied the neural network they term 123 
“DeepEddy” to the synthetic aperture radar (SAR) images for detection of ocean meso- and 124 
submesoscale eddies. Their results are also characterized by high accuracy exceeding 96% success 125 
rate. However Deep Learning methods have never been applied for detecting MCs. 126 

DCNNs are known to demonstrate high skills in classification, pattern recognition, and semantic 127 
segmentation, when applied to the the 2-dimensional (2D) fields, such as images. The major 128 
advantage of DCNNs is the depth of processing of the input 2D field. Similarly to the processing 129 
levels of satellite data (L0, L1, L2, L3 etc.), which allow to retrieve e.g. wind speeds (L3 processing) 130 
from the raw remote measurements (L0), DCNNs are dealing with multiple levels of subsequent non-131 
linear processing of an input image. In contrast to the expert-designed algorithms, the neural network 132 
levels of processing (so-called layers) are built in a manner that is common within each specific layer 133 
type (convolutional, fully-connected, subsampling etc.). During the network training process these 134 
layers of a DCNN acquire the ability to extract a broad set of patterns of different scale from the initial 135 
data [36–39]. In this sense a trained DCNN closely simulates the visual pattern recognition process 136 
naturally used by human operator. There exist several state-of-the-art network architectures such as 137 
"AlexNet" [31], "VGG16" and "VGG19" [40], "Inception" of several subversions [41], "Xception" [42] 138 
and residual networks [43]. Each of these networks has been trained and tested using a range of 139 
datasets including the one that is considered as “reference” for the further image processing, the so-140 
called ImageNet [44]. Continuous development of all DCNNs aims to improve the accuracy of the 141 
ImageNet classification. Nowadays the existing architectures demonstrate high accuracy in this 142 
benchmark with the error rate from 16% to 2% [45]. 143 

Interpreting IR and WV satellite mosaics as images and assuming that a human expert detects 144 
MCs on these mosaics on the basis of his visual perception, application of DCNN, thus, closely 145 
simulates the visual recognition process and looks promising for the detection of MCs. Liu et al. [34] 146 
described a DCNN applied to the detection of tropical cyclones and atmospheric rivers in the 2D 147 
fields of surface pressure, temperature and precipitation stacked together into "image patches". 148 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2018                   doi:10.20944/preprints201809.0361.v1

http://dx.doi.org/10.20944/preprints201809.0361.v1


 4 of 22 

 

However, the proposed approach cannot be directly applied to the MC detection. This method is 149 
skillful for the detection of large-scale weather extremes that are discernible in reanalysis products, 150 
however MCs have hardly observable footprint in geophysical variables of reanalyses. 151 

In this study we apply Deep Learning (DL) technique [46–48] to the satellite IR and WV mosaics 152 
distributed by Antarctic Meteorological Research Center [49,50]. This allows for the automated 153 
identification of MCs cloud signatures. Our focus here exclusively on the capability of DCNNs to 154 
identify MCs from satellite imageries of cloudiness and/or water vapor, rather than on the DCNN-155 
based MC tracking. 156 

The paper is organized as follows. Section 2 describes the source data based on MC trajectories 157 
database [6]. Section 3 describes the development of the MC detection method based on deep 158 
convolutional neural networks and necessary data preprocessing. In section 4 we present the results 159 
of the application of the developed methodology. Section 5 summarizes the paper with the 160 
conclusions and provides the outlook. 161 

2. Data 162 
For the training of DCNNs we use MCs dataset for the Southern Ocean 163 

(SOMC, http://sail.ocean.ru/antarctica/) consisting of 1735 MC trajectories, resulting in 9252 MC 164 
locations and associated estimates of MC sizes [6] for the 4-months period (June, July, August, 165 
September) of 2004 (Figure 1a). The dataset was developed by visual identification and tracking of 166 
MCs using 976 consecutive 3-hourly satellite IR (10.3 - 11.3 micron) and WV (~6.7 microns) mosaics 167 
provided by the Antarctic Meteorological Research Center (AMRC) Antarctic Satellite Composite 168 
Imagery (AMRC ASCI) [49,50]. The dataset contains longitudes and latitudes of MC centers at each 169 
3-hourly time step of the MC track as well as MC diameter and the cloudiness signature type through 170 
the MC life cycle [6]. These characteristics were used along with the associated cloudiness patterns of 171 
MCs from the initial IR and WV mosaics for training DCNNs. 172 

AMRC ASCI mosaics spatially compose observations from geostationary and polar-orbiting 173 
satellites and cover the area to the South of the ~40°S with 3-hourly temporal and 5 km spatial 174 
resolution (Fig. 1bc). While the IR channel is widely used for MCs identification [20–22,25,26], we 175 
also additionally employ the WV channel imagery which provides a better accuracy over the ice-176 
covered ocean, where the IR images are potentially incorrect. 177 

 178 

 
Figure 1. The input for the deep convolutional neural networks (DCNNs). (a) Trajectories of all 179 
mesocyclones (MCs) in Southern Ocean MesoCylones (SOMC) dataset, blue dots mark the point of 180 
generation of MC. Snapshots of satellite mosaics for Southern Hemisphere for (b) InfraRed (IR) and 181 
(c) Water Vapor (WV) channels at 00:00 UTC 02/06/2004. The red/blue squares indicate patches 182 
centered over the MCs (red squares) and those having no MC cloudiness signature in (blue) being cut 183 
from the mosaics for DCNNs training. 184 

  185 
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3. Methodology 186 

3.1. Data preprocessing 187 
For training models, we first co-located a square (patch) of 100x100 mosaic pixels (500x500 km) 188 

with each MC center location from SOMC dataset (9252 locations in total) (Figure 2a-d). To ensure 189 
that (i) each patch covers only one MC and (ii) covers it completely, we require that MC diameter 190 
falls into 200-400 km range. Hereafter we call this set of samples ‘the true samples’. The chosen set of 191 
true samples includes 69% of the whole population of samples in SOMC dataset. We additionally 192 
also built the set of ‘false samples’ for DCNNs training. False samples were generated from the 193 
patches that do not consist of MC-associated cloudiness signatures (Figure 2e-h) according to the 194 
SOMC dataset. Table 1 summarizes the numbers of true and false samples that both make up source 195 
dataset for our further analysis of IR and WV mosaics. The total number of snapshots (both IR and 196 
WV) used is 11189 of which 6177 (55%) are the true samples and 5012 (45%) are the false samples (see 197 
Fig. 2). In order to unify images in the dataset we normalized them by the maximum and the 198 
minimum brightness temperature (in case of IR) over the whole dataset: 199 

௡௢௥௠ݔ =
ݔ − min(ܺ)

max(ܺ) − min(ܺ)
	, (1)

where ݔ denotes the individual sample (represented by a matrix of 100x100 pixels), ܺ is the whole 200 
dataset of 11189 IR snapshots. The same normalization was applied to WV snapshots. 201 
 202 

 
Figure 2. Examples (IR only) of true and false samples for DCNNs training and testing of DCNNs 203 
results assessment. 100x100 grid points (500x500km) patches of IR mosaics for (a-d) true samples and 204 
false (e-h) samples. 205 

3.2. Formulation of the problem 206 
We consider MC identification as a binary classification problem. As input we use the set of true 207 

and false samples (Figure 2), “objects” herein. We have developed two DCNN architectures 208 
following two conditional requirements: either (i) the object is described by the IR image only or (ii) 209 
the object is described by both IR and WV images. Since the training dataset is almost target-balanced 210 
(Table 1), assuming ~50/50 ratio of true/false samples, we further use the accuracy score as the 211 
measure of the classification quality. The accuracy score can not be used as a reliable quality measure 212 
of any machine learning method in the case of the unbalanced training dataset. For example, in the 213 
case of highly unbalanced dataset with the true/false ratio being 95/5 it is easy to achieve 95% 214 
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accuracy score by just letting the model to repeatedly produce only the true outcome. Thus, balancing 215 
the source dataset with false samples is critical for building the reliable classification model. 216 

 217 
Table 1. Total number of true and false samples. 218 

 True samples False samples Total samples 
IR 6177 (55%) 5012 (45%) 11189 (100%) 

WV 6177 (55%) 5012 (45%) 11189 (100%) 

3.3. Justification of using DCNN 219 

There is a set of best practices commonly used to construct DCNNs for solving classification 220 
problems [51]. While building and training DCNNs for MCs identifications we applied the technique 221 
proposed in [36] that implies the usage of consecutive convolutional layers which detect spatial data 222 
patterns, alternating with subsampling layers which reduce the sample dimensions. The set of these 223 
layers is followed by a set of so-called fully-connected (FC) layers representing a neural classifier. The 224 
whole model built in this manner represents a non-linear classifier capable of direct predicting a 225 
target value for the input sample. A very detailed description of this model architecture can be found 226 
in [36]. We will further term the FC layers set as "FC classifier", and the preceding part containing 227 
convolutional and pooling layers as "convolutional core" (see Figures 3,4). The outcome of the whole 228 
model is the probability of MC presence for the input sample. 229 

While handling multiple concurrent and spatially aligned geophysical fields it is important to 230 
choose suitable approach. LeCun [36] proposed the DCNN focused on the processing of only 231 
grayscale images meaning just one 2D field. In order to handle multiple 2D fields, they may be 232 
stacked together to form a 3D matrix by analogy with colorful images which have three color 233 
channels: red, green and blue. This approach can be applied when one uses pre-trained networks like 234 
AlexNet [31], VGG16 [40], ResNet [43] or similar architectures because of the original purpose of 235 
these networks to classify colorful images. However, this approach should be exploited carefully 236 
when applied to geophysical fields, because the mentioned networks were trained using massive 237 
datasets (e.g. ImageNet) of real photographed scenes, which means specific dependencies laying 238 
between channels (red, green and blue) within each image. In contrast to the stacking approach 239 
applied in [34] we use separate CNN branch for each channel (IR and WV) to ensure that we are not 240 
limiting the overall quality of the whole network (see Fig. 4). In the following we describe in details 241 
each DCNN architecture for both cases: IR+WV (Fig. 4) and IR alone (Fig. 3). 242 

Since we consider the binary classification, and the source dataset is almost target-balanced 243 
(see Tab. 1), we use as a quality measure the accuracy score or ܿܿܣ which is a rate of objects, classified 244 
correctly compared to the ground truth: 245 

ܿܿܣ = 	
1
‖࣮‖෍

పෝݕ] = [௜ݕ
࣮

	, (2)

where ࣮ denotes the dataset and ‖࣮‖ is its total samples count; ݕ௜ is expert-defined target value 246 
(ground truth), ݕపෝ  is the model decision whether the ݅-th object contain MC. 247 

In addition to the baseline which is the network proposed in [36] we applied a set of additional 248 
approaches commonly used to improve the DCNN accuracy and generalization ability 249 
(see Appendix A). Particularly we used Transfer Learning (TL) [52–57], Fine Tuning (FT) [58], 250 
Dropout (Do) [59] and dataset augmentation (DA) [60]. TL is a technique that allows to use the 251 
network of a specific architecture that was trained on a certain set of data, in a problem of a similar 252 
kind. It was shown [52–57] that application of TL approach allows to significantly increase 253 
classification quality. Specifically we use the VGG16 [40] network pre-trained on ImageNet [44] 254 
dataset. FT is a crucial stage for refining models being used with the TL technique applied, to adapt 255 
it to specific tasks and datasets [39] (i.e. to the problem of MCs detection). Dropout and dataset 256 
augmentation are the approaches applied to suppress the tendency of a DCNN to overfit meaning 257 
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the tendency to lose the classification quality evaluated on a never-seen testing data while preserving 258 
or improving the classification quality on a training set of data (see Appendix A). 259 

With these techniques applied in various combinations we constructed six DCNN architectures 260 
that are summarized in Table 2. All these architectures are built in the common manner: the one- (for 261 
IR only) or two-branched (for IR+WV) convolutional core is followed by the FC classifier. If the 262 
convolutional core is one-branched, its output is reshaped and resulting vector is input data for the 263 
corresponding FC classifier. If the convolutional core is two-branched, then the output of each branch 264 
is reshaped to a vector, and the concatenation product of the two vectors is the input data for the 265 
corresponding FC classifier. FC classifier includes hidden FC layers whose count varied from 2 to 4. 266 
Nodes (artificial neurons) count of FC1 which is the layer following the convolutional core, is 267 
randomly chosen from the set {128, 256, 512, 1024}. Each following FC layer size is twice less than 268 
preceding one, but not less than 128. The output layer is fully-connected as well and contains one 269 
output node. For example, the structure of FC classifier in terms of nodes count of layers might be 270 
the following: {512; 256; 128; 1}. All FC layers are alternated with dropout layers (see Appendix A) in 271 
order to prevent overfitting of the model. All trainable layers’ activation functions are Rectified 272 
Linear Unit (ReLU): 273 

(ݖ)ோ௘௅௎ߪ = max(0; (3) ,	(ݖ

except the output layer whose activation function is sigmoid: 274 

(ݖ)௦௜௚௠ߪ =
1

1 + ݁ିఏ௭ 	, (4)

where ߠ are layers’ trainable parameters. 275 
For each DCNN structure we trained a set of models as described in details in section 3.5. We 276 

also applied ensemble averaging (see Appendix A) of a set of models of identical configurations in a 277 
manner of averaging probabilities of true class for each object of the dataset. We term these six 278 
ensemble-averaged models the “second-order” models. We also applied ensemble averaging per 279 
sample of all trained DCNNs trained in this work. We term this model the “third-order” model. 280 

In order to measure the error of the network on each individual sample during the training 281 
process we use the binary cross-entropy as a loss function: 282 

ℒ =෍(ݕ௜logݕො௜ + (1 − (1	௜)logݕ − ((ො௜ݕ
ே

௜ୀ଴

	, (5)

where ݕ௜ is the expert-defined ground truth for the target value, ݕො௜ is the estimated probability of 283 
the ݅-th sample to be true, ܰ is samples count of the training set or a training mini-batch. This loss 284 
function is minimized in the space of the model weights using the method of backpropagation of 285 
error [61] denoted as “backprop training” in Figures 3,4. 286 

3.4. Proposed DCNN architectures 287 

Six DCNNs that we have constructed are able to perform binary classification on satellite 288 
mosaics data (IR alone or IR+WV) represented as grayscale 100x100px images: 289 
1. 1. CNN #1. This model is built “from scratch” which means we haven't used any pre-trained 290 

networks. CNN #1 is built in the manner proposed in [36]. We varied sizes of convolutional 291 
kernels of each convolutional layers from 3x3 to 5x5. We also varied sizes of subsampling layers’ 292 
receptive fields from 2x2 to 3x3. For each convolutional layers we varied the number of 293 
convolutional kernels: 8, 16, 32, 64 and 100. The network convolutional core consists of three 294 
convolutional layers alternated with subsampling layers. Each pair of convolutional and 295 
subsampling layers is followed by dropout layer. CNN #1 is one-branched and objects are 296 
described by IR snapshots only. 297 

2. CNN #2. This model is built “from scratch” with two separate branches - for IR and WV data. 298 
Convolutional core of each branch is built in the same manner as convolutional core for CNN #1 299 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2018                   doi:10.20944/preprints201809.0361.v1

http://dx.doi.org/10.20944/preprints201809.0361.v1


 8 of 22 

 

and as proposed in [36]. We varied the same parameters of the structure here in the same ranges 300 
as for CNN #1. 301 

3. CNN #3. This model is built with Transfer Learning approach. We used VGG16 pre-trained 302 
convolutional core to construct this model. None of VGG16 weights was optimized within this 303 
model and only the weights of the FC classifier were trainable. This model is one-branched and 304 
objects are described by IR snapshots only. CNN #3 structure is shown in Fig. 3. 305 

4. CNN #4. This model is two-branched, and each branch of convolutional core is built with 306 
Transfer Learning approach, in the same manner as convolutional core of CNN #3. Input data 307 
are IR and WV. None of VGG16 weights of this model in any of two branches was optimized 308 
and only the weights of the FC classifier were trainable. CNN #4 structure is shown in Fig. 4. 309 

5. CNN #5 is built with both Transfer Learning and Fine Tuning approaches. We built 310 
convolutional core of this model with the use of VGG16 pre-trained network. VGG16 311 
convolutional core consists of five similar blocks of layers. For the CNN #5 we turned the last of 312 
these five blocks to be trainable. This model is one-branched and objects are IR snapshots only. 313 
CNN #5 structure is shown in Fig. 3. 314 

6. CNN #6 is two-branched and branches of its convolutional core are built in the same manner as 315 
convolutional core of CNN #5. The last of five blocks of each VGG16 convolutional cores were 316 
turned to be trainable. Input data are IR and WV snapshots of dataset samples. CNN #6 structure 317 
is shown in Fig. 4. 318 

 
Figure 3. CNN #3 and CNN #5 structures. Green dots denote elements of the convolutional core 319 
output reshaped to a vector, which is the fully-connected classifier input data. 320 

 321 
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Figure 4. CNN #4 and CNN #6 structures. Green dots denote elements of convolutional cores outputs 322 
reshaped to vectors, which are, being concatenated to a combined features vector, the fully-connected 323 
classifier input data. 324 

3.5. Computational experiment design 325 
The following hyper-parameters are included in each of the six networks: 326 

 size of FC1 (its nodes number) 327 
 convolutional kernels count for each convolutional layer 328 
 sizes of convolutional kernels 329 
 sizes of receptive fields of subsampling layers 330 

The whole dataset was split into training (8952 samples) and testing (2237 samples) sets stratified 331 
by target value meaning that each set has the same (55:45) ratio of true/false samples as the whole 332 
dataset (i.e. 4924:4028 and 1253:984 samples in training and testing sets correspondingly). We have 333 
conducted hyper-parameters optimization for each of these DCNNs using stratified K-fold (K=5) 334 
cross-validation approach. We trained several (typically 14-18) models with the best 335 
hyper-parameters configuration on the training set for each architecture. Then we drop models with 336 
the maximal and minimal accuracy score estimated with the cross-validation approach. The rest of 337 
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the models are evaluated on the “never-seen by the model” testing set. We estimated the accuracy 338 
score for each individual model and also the variance of accuracy score for the particular architecture 339 
with the best hyper-parameters combination (see Table 2). 340 

With the ensemble averaging approach we evaluated the second-order models on the 341 
“never-seen by the model” testing set. As described in section 3.3 we estimated the optimal 342 
probability threshold ݌௧௛ for each second-order and third-order models (see Table 2) for the best 343 
accuracy score estimation. These scores are treated as the quality measure of each particular 344 
architecture. 345 

Numerical optimization and evaluation of models were performed on the basis of the Data 346 
Center of FEB RAS [62] and Deep Learning computational resources of Sea-Air Interactions 347 
Laboratory of IORAS (https://sail.ocean.ru/). Exploited computational nodes contain two graphics 348 
processing units (GPU) NVIDIA Tesla P100 16GB RAM. With these resources the total GPU time of 349 
calculations is 3792 hours. 350 

4. Results 351 
The designed DCNNs was applied for the detection of Antarctic MCs for the period from June 352 

to September 2004. Summary of the results of application of six models is presented in Table 2. As we 353 
noted above, each model is characterized by the utilized data source (IR alone or IR+WV, columns 354 
“IR” and “WV” in Table 2). These DCNNs are further categorized according to a chosen set of the 355 
applied techniques in addition to the basic approach (see Table 2 legend). Table 2 also provides 356 
accuracy scores and probability thresholds estimated as described in section 3.5, for individual, 357 
second- and third-order models of each architecture. 358 

 359 
Table 2. Accuracy score of each model with the best hyper-parameters combination. BA - basic 360 
approach [36], TL - transfer learning, FT - fine tuning, Do - dropout, DA - dataset augmentation. 361 ܿܿܣ 
is the accuracy score averaged across models of the particular architecture. AsEA is the accuracy score 362 
of the ensemble averaged models with the optimal probability threshold. ݌௧௛  is the optimal 363 
probability threshold value. 364 

model 
name IR WV BA TL FT Do DA ܿܿܣ AsEA ݌௧௛ 

CNN #1 X - X - - X X 86.89 ± 1.1 % 89.3 % 0.381 
CNN #2 X X X - - X X 94.1 ± 1.4 % 96.3 % 0.272 
CNN #3 X - X X - X X 95.8 ± 0.1 % 96.6 % 0.556 
CNN #4 X X X X - X X 95.5 ± 0.3 % 96.3 % 0.526 
CNN #5 X - X X X X X 96 ± 0.2 % 96.6 % 0.5715 
CNN #6 X X X X X X X 95.7 ± 0.2 % 96.4 % 0.656 
Third-order model CNN #1-6 averaged ensemble 97% 0.598 

 365 
As shown in Table 2, CNN #3 and CNN #5 demonstrated the best accuracy among the 366 

second-order models on a never-seen subset of objects. The best combination of hyper-parameters 367 
for these networks is presented in Appendix B. Confusion matrices and receiver operating 368 
characteristic (ROC) curves for these models are presented in Fig. 5 a-d. Confusion matrices and ROC 369 
curves for all evaluated models are presented in Appendix C. Figure 5 clearly shows that these two 370 
models perform almost equally for the true and the false samples. According to Table 2 the best 371 
accuracy score is reached using different probability thresholds for each second- or third-order 372 
model. 373 

Comparison of CNN #1, CNN #2 on one hand and the remaining models on the other hand 374 
shows that DCNNs built with the use of Transfer Learning technique demonstrate better 375 
performance compared to the models built “from scratch”. Moreover, accuracy score variances of 376 
CNN #1 and CNN #2 are higher than for the other architectures. Thus, models built with Transfer 377 
Learning approach seem to be more stable, and their generalization ability is better. 378 
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Comparing CNN #1 and CNN #2 qualities we may conclude that the use of an additional data 379 
source (WV) results in the significant increase of the the model accuracy score. Comparison of models 380 
within each pair of the network configurations (CNN #3 vs CNN #5; CNN #4 vs CNN #6) demonstrate 381 
that Fine Tuning approach does not provide significant improvement of the accuracy score in case of 382 
such a small size of dataset. It is also obvious that the averaging over the ensemble members does 383 
increase the accuracy score from 0.6% for CNN #5 to 2.41% for CNN #1. However, in some cases these 384 
score increases are comparable to the corresponding accuracy standard deviations. 385 

It is also clear from the last row of the Table 2, that the third-order model, which averages 386 
probabilities estimated by all trained models CNN #1-6, produces the accuracy of ܿܿܣ = 97% which 387 
outperforms all scores of individual models and second-order ensemble models. ROC curve and 388 
confusion matrices for this model are presented in Fig. 5ef. 389 

 390 

 
Figure 5. Confusion matrices and receiver operating characteristic curve for (a,b) CNN #3 and (c,d) 391 
CNN #5, both with the ensemble averaging approach applied (second-order models); and (e,f) third-392 
order model CNN #1-6 averaged ensemble. 393 
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 394 
Figure 6 demonstrates four main types of false classified objects. The first and the second types 395 

are the ones for which IR data are missing completely or partially. One more type is the one for which 396 
the source satellite data were suspected to be corrupted. These three types of classifier errors 397 
originating from the lack or corruption of the source data. For the fourth type the source satellite data 398 
were realistic but the classifier has done a mistake. Thus some of false classifications are the model 399 
mistakes, and some are associated with the labeling issue where human expert could guess on the 400 
MC propagation over the area with missing or corrupted satellite data. 401 

 402 

 
Figure 6. False classified objects. 403 

5. Conclusions and outlook 404 

In this study we present an adaptation of DCNN approach resulted in an algorithm for the 405 
detection of MCs from satellite imageries of cloudiness. The DCNN technique shows a very high 406 
accuracy in recognition of MCs cloud signatures, with the best accuracy score of 97% is reached by 407 
the usage of the third-order ensemble averaging model (6 models ensemble) and combination of both 408 
IR and WV images as input. We access the accuracy of MCs identification by comparison of identified 409 
MCs (true/false - image contain MC/no MC on the image parameter) with the reference dataset of [6]. 410 
We demonstrate that deep convolutional networks are capable for the effective detection of polar 411 
mesocyclone signatures in satellite imageries. 412 

It was also shown that the accuracy of MCs detection by DCNNs is sensitive to the single (IR 413 
only) or double (IR+WV) input data usage. IR+WV combination provide significant improvement of 414 
the detection of MCs and allow a weak DCNN (CNN #2) to detect MCs with higher accuracy 415 
compared to the weak CNN #1 (89.3% and 96.3% correspondingly). The computational cost of DCNN 416 
training and hyper-parameters optimization for deep neural networks are time- and computational-417 
consuming. However, once trained, the computational cost of the DCNN inference is low. 418 
Furthermore, the trained DCNN performs much faster compared to human expert. Another 419 
advantage of the proposed method is the low computational cost of data preprocessing that allows 420 
to process satellite imageries in real time or to process large amounts of collected satellite data. 421 

We plan to extend the usage of this set of DCNNs (Table 2) for the development of MCs tracking 422 
method based on machine learning and satellite IR and WV mosaics. These efforts would be mainly 423 
focused onto the development of the optimal choice of the “cut-off” window that has to be applied 424 
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to the satellite mosaic. In the case of sliding-window approach (e.g. running the 500x500km sliding 425 
window through the mosaics) the virtual testing dataset of the whole mosaic is highly unbalanced, 426 
so a model with non-zero FPR evaluated on balanced dataset would produce much higher FPR. In 427 
the future, instead of the sliding-window, the Unet-like [63] architecture should be considered with 428 
the binary semantic segmentation problem formulation. Considering MC tracking development, an 429 
approach proposed in a number of face recognition studies should be reassuring [64,65]. This 430 
approach can be applied in a manner of triple-based training of the DCNN to estimate a measure of 431 
similarity between one particular MC signatures in consecutive satellite mosaics. 432 
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Appendix A. DCNN best practices and additional techniques 450 
There is a set of best practices commonly used to construct DCNNs for solving classification 451 

problems [51]. Modern DCNNs are built on the basis of consecutive convolutional and subsampling 452 
layers by performing nonlinear transformation of the initial data (see Fig. 2 in [36]). The primary layer 453 
type of convolutional neural networks (CNNs) is the so-called convolutional layer which is designed 454 
to extract visual patterns density map using discrete convolution operation with ܭ (tends to be from 455 
3 to 1000) kernels followed by a nonlinear transformation operation (activation function). One 456 
additional layer type is a pooling layer performing subsampling operation with one of the following 457 
aggregation functions: maximum, minimum, mean or others. In the current practice the maximum is 458 
used. 459 

Since the LeNet DCNN [36] several works [36–39] demonstrated that the usage of consecutive 460 
convolutional and subsampling layers results in a skillful detection of various spatial patterns from 461 
the input 2D sample. The approach proposed in [36] implies the use of the output of these stacked 462 
layers set as an input data for a classifier, which in general may be any method suitable for 463 
classification problems, such as linear models, logistic regression, etc. In [36] it is suggested to use the 464 
neural classifier, and this is now conventional approach. The advantage of using a neural classifier is 465 
the ability to train the whole model at once (the so-called end-to-end training). 466 

The whole model built in this manner represents a classifier capable of direct predicting a target 467 
value for the sample. We term the fully-connected (FC) layers set as "FC classifier", and the preceding 468 
part containing convolutional and pooling layers as "convolutional core" (see Figures 3,4). 469 

 470 
For building a DCNN it is important to account for data dimensionality during its 471 

transformations from layer to layer. The input for a DCNN is an image  represented by a matrix of 472 
the size (ℎ, ,ݓ ݀), where ℎ and ݓ correspond to the image height and width in pixels, ݀ is its levels 473 
number, the so-called depth (e.g., ݀ = 3 when levels are red, green and blue channels of a colorful 474 
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image). For the integrated water vapor or radio-brightness temperature, ݀ = 1. A convolutional layer 475 
and subsampling layer are described in details in [36]. Convolutional layers are characterized by their 476 
kernel sizes (e.g. 3x3, 5x5), their kernel numbers ܭ and the nonlinear operation used (e.g. ݊ܽݐℎ in 477 
[36]). Subsampling layers are characterized by their receptive field sizes e.g. 3x3, 5x5 etc. The output 478 
of a convolutional layer with ܭ kernels is the so-called feature maps which is a matrix of the size 479 
(ℎ, (ܭ,ݓ . The nonlinear operation transforms it to a matrix of size (ℎ, ,ݓ 1) . The following 480 
subsampling layer reduces the matrix size depending on the subsampling layer kernel size. Typically, 481 
this size is (2, 2) or (3, 3). Thus, the subsampling operation reduces the sample size by a factor 2 or 3, 482 
respectively. The output of a convolutional core is a set of abstract feature maps which is represented 483 
by a 3D matrix. This matrix, being reshaped into a vector, is passed as the input to the FC classifier 484 
(see Figures 3,4). The outcome of the the whole model is the probability of each class for the input 485 
sample. In the case of binary classification, the FC classifier has one output unit, producing 486 
probability of MC presence for the input sample. 487 

 488 
In addition to the basic approach proposed in [36] a number of techniques may be applied. Using 489 

them one can construct and train DCNNs of various accuracy and various generalization abilities 490 
which is characterized by the quality of a model estimated on a never-seen test data. 491 

A.1. Transfer learning 492 
One of the additional approaches is Transfer Learning [52–57]. Generally, this technique focuses 493 

on storing the knowledge obtained by some network while being trained for one problem and 494 
applying it to another problem of a similar kind. In practice, this approach implies the DCNN 495 
structure to be built using some part of a network previously trained on a considerable amount of 496 
data, for example, ImageNet [44]. In these terms, VGG16 [40] is not only an efficient architecture, but 497 
also the pre-trained network containing optimized weights values (also known as network 498 
parameters). Best practice for building a new advanced DCNN based on transfer learning approach 499 
is to compose it using convolutional core of the pre-trained model (e.g. VGG16) followed by a new 500 
FC neural classifier. Weights of the convolutional part in this case are fixed, and only FC part is 501 
optimized. In this approach, the convolutional core may be considered as a feature extractor (see 502 
[36]), which computes a highly relevant low-dimensional (compared to original samples 503 
dimensionality) vector, representing the data (e.g. “reshaped to vector” output of the convolutional 504 
core in Fig. 3). 505 

A.2. Fine Tuning 506 
Transfer Learning approach relies on the similarity of data distributions within two datasets. 507 

But in the case of significant differences, for example in terms of Kullback–Leibler divergence 508 
between some particular feature approximated probability distributions, the new FC classifier 509 
capabilities may not cover all those differences. In this case, some layers of the convolutional core, 510 
that are close to FC classifier, can be turned on to be optimized (the so-called Fine Tuning). Regarding 511 
DCNNs application to satellite mosaics, we have to consider that VGG16 was optimized on ImageNet 512 
dataset which contains everyday-observed objects like buildings, dogs, cats, cars etc., without any 513 
satellite imageries or even clouds. So FT approach can be considered as a promising approach when 514 
composing MC-detecting DCNN at IR and WV satellite mosaics data. 515 

A.3. Preventing overfitting 516 
Machine learning models and neural networks in particular may vary in terms of complexity. In 517 

the case of too strong model there exist an overfitting problem: the effect of poor target prediction 518 
quality on unseen data concurrently with nearly exact prediction of target values on training data. 519 
There are several state-of-the-art approaches to prevent overfitting of neural networks. We used most 520 
fruitful and reliable ones are: dropout [59] and data augmentation also called auxiliary variables [60]. 521 
We also used ensemble averaging of models outcome. 522 
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A.4. Preventing overfitting with dropout 523 

Dropout approach is the way of preventing overfit with a computationally inexpensive but still 524 
powerful method of regularizing neural networks through bagging [66] and virtually ensembling 525 
models of similar architecture. Bagging involves training multiple models and testing each of them 526 
on test samples. Since training and evaluating of deep neural networks tend to be time-consuming 527 
and computationally expensive, the original bagging approach [66] seems to be impractical. With the 528 
dropout approach applied, the network may be thought as an ensemble of all sub-networks that can 529 
be composed by removing non-output nodes from the base network. In practice, this approach is 530 
implemented by dropout layer which turns the preceding layer output to zero for each node with 531 
some probability ݌. This procedure repeats for each mini-batch at the training time. At the inference 532 
time, the dropout approach involves network weights scaling by 1/݌. Each of our models includes 533 
dropout layers between trainable layers. Rate ݌ was set to 0.1 for each dropout layer of each model. 534 

A.5. Preventing overfitting with dataset augmentation 535 
Dataset augmentation is the state-of-the-art way to make a machine learning model generalize 536 

better. When available dataset size is limited, the way to get around is to generate fake data which 537 
should be similar to real samples. Best practice for DCNNs is generating fake samples adding some 538 
noise or applying slight transformations like shift, shear, rotation, scaling etc. Formally, with data 539 
augmentation one can increase variability of features of the original dataset and substantially extend 540 
its size. This approach often improves generalization ability of the trained model. 541 

We trained each of our models with data augmentation approach applied. The rotation angle 542 
range was 90° in both direction; independent width and height scaling performed within range from 543 
0.8 to 1.2; zoom range from 0.8 to 1.2; shear angle range from -2° to 2°. We didn't use flipping 544 
upside-down and left-to-right. 545 

A.6. Preventing overfitting with ensemble averaging 546 

In general, during the parameters optimization (learning process) each DCNN converges to a 547 
local minimum of the loss function in the space of its weights. The training process starts from a 548 
randomly generated point of this space. So due to a non-convexity of loss function, every new DCNN 549 
model converges to a new local minimum. Some models may converge to a minimum that is not 550 
really close to a global one in terms of loss function value, and thus the quality measure of that model 551 
remains poor. Other models may converge to a good minimum that is close to a global one in terms 552 
of loss function value, but this proximity may lead to a poor generalization ability which means low 553 
quality measure estimated on a testing subset of data. There are approaches for improving the 554 
generalization ability of several models that are generally similar, but differ in detailed predictions. 555 
In our study we applied simple ensemble averaging [67], which is one of state-of-the-art approaches 556 
for improving machine learning models generalization ability. With this approach several models of 557 
each architecture are trained, and probabilities of these models are averaged. The prediction of this 558 
model is treated as an ensemble outcome: 559 

௜݌ =
෍ ௜݌

(௠)
ெ

௠ୀ଴
ܯ 	, 

(A1)

where ݌௜ is the estimated probability of the ensemble of ܯ models for ݅-th sample to be true; each 560 
݉-th model`s probability estimation for ݅-th sample to be true is ݌௜

(௠) . In this study we applied 561 
ensembling on DCNNs of identical architectures. The resulting models we term second-order models 562 
in this study. They are synthetic ones that are not trained, but are ensembles. 563 

IR+WV snapshots or IR snapshot alone are essentially the object description, and each model 564 
that is presented in our study produces the outcome for each object regardless of the description - 565 
whether it is IR snapshot alone or IR+WV snapshots. So there is an opportunity to average probability 566 
outcomes of all the models of this study. The resulting model that produces averaged probabilities 567 
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of the ensemble containing all trained models we term third-order model. It is a synthetic one that is 568 
not trained, but is an ensemble. 569 

A.7. Adjustment of the probability threshold 570 
The outcome of each model of this study is the estimation of the probability for the sample to be 571 

true (i.e. to present an MC). So there is arbitrariness in choosing the threshold of this probability to 572 
get the outcome which is binary. The most common way to choose this threshold is the ROC curve 573 
analysis. Each point of this curve represents the False Positive Rate (FPR) and True Positive Rate 574 
(TPR) combination for the particular probability threshold ݌௧௛  (e.g. see Fig. 5bdf). The model 575 
performing true random choice between true and false outcome has a ROC curve on the main 576 
diagonal of this plot. The ROC curve of the perfect classifier follows from the point (0.0, 0.0) straight 577 
to the point (0.0, 1.0) and then to the point (1.0, 1.0). The area under the ROC curve (AUC ROC) may 578 
be considered as a measure of model quality. The best model AUC ROC is 1.0, the true random choice 579 
model AUC ROC is 0.5, and the worst model AUC ROC is 0.0. 580 

In a range of cases the best accuracy score might not be reached with ݌௧௛ = 0.5. The lines of equal 581 
accuracy score, as presented in Fig. 5bdf, are diagonal. In case of perfect 50/50 ratio of true/false 582 
samples they are parallel to the main diagonal. In case of slight inequality of true and false samples 583 
count these lines have slightly different slope as shown in Fig. 5bdf. For each accuracy score there are 584 
two, one or no points of the ROC curve intersection with the accuracy isoline. So if a model is 585 
represented with a ROC curve, the maximum value of its ܿܿܣ is located at the point of this curve 586 
where the accuracy isoline is tangent to it. For each model of this study including second- and third-587 
order models the optimal probability threshold was estimated based on ROC curve analysis. 588 

Appendix B. CNN #3 and CNN #5 Best hyper-parameters combinations. 589 
According to section 3.4, CNN #3 and CNN #5 are both constructed to have one-branched 590 

convolutional core. Best combination of hyper-parameters of these networks are the same. The only 591 
difference is the FT approach that was applied in case of CNN #5. 592 

 593 
Table B1. CNN #3 and CNN #5 best hyper-parameters combination. 594 

Layer (block) name Layer (block) nodes count or 
output dimensions 

Connected to 

Input_data_IR 100x100 - 
VGG_16_conv_core see [40]; output: 3x3x512 Input_data_IR 

Reshape_1 4608 VGG_16_conv_core 
Dropout_1 4608 Reshape_1 

FC1 1024 Dropout_1 
Dropout_2 1024 FC1 

FC2 512 Dropout_2 
Dropout_3 512 FC2 

FC3 256 Dropout_3 
Dropout_4 256 FC3 

FC4 128 Dropout_4 
FC_output 1 FC3 

 595 

Appendix C. Detailed performance metrics of all DCNN models. 596 
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Figure C1. Confusion matrices for all models and the third-order model CNN #1-6 averaged 597 
ensemble, computed on test never-seen subset of data. For each architecture the ensemble averaging 598 
technique is applied. 599 
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Figure C2. Receiver operating characteristic curves computed on test never-seen subset of data for all 600 
models. For each architecture the ensemble averaging technique is applied.  601 
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