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12 Abstract: Polar mesocyclones (MCs) are small in size marine atmospheric phenomena accompanied
13 by extremely strong surface winds and heat fluxes and thus largely influencing deep ocean water
14 formation in the polar regions. Accurate detection of polar mesocyclones in high-resolution satellite
15 data, while challenging, is a time-consuming task, when performed manually. Existing algorithms
16 for the automatic detection of polar mesocyclones are based on the conventional analysis of patterns
17 of cloudiness and involve different empirically defined thresholds of geophysical variables. As a
18 result, different detection methods typically reveal very different results when applied to a single
19 dataset. We present a conceptually novel approach for the detection of MCs based upon the use of
20 deep convolutional neural networks (DCNNs). The training dataset is based on the reference
21 database of manually tracked from satellite mosaics MCs in the Southern Hemisphere. This dataset

22 is further used for testing several different setups of DCNN, specifically, DCNN “from scratch”,
23 DCNN based on VGG16 pre-trained weights engaging also the Transfer Learning technique, and
24 DCNN based on VGG16 with Fine Tuning technique. Each of these networks is further applied to
25 both IR and IR+WYV satellite imagery. The best skills (97% of the binary classification accuracy score)
26 is achieved with DCNN based on VGG16 pre-trained weights with both Transfer Learning and Fine
27 Tuning techniques applied. The algorithm can be further extended to the automatic identification

28 and tracking numerical scheme and applied to the other atmospheric phenomena characterized by
29 a distinct signature on satellite imagery.

30 Keywords: deep learning, convolutional neural networks, polar mesocyclones, satellite data
31 processing, pattern recognition

32

33 Nomenclature

34 BCE - binary cross-entropy

35 CNN - convolutional neural network

36 DCNN - deep convolutional neural network
37 DL - deep learning

38 FC - fully-connected

39 FNR - false negative rate

40 FPR - false positive rate

41 IR - infrared

42 MC - mesocyclone

43 NH - Northern Hemisphere

44 ROC - receiver operator characteristic

45 AUC ROC - area under the curve of receiver operator characteristic
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46 SH - Southern Hemisphere
47 SOMC - Shirshov Institute of Oceanology mesocyclone dataset for Southern Ocean
48 TNR - true negative rate
49 TPR - true positive rate
50 WYV - integrated water vapor
51 1. Introduction
52 Polar mesoscale cyclones (MCs) are intense high-latitude marine atmospheric vortices. Their

53 sizes range from 200 to 1000 km with the lifetimes spanning from 6 to 36 hours [1]. Specific type of
54 mesocyclones (the so-called polar lows, PLs) is characterized by the surface wind of more than 15 m/s
55  and strong surface fluxes. These PLs have a significant impact on the local weather conditions causing
56  rough sea. Being relatively small in size (compared to the extratropical cyclones), MCs contribute
57  significantly to the generation of extreme air-sea fluxes and initialize intense surface transformation
58  of water masses resulting in the formation of ocean deep waters [2-4]. These processes are most
59  intense in the Weddel and Bellingshausen Seas in the Southern hemisphere and in the Labrador,
60  Greenland, Norway and Barents Seas in the Northern Hemisphere.

61 Being critically important for many oceanographic and meteorological applications, MCs are
62  hardly detectable in different reanalysis datasets, mostly due to inadequate resolution of the
63  products.

64 The spatial resolution of the modern reanalyses still does not MCs permit for the accurate
65  identification of MCs. In [5] it is argued for at least 10 by 10 grid points necessary for effective
66  capturing the MC. This implies about 30 km spatial resolution in the model or reanalysis for detecting
67  MC with the diameter of 300 km. However, in [6] demonstrated that 48% of MCs (including PLs) in
68  the SH are characterized by the diameters smaller than 300 km. Thus, even the latest very high-
69  resolution ERAS5 reanalysis [7,8] with its 31 km spatial resolution, will be unlikely effective for the
70 detecting of MCs, as 48% of the MCs could be potentially missed or poorly resolved. In [4,6,9] it is
71 demonstrated that both number of MCs and associated wind speeds in modern reanalyses are
72 significantly underestimated compared to satellite observations of cloud signatures and wind speeds
73 revealed by scatterometers in MCs.

74 One might argue for the usage of operational analyses for detecting MCs, however these
75  products are influenced by the changing over time model setting, performance of data assimilation
76  system and the volume of assimilated data, thus leading to artificial trends in climatological time
77  scales. Several studies adopted for MCs identification and tracking automated cyclone tracking
78  algorithms originally developed for mid-latitude cyclones [9-12]. These algorithms were applied to
79  the preprocessed (typically hi-pass filtered) reanalysis data and delivered climatological assessments
80  of MC activity in reanalyses. However, reported estimates of MCs numbers, sizes and lifecycle
81  characteristics vary significantly in these studies.

82 In Zappa et al. [11] demonstrated that ECMWEF operational analysis makes it possible to detect
83 up to 70% of the observed PLs, that is much better, than ERA40 and ERA-Interim reanalyses (24%
84  and 45% respectively [9]). Importantly, different hi-pass filters and combinations of criteria used for
85  the post-processing of the MC tracking results may result in 30% spread in the number of PLs [11].
86  The chosen set of criteria typically represents a compromise between MC definition and data
87  resolution. Laffineur et al. [9] used high-resolution model output (12 km, Meso-NH) with the the
88  threshold on MC size being 500 km, and found the mean diameter of MC to be about 300 km. These
89  results are in agreement with observational studies of [13] and [6], where reported the mean MC
90  diameter of 350 and 300 km respectively. In a number of studies [11,12,14] the upper limit of MC
91 diameter was set to 1000 km, resulting in the mean values between 500 and 800 km. Thus, the level
92 of uncertainty in characteristics of MCs derived with automated tracking algorithms is still high,
93  especially when compared to scheme-to-scheme uncertainties in identification and tracking
94 midlatitude cyclones [15].

95 Satellite imagery of cloudiness represents another data source for identification and tracking of
96  MCs. These data allow for visual identification of cloud signatures associated of MCs, however
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97  manual procedure requires enormous effort for build long enough dataset. Pioneering work of

98  Wilhemsen [16] used ten years of consecutive synoptic weather maps, coastal observational stations

99  and several satellite images over the Norwegian and Barents Seas to describe local MCs activity. Later
100  in the 1990s the number of instruments and satellite crossovers increased. This provoked many
101  studies [17-23] evaluating characteristics of MCs in different regions of NH and SH. These studies
102 identified of the major MCs generation regions, their dominant migration directions and cloudiness
103 signature types associated with MCs. Increase in the amount of satellite data allowed for the
104  development of the robust regional climatologies of MCs occurrence and characteristics. For the SH
105  Carleton [22] used twice daily cloudiness imagery of the Western Antarctica and classified for the
106 first time four types of cloud signatures associated with PLs (comma, spiral, transitional type, and
107  merry-go-round). This classification has been confirmed later in a many works and is widely used
108  now. Harold et al. [20,21] used daily images for building one of the most detailed dataset of MC
109  characteristics for the Nordic Seas (Greenland, Norwegian, Iceland and Northern Seas). Also Harold
110 etal. [20,21] developed a detailed description of the conventional methodology for the identification
111 and tracking of MCs and PLs using satellite IR imageries.
112 Importantly, most of studies of MCs activity are regional [13,24-27] and cover relatively short
113 time periods [6] due to very costly and time consuming procedure of visual identification and
114 tracking of MCs. Thus, development of the reliable long-term (multiyear) dataset covering the whole
115 circumpolar Arctic or still remains a challenge.
116 In the last years machine learning methods were found to be quite effective for the classification
117  of different cloud characteristics such as solar disk state and cloud types. In [28-30] different machine
118  learning techniques was used for recognizing cloud types. Methodologies employed included deep
119  convolutional neural networks (DCNNs [31,32]), k-nearest-neighbor classifier and Support Vector
120 Machine and fully-connected neural networks (FCNNSs). Krinitskiy [33] used FCNNs for the
121 detection of solar disk state and reported very high accuracy (96.4%) of his method. Liu et al. [34]
122 applied DCNN:Ss to the fixed-size multichannel images to detect extreme weather events and reported
123 the success score of the detection of 89 to 99%. Huang et al. [35] applied the neural network they term
124 “DeepEddy” to the synthetic aperture radar (SAR) images for detection of ocean meso- and
125  submesoscale eddies. Their results are also characterized by high accuracy exceeding 96% success
126  rate. However Deep Learning methods have never been applied for detecting MCs.
127 DCNN’s are known to demonstrate high skills in classification, pattern recognition, and semantic
128  segmentation, when applied to the the 2-dimensional (2D) fields, such as images. The major
129  advantage of DCNNs is the depth of processing of the input 2D field. Similarly to the processing
130 levels of satellite data (LO, L1, L2, L3 etc.), which allow to retrieve e.g. wind speeds (L3 processing)
131  from the raw remote measurements (L0), DCNNs are dealing with multiple levels of subsequent non-
132 linear processing of an input image. In contrast to the expert-designed algorithms, the neural network
133 levels of processing (so-called layers) are built in a manner that is common within each specific layer
134 type (convolutional, fully-connected, subsampling etc.). During the network training process these
135  layers of a DCNN acquire the ability to extract a broad set of patterns of different scale from the initial
136  data [36-39]. In this sense a trained DCNN closely simulates the visual pattern recognition process
137  naturally used by human operator. There exist several state-of-the-art network architectures such as
138 "AlexNet" [31], "VGG16" and "VGG19" [40], "Inception” of several subversions [41], "Xception" [42]
139 and residual networks [43]. Each of these networks has been trained and tested using a range of
140  datasets including the one that is considered as “reference” for the further image processing, the so-
141  called ImageNet [44]. Continuous development of all DCNNss aims to improve the accuracy of the
142 ImageNet classification. Nowadays the existing architectures demonstrate high accuracy in this
143 benchmark with the error rate from 16% to 2% [45].
144 Interpreting IR and WYV satellite mosaics as images and assuming that a human expert detects
145  MCs on these mosaics on the basis of his visual perception, application of DCNN, thus, closely
146  simulates the visual recognition process and looks promising for the detection of MCs. Liu et al. [34]
147  described a DCNN applied to the detection of tropical cyclones and atmospheric rivers in the 2D
148  fields of surface pressure, temperature and precipitation stacked together into "image patches".
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149  However, the proposed approach cannot be directly applied to the MC detection. This method is
150  skillful for the detection of large-scale weather extremes that are discernible in reanalysis products,
151  however MCs have hardly observable footprint in geophysical variables of reanalyses.

152 In this study we apply Deep Learning (DL) technique [46—48] to the satellite IR and WV mosaics
153  distributed by Antarctic Meteorological Research Center [49,50]. This allows for the automated
154  identification of MCs cloud signatures. Our focus here exclusively on the capability of DCNNs to
155  identify MCs from satellite imageries of cloudiness and/or water vapor, rather than on the DCNN-
156  based MC tracking,.

157 The paper is organized as follows. Section 2 describes the source data based on MC trajectories
158  database [6]. Section 3 describes the development of the MC detection method based on deep
159  convolutional neural networks and necessary data preprocessing. In section 4 we present the results
160  of the application of the developed methodology. Section 5 summarizes the paper with the
161  conclusions and provides the outlook.

162  2.Data

163 For the training of DCNNs we use MCs dataset for the Southern Ocean
164  (SOMC, http://sail.ocean.ru/antarctica/) consisting of 1735 MC trajectories, resulting in 9252 MC
165 locations and associated estimates of MC sizes [6] for the 4-months period (June, July, August,
166  September) of 2004 (Figure 1a). The dataset was developed by visual identification and tracking of
167  MCs using 976 consecutive 3-hourly satellite IR (10.3 - 11.3 micron) and WV (~6.7 microns) mosaics
168  provided by the Antarctic Meteorological Research Center (AMRC) Antarctic Satellite Composite
169  Imagery (AMRC ASCI) [49,50]. The dataset contains longitudes and latitudes of MC centers at each
170 3-hourly time step of the MC track as well as MC diameter and the cloudiness signature type through
171  the MC life cycle [6]. These characteristics were used along with the associated cloudiness patterns of
172 MCs from the initial IR and WV mosaics for training DCNNSs.

173 AMRC ASCI mosaics spatially compose observations from geostationary and polar-orbiting
174  satellites and cover the area to the South of the ~40°S with 3-hourly temporal and 5 km spatial
175  resolution (Fig. 1bc). While the IR channel is widely used for MCs identification [20-22,25,26], we
176  also additionally employ the WV channel imagery which provides a better accuracy over the ice-
177 covered ocean, where the IR images are potentially incorrect.

178
10°wW 20°w 30°W  40°W 50°W 60‘{1 70"\(1 80w 90w

179 Figure 1. The input for the deep convolutional neural networks (DCNNSs). (a) Trajectories of all
180 mesocyclones (MCs) in Southern Ocean MesoCylones (SOMC) dataset, blue dots mark the point of
181 generation of MC. Snapshots of satellite mosaics for Southern Hemisphere for (b) InfraRed (IR) and
182 (c) Water Vapor (WV) channels at 00:00 UTC 02/06/2004. The red/blue squares indicate patches
183 centered over the MCs (red squares) and those having no MC cloudiness signature in (blue) being cut
184 from the mosaics for DCNNs training.

185
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186 3. Methodology
187  3.1. Data preprocessing
188 For training models, we first co-located a square (patch) of 100x100 mosaic pixels (500x500 km)

189  with each MC center location from SOMC dataset (9252 locations in total) (Figure 2a-d). To ensure
190  that (i) each patch covers only one MC and (ii) covers it completely, we require that MC diameter
191  falls into 200-400 km range. Hereafter we call this set of samples ‘the true samples’. The chosen set of
192 true samples includes 69% of the whole population of samples in SOMC dataset. We additionally
193 also built the set of ‘false samples’ for DCNNs training. False samples were generated from the
194  patches that do not consist of MC-associated cloudiness signatures (Figure 2e-h) according to the
195  SOMC dataset. Table 1 summarizes the numbers of true and false samples that both make up source
196  dataset for our further analysis of IR and WV mosaics. The total number of snapshots (both IR and
197  WV) used is 11189 of which 6177 (55%) are the true samples and 5012 (45%) are the false samples (see
198  Fig. 2). In order to unify images in the dataset we normalized them by the maximum and the
199  minimum brightness temperature (in case of IR) over the whole dataset:
x — min(X)
Xnorm = ; ’ @
max(X) — min(X)

200  where x denotes the individual sample (represented by a matrix of 100x100 pixels), X is the whole
201  dataset of 11189 IR snapshots. The same normalization was applied to WV snapshots.

202

TRUE samples (MC presented)
203 Figure 2. Examples (IR only) of true and false samples for DCNNSs training and testing of DCNNs
204 results assessment. 100x100 grid points (500x500km) patches of IR mosaics for (a-d) true samples and
205 false (e-h) samples.

206 3.2. Formulation of the problem

207 We consider MC identification as a binary classification problem. As input we use the set of true
208  and false samples (Figure?2), “objects” herein. We have developed two DCNN architectures
209  following two conditional requirements: either (i) the object is described by the IR image only or (ii)
210  the object is described by both IR and WV images. Since the training dataset is almost target-balanced
211  (Table 1), assuming ~50/50 ratio of true/false samples, we further use the accuracy score as the
212 measure of the classification quality. The accuracy score can not be used as a reliable quality measure
213 of any machine learning method in the case of the unbalanced training dataset. For example, in the
214 case of highly unbalanced dataset with the true/false ratio being 95/5 it is easy to achieve 95%
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215  accuracy score by just letting the model to repeatedly produce only the true outcome. Thus, balancing
216  the source dataset with false samples is critical for building the reliable classification model.

217
218 Table 1. Total number of true and false samples.

True samples  False samples  Total samples
IR 6177 (55%) 5012 (45%) 11189 (100%)
WV 6177 (55%) 5012 (45%) 11189 (100%)

219  3.3. Justification of using DCNN

220 There is a set of best practices commonly used to construct DCNNs for solving classification
221  problems [51]. While building and training DCNNs for MCs identifications we applied the technique
222 proposed in [36] that implies the usage of consecutive convolutional layers which detect spatial data
223  patterns, alternating with subsampling layers which reduce the sample dimensions. The set of these
224  layersis followed by a set of so-called fully-connected (FC) layers representing a neural classifier. The
225  whole model built in this manner represents a non-linear classifier capable of direct predicting a
226  target value for the input sample. A very detailed description of this model architecture can be found
227  in [36]. We will further term the FC layers set as "FC classifier", and the preceding part containing
228  convolutional and pooling layers as "convolutional core" (see Figures 3,4). The outcome of the whole
229  model is the probability of MC presence for the input sample.

230 While handling multiple concurrent and spatially aligned geophysical fields it is important to
231  choose suitable approach. LeCun [36] proposed the DCNN focused on the processing of only
232 grayscale images meaning just one 2D field. In order to handle multiple 2D fields, they may be
233 stacked together to form a 3D matrix by analogy with colorful images which have three color
234 channels: red, green and blue. This approach can be applied when one uses pre-trained networks like
235 AlexNet [31], VGG16 [40], ResNet [43] or similar architectures because of the original purpose of
236  these networks to classify colorful images. However, this approach should be exploited carefully
237  when applied to geophysical fields, because the mentioned networks were trained using massive
238  datasets (e.g. ImageNet) of real photographed scenes, which means specific dependencies laying
239  between channels (red, green and blue) within each image. In contrast to the stacking approach
240  applied in [34] we use separate CNN branch for each channel (IR and WV) to ensure that we are not
241  limiting the overall quality of the whole network (see Fig. 4). In the following we describe in details
242 each DCNN architecture for both cases: IR+WYV (Fig. 4) and IR alone (Fig. 3).

243 Since we consider the binary classification, and the source dataset is almost target-balanced
244  (see Tab. 1), we use as a quality measure the accuracy score or Acc which is a rate of objects, classified
245  correctly compared to the ground truth:

1
A = — Al =y,
CC= T ET [¥. = yil @)

246 where T denotes the dataset and ||T| is its total samples count; y; is expert-defined target value
247  (ground truth), ¥, is the model decision whether the i-th object contain MC.

248 In addition to the baseline which is the network proposed in [36] we applied a set of additional
249  approaches commonly used to improve the DCNN accuracy and generalization ability
250  (see Appendix A). Particularly we used Transfer Learning (TL) [52-57], Fine Tuning (FT) [58],
251 Dropout (Do) [59] and dataset augmentation (DA) [60]. TL is a technique that allows to use the
252 network of a specific architecture that was trained on a certain set of data, in a problem of a similar
253  kind. It was shown [52-57] that application of TL approach allows to significantly increase
254  classification quality. Specifically we use the VGG16 [40] network pre-trained on ImageNet [44]
255  dataset. FT is a crucial stage for refining models being used with the TL technique applied, to adapt
256 it to specific tasks and datasets [39] (i.e. to the problem of MCs detection). Dropout and dataset
257  augmentation are the approaches applied to suppress the tendency of a DCNN to overfit meaning
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258  thetendency to lose the classification quality evaluated on a never-seen testing data while preserving
259  or improving the classification quality on a training set of data (see Appendix A).

260 With these techniques applied in various combinations we constructed six DCNN architectures
261 that are summarized in Table 2. All these architectures are built in the common manner: the one- (for
262 IR only) or two-branched (for IR+WV) convolutional core is followed by the FC classifier. If the
263  convolutional core is one-branched, its output is reshaped and resulting vector is input data for the
264  corresponding FC classifier. If the convolutional core is two-branched, then the output of each branch
265  is reshaped to a vector, and the concatenation product of the two vectors is the input data for the
266  corresponding FC classifier. FC classifier includes hidden FC layers whose count varied from 2 to 4.
267  Nodes (artificial neurons) count of FC1 which is the layer following the convolutional core, is
268  randomly chosen from the set {128, 256, 512, 1024}. Each following FC layer size is twice less than
269  preceding one, but not less than 128. The output layer is fully-connected as well and contains one
270  output node. For example, the structure of FC classifier in terms of nodes count of layers might be
271  the following: {512; 256; 128; 1}. All FC layers are alternated with dropout layers (see Appendix A) in
272 order to prevent overfitting of the model. All trainable layers’ activation functions are Rectified
273  Linear Unit (ReLU):

OreLv (z) = max(0; z) , (3)

274  except the output layer whose activation function is sigmoid:

1
asigm(z) = 1+ e-02’ 4)
275  where 0 are layers’ trainable parameters.
276 For each DCNN structure we trained a set of models as described in details in section 3.5. We

277  also applied ensemble averaging (see Appendix A) of a set of models of identical configurations in a
278  manner of averaging probabilities of true class for each object of the dataset. We term these six
279  ensemble-averaged models the “second-order” models. We also applied ensemble averaging per
280  sample of all trained DCNNs trained in this work. We term this model the “third-order” model.
281 In order to measure the error of the network on each individual sample during the training
282  process we use the binary cross-entropy as a loss function:

N
L= (vilogy; + (1 - ylog(1 - ), ®
i=0

283  where y; is the expert-defined ground truth for the target value, y; is the estimated probability of
284  the i-th sample to be true, N is samples count of the training set or a training mini-batch. This loss
285  function is minimized in the space of the model weights using the method of backpropagation of
286  error [61] denoted as “backprop training” in Figures 3,4.

287  3.4. Proposed DCNN architectures

288 Six DCNNs that we have constructed are able to perform binary classification on satellite
289  mosaics data (IR alone or IR+WYV) represented as grayscale 100x100px images:
290 1. 1. CNN #1. This model is built “from scratch” which means we haven't used any pre-trained

291 networks. CNN #1 is built in the manner proposed in [36]. We varied sizes of convolutional
292 kernels of each convolutional layers from 3x3 to 5x5. We also varied sizes of subsampling layers’
293 receptive fields from 2x2 to 3x3. For each convolutional layers we varied the number of
294 convolutional kernels: 8, 16, 32, 64 and 100. The network convolutional core consists of three
295 convolutional layers alternated with subsampling layers. Each pair of convolutional and
296 subsampling layers is followed by dropout layer. CNN #1 is one-branched and objects are
297 described by IR snapshots only.

298 2. CNN #2. This model is built “from scratch” with two separate branches - for IR and WV data.
299 Convolutional core of each branch is built in the same manner as convolutional core for CNN #1
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300 and as proposed in [36]. We varied the same parameters of the structure here in the same ranges
301 as for CNN #1.
302 3. CNN #3. This model is built with Transfer Learning approach. We used VGG16 pre-trained
303 convolutional core to construct this model. None of VGG16 weights was optimized within this
304 model and only the weights of the FC classifier were trainable. This model is one-branched and
305 objects are described by IR snapshots only. CNN #3 structure is shown in Fig. 3.
306 4. CNN #4. This model is two-branched, and each branch of convolutional core is built with
307 Transfer Learning approach, in the same manner as convolutional core of CNN #3. Input data
308 are IR and WV. None of VGG16 weights of this model in any of two branches was optimized
309 and only the weights of the FC classifier were trainable. CNN #4 structure is shown in Fig. 4.
310 5. CNN #5 is built with both Transfer Learning and Fine Tuning approaches. We built
311 convolutional core of this model with the use of VGG16 pre-trained network. VGG16
312 convolutional core consists of five similar blocks of layers. For the CNN #5 we turned the last of
313 these five blocks to be trainable. This model is one-branched and objects are IR snapshots only.
314 CNN #5 structure is shown in Fig. 3.
315 6. CNN #6is two-branched and branches of its convolutional core are built in the same manner as
316 convolutional core of CNN #5. The last of five blocks of each VGG16 convolutional cores were
317 turned to be trainable. Input data are IR and WV snapshots of dataset samples. CNN #6 structure
318 is shown in Fig. 4.
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325  3.5. Computational experiment design

326 The following hyper-parameters are included in each of the six networks:

327 e size of FC1 (its nodes number)

328 e  convolutional kernels count for each convolutional layer

329 e sizes of convolutional kernels

330 e sizes of receptive fields of subsampling layers

331 The whole dataset was split into training (8952 samples) and testing (2237 samples) sets stratified
332 by target value meaning that each set has the same (55:45) ratio of true/false samples as the whole
333 dataset (i.e. 4924:4028 and 1253:984 samples in training and testing sets correspondingly). We have
334  conducted hyper-parameters optimization for each of these DCNNs using stratified K-fold (K=5)
335  cross-validation approach. We trained several (typically 14-18) models with the Dbest
336  hyper-parameters configuration on the training set for each architecture. Then we drop models with
337  the maximal and minimal accuracy score estimated with the cross-validation approach. The rest of
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338  the models are evaluated on the “never-seen by the model” testing set. We estimated the accuracy
339  score for each individual model and also the variance of accuracy score for the particular architecture
340  with the best hyper-parameters combination (see Table 2).

341 With the ensemble averaging approach we evaluated the second-order models on the
342  “mever-seen by the model” testing set. As described in section 3.3 we estimated the optimal
343 probability threshold p,, for each second-order and third-order models (see Table 2) for the best
344  accuracy score estimation. These scores are treated as the quality measure of each particular
345  architecture.

346 Numerical optimization and evaluation of models were performed on the basis of the Data
347  Center of FEB RAS [62] and Deep Learning computational resources of Sea-Air Interactions
348  Laboratory of IORAS (https://sail.ocean.ru/). Exploited computational nodes contain two graphics
349  processing units (GPU) NVIDIA Tesla P100 16GB RAM. With these resources the total GPU time of
350  calculations is 3792 hours.

351 4. Results

352 The designed DCNNs was applied for the detection of Antarctic MCs for the period from June
353 toSeptember 2004. Summary of the results of application of six models is presented in Table 2. As we
354 noted above, each model is characterized by the utilized data source (IR alone or IR+WV, columns
355  “IR” and “WV” in Table 2). These DCNNs are further categorized according to a chosen set of the
356  applied techniques in addition to the basic approach (see Table 2 legend). Table 2 also provides
357  accuracy scores and probability thresholds estimated as described in section 3.5, for individual,
358  second- and third-order models of each architecture.

359
360 Table 2. Accuracy score of each model with the best hyper-parameters combination. BA - basic
361 approach [36], TL - transfer learning, FT - fine tuning, Do - dropout, DA - dataset augmentation. Acc
362 is the accuracy score averaged across models of the particular architecture. AsEA is the accuracy score
363 of the ensemble averaged models with the optimal probability threshold. p;, is the optimal
364 probability threshold value.
model p wWv BA TL FT Do DA Acc ASEA Den
name
CNN#l X - X - - X X 86.89+1.1% 89.3 % 0.381
CNN#2 X X X - - X X 941+1.4% 96.3 % 0.272
CNN#3 X - X X - X X 95.8£0.1 % 96.6 % 0.556
CNN#4 X X X X - X X 95.5+£0.3 % 96.3 % 0.526
CNN# X - X X X X X 96 £0.2 % 96.6 % 0.5715
CNN#6 X X X X X X X 95.7+£0.2% 96.4 % 0.656
Third-order model CNN #1-6 averaged ensemble 97% 0.598
365
366 As shown in Table 2, CNN #3 and CNN #5 demonstrated the best accuracy among the

367  second-order models on a never-seen subset of objects. The best combination of hyper-parameters
368  for these networks is presented in Appendix B. Confusion matrices and receiver operating
369  characteristic (ROC) curves for these models are presented in Fig. 5 a-d. Confusion matrices and ROC
370  curves for all evaluated models are presented in Appendix C. Figure 5 clearly shows that these two
371  models perform almost equally for the true and the false samples. According to Table 2 the best
372 accuracy score is reached using different probability thresholds for each second- or third-order
373  model.

374 Comparison of CNN #1, CNN #2 on one hand and the remaining models on the other hand
375  shows that DCNNs built with the use of Transfer Learning technique demonstrate better
376  performance compared to the models built “from scratch”. Moreover, accuracy score variances of
377  CNN #1 and CNN #2 are higher than for the other architectures. Thus, models built with Transfer
378  Learning approach seem to be more stable, and their generalization ability is better.
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Comparing CNN #1 and CNN #2 qualities we may conclude that the use of an additional data
source (WV) results in the significant increase of the the model accuracy score. Comparison of models
within each pair of the network configurations (CNN #3 vs CNN #5; CNN #4 vs CNN #6) demonstrate
that Fine Tuning approach does not provide significant improvement of the accuracy score in case of
such a small size of dataset. It is also obvious that the averaging over the ensemble members does
increase the accuracy score from 0.6% for CNN #5 to 2.41% for CNN #1. However, in some cases these
score increases are comparable to the corresponding accuracy standard deviations.

It is also clear from the last row of the Table 2, that the third-order model, which averages
probabilities estimated by all trained models CNN #1-6, produces the accuracy of Acc = 97% which
outperforms all scores of individual models and second-order ensemble models. ROC curve and
confusion matrices for this model are presented in Fig. 5ef.
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Figure 5. Confusion matrices and receiver operating characteristic curve for (a,b) CNN #3 and (c,d)
CNN #5, both with the ensemble averaging approach applied (second-order models); and (e,f) third-
order model CNN #1-6 averaged ensemble.
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394

395 Figure 6 demonstrates four main types of false classified objects. The first and the second types
396  are the ones for which IR data are missing completely or partially. One more type is the one for which
397  the source satellite data were suspected to be corrupted. These three types of classifier errors
398  originating from the lack or corruption of the source data. For the fourth type the source satellite data
399  were realistic but the classifier has done a mistake. Thus some of false classifications are the model
400  mistakes, and some are associated with the labeling issue where human expert could guess on the
401  MC propagation over the area with missing or corrupted satellite data.

402

(a) False negative (b) False negative

IR wv

False negative

Y

403 Figure 6. False classified objects.

404 5. Conclusions and outlook

405 In this study we present an adaptation of DCNN approach resulted in an algorithm for the
406  detection of MCs from satellite imageries of cloudiness. The DCNN technique shows a very high
407  accuracy in recognition of MCs cloud signatures, with the best accuracy score of 97% is reached by
408  the usage of the third-order ensemble averaging model (6 models ensemble) and combination of both
409 IR and WV images as input. We access the accuracy of MCs identification by comparison of identified
410  MCs (true/false - image contain MC/no MC on the image parameter) with the reference dataset of [6].
411  We demonstrate that deep convolutional networks are capable for the effective detection of polar
412 mesocyclone signatures in satellite imageries.

413 It was also shown that the accuracy of MCs detection by DCNN:Ss is sensitive to the single (IR
414  only) or double (IR+WV) input data usage. IR*WV combination provide significant improvement of
415  the detection of MCs and allow a weak DCNN (CNN #2) to detect MCs with higher accuracy
416  compared to the weak CNN #1 (89.3% and 96.3% correspondingly). The computational cost of DCNN
417  training and hyper-parameters optimization for deep neural networks are time- and computational-
418  consuming. However, once trained, the computational cost of the DCNN inference is low.
419  Furthermore, the trained DCNN performs much faster compared to human expert. Another
420  advantage of the proposed method is the low computational cost of data preprocessing that allows
421  to process satellite imageries in real time or to process large amounts of collected satellite data.

422 We plan to extend the usage of this set of DCNNs (Table 2) for the development of MCs tracking
423  method based on machine learning and satellite IR and WV mosaics. These efforts would be mainly
424  focused onto the development of the optimal choice of the “cut-off” window that has to be applied
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425  to the satellite mosaic. In the case of sliding-window approach (e.g. running the 500x500km sliding
426  window through the mosaics) the virtual testing dataset of the whole mosaic is highly unbalanced,
427  so a model with non-zero FPR evaluated on balanced dataset would produce much higher FPR. In
428 the future, instead of the sliding-window, the Unet-like [63] architecture should be considered with
429  the binary semantic segmentation problem formulation. Considering MC tracking development, an
430  approach proposed in a number of face recognition studies should be reassuring [64,65]. This
431  approach can be applied in a manner of triple-based training of the DCNN to estimate a measure of
432 similarity between one particular MC signatures in consecutive satellite mosaics.

433
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450  Appendix A. DCNN best practices and additional techniques

451 There is a set of best practices commonly used to construct DCNNs for solving classification
452  problems [51]. Modern DCNNs are built on the basis of consecutive convolutional and subsampling
453  layers by performing nonlinear transformation of the initial data (see Fig. 2 in [36]). The primary layer
454  type of convolutional neural networks (CNN) is the so-called convolutional layer which is designed
455  toextract visual patterns density map using discrete convolution operation with K (tends to be from
456 3 to 1000) kernels followed by a nonlinear transformation operation (activation function). One
457  additional layer type is a pooling layer performing subsampling operation with one of the following
458  aggregation functions: maximum, minimum, mean or others. In the current practice the maximum is
459  used.

460 Since the LeNet DCNN [36] several works [36-39] demonstrated that the usage of consecutive
461  convolutional and subsampling layers results in a skillful detection of various spatial patterns from
462  the input 2D sample. The approach proposed in [36] implies the use of the output of these stacked
463  layers set as an input data for a classifier, which in general may be any method suitable for
464  classification problems, such as linear models, logistic regression, etc. In [36] it is suggested to use the
465  neural classifier, and this is now conventional approach. The advantage of using a neural classifier is
466  the ability to train the whole model at once (the so-called end-to-end training).

467 The whole model built in this manner represents a classifier capable of direct predicting a target
468  value for the sample. We term the fully-connected (FC) layers set as "FC classifier", and the preceding
469  part containing convolutional and pooling layers as "convolutional core" (see Figures 3,4).

470

471 For building a DCNN it is important to account for data dimensionality during its
472  transformations from layer to layer. The input for a DCNN is an image represented by a matrix of
473  thesize (h,w,d), where h and w correspond to the image height and width in pixels, d is its levels
474  number, the so-called depth (e.g., d = 3 when levels are red, green and blue channels of a colorful
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475  image). For the integrated water vapor or radio-brightness temperature, d = 1. A convolutional layer
476  and subsampling layer are described in details in [36]. Convolutional layers are characterized by their
477  kernel sizes (e.g. 3x3, 5x5), their kernel numbers K and the nonlinear operation used (e.g. tanh in
478  [36]). Subsampling layers are characterized by their receptive field sizes e.g. 3x3, 5x5 etc. The output
479  of a convolutional layer with K kernels is the so-called feature maps which is a matrix of the size
480 (h,w,K) . The nonlinear operation transforms it to a matrix of size (h,w,1). The following
481  subsampling layer reduces the matrix size depending on the subsampling layer kernel size. Typically,
482  thissizeis (2, 2) or (3, 3). Thus, the subsampling operation reduces the sample size by a factor 2 or 3,
483  respectively. The output of a convolutional core is a set of abstract feature maps which is represented
484 by a 3D matrix. This matrix, being reshaped into a vector, is passed as the input to the FC classifier
485  (see Figures 3,4). The outcome of the the whole model is the probability of each class for the input
486  sample. In the case of binary classification, the FC classifier has one output unit, producing
487  probability of MC presence for the input sample.

488

489 In addition to the basic approach proposed in [36] a number of techniques may be applied. Using
490  them one can construct and train DCNNSs of various accuracy and various generalization abilities
491  which is characterized by the quality of a model estimated on a never-seen test data.

492 A.1. Transfer learning

493 One of the additional approaches is Transfer Learning [52-57]. Generally, this technique focuses
494  on storing the knowledge obtained by some network while being trained for one problem and
495  applying it to another problem of a similar kind. In practice, this approach implies the DCNN
496  structure to be built using some part of a network previously trained on a considerable amount of
497 data, for example, ImageNet [44]. In these terms, VGG16 [40] is not only an efficient architecture, but
498  also the pre-trained network containing optimized weights values (also known as network
499  parameters). Best practice for building a new advanced DCNN based on transfer learning approach
500 s to compose it using convolutional core of the pre-trained model (e.g. VGG16) followed by a new
501  FC neural classifier. Weights of the convolutional part in this case are fixed, and only FC part is
502  optimized. In this approach, the convolutional core may be considered as a feature extractor (see
503  [36]), which computes a highly relevant low-dimensional (compared to original samples
504  dimensionality) vector, representing the data (e.g. “reshaped to vector” output of the convolutional
505  corein Fig. 3).

506  A.2. Fine Tuning

507 Transfer Learning approach relies on the similarity of data distributions within two datasets.
508  But in the case of significant differences, for example in terms of Kullback-Leibler divergence
509  between some particular feature approximated probability distributions, the new FC classifier
510  capabilities may not cover all those differences. In this case, some layers of the convolutional core,
511  thatare close to FC classifier, can be turned on to be optimized (the so-called Fine Tuning). Regarding
512  DCNNs application to satellite mosaics, we have to consider that VGG16 was optimized on ImageNet
513  dataset which contains everyday-observed objects like buildings, dogs, cats, cars etc., without any
514  satellite imageries or even clouds. So FT approach can be considered as a promising approach when
515  composing MC-detecting DCNN at IR and WV satellite mosaics data.

516  A.3. Preventing overfitting

517 Machine learning models and neural networks in particular may vary in terms of complexity. In
518  the case of too strong model there exist an overfitting problem: the effect of poor target prediction
519  quality on unseen data concurrently with nearly exact prediction of target values on training data.
520  There are several state-of-the-art approaches to prevent overfitting of neural networks. We used most
521 fruitful and reliable ones are: dropout [59] and data augmentation also called auxiliary variables [60].
522 We also used ensemble averaging of models outcome.
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523 A.4. Preventing overfitting with dropout

524 Dropout approach is the way of preventing overfit with a computationally inexpensive but still
525  powerful method of regularizing neural networks through bagging [66] and virtually ensembling
526  models of similar architecture. Bagging involves training multiple models and testing each of them
527  on test samples. Since training and evaluating of deep neural networks tend to be time-consuming
528  and computationally expensive, the original bagging approach [66] seems to be impractical. With the
529  dropout approach applied, the network may be thought as an ensemble of all sub-networks that can
530  be composed by removing non-output nodes from the base network. In practice, this approach is
531  implemented by dropout layer which turns the preceding layer output to zero for each node with
532 some probability p. This procedure repeats for each mini-batch at the training time. At the inference
533 time, the dropout approach involves network weights scaling by 1/p. Each of our models includes
534 dropout layers between trainable layers. Rate p was set to 0.1 for each dropout layer of each model.

535 A.5. Preventing overfitting with dataset augmentation

536 Dataset augmentation is the state-of-the-art way to make a machine learning model generalize
537  better. When available dataset size is limited, the way to get around is to generate fake data which
538  should be similar to real samples. Best practice for DCNNSs is generating fake samples adding some
539  noise or applying slight transformations like shift, shear, rotation, scaling etc. Formally, with data
540  augmentation one can increase variability of features of the original dataset and substantially extend
541  its size. This approach often improves generalization ability of the trained model.

542 We trained each of our models with data augmentation approach applied. The rotation angle
543  range was 90° in both direction; independent width and height scaling performed within range from
544 0.8 to 1.2; zoom range from 0.8 to 1.2; shear angle range from -2° to 2°. We didn't use flipping
545  upside-down and left-to-right.

546  A.6. Preventing overfitting with ensemble averaging

547 In general, during the parameters optimization (learning process) each DCNN converges to a
548  local minimum of the loss function in the space of its weights. The training process starts from a
549  randomly generated point of this space. So due to a non-convexity of loss function, every new DCNN
550  model converges to a new local minimum. Some models may converge to a minimum that is not
551  really close to a global one in terms of loss function value, and thus the quality measure of that model
552 remains poor. Other models may converge to a good minimum that is close to a global one in terms
553 of loss function value, but this proximity may lead to a poor generalization ability which means low
554  quality measure estimated on a testing subset of data. There are approaches for improving the
555  generalization ability of several models that are generally similar, but differ in detailed predictions.
556  In our study we applied simple ensemble averaging [67], which is one of state-of-the-art approaches
557  for improving machine learning models generalization ability. With this approach several models of
558  each architecture are trained, and probabilities of these models are averaged. The prediction of this
559  modelis treated as an ensemble outcome:
e
Zm=0 Pi (A1)

Pe= Ty

560  where p; is the estimated probability of the ensemble of M models for i-th sample to be true; each
561  m-th model's probability estimation for i-th sample to be true is pi(m). In this study we applied
562  ensembling on DCNNSs of identical architectures. The resulting models we term second-order models
563  in this study. They are synthetic ones that are not trained, but are ensembles.

564 IR+WYV snapshots or IR snapshot alone are essentially the object description, and each model
565  that is presented in our study produces the outcome for each object regardless of the description -
566  whether itis IR snapshot alone or IR#WV snapshots. So there is an opportunity to average probability
567  outcomes of all the models of this study. The resulting model that produces averaged probabilities
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568  of the ensemble containing all trained models we term third-order model. It is a synthetic one that is
569  not trained, but is an ensemble.

570  A.7. Adjustment of the probability threshold

571 The outcome of each model of this study is the estimation of the probability for the sample to be
572  true (i.e. to present an MC). So there is arbitrariness in choosing the threshold of this probability to
573 get the outcome which is binary. The most common way to choose this threshold is the ROC curve
574  analysis. Each point of this curve represents the False Positive Rate (FPR) and True Positive Rate
575  (TPR) combination for the particular probability threshold p,, (e.g. see Fig. 5bdf). The model
576  performing true random choice between true and false outcome has a ROC curve on the main
577  diagonal of this plot. The ROC curve of the perfect classifier follows from the point (0.0, 0.0) straight
578  to the point (0.0, 1.0) and then to the point (1.0, 1.0). The area under the ROC curve (AUC ROC) may
579  beconsidered as a measure of model quality. The best model AUC ROC is 1.0, the true random choice
580  model AUC ROC is 0.5, and the worst model AUC ROC is 0.0.

581 In a range of cases the best accuracy score might not be reached with p;, = 0.5. The lines of equal
582  accuracy score, as presented in Fig. 5bdf, are diagonal. In case of perfect 50/50 ratio of true/false
583  samples they are parallel to the main diagonal. In case of slight inequality of true and false samples
584  count these lines have slightly different slope as shown in Fig. 5bdf. For each accuracy score there are
585  two, one or no points of the ROC curve intersection with the accuracy isoline. So if a model is
586  represented with a ROC curve, the maximum value of its Acc is located at the point of this curve
587  where the accuracy isoline is tangent to it. For each model of this study including second- and third-
588  order models the optimal probability threshold was estimated based on ROC curve analysis.

589  Appendix B. CNN #3 and CNN #5 Best hyper-parameters combinations.

590 According to section 3.4, CNN #3 and CNN #5 are both constructed to have one-branched
591  convolutional core. Best combination of hyper-parameters of these networks are the same. The only
592  difference is the FT approach that was applied in case of CNN #5.

593
594 Table B1. CNN #3 and CNN #5 best hyper-parameters combination.
Layer (block) name Layer (block) .nodes.count or Connected to
output dimensions
Input_data_IR 100x100 -
VGG_16_conv_core see [40]; output: 3x3x512 Input_data_IR
Reshape_1 4608 VGG_16_conv_core
Dropout_1 4608 Reshape_1
FC1 1024 Dropout_1
Dropout_2 1024 FC1
FC2 512 Dropout_2
Dropout_3 512 FC2
FC3 256 Dropout_3
Dropout_4 256 FC3
FC4 128 Dropout_4
FC_output 1 FC3
595

596  Appendix C. Detailed performance metrics of all DCNN models.
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600 Figure C2. Receiver operating characteristic curves computed on test never-seen subset of data for all
601 models. For each architecture the ensemble averaging technique is applied.
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