

1 Article

2 **Deep convolutional neural networks for detection of**
3 **polar mesocyclones from satellite mosaics**4 **Mikhail Krinit斯基^{1,*}, Polina Verezemskaya^{1,2}, Kirill Grashchenkov^{1,3}, Natalia Tilinina¹,**
5 **Sergey Gulev¹ and Matthew Lazzara⁴**6 ¹ Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia; info@ocean.ru7 ² Research Computing Center of Lomonosov Moscow State University, Moscow, Russia8 ³ Moscow Institute of Physics and Technology, Moscow, Russia9 ⁴ University of Wisconsin-Madison and Madison Area Technical College, Madison, Wisconsin, USA

10 * Correspondence: krinitsky@sail.msk.ru; Tel.: +7-926-141-6200

11

12 **Abstract:** Polar mesocyclones (MCs) are small in size marine atmospheric phenomena accompanied
13 by extremely strong surface winds and heat fluxes and thus largely influencing deep ocean water
14 formation in the polar regions. Accurate detection of polar mesocyclones in high-resolution satellite
15 data, while challenging, is a time-consuming task, when performed manually. Existing algorithms
16 for the automatic detection of polar mesocyclones are based on the conventional analysis of patterns
17 of cloudiness and involve different empirically defined thresholds of geophysical variables. As a
18 result, different detection methods typically reveal very different results when applied to a single
19 dataset. We present a conceptually novel approach for the detection of MCs based upon the use of
20 deep convolutional neural networks (DCNNs). The training dataset is based on the reference
21 database of manually tracked from satellite mosaics MCs in the Southern Hemisphere. This dataset
22 is further used for testing several different setups of DCNN, specifically, DCNN “from scratch”,
23 DCNN based on VGG16 pre-trained weights engaging also the Transfer Learning technique, and
24 DCNN based on VGG16 with Fine Tuning technique. Each of these networks is further applied to
25 both IR and IR+WV satellite imagery. The best skills (97% of the binary classification accuracy score)
26 is achieved with DCNN based on VGG16 pre-trained weights with both Transfer Learning and Fine
27 Tuning techniques applied. The algorithm can be further extended to the automatic identification
28 and tracking numerical scheme and applied to the other atmospheric phenomena characterized by
29 a distinct signature on satellite imagery.30 **Keywords:** deep learning, convolutional neural networks, polar mesocyclones, satellite data
31 processing, pattern recognition
3233 **Nomenclature**34 BCE - binary cross-entropy
35 CNN - convolutional neural network
36 DCNN - deep convolutional neural network
37 DL - deep learning
38 FC - fully-connected
39 FNR - false negative rate
40 FPR - false positive rate
41 IR - infrared
42 MC - mesocyclone
43 NH - Northern Hemisphere
44 ROC - receiver operator characteristic
45 AUC ROC - area under the curve of receiver operator characteristic

46 SH - Southern Hemisphere
47 SOMC - Shirshov Institute of Oceanology mesocyclone dataset for Southern Ocean
48 TNR - true negative rate
49 TPR - true positive rate
50 WV - integrated water vapor

51 **1. Introduction**

52 Polar mesoscale cyclones (MCs) are intense high-latitude marine atmospheric vortices. Their
53 sizes range from 200 to 1000 km with the lifetimes spanning from 6 to 36 hours [1]. Specific type of
54 mesocyclones (the so-called polar lows, PLs) is characterized by the surface wind of more than 15 m/s
55 and strong surface fluxes. These PLs have a significant impact on the local weather conditions causing
56 rough sea. Being relatively small in size (compared to the extratropical cyclones), MCs contribute
57 significantly to the generation of extreme air-sea fluxes and initialize intense surface transformation
58 of water masses resulting in the formation of ocean deep waters [2–4]. These processes are most
59 intense in the Weddel and Bellingshausen Seas in the Southern hemisphere and in the Labrador,
60 Greenland, Norway and Barents Seas in the Northern Hemisphere.

61 Being critically important for many oceanographic and meteorological applications, MCs are
62 hardly detectable in different reanalysis datasets, mostly due to inadequate resolution of the
63 products.

64 The spatial resolution of the modern reanalyses still does not MCs permit for the accurate
65 identification of MCs. In [5] it is argued for at least 10 by 10 grid points necessary for effective
66 capturing the MC. This implies about 30 km spatial resolution in the model or reanalysis for detecting
67 MC with the diameter of 300 km. However, in [6] demonstrated that 48% of MCs (including PLs) in
68 the SH are characterized by the diameters smaller than 300 km. Thus, even the latest very high-
69 resolution ERA5 reanalysis [7,8] with its 31 km spatial resolution, will be unlikely effective for the
70 detecting of MCs, as 48% of the MCs could be potentially missed or poorly resolved. In [4,6,9] it is
71 demonstrated that both number of MCs and associated wind speeds in modern reanalyses are
72 significantly underestimated compared to satellite observations of cloud signatures and wind speeds
73 revealed by scatterometers in MCs.

74 One might argue for the usage of operational analyses for detecting MCs, however these
75 products are influenced by the changing over time model setting, performance of data assimilation
76 system and the volume of assimilated data, thus leading to artificial trends in climatological time
77 scales. Several studies adopted for MCs identification and tracking automated cyclone tracking
78 algorithms originally developed for mid-latitude cyclones [9–12]. These algorithms were applied to
79 the preprocessed (typically hi-pass filtered) reanalysis data and delivered climatological assessments
80 of MC activity in reanalyses. However, reported estimates of MCs numbers, sizes and lifecycle
81 characteristics vary significantly in these studies.

82 In Zappa et al. [11] demonstrated that ECMWF operational analysis makes it possible to detect
83 up to 70% of the observed PLs, that is much better, than ERA40 and ERA-Interim reanalyses (24%
84 and 45% respectively [9]). Importantly, different hi-pass filters and combinations of criteria used for
85 the post-processing of the MC tracking results may result in 30% spread in the number of PLs [11].
86 The chosen set of criteria typically represents a compromise between MC definition and data
87 resolution. Laffineur et al. [9] used high-resolution model output (12 km, Meso-NH) with the the
88 threshold on MC size being 500 km, and found the mean diameter of MC to be about 300 km. These
89 results are in agreement with observational studies of [13] and [6], where reported the mean MC
90 diameter of 350 and 300 km respectively. In a number of studies [11,12,14] the upper limit of MC
91 diameter was set to 1000 km, resulting in the mean values between 500 and 800 km. Thus, the level
92 of uncertainty in characteristics of MCs derived with automated tracking algorithms is still high,
93 especially when compared to scheme-to-scheme uncertainties in identification and tracking
94 midlatitude cyclones [15].

95 Satellite imagery of cloudiness represents another data source for identification and tracking of
96 MCs. These data allow for visual identification of cloud signatures associated of MCs, however

97 manual procedure requires enormous effort for build long enough dataset. Pioneering work of
98 Wilhemsen [16] used ten years of consecutive synoptic weather maps, coastal observational stations
99 and several satellite images over the Norwegian and Barents Seas to describe local MCs activity. Later
100 in the 1990s the number of instruments and satellite crossovers increased. This provoked many
101 studies [17–23] evaluating characteristics of MCs in different regions of NH and SH. These studies
102 identified of the major MCs generation regions, their dominant migration directions and cloudiness
103 signature types associated with MCs. Increase in the amount of satellite data allowed for the
104 development of the robust regional climatologies of MCs occurrence and characteristics. For the SH
105 Carleton [22] used twice daily cloudiness imagery of the Western Antarctica and classified for the
106 first time four types of cloud signatures associated with PLs (comma, spiral, transitional type, and
107 merry-go-round). This classification has been confirmed later in a many works and is widely used
108 now. Harold et al. [20,21] used daily images for building one of the most detailed dataset of MC
109 characteristics for the Nordic Seas (Greenland, Norwegian, Iceland and Northern Seas). Also Harold
110 et al. [20,21] developed a detailed description of the conventional methodology for the identification
111 and tracking of MCs and PLs using satellite IR imageries.

112 Importantly, most of studies of MCs activity are regional [13,24–27] and cover relatively short
113 time periods [6] due to very costly and time consuming procedure of visual identification and
114 tracking of MCs. Thus, development of the reliable long-term (multiyear) dataset covering the whole
115 circumpolar Arctic or still remains a challenge.

116 In the last years machine learning methods were found to be quite effective for the classification
117 of different cloud characteristics such as solar disk state and cloud types. In [28–30] different machine
118 learning techniques was used for recognizing cloud types. Methodologies employed included deep
119 convolutional neural networks (DCNNs [31,32]), k-nearest-neighbor classifier and Support Vector
120 Machine and fully-connected neural networks (FCNNs). Krinitkiy [33] used FCNNs for the
121 detection of solar disk state and reported very high accuracy (96.4%) of his method. Liu et al. [34]
122 applied DCNNs to the fixed-size multichannel images to detect extreme weather events and reported
123 the success score of the detection of 89 to 99%. Huang et al. [35] applied the neural network they term
124 "DeepEddy" to the synthetic aperture radar (SAR) images for detection of ocean meso- and
125 submesoscale eddies. Their results are also characterized by high accuracy exceeding 96% success
126 rate. However Deep Learning methods have never been applied for detecting MCs.

127 DCNNs are known to demonstrate high skills in classification, pattern recognition, and semantic
128 segmentation, when applied to the the 2-dimensional (2D) fields, such as images. The major
129 advantage of DCNNs is the depth of processing of the input 2D field. Similarly to the processing
130 levels of satellite data (L0, L1, L2, L3 etc.), which allow to retrieve e.g. wind speeds (L3 processing)
131 from the raw remote measurements (L0), DCNNs are dealing with multiple levels of subsequent non-
132 linear processing of an input image. In contrast to the expert-designed algorithms, the neural network
133 levels of processing (so-called layers) are built in a manner that is common within each specific layer
134 type (convolutional, fully-connected, subsampling etc.). During the network training process these
135 layers of a DCNN acquire the ability to extract a broad set of patterns of different scale from the initial
136 data [36–39]. In this sense a trained DCNN closely simulates the visual pattern recognition process
137 naturally used by human operator. There exist several state-of-the-art network architectures such as
138 "AlexNet" [31], "VGG16" and "VGG19" [40], "Inception" of several subversions [41], "Xception" [42]
139 and residual networks [43]. Each of these networks has been trained and tested using a range of
140 datasets including the one that is considered as "reference" for the further image processing, the so-
141 called ImageNet [44]. Continuous development of all DCNNs aims to improve the accuracy of the
142 ImageNet classification. Nowadays the existing architectures demonstrate high accuracy in this
143 benchmark with the error rate from 16% to 2% [45].

144 Interpreting IR and WV satellite mosaics as images and assuming that a human expert detects
145 MCs on these mosaics on the basis of his visual perception, application of DCNN, thus, closely
146 simulates the visual recognition process and looks promising for the detection of MCs. Liu et al. [34]
147 described a DCNN applied to the detection of tropical cyclones and atmospheric rivers in the 2D
148 fields of surface pressure, temperature and precipitation stacked together into "image patches".

149 However, the proposed approach cannot be directly applied to the MC detection. This method is
 150 skillful for the detection of large-scale weather extremes that are discernible in reanalysis products,
 151 however MCs have hardly observable footprint in geophysical variables of reanalyses.

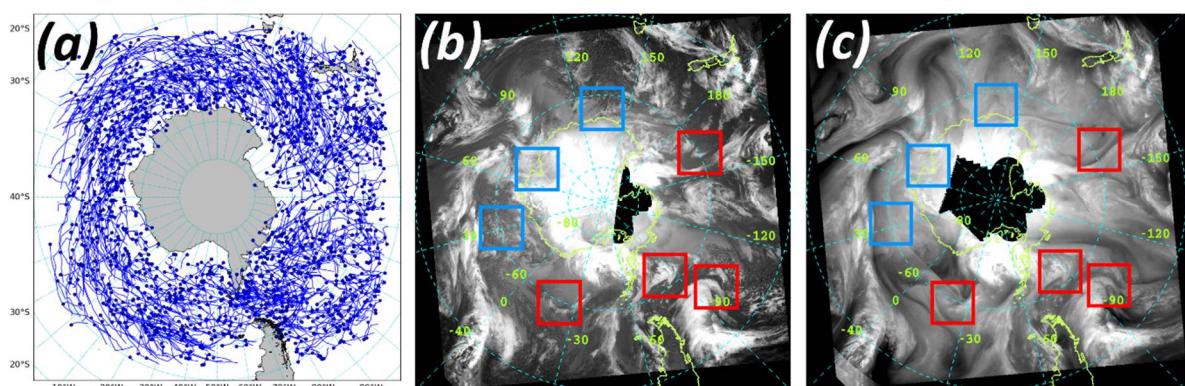
152 In this study we apply Deep Learning (DL) technique [46–48] to the satellite IR and WV mosaics
 153 distributed by Antarctic Meteorological Research Center [49,50]. This allows for the automated
 154 identification of MCs cloud signatures. Our focus here exclusively on the capability of DCNNs to
 155 identify MCs from satellite imageries of cloudiness and/or water vapor, rather than on the DCNN-
 156 based MC tracking.

157 The paper is organized as follows. Section 2 describes the source data based on MC trajectories
 158 database [6]. Section 3 describes the development of the MC detection method based on deep
 159 convolutional neural networks and necessary data preprocessing. In section 4 we present the results
 160 of the application of the developed methodology. Section 5 summarizes the paper with the
 161 conclusions and provides the outlook.

162 2. Data

163 For the training of DCNNs we use MCs dataset for the Southern Ocean
 164 (SOMC, <http://sail.ocean.ru/antarctica/>) consisting of 1735 MC trajectories, resulting in 9252 MC
 165 locations and associated estimates of MC sizes [6] for the 4-months period (June, July, August,
 166 September) of 2004 (Figure 1a). The dataset was developed by visual identification and tracking of
 167 MCs using 976 consecutive 3-hourly satellite IR (10.3 - 11.3 micron) and WV (~6.7 microns) mosaics
 168 provided by the Antarctic Meteorological Research Center (AMRC) Antarctic Satellite Composite
 169 Imagery (AMRC ASCI) [49,50]. The dataset contains longitudes and latitudes of MC centers at each
 170 3-hourly time step of the MC track as well as MC diameter and the cloudiness signature type through
 171 the MC life cycle [6]. These characteristics were used along with the associated cloudiness patterns of
 172 MCs from the initial IR and WV mosaics for training DCNNs.

173 AMRC ASCI mosaics spatially compose observations from geostationary and polar-orbiting
 174 satellites and cover the area to the South of the ~40°S with 3-hourly temporal and 5 km spatial
 175 resolution (Fig. 1bc). While the IR channel is widely used for MCs identification [20–22,25,26], we
 176 also additionally employ the WV channel imagery which provides a better accuracy over the ice-
 177 covered ocean, where the IR images are potentially incorrect.



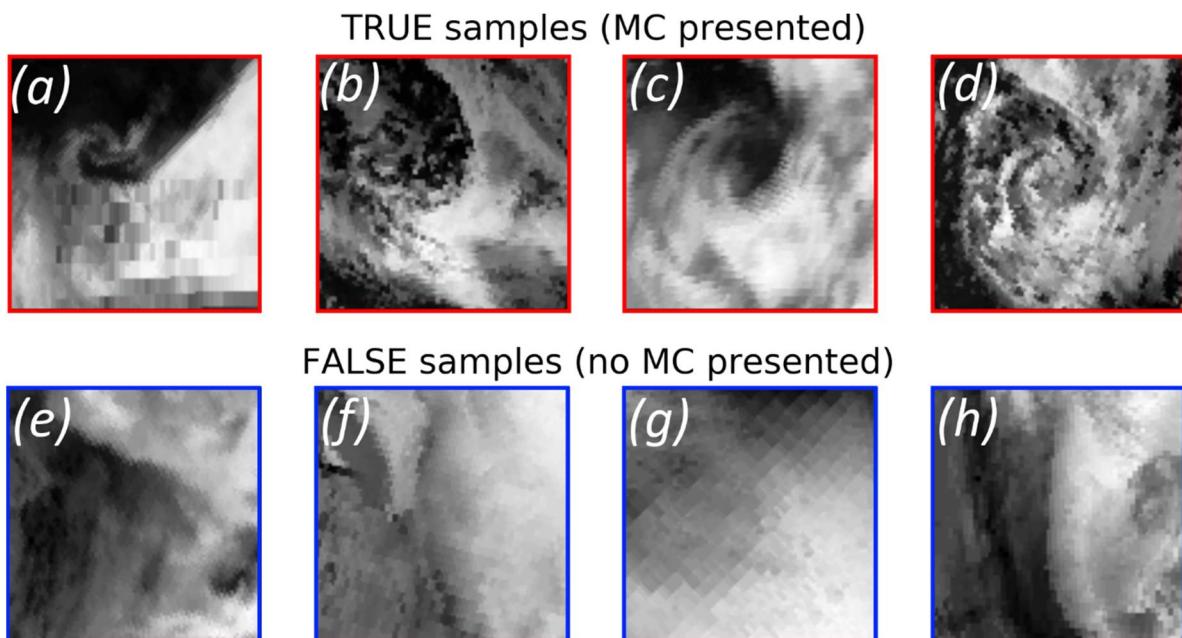
179 **Figure 1.** The input for the deep convolutional neural networks (DCNNs). (a) Trajectories of all
 180 mesocyclones (MCs) in Southern Ocean MesoCyclones (SOMC) dataset, blue dots mark the point of
 181 generation of MC. Snapshots of satellite mosaics for Southern Hemisphere for (b) InfraRed (IR) and
 182 (c) Water Vapor (WV) channels at 00:00 UTC 02/06/2004. The red/blue squares indicate patches
 183 centered over the MCs (red squares) and those having no MC cloudiness signature in (blue) being cut
 184 from the mosaics for DCNNs training.

186 **3. Methodology**187 *3.1. Data preprocessing*

188 For training models, we first co-located a square (patch) of 100x100 mosaic pixels (500x500 km)
 189 with each MC center location from SOMC dataset (9252 locations in total) (Figure 2a-d). To ensure
 190 that (i) each patch covers only one MC and (ii) covers it completely, we require that MC diameter
 191 falls into 200-400 km range. Hereafter we call this set of samples 'the true samples'. The chosen set of
 192 true samples includes 69% of the whole population of samples in SOMC dataset. We additionally
 193 also built the set of 'false samples' for DCNNs training. False samples were generated from the
 194 patches that do not consist of MC-associated cloudiness signatures (Figure 2e-h) according to the
 195 SOMC dataset. Table 1 summarizes the numbers of true and false samples that both make up source
 196 dataset for our further analysis of IR and WV mosaics. The total number of snapshots (both IR and
 197 WV) used is 11189 of which 6177 (55%) are the true samples and 5012 (45%) are the false samples (see
 198 Fig. 2). In order to unify images in the dataset we normalized them by the maximum and the
 199 minimum brightness temperature (in case of IR) over the whole dataset:

$$x_{norm} = \frac{x - \min(X)}{\max(X) - \min(X)}, \quad (1)$$

200 where x denotes the individual sample (represented by a matrix of 100x100 pixels), X is the whole
 201 dataset of 11189 IR snapshots. The same normalization was applied to WV snapshots.
 202



203 **Figure 2.** Examples (IR only) of true and false samples for DCNNs training and testing of DCNNs
 204 results assessment. 100x100 grid points (500x500km) patches of IR mosaics for (a-d) true samples and
 205 false (e-h) samples.

206 *3.2. Formulation of the problem*

207 We consider MC identification as a binary classification problem. As input we use the set of true
 208 and false samples (Figure 2), "objects" herein. We have developed two DCNN architectures
 209 following two conditional requirements: either (i) the object is described by the IR image only or (ii)
 210 the object is described by both IR and WV images. Since the training dataset is almost target-balanced
 211 (Table 1), assuming ~50/50 ratio of true/false samples, we further use the accuracy score as the
 212 measure of the classification quality. The accuracy score can not be used as a reliable quality measure
 213 of any machine learning method in the case of the unbalanced training dataset. For example, in the
 214 case of highly unbalanced dataset with the true/false ratio being 95/5 it is easy to achieve 95%

215 accuracy score by just letting the model to repeatedly produce only the true outcome. Thus, balancing
 216 the source dataset with false samples is critical for building the reliable classification model.

217
 218

Table 1. Total number of true and false samples.

	True samples	False samples	Total samples
IR	6177 (55%)	5012 (45%)	11189 (100%)
WV	6177 (55%)	5012 (45%)	11189 (100%)

219 3.3. *Justification of using DCNN*

220 There is a set of best practices commonly used to construct DCNNs for solving classification
 221 problems [51]. While building and training DCNNs for MCs identifications we applied the technique
 222 proposed in [36] that implies the usage of consecutive convolutional layers which detect spatial data
 223 patterns, alternating with subsampling layers which reduce the sample dimensions. The set of these
 224 layers is followed by a set of so-called fully-connected (FC) layers representing a neural classifier. The
 225 whole model built in this manner represents a non-linear classifier capable of direct predicting a
 226 target value for the input sample. A very detailed description of this model architecture can be found
 227 in [36]. We will further term the FC layers set as "FC classifier", and the preceding part containing
 228 convolutional and pooling layers as "convolutional core" (see Figures 3,4). The outcome of the whole
 229 model is the probability of MC presence for the input sample.

230 While handling multiple concurrent and spatially aligned geophysical fields it is important to
 231 choose suitable approach. LeCun [36] proposed the DCNN focused on the processing of only
 232 grayscale images meaning just one 2D field. In order to handle multiple 2D fields, they may be
 233 stacked together to form a 3D matrix by analogy with colorful images which have three color
 234 channels: red, green and blue. This approach can be applied when one uses pre-trained networks like
 235 AlexNet [31], VGG16 [40], ResNet [43] or similar architectures because of the original purpose of
 236 these networks to classify colorful images. However, this approach should be exploited carefully
 237 when applied to geophysical fields, because the mentioned networks were trained using massive
 238 datasets (e.g. ImageNet) of real photographed scenes, which means specific dependencies laying
 239 between channels (red, green and blue) within each image. In contrast to the stacking approach
 240 applied in [34] we use separate CNN branch for each channel (IR and WV) to ensure that we are not
 241 limiting the overall quality of the whole network (see Fig. 4). In the following we describe in details
 242 each DCNN architecture for both cases: IR+WV (Fig. 4) and IR alone (Fig. 3).

243 Since we consider the binary classification, and the source dataset is almost target-balanced
 244 (see Tab. 1), we use as a quality measure the accuracy score or *Acc* which is a rate of objects, classified
 245 correctly compared to the ground truth:

$$Acc = \frac{1}{\|\mathcal{T}\|} \sum_{\mathcal{T}} [\hat{y}_i = y_i], \quad (2)$$

246 where \mathcal{T} denotes the dataset and $\|\mathcal{T}\|$ is its total samples count; y_i is expert-defined target value
 247 (ground truth), \hat{y}_i is the model decision whether the i -th object contain MC.

248 In addition to the baseline which is the network proposed in [36] we applied a set of additional
 249 approaches commonly used to improve the DCNN accuracy and generalization ability
 250 (see Appendix A). Particularly we used Transfer Learning (TL) [52–57], Fine Tuning (FT) [58],
 251 Dropout (Do) [59] and dataset augmentation (DA) [60]. TL is a technique that allows to use the
 252 network of a specific architecture that was trained on a certain set of data, in a problem of a similar
 253 kind. It was shown [52–57] that application of TL approach allows to significantly increase
 254 classification quality. Specifically we use the VGG16 [40] network pre-trained on ImageNet [44]
 255 dataset. FT is a crucial stage for refining models being used with the TL technique applied, to adapt
 256 it to specific tasks and datasets [39] (i.e. to the problem of MCs detection). Dropout and dataset
 257 augmentation are the approaches applied to suppress the tendency of a DCNN to overfit meaning

258 the tendency to lose the classification quality evaluated on a never-seen testing data while preserving
 259 or improving the classification quality on a training set of data (see Appendix A).

260 With these techniques applied in various combinations we constructed six DCNN architectures
 261 that are summarized in Table 2. All these architectures are built in the common manner: the one- (for
 262 IR only) or two-branched (for IR+WV) convolutional core is followed by the FC classifier. If the
 263 convolutional core is one-branched, its output is reshaped and resulting vector is input data for the
 264 corresponding FC classifier. If the convolutional core is two-branched, then the output of each branch
 265 is reshaped to a vector, and the concatenation product of the two vectors is the input data for the
 266 corresponding FC classifier. FC classifier includes hidden FC layers whose count varied from 2 to 4.
 267 Nodes (artificial neurons) count of FC1 which is the layer following the convolutional core, is
 268 randomly chosen from the set {128, 256, 512, 1024}. Each following FC layer size is twice less than
 269 preceding one, but not less than 128. The output layer is fully-connected as well and contains one
 270 output node. For example, the structure of FC classifier in terms of nodes count of layers might be
 271 the following: {512; 256; 128; 1}. All FC layers are alternated with dropout layers (see Appendix A) in
 272 order to prevent overfitting of the model. All trainable layers' activation functions are Rectified
 273 Linear Unit (ReLU):

$$\sigma_{ReLU}(z) = \max(0; z), \quad (3)$$

274 except the output layer whose activation function is sigmoid:

$$\sigma_{sigm}(z) = \frac{1}{1 + e^{-\theta z}}, \quad (4)$$

275 where θ are layers' trainable parameters.

276 For each DCNN structure we trained a set of models as described in details in section 3.5. We
 277 also applied ensemble averaging (see Appendix A) of a set of models of identical configurations in a
 278 manner of averaging probabilities of true class for each object of the dataset. We term these six
 279 ensemble-averaged models the "second-order" models. We also applied ensemble averaging per
 280 sample of all trained DCNNs trained in this work. We term this model the "third-order" model.

281 In order to measure the error of the network on each individual sample during the training
 282 process we use the binary cross-entropy as a loss function:

$$\mathcal{L} = \sum_{i=0}^N (y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i)), \quad (5)$$

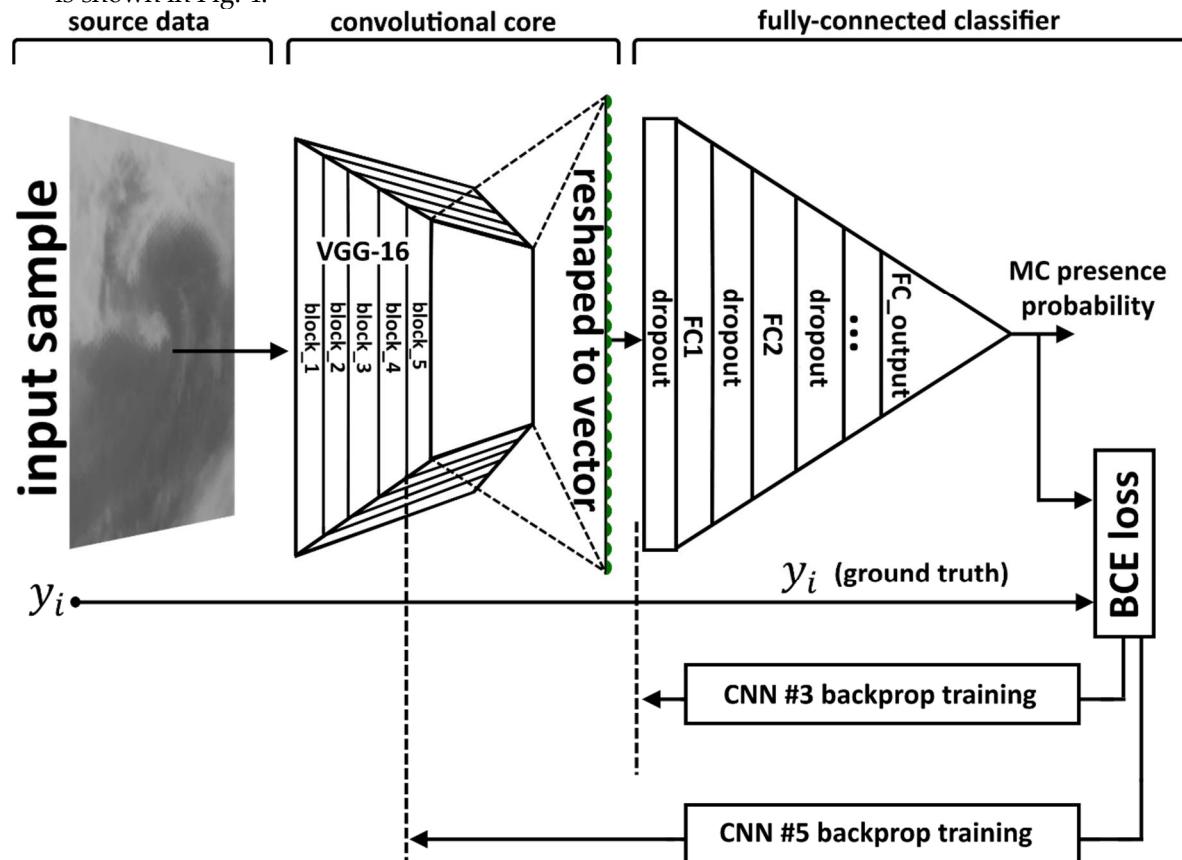
283 where y_i is the expert-defined ground truth for the target value, \hat{y}_i is the estimated probability of
 284 the i -th sample to be true, N is samples count of the training set or a training mini-batch. This loss
 285 function is minimized in the space of the model weights using the method of backpropagation of
 286 error [61] denoted as "backprop training" in Figures 3,4.

287 3.4. Proposed DCNN architectures

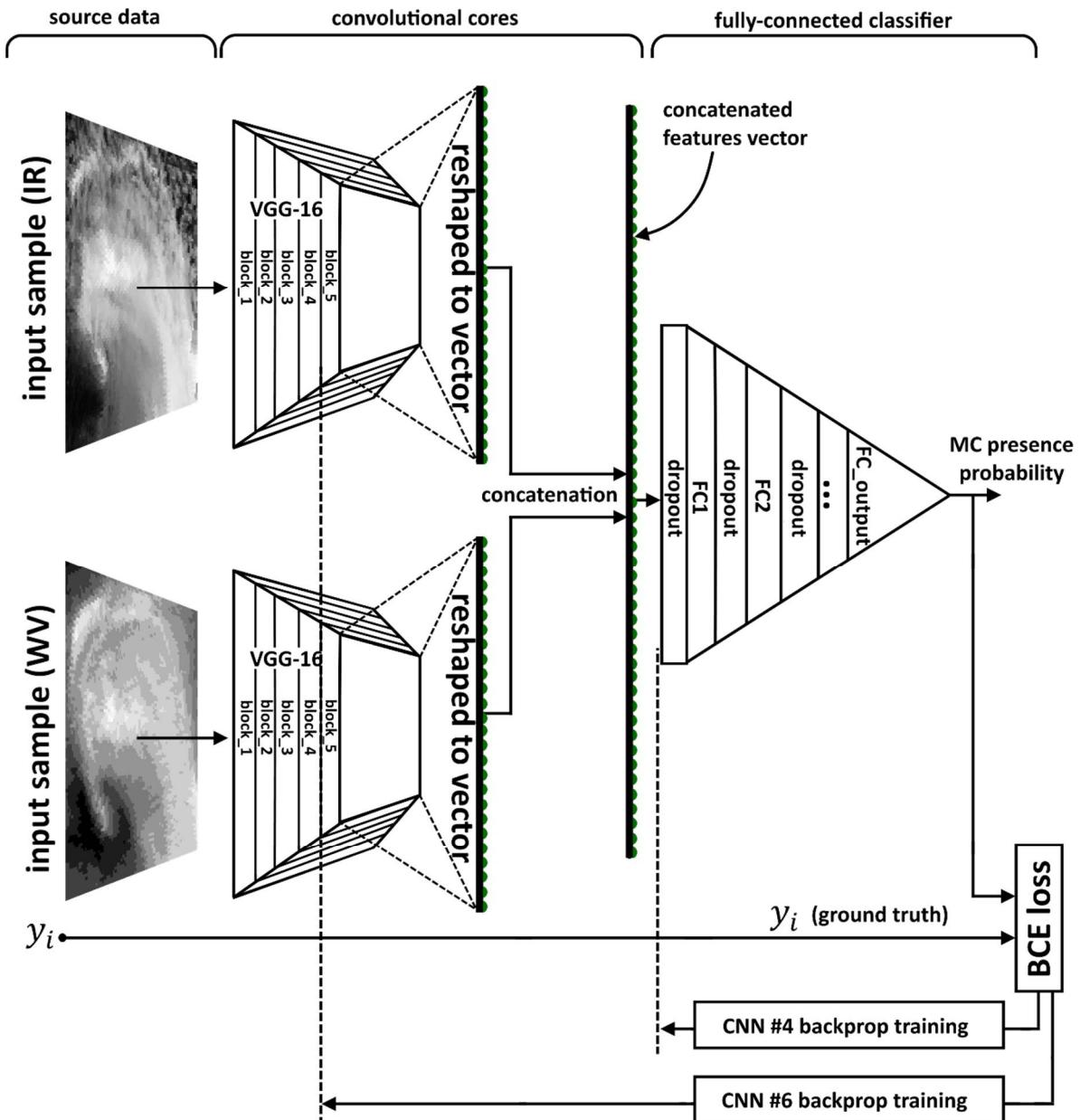
288 Six DCNNs that we have constructed are able to perform binary classification on satellite
 289 mosaics data (IR alone or IR+WV) represented as grayscale 100x100px images:

- 290 1. 1. CNN #1. This model is built "from scratch" which means we haven't used any pre-trained
 291 networks. CNN #1 is built in the manner proposed in [36]. We varied sizes of convolutional
 292 kernels of each convolutional layers from 3x3 to 5x5. We also varied sizes of subsampling layers'
 293 receptive fields from 2x2 to 3x3. For each convolutional layers we varied the number of
 294 convolutional kernels: 8, 16, 32, 64 and 100. The network convolutional core consists of three
 295 convolutional layers alternated with subsampling layers. Each pair of convolutional and
 296 subsampling layers is followed by dropout layer. CNN #1 is one-branched and objects are
 297 described by IR snapshots only.
- 298 2. CNN #2. This model is built "from scratch" with two separate branches - for IR and WV data.
 299 Convolutional core of each branch is built in the same manner as convolutional core for CNN #1

300 and as proposed in [36]. We varied the same parameters of the structure here in the same ranges
 301 as for CNN #1.
 302 3. CNN #3. This model is built with Transfer Learning approach. We used VGG16 pre-trained
 303 convolutional core to construct this model. None of VGG16 weights was optimized within this
 304 model and only the weights of the FC classifier were trainable. This model is one-branched and
 305 objects are described by IR snapshots only. CNN #3 structure is shown in Fig. 3.
 306 4. CNN #4. This model is two-branched, and each branch of convolutional core is built with
 307 Transfer Learning approach, in the same manner as convolutional core of CNN #3. Input data
 308 are IR and WV. None of VGG16 weights of this model in any of two branches was optimized
 309 and only the weights of the FC classifier were trainable. CNN #4 structure is shown in Fig. 4.
 310 5. CNN #5 is built with both Transfer Learning and Fine Tuning approaches. We built
 311 convolutional core of this model with the use of VGG16 pre-trained network. VGG16
 312 convolutional core consists of five similar blocks of layers. For the CNN #5 we turned the last of
 313 these five blocks to be trainable. This model is one-branched and objects are IR snapshots only.
 314 CNN #5 structure is shown in Fig. 3.
 315 6. CNN #6 is two-branched and branches of its convolutional core are built in the same manner as
 316 convolutional core of CNN #5. The last of five blocks of each VGG16 convolutional cores were
 317 turned to be trainable. Input data are IR and WV snapshots of dataset samples. CNN #6 structure
 318 is shown in Fig. 4.



319 **Figure 3.** CNN #3 and CNN #5 structures. Green dots denote elements of the convolutional core
 320 output reshaped to a vector, which is the fully-connected classifier input data.



322 **Figure 4.** CNN #4 and CNN #6 structures. Green dots denote elements of convolutional cores outputs
 323 reshaped to vectors, which are, being concatenated to a combined features vector, the fully-connected
 324 classifier input data.

325 *3.5. Computational experiment design*

326 The following hyper-parameters are included in each of the six networks:

- 327 • size of FC1 (its nodes number)
- 328 • convolutional kernels count for each convolutional layer
- 329 • sizes of convolutional kernels
- 330 • sizes of receptive fields of subsampling layers

331 The whole dataset was split into training (8952 samples) and testing (2237 samples) sets stratified
 332 by target value meaning that each set has the same (55:45) ratio of true/false samples as the whole
 333 dataset (i.e. 4924:4028 and 1253:984 samples in training and testing sets correspondingly). We have
 334 conducted hyper-parameters optimization for each of these DCNNs using stratified K-fold (K=5)
 335 cross-validation approach. We trained several (typically 14-18) models with the best
 336 hyper-parameters configuration on the training set for each architecture. Then we drop models with
 337 the maximal and minimal accuracy score estimated with the cross-validation approach. The rest of

338 the models are evaluated on the “never-seen by the model” testing set. We estimated the accuracy
 339 score for each individual model and also the variance of accuracy score for the particular architecture
 340 with the best hyper-parameters combination (see Table 2).

341 With the ensemble averaging approach we evaluated the second-order models on the
 342 “never-seen by the model” testing set. As described in section 3.3 we estimated the optimal
 343 probability threshold p_{th} for each second-order and third-order models (see Table 2) for the best
 344 accuracy score estimation. These scores are treated as the quality measure of each particular
 345 architecture.

346 Numerical optimization and evaluation of models were performed on the basis of the Data
 347 Center of FEB RAS [62] and Deep Learning computational resources of Sea-Air Interactions
 348 Laboratory of IORAS (<https://sail.ocean.ru/>). Exploited computational nodes contain two graphics
 349 processing units (GPU) NVIDIA Tesla P100 16GB RAM. With these resources the total GPU time of
 350 calculations is 3792 hours.

351 4. Results

352 The designed DCNNs was applied for the detection of Antarctic MCs for the period from June
 353 to September 2004. Summary of the results of application of six models is presented in Table 2. As we
 354 noted above, each model is characterized by the utilized data source (IR alone or IR+WV, columns
 355 “IR” and “WV” in Table 2). These DCNNs are further categorized according to a chosen set of the
 356 applied techniques in addition to the basic approach (see Table 2 legend). Table 2 also provides
 357 accuracy scores and probability thresholds estimated as described in section 3.5, for individual,
 358 second- and third-order models of each architecture.

359
 360 **Table 2.** Accuracy score of each model with the best hyper-parameters combination. BA - basic
 361 approach [36], TL - transfer learning, FT - fine tuning, Do - dropout, DA - dataset augmentation. *Acc*
 362 is the accuracy score averaged across models of the particular architecture. *AsEA* is the accuracy score
 363 of the ensemble averaged models with the optimal probability threshold. p_{th} is the optimal
 364 probability threshold value.

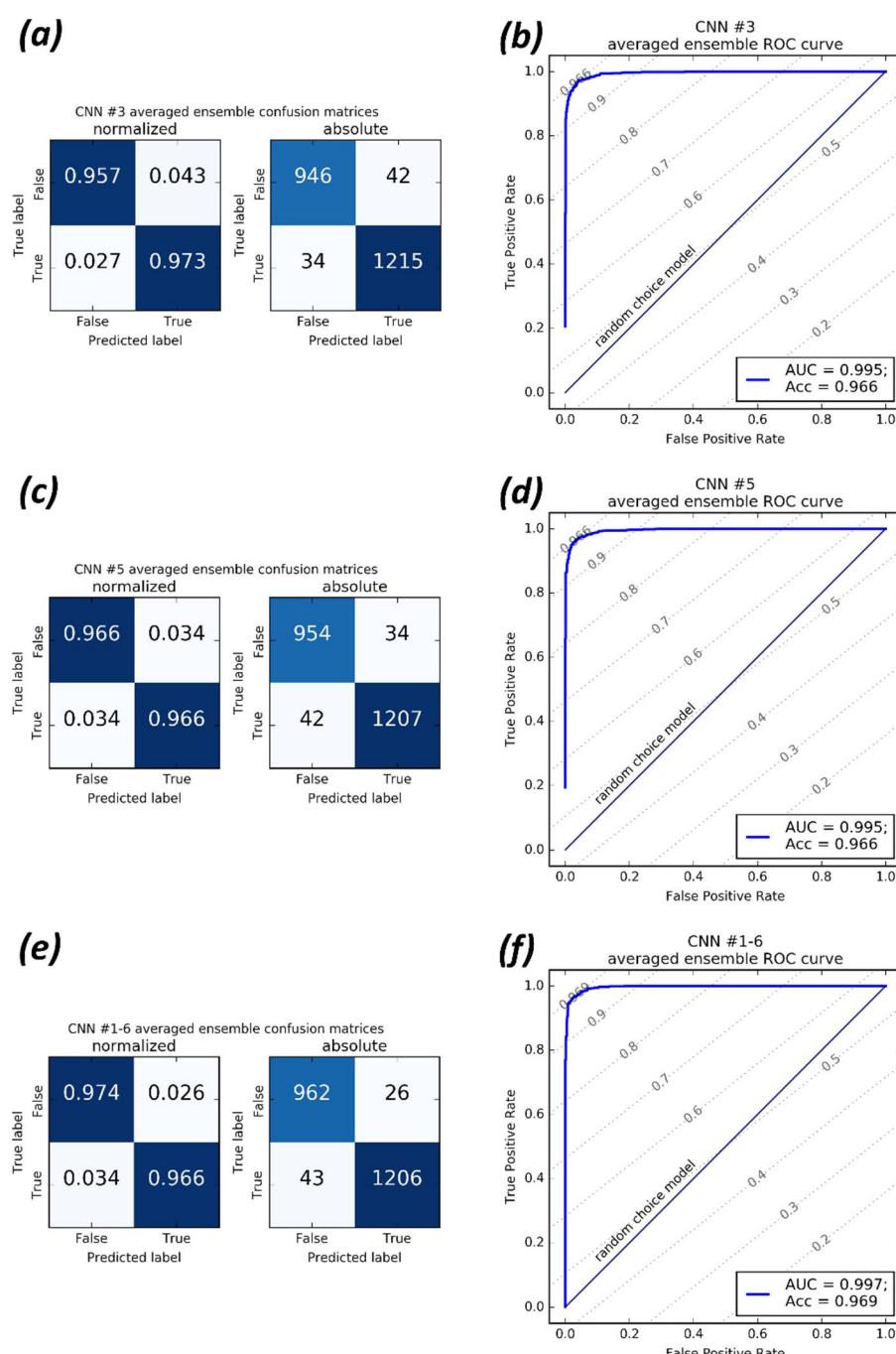
model name	IR	WV	BA	TL	FT	Do	DA	Acc	AsEA	p_{th}
CNN #1	X	-	X	-	-	X	X	$86.89 \pm 1.1 \%$	89.3 %	0.381
CNN #2	X	X	X	-	-	X	X	$94.1 \pm 1.4 \%$	96.3 %	0.272
CNN #3	X	-	X	X	-	X	X	$95.8 \pm 0.1 \%$	96.6 %	0.556
CNN #4	X	X	X	X	-	X	X	$95.5 \pm 0.3 \%$	96.3 %	0.526
CNN #5	X	-	X	X	X	X	X	$96 \pm 0.2 \%$	96.6 %	0.5715
CNN #6	X	X	X	X	X	X	X	$95.7 \pm 0.2 \%$	96.4 %	0.656
Third-order model CNN #1-6 averaged ensemble									97%	0.598

365
 366 As shown in Table 2, CNN #3 and CNN #5 demonstrated the best accuracy among the
 367 second-order models on a never-seen subset of objects. The best combination of hyper-parameters
 368 for these networks is presented in Appendix B. Confusion matrices and receiver operating
 369 characteristic (ROC) curves for these models are presented in Fig. 5 a-d. Confusion matrices and ROC
 370 curves for all evaluated models are presented in Appendix C. Figure 5 clearly shows that these two
 371 models perform almost equally for the true and the false samples. According to Table 2 the best
 372 accuracy score is reached using different probability thresholds for each second- or third-order
 373 model.

374 Comparison of CNN #1, CNN #2 on one hand and the remaining models on the other hand
 375 shows that DCNNs built with the use of Transfer Learning technique demonstrate better
 376 performance compared to the models built “from scratch”. Moreover, accuracy score variances of
 377 CNN #1 and CNN #2 are higher than for the other architectures. Thus, models built with Transfer
 378 Learning approach seem to be more stable, and their generalization ability is better.

379 Comparing CNN #1 and CNN #2 qualities we may conclude that the use of an additional data
 380 source (WV) results in the significant increase of the the model accuracy score. Comparison of models
 381 within each pair of the network configurations (CNN #3 vs CNN #5; CNN #4 vs CNN #6) demonstrate
 382 that Fine Tuning approach does not provide significant improvement of the accuracy score in case of
 383 such a small size of dataset. It is also obvious that the averaging over the ensemble members does
 384 increase the accuracy score from 0.6% for CNN #5 to 2.41% for CNN #1. However, in some cases these
 385 score increases are comparable to the corresponding accuracy standard deviations.

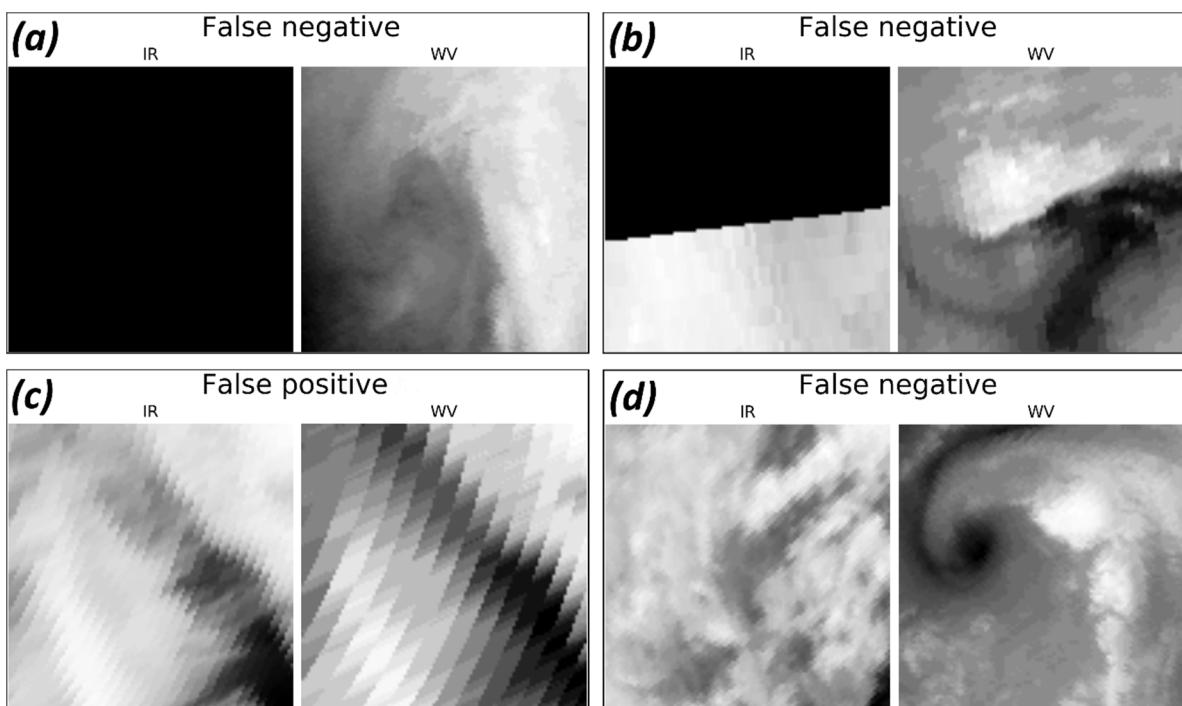
386 It is also clear from the last row of the Table 2, that the third-order model, which averages
 387 probabilities estimated by all trained models CNN #1-6, produces the accuracy of $Acc = 97\%$ which
 388 outperforms all scores of individual models and second-order ensemble models. ROC curve and
 389 confusion matrices for this model are presented in Fig. 5ef.
 390



391 **Figure 5.** Confusion matrices and receiver operating characteristic curve for (a,b) CNN #3 and (c,d)
 392 CNN #5, both with the ensemble averaging approach applied (second-order models); and (e,f) third-
 393 order model CNN #1-6 averaged ensemble.

394

395 Figure 6 demonstrates four main types of false classified objects. The first and the second types
 396 are the ones for which IR data are missing completely or partially. One more type is the one for which
 397 the source satellite data were suspected to be corrupted. These three types of classifier errors
 398 originating from the lack or corruption of the source data. For the fourth type the source satellite data
 399 were realistic but the classifier has done a mistake. Thus some of false classifications are the model
 400 mistakes, and some are associated with the labeling issue where human expert could guess on the
 401 MC propagation over the area with missing or corrupted satellite data.
 402



403

Figure 6. False classified objects.

404 5. Conclusions and outlook

405 In this study we present an adaptation of DCNN approach resulted in an algorithm for the
 406 detection of MCs from satellite imageries of cloudiness. The DCNN technique shows a very high
 407 accuracy in recognition of MCs cloud signatures, with the best accuracy score of 97% is reached by
 408 the usage of the third-order ensemble averaging model (6 models ensemble) and combination of both
 409 IR and WV images as input. We access the accuracy of MCs identification by comparison of identified
 410 MCs (true/false - image contain MC/no MC on the image parameter) with the reference dataset of [6].
 411 We demonstrate that deep convolutional networks are capable for the effective detection of polar
 412 mesocyclone signatures in satellite imageries.

413 It was also shown that the accuracy of MCs detection by DCNNs is sensitive to the single (IR
 414 only) or double (IR+WV) input data usage. IR+WV combination provide significant improvement of
 415 the detection of MCs and allow a weak DCNN (CNN #2) to detect MCs with higher accuracy
 416 compared to the weak CNN #1 (89.3% and 96.3% correspondingly). The computational cost of DCNN
 417 training and hyper-parameters optimization for deep neural networks are time- and computational-
 418 consuming. However, once trained, the computational cost of the DCNN inference is low.
 419 Furthermore, the trained DCNN performs much faster compared to human expert. Another
 420 advantage of the proposed method is the low computational cost of data preprocessing that allows
 421 to process satellite imageries in real time or to process large amounts of collected satellite data.

422 We plan to extend the usage of this set of DCNNs (Table 2) for the development of MCs tracking
 423 method based on machine learning and satellite IR and WV mosaics. These efforts would be mainly
 424 focused onto the development of the optimal choice of the “cut-off” window that has to be applied

425 to the satellite mosaic. In the case of sliding-window approach (e.g. running the 500x500km sliding
426 window through the mosaics) the virtual testing dataset of the whole mosaic is highly unbalanced,
427 so a model with non-zero FPR evaluated on balanced dataset would produce much higher FPR. In
428 the future, instead of the sliding-window, the Unet-like [63] architecture should be considered with
429 the binary semantic segmentation problem formulation. Considering MC tracking development, an
430 approach proposed in a number of face recognition studies should be reassuring [64,65]. This
431 approach can be applied in a manner of triple-based training of the DCNN to estimate a measure of
432 similarity between one particular MC signatures in consecutive satellite mosaics.

433

434 **Author Contributions:** Conceptualization, Mikhail Krinitkiy, Polina Verezemskaya and Sergey Gulev; Data
435 curation, Mikhail Krinitkiy and Matthew Lazzara; Formal analysis, Mikhail Krinitkiy; Funding acquisition,
436 Sergey Gulev; Investigation, Mikhail Krinitkiy and Kirill Grashchenkov; Methodology, Mikhail Krinitkiy and
437 Polina Verezemskaya; Project administration, Mikhail Krinitkiy; Resources, Polina Verezemskaya and Sergey
438 Gulev; Software, Mikhail Krinitkiy and Kirill Grashchenkov; Supervision, Sergey Gulev; Validation, Mikhail
439 Krinitkiy, Polina Verezemskaya and Sergey Gulev; Visualization, Mikhail Krinitkiy and Polina Verezemskaya;
440 Writing – original draft, Mikhail Krinitkiy, Polina Verezemskaya, Natalia Tilinina and Matthew Lazzara;
441 Writing – review & editing, Natalia Tilinina, Sergey Gulev and Matthew Lazzara.

442 **Funding:** This research was funded by the Russian Ministry of Education and Science (agreement 14.613.21.0083,
443 project ID RFMEFI61317X0083). Materials from MAL are based upon the work funded by the United States
444 National Science Foundation under grants ANT-1244924 and ANT-1535632.

445 **Acknowledgments:** Computational resources for this research were provided by the Shared Facility Center
446 "Data Center of FEB RAS", Khabarovsk, Russia.

447 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
448 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision
449 to publish the results.

450 Appendix A. DCNN best practices and additional techniques

451 There is a set of best practices commonly used to construct DCNNs for solving classification
452 problems [51]. Modern DCNNs are built on the basis of consecutive convolutional and subsampling
453 layers by performing nonlinear transformation of the initial data (see Fig. 2 in [36]). The primary layer
454 type of convolutional neural networks (CNNs) is the so-called convolutional layer which is designed
455 to extract visual patterns density map using discrete convolution operation with K (tends to be from
456 3 to 1000) kernels followed by a nonlinear transformation operation (activation function). One
457 additional layer type is a pooling layer performing subsampling operation with one of the following
458 aggregation functions: maximum, minimum, mean or others. In the current practice the maximum is
459 used.

460 Since the LeNet DCNN [36] several works [36–39] demonstrated that the usage of consecutive
461 convolutional and subsampling layers results in a skillful detection of various spatial patterns from
462 the input 2D sample. The approach proposed in [36] implies the use of the output of these stacked
463 layers set as an input data for a classifier, which in general may be any method suitable for
464 classification problems, such as linear models, logistic regression, etc. In [36] it is suggested to use the
465 neural classifier, and this is now conventional approach. The advantage of using a neural classifier is
466 the ability to train the whole model at once (the so-called end-to-end training).

467 The whole model built in this manner represents a classifier capable of direct predicting a target
468 value for the sample. We term the fully-connected (FC) layers set as "FC classifier", and the preceding
469 part containing convolutional and pooling layers as "convolutional core" (see Figures 3,4).

470

471 For building a DCNN it is important to account for data dimensionality during its
472 transformations from layer to layer. The input for a DCNN is an image represented by a matrix of
473 the size (h, w, d) , where h and w correspond to the image height and width in pixels, d is its levels
474 number, the so-called depth (e.g., $d = 3$ when levels are red, green and blue channels of a colorful

475 image). For the integrated water vapor or radio-brightness temperature, $d = 1$. A convolutional layer
476 and subsampling layer are described in details in [36]. Convolutional layers are characterized by their
477 kernel sizes (e.g. 3x3, 5x5), their kernel numbers K and the nonlinear operation used (e.g. \tanh in
478 [36]). Subsampling layers are characterized by their receptive field sizes e.g. 3x3, 5x5 etc. The output
479 of a convolutional layer with K kernels is the so-called feature maps which is a matrix of the size
480 (h, w, K) . The nonlinear operation transforms it to a matrix of size $(h, w, 1)$. The following
481 subsampling layer reduces the matrix size depending on the subsampling layer kernel size. Typically,
482 this size is (2, 2) or (3, 3). Thus, the subsampling operation reduces the sample size by a factor 2 or 3,
483 respectively. The output of a convolutional core is a set of abstract feature maps which is represented
484 by a 3D matrix. This matrix, being reshaped into a vector, is passed as the input to the FC classifier
485 (see Figures 3,4). The outcome of the the whole model is the probability of each class for the input
486 sample. In the case of binary classification, the FC classifier has one output unit, producing
487 probability of MC presence for the input sample.
488

489 In addition to the basic approach proposed in [36] a number of techniques may be applied. Using
490 them one can construct and train DCNNs of various accuracy and various generalization abilities
491 which is characterized by the quality of a model estimated on a never-seen test data.

492 *A.1. Transfer learning*

493 One of the additional approaches is Transfer Learning [52–57]. Generally, this technique focuses
494 on storing the knowledge obtained by some network while being trained for one problem and
495 applying it to another problem of a similar kind. In practice, this approach implies the DCNN
496 structure to be built using some part of a network previously trained on a considerable amount of
497 data, for example, ImageNet [44]. In these terms, VGG16 [40] is not only an efficient architecture, but
498 also the pre-trained network containing optimized weights values (also known as network
499 parameters). Best practice for building a new advanced DCNN based on transfer learning approach
500 is to compose it using convolutional core of the pre-trained model (e.g. VGG16) followed by a new
501 FC neural classifier. Weights of the convolutional part in this case are fixed, and only FC part is
502 optimized. In this approach, the convolutional core may be considered as a feature extractor (see
503 [36]), which computes a highly relevant low-dimensional (compared to original samples
504 dimensionality) vector, representing the data (e.g. “reshaped to vector” output of the convolutional
505 core in Fig. 3).

506 *A.2. Fine Tuning*

507 Transfer Learning approach relies on the similarity of data distributions within two datasets.
508 But in the case of significant differences, for example in terms of Kullback–Leibler divergence
509 between some particular feature approximated probability distributions, the new FC classifier
510 capabilities may not cover all those differences. In this case, some layers of the convolutional core,
511 that are close to FC classifier, can be turned on to be optimized (the so-called Fine Tuning). Regarding
512 DCNNs application to satellite mosaics, we have to consider that VGG16 was optimized on ImageNet
513 dataset which contains everyday-observed objects like buildings, dogs, cats, cars etc., without any
514 satellite imageries or even clouds. So FT approach can be considered as a promising approach when
515 composing MC-detecting DCNN at IR and WV satellite mosaics data.

516 *A.3. Preventing overfitting*

517 Machine learning models and neural networks in particular may vary in terms of complexity. In
518 the case of too strong model there exist an overfitting problem: the effect of poor target prediction
519 quality on unseen data concurrently with nearly exact prediction of target values on training data.
520 There are several state-of-the-art approaches to prevent overfitting of neural networks. We used most
521 fruitful and reliable ones are: dropout [59] and data augmentation also called auxiliary variables [60].
522 We also used ensemble averaging of models outcome.

523 *A.4. Preventing overfitting with dropout*

524 Dropout approach is the way of preventing overfit with a computationally inexpensive but still
 525 powerful method of regularizing neural networks through bagging [66] and virtually ensembling
 526 models of similar architecture. Bagging involves training multiple models and testing each of them
 527 on test samples. Since training and evaluating of deep neural networks tend to be time-consuming
 528 and computationally expensive, the original bagging approach [66] seems to be impractical. With the
 529 dropout approach applied, the network may be thought as an ensemble of all sub-networks that can
 530 be composed by removing non-output nodes from the base network. In practice, this approach is
 531 implemented by dropout layer which turns the preceding layer output to zero for each node with
 532 some probability p . This procedure repeats for each mini-batch at the training time. At the inference
 533 time, the dropout approach involves network weights scaling by $1/p$. Each of our models includes
 534 dropout layers between trainable layers. Rate p was set to 0.1 for each dropout layer of each model.

535 *A.5. Preventing overfitting with dataset augmentation*

536 Dataset augmentation is the state-of-the-art way to make a machine learning model generalize
 537 better. When available dataset size is limited, the way to get around is to generate fake data which
 538 should be similar to real samples. Best practice for DCNNs is generating fake samples adding some
 539 noise or applying slight transformations like shift, shear, rotation, scaling etc. Formally, with data
 540 augmentation one can increase variability of features of the original dataset and substantially extend
 541 its size. This approach often improves generalization ability of the trained model.

542 We trained each of our models with data augmentation approach applied. The rotation angle
 543 range was 90° in both direction; independent width and height scaling performed within range from
 544 0.8 to 1.2; zoom range from 0.8 to 1.2; shear angle range from -2° to 2° . We didn't use flipping
 545 upside-down and left-to-right.

546 *A.6. Preventing overfitting with ensemble averaging*

547 In general, during the parameters optimization (learning process) each DCNN converges to a
 548 local minimum of the loss function in the space of its weights. The training process starts from a
 549 randomly generated point of this space. So due to a non-convexity of loss function, every new DCNN
 550 model converges to a new local minimum. Some models may converge to a minimum that is not
 551 really close to a global one in terms of loss function value, and thus the quality measure of that model
 552 remains poor. Other models may converge to a good minimum that is close to a global one in terms
 553 of loss function value, but this proximity may lead to a poor generalization ability which means low
 554 quality measure estimated on a testing subset of data. There are approaches for improving the
 555 generalization ability of several models that are generally similar, but differ in detailed predictions.
 556 In our study we applied simple ensemble averaging [67], which is one of state-of-the-art approaches
 557 for improving machine learning models generalization ability. With this approach several models of
 558 each architecture are trained, and probabilities of these models are averaged. The prediction of this
 559 model is treated as an ensemble outcome:

$$p_i = \frac{\sum_{m=0}^M p_i^{(m)}}{M}, \quad (A1)$$

560 where p_i is the estimated probability of the ensemble of M models for i -th sample to be true; each
 561 m -th model's probability estimation for i -th sample to be true is $p_i^{(m)}$. In this study we applied
 562 ensembling on DCNNs of identical architectures. The resulting models we term *second-order models*
 563 in this study. They are synthetic ones that are not trained, but are ensembles.

564 IR+WV snapshots or IR snapshot alone are essentially the object description, and each model
 565 that is presented in our study produces the outcome for each object regardless of the description -
 566 whether it is IR snapshot alone or IR+WV snapshots. So there is an opportunity to average probability
 567 outcomes of all the models of this study. The resulting model that produces averaged probabilities

568 of the ensemble containing all trained models we term *third-order model*. It is a synthetic one that is
 569 not trained, but is an ensemble.

570 *A.7. Adjustment of the probability threshold*

571 The outcome of each model of this study is the estimation of the probability for the sample to be
 572 true (i.e. to present an MC). So there is arbitrariness in choosing the threshold of this probability to
 573 get the outcome which is binary. The most common way to choose this threshold is the ROC curve
 574 analysis. Each point of this curve represents the False Positive Rate (FPR) and True Positive Rate
 575 (TPR) combination for the particular probability threshold p_{th} (e.g. see Fig. 5bdf). The model
 576 performing true random choice between true and false outcome has a ROC curve on the main
 577 diagonal of this plot. The ROC curve of the perfect classifier follows from the point (0,0,0) straight
 578 to the point (0,0,1.0) and then to the point (1,0,1.0). The area under the ROC curve (AUC ROC) may
 579 be considered as a measure of model quality. The best model AUC ROC is 1.0, the true random choice
 580 model AUC ROC is 0.5, and the worst model AUC ROC is 0.0.

581 In a range of cases the best accuracy score might not be reached with $p_{th} = 0.5$. The lines of equal
 582 accuracy score, as presented in Fig. 5bdf, are diagonal. In case of perfect 50/50 ratio of true/false
 583 samples they are parallel to the main diagonal. In case of slight inequality of true and false samples
 584 count these lines have slightly different slope as shown in Fig. 5bdf. For each accuracy score there are
 585 two, one or no points of the ROC curve intersection with the accuracy isoline. So if a model is
 586 represented with a ROC curve, the maximum value of its *Acc* is located at the point of this curve
 587 where the accuracy isoline is tangent to it. For each model of this study including second- and third-
 588 order models the optimal probability threshold was estimated based on ROC curve analysis.

589 **Appendix B. CNN #3 and CNN #5 Best hyper-parameters combinations.**

590 According to section 3.4, CNN #3 and CNN #5 are both constructed to have one-branched
 591 convolutional core. Best combination of hyper-parameters of these networks are the same. The only
 592 difference is the FT approach that was applied in case of CNN #5.

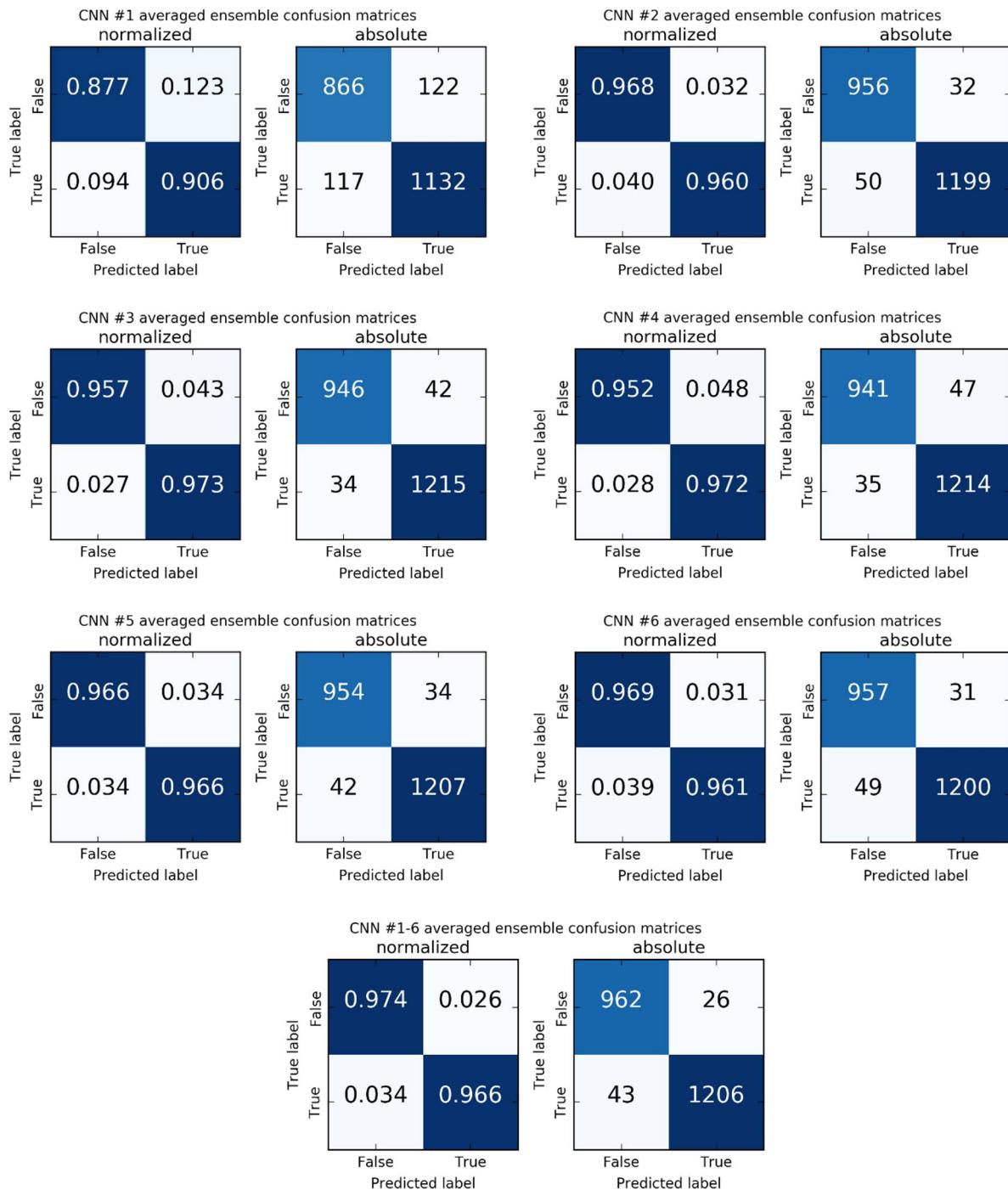
593
 594

Table B1. CNN #3 and CNN #5 best hyper-parameters combination.

Layer (block) name	Layer (block) nodes count or output dimensions	Connected to
Input_data_IR	100x100	-
VGG_16_conv_core	see [40]; output: 3x3x512	Input_data_IR
Reshape_1	4608	VGG_16_conv_core
Dropout_1	4608	Reshape_1
FC1	1024	Dropout_1
Dropout_2	1024	FC1
FC2	512	Dropout_2
Dropout_3	512	FC2
FC3	256	Dropout_3
Dropout_4	256	FC3
FC4	128	Dropout_4
FC_output	1	FC3

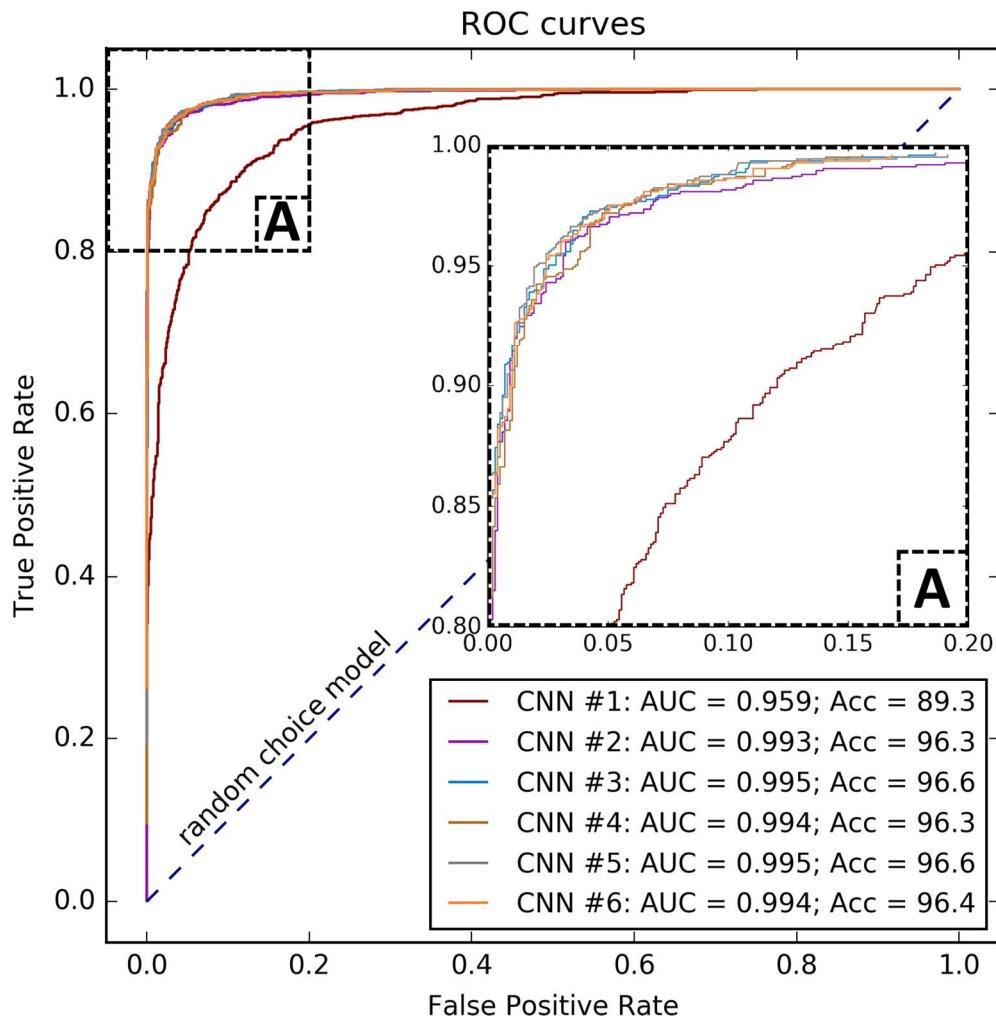
595

596 **Appendix C. Detailed performance metrics of all DCNN models.**



597
598
599

Figure C1. Confusion matrices for all models and the third-order model CNN #1-6 averaged ensemble, computed on test never-seen subset of data. For each architecture the ensemble averaging technique is applied.



600 **Figure C2.** Receiver operating characteristic curves computed on test never-seen subset of data for all
 601 models. For each architecture the ensemble averaging technique is applied.

602 **References**

1. *Polar Lows: Mesoscale Weather Systems in the Polar Regions*; Rasmussen, E. A., Turner, J., Eds.; Cambridge University Press: Cambridge, 2003; ISBN 978-0-511-52497-4.
2. Marshall, J.; Schott, F. Open-ocean convection: Observations, theory, and models. *Reviews of Geophysics* **1999**, *37*, 1–64, doi:10.1029/98RG02739.
3. Condron, A.; Bigg, G. R.; Renfrew, I. A. Polar Mesoscale Cyclones in the Northeast Atlantic: Comparing Climatologies from ERA-40 and Satellite Imagery. *Mon. Wea. Rev.* **2006**, *134*, 1518–1533, doi:10.1175/MWR3136.1.
4. Condron, A.; Renfrew, I. A. The impact of polar mesoscale storms on northeast Atlantic Ocean circulation. *Nature Geoscience* **2013**, *6*, 34–37, doi:10.1038/ngeo1661.
5. Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. *Numerical recipes 3rd edition: The art of scientific computing*; Cambridge university press, 2007; ISBN 0-521-88068-8.
6. Verezemskaya, P.; Tilinina, N.; Gulev, S.; Renfrew, I. A.; Lazzara, M. Southern Ocean mesocyclones and polar lows from manually tracked satellite mosaics. *Geophysical Research Letters* **2017**, *44*, 7985–7993, doi:10.1002/2017GL074053.
7. Hersbach, H.; Dee, D. ERA5 reanalysis is in production. *ECMWF newsletter* **2016**, *147*.

618 8. Barratt, M. ERA5 reanalysis is in production Available online:
619 <https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production> (accessed on Aug 13, 2018).

620 9. Laffineur, T.; Claud, C.; Chaboureau, J.-P.; Noer, G. Polar Lows over the Nordic Seas: Improved
621 Representation in ERA-Interim Compared to ERA-40 and the Impact on Downscaled Simulations. *Mon. Wea. Rev.* **2014**, *142*, 2271–2289, doi:10.1175/MWR-D-13-00171.1.

622 10. Xia, L.; Zahn, M.; Hodges, K.; Feser, F.; Storch, H. A comparison of two identification and tracking
623 methods for polar lows. *Tellus A: Dynamic Meteorology and Oceanography* **2012**, *64*, 17196,
624 doi:10.3402/tellusa.v64i0.17196.

625 11. Zappa, G.; Shaffrey, L.; Hodges, K. Can Polar Lows be Objectively Identified and Tracked in the ECMWF
626 Operational Analysis and the ERA-Interim Reanalysis? *Mon. Wea. Rev.* **2014**, *142*, 2596–2608,
627 doi:10.1175/MWR-D-14-00064.1.

628 12. Pezza, A.; Sadler, K.; Uotila, P.; Vihma, T.; Mesquita, M. D. S.; Reid, P. Southern Hemisphere strong polar
629 mesoscale cyclones in high-resolution datasets. *Clim Dyn* **2016**, *47*, 1647–1660, doi:10.1007/s00382-015-
630 2925-2.

631 13. Rojo, M.; Claud, C.; Mallet, P.-E.; Noer, G.; Carleton, A. M.; Vicomte, M. Polar low tracks over the Nordic
632 Seas: a 14-winter climatic analysis. *Tellus A: Dynamic Meteorology and Oceanography* **2015**, *67*, 24660,
633 doi:10.3402/tellusa.v67.24660.

634 14. Irving, D.; Simmonds, I.; Keay, K. Mesoscale Cyclone Activity over the Ice-Free Southern Ocean: 1999–
635 2008. *J. Climate* **2010**, *23*, 5404–5420, doi:10.1175/2010JCLI3628.1.

636 15. Neu, U.; Akperov, M. G.; Bellenbaum, N.; Benestad, R.; Blender, R.; Caballero, R.; Cocozza, A.; Dacre, H.
637 F.; Feng, Y.; Fraedrich, K.; Grieger, J.; Gulev, S.; Hanley, J.; Hewson, T.; Inatsu, M.; Keay, K.; Kew, S. F.;
638 Kindem, I.; Leckebusch, G. C.; Liberato, M. L. R.; Lionello, P.; Mokhov, I. I.; Pinto, J. G.; Raible, C. C.; Reale,
639 M.; Rudeva, I.; Schuster, M.; Simmonds, I.; Sinclair, M.; Sprenger, M.; Tilinina, N. D.; Trigo, I. F.; Ulbrich,
640 S.; Ulbrich, U.; Wang, X. L.; Wernli, H. IMILAST: A Community Effort to Intercompare Extratropical
641 Cyclone Detection and Tracking Algorithms. *Bull. Amer. Meteor. Soc.* **2012**, *94*, 529–547, doi:10.1175/BAMS-
642 D-11-00154.1.

643 16. Wilhelmsen, K. Climatological study of gale-producing polar lows near Norway. *Tellus A: Dynamic
644 Meteorology and Oceanography* **1985**, *37*, 451–459, doi:10.3402/tellusa.v37i5.11688.

645 17. Carrasco, J. F.; Bromwich, D. H. Mesoscale cyclogenesis dynamics over the southwestern Ross Sea,
646 Antarctica. *Journal of Geophysical Research: Atmospheres* **1993**, *98*, 12973–12995.

647 18. Carrasco, J. F.; Bromwich, D. H.; Liu, Z. Mesoscale cyclone activity over Antarctica during 1991: 1. Marie
648 Byrd Land. *Journal of Geophysical Research: Atmospheres* **1997**, *102*, 13923–13937, doi:10.1029/97JD00905.

649 19. Turner, J.; Thomas, J. P. Summer-season mesoscale cyclones in the bellingshausen-weddell region of the
650 antarctic and links with the synoptic-scale environment. *International Journal of Climatology* **1994**, *14*, 871–
651 894, doi:10.1002/joc.3370140805.

652 20. Harold, J. M.; Bigg, G. R.; Turner, J. Mesocyclone activity over the North-East Atlantic. Part 1: vortex
653 distribution and variability. *International Journal of Climatology* **1999**, *19*, 1187–1204, doi:10.1002/(SICI)1097-
654 0088(199909)19:11<1187::AID-JOC419>3.0.CO;2-Q.

655 21. Harold, J. M.; Bigg, G. R.; Turner, J. Mesocyclone activity over the Northeast Atlantic. Part 2: An
656 investigation of causal mechanisms. *International Journal of Climatology* **1999**, *19*, 1283–1299,
657 doi:10.1002/(SICI)1097-0088(199910)19:12<1283::AID-JOC420>3.0.CO;2-T.

658 22. CARLETON, A. M. On the interpretation and classification of mesoscale cyclones from satellite infrared
659 imagery. *International Journal of Remote Sensing* **1995**, *16*, 2457–2485, doi:10.1080/01431169508954569.

660

661 23. Claud, C.; Katsaros, K. B.; Mognard, N. M.; Scott, N. A. Comparative satellite study of mesoscale
662 disturbances in polar regions. *Global Atmos Ocean Syst* **1996**, *4*, 233–273.

663 24. Claud, C.; Carleton, A. M.; Duchiron, B.; Terray, P. Southern hemisphere winter cold-air mesocyclones:
664 climatic environments and associations with teleconnections. *Climate Dynamics* **2009**, *33*, 383–408,
665 doi:10.1007/s00382-008-0468-5.

666 25. Blechschmidt, A.-M. A 2-year climatology of polar low events over the Nordic Seas from satellite remote
667 sensing. *Geophysical Research Letters* **2008**, *35*, doi:10.1029/2008GL033706.

668 26. Noer, G.; Saetra, Ø.; Lien, T.; Gusdal, Y. A climatological study of polar lows in the Nordic Seas. *Quarterly
669 Journal of the Royal Meteorological Society* **2011**, *137*, 1762–1772, doi:10.1002/qj.846.

670 27. Smirnova, J. E.; Zabolotskikh, E. V.; Bobylev, L. P.; Chapron, B. Statistical characteristics of polar lows over
671 the Nordic Seas based on satellite passive microwave data. *Izv. Atmos. Ocean. Phys.* **2016**, *52*, 1128–1136,
672 doi:10.1134/S0001433816090255.

673 28. Heinle, A.; Macke, A.; Srivastav, A. Automatic cloud classification of whole sky images. *Atmospheric
674 Measurement Techniques* **2010**, *3*, 557–567, doi:10.5194/amt-3-557-2010.

675 29. Taravat, A.; Frate, F. D.; Cornaro, C.; Vergari, S. Neural Networks and Support Vector Machine
676 Algorithms for Automatic Cloud Classification of Whole-Sky Ground-Based Images. *IEEE Geoscience and
677 Remote Sensing Letters* **2015**, *12*, 666–670, doi:10.1109/LGRS.2014.2356616.

678 30. Onishi, R.; Sugiyama, D. Deep Convolutional Neural Network for Cloud Coverage Estimation from
679 Snapshot Camera Images. *SOLA* **2017**, *13*, 235–239, doi:10.2151/sola.2017-043.

680 31. Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet classification with deep convolutional neural
681 networks. In *Advances in neural information processing systems*; 2012; pp. 1097–1105.

682 32. Shin, H.-C.; Roth, H. R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R. M. Deep
683 Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset
684 Characteristics and Transfer Learning. *IEEE Transactions on Medical Imaging* **2016**, *35*, 1285–1298,
685 doi:10.1109/TMI.2016.2528162.

686 33. Krinitskiy, M. A. Application of machine learning methods to the solar disk state detection by all-sky
687 images over the ocean. *Oceanology* **2017**, *57*, 265–269, doi:10.1134/S0001437017020126.

688 34. Liu, Y.; Racah, E.; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.; Collins, W.
689 Application of deep convolutional neural networks for detecting extreme weather in climate datasets.
690 *arXiv preprint arXiv:1605.01156* **2016**.

691 35. Huang, D.; Du, Y.; He, Q.; Song, W.; Liotta, A. DeepEddy: A simple deep architecture for mesoscale
692 oceanic eddy detection in SAR images. In *2017 IEEE 14th International Conference on Networking, Sensing
693 and Control (ICNSC)*; 2017; pp. 673–678.

694 36. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
695 *Proceedings of the IEEE* **1998**, *86*, 2278–2324, doi:10.1109/5.726791.

696 37. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. *Nature* **2015**, *521*, 436–444, doi:10.1038/nature14539.

697 38. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F. E. A survey of deep neural network architectures
698 and their applications. *Neurocomputing* **2017**, *234*, 11–26, doi:10.1016/j.neucom.2016.12.038.

699 39. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M. S. Deep learning for visual understanding: A
700 review. *Neurocomputing* **2016**, *187*, 27–48, doi:10.1016/j.neucom.2015.09.116.

701 40. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
702 *arXiv:1409.1556 [cs]* **2014**.

703 41. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In *Proceedings of the IEEE conference on computer vision and pattern recognition*; 2015; pp. 1–9.

704 42. Chollet, F. Xception: Deep learning with depthwise separable convolutions, CoRR abs/1610.02357. URL <http://arxiv.org/abs/1610.02357> 2016.

705 43. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*; 2016; pp. 770–778.

706 44. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In *Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on*; Ieee, 2009; pp. 248–255.

707 45. Eckersley, P.; Nasser, Y. AI Progress Measurement Available online: <https://www.eff.org/ai/metrics> (accessed on Aug 13, 2018).

708 46. Deng, L.; Yu, D. Deep Learning: Methods and Applications. *SIG* **2014**, *7*, 197–387, doi:10.1561/2000000039.

709 47. Deng, L. A tutorial survey of architectures, algorithms, and applications for deep learning. *APSIPA Transactions on Signal and Information Processing* **2014**, *3*, doi:10.1017/atsip.2013.9.

710 48. Schmidhuber, J. Deep learning in neural networks: An overview. *Neural networks* **2015**, *61*, 85–117.

711 49. Lazzara, M. A.; Keller, L. M.; Stearns, C. R.; Thom, J. E.; Weidner, G. A. Antarctic satellite meteorology: applications for weather forecasting. *Monthly Weather Review* **2003**, *131*, 371–383.

712 50. Kohrs, R. A.; Lazzara, M. A.; Robaidek, J. O.; Santek, D. A.; Knuth, S. L. Global satellite composites – 20 years of evolution. *Atmospheric Research* **2014**, *135–136*, 8–34, doi:10.1016/j.atmosres.2013.07.023.

713 51. Simard, P. Y.; Steinkraus, D.; Platt, J. C. Best practices for convolutional neural networks applied to visual document analysis. In *Proceedings of Seventh International Conference on Document Analysis and Recognition*; IEEE: Edinburgh, Scotland, 2003; p. 958.

714 52. Pratt, L. Y.; Mostow, J.; Kamm, C. A.; Kamm, A. A. Direct Transfer of Learned Information Among Neural Networks. In *AAAI*; 1991; Vol. 91, pp. 584–589.

715 53. Caruana, R. Learning Many Related Tasks at the Same Time with Backpropagation. *Advances in neural information processing systems* **1995**, *8*.

716 54. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In *Proceedings of the 25th international conference on Machine learning*; ACM, 2008; pp. 160–167.

717 55. Pan, S. J.; Yang, Q. A Survey on Transfer Learning. *IEEE Transactions on Knowledge and Data Engineering* **2010**, *22*, 1345–1359, doi:10.1109/TKDE.2009.191.

718 56. Mesnil, G.; Dauphin, Y.; Glorot, X.; Rifai, S.; Bengio, Y.; Goodfellow, I.; Lavoie, E.; Muller, X.; Desjardins, G.; Warde-Farley, D. Unsupervised and transfer learning challenge: a deep learning approach. In *Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning workshop-Volume 27*; JMLR.org, 2011; pp. 97–111.

719 57. Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*; 2014; pp. 1717–1724.

720 58. Maclin, R.; Shavlik, J. W. Combining the predictions of multiple classifiers: Using competitive learning to initialize neural networks. In *Proceedings of the 1995 International Joint Conference on AI*; Citeseer: Montreal, Quebec, Canada, 1995; pp. 524–531.

745 59. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a simple way to
746 prevent neural networks from overfitting. *The Journal of Machine Learning Research* **2014**, *15*, 1929–1958.

747 60. Agakov, F. V.; Barber, D. An Auxiliary Variational Method. In *Neural Information Processing*; Lecture Notes
748 in Computer Science; Springer, Berlin, Heidelberg, 2004; pp. 561–566.

749 61. Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning representations by back-propagating errors.
750 *Nature* **1986**, *323*, 533–536, doi:10.1038/323533a0.

751 62. Sorokin, A. A.; Makogonov, S. V.; Korolev, S. P. The Information Infrastructure for Collective Scientific
752 Work in the Far East of Russia. *Sci. Tech. Inf. Proc.* **2017**, *44*, 302–304, doi:10.3103/S0147688217040153.

753 63. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.
754 In *Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015*; Lecture Notes in Computer
755 Science; Springer, Cham, 2015; pp. 234–241.

756 64. Parkhi, O. M.; Vedaldi, A.; Zisserman, A. Deep face recognition. In *BMVC*; 2015; Vol. 1, p. 6.

757 65. Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and
758 Clustering. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*; 2015; pp. 815–
759 823.

760 66. Breiman, L. Bagging predictors. *Mach Learn* **1996**, *24*, 123–140, doi:10.1007/BF00058655.

761 67. Lincoln, W. P.; Skrzypek, J. Synergy of clustering multiple back propagation networks. In *Advances in
762 neural information processing systems*; 1990; pp. 650–657.

763