

1 Article

2 Deep convolutional neural networks capabilities for 3 binary classification of polar mesocyclones in 4 satellite mosaics

5 **Mikhail Krinit斯基^{1,*}, Polina Verezemskaya^{1,2}, Kirill Grashchenkov^{1,3}, Natalia Tilinina¹,**
6 **Sergey Gulev¹ and Matthew Lazzara⁴**

7 ¹ Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia; info@ocean.ru

8 ² Research Computing Center of Lomonosov Moscow State University, Moscow, Russia

9 ³ Moscow Institute of Physics and Technology, Moscow, Russia

10 ⁴ University of Wisconsin-Madison and Madison Area Technical College, Madison, Wisconsin, USA

11 * Correspondence: krinitsky@sail.msk.ru; Tel.: +7-926-141-6200

12

13 **Abstract:** Polar mesocyclones (MCs) are small marine atmospheric vortices. The class of intense
14 MCs, called polar lows, are accompanied by extremely strong surface winds and heat fluxes and
15 thus largely influencing deep ocean water formation in the polar regions. Accurate detection of
16 polar mesocyclones in high-resolution satellite data, while challenging, is a time-consuming task,
17 when performed manually. Existing algorithms for the automatic detection of polar mesocyclones
18 are based on the conventional analysis of patterns of cloudiness and involve different empirically
19 defined thresholds of geophysical variables. As a result, various detection methods typically reveal
20 very different results when applied to a single dataset. We present a conceptually novel approach
21 for the detection of MCs based on the use of deep convolutional neural networks (DCNNs). We
22 demonstrate that DCNN model is capable of performing binary classification of 500x500km patches
23 of satellite images regarding MC patterns presence in it. The training dataset is based on the
24 reference database of MCs manually tracked in the Southern Hemisphere from satellite mosaics.
25 This dataset is further used for testing several different DCNN setups, specifically, DCNN built
26 "from scratch", DCNN based on VGG16 pre-trained weights also engaging the Transfer Learning
27 technique, and DCNN based on VGG16 with Fine Tuning technique. Each of these networks is
28 further applied to both infrared (IR) and a combination of infrared and water vapor (IR+WV)
29 satellite imagery. The best skills (97% in terms of the binary classification accuracy score) is achieved
30 with the model that averages the estimates of the ensemble of different DCNNs. The algorithm can
31 be further extended to the automatic identification and tracking numerical scheme and applied to
32 other atmospheric phenomena characterized by a distinct signature in satellite imagery.

33 **Keywords:** deep learning, convolutional neural networks, polar mesocyclones, satellite data
34 processing, pattern recognition

35

36 Nomenclature

37 BCE – binary cross-entropy
38 CNN – convolutional neural network
39 DA – dataset augmentation technique
40 DCNN – deep convolutional neural network
41 DL – deep learning
42 Do – Dropout technique
43 FC – fully-connected
44 FCNN – fully-connected neural network

45 FT – Fine Tuning
46 FNR – false negative rate
47 FPR – false positive rate
48 IR – infrared
49 MC – mesocyclone
50 NH – Northern Hemisphere
51 PL – polar low
52 ROC – receiver operator characteristic
53 AUC ROC – area under the curve of receiver operator characteristic
54 SH – Southern Hemisphere
55 SOMC – Shirshov Institute of Oceanology mesocyclone dataset for Southern Ocean
56 TL – Transfer Learning
57 TNR – true negative rate
58 TPR – true positive rate
59 VGG16 – the DCNN proposed by Visual Geometry Group (University of Oxford) [1]
60 WV – water vapor

61 1. Introduction

62 Polar mesoscale cyclones (MCs) are high-latitude marine atmospheric vortices. Their sizes range
63 from 200 to 1000 km with lifetimes typically spanning from 6 to 36 hours [2]. A specific intense type
64 of mesocyclones, the so-called polar lows (PLs) is characterized by surface winds of more than 15 m/s
65 and strong surface fluxes. These PLs have a significant impact on local weather conditions causing
66 rough seas. Being relatively small in size (compared to the extratropical cyclones), PLs contribute
67 significantly to the generation of extreme air-sea fluxes and initialize intense surface transformation
68 of water masses resulting in the formation of ocean deep water [3–5]. These processes are most intense
69 in the Weddel and Bellingshausen Seas in the Southern hemisphere and in the Labrador, Greenland
70 and Irminger Seas in the Northern Hemisphere.

71 One potential source of data is reanalyses. However, MCs, being critically important for many
72 oceanographic and meteorological applications, are only partially detectable in different reanalysis
73 datasets, primarily due to the inadequate resolution. Studies [4,6–9] have demonstrated the
74 significant underestimation of both number of mesocyclones and wind speeds by modern reanalyses
75 in contrast with satellite observations of MCs cloud signatures and wind speeds. This hints that the
76 spatial resolution of modern reanalyses is still not good enough for reliable and accurate detection of
77 MCs. Press et al. argued for at least 10 by 10 grid points is necessary for effective capturing the
78 MC [10]. This implies a 30 km spatial resolution in the model or reanalysis is needed for detecting
79 MC with the diameter of 300 km. Some studies [6,11] have demonstrated that 80% (64%) of MCs (PLs)
80 in the SH (NH) are characterized by the diameters ranging from 200 to 500 km (250 to 450 km for NH
81 in [11]). The most recent study of Smirnova and Golubkin [12] revealed that only 70% of those could
82 be sustainably represented even in the very high-resolution Arctic System Reanalysis (ASR) [13]. At
83 the same time only 53% of the observed MCs characterized by diameters less than 200 km [6] are
84 sustainably represented in ASR [12]. It was also shown [4,6,7] that both number of MCs and
85 associated winds in modern reanalyses are significantly underestimated compared to satellite
86 observations of cloud signatures of MCs and satellite scatterometer observations of MC winds.

87 One might argue for the use of operational analyses for detecting MCs. However, these products
88 are influenced by the changing model setting over time, the performance of data assimilation system
89 and the volume of assimilated data. This leads to artificial trends at climatological timescales. In
90 several studies, automated cyclone tracking algorithms originally developed for mid-latitude
91 cyclones were adapted for MCs identification and tracking [14–16]. These algorithms were applied
92 to the preprocessed (spatially filtered) reanalysis data and delivered climatological assessments of
93 MCs activity in reanalyses or revealed the direction for their improvement. However, reported
94 estimates of MCs numbers, sizes and lifecycle characteristics vary significantly in these studies.

95 Zappa et al. [14] shows that ECMWF operational analysis makes it possible to detect up to 70%
96 of the observed PLs, which is higher than ERA40 and ERA-Interim reanalyses (24%, 45% or 55%
97 depending on the procedure of tracking and the choice of reanalysis [7,14]). One bandpass filter in
98 conjunction with different combinations of criteria used for the post-processing of the MC tracking
99 results may result in a 30% spread in the number of PLs [14]. Observational satellite-based
100 climatologies of MCs and PLs [6,11,17–19] consistently reveal a mean vortex diameter of 300–350 km.
101 In a number of reanalysis-based automated studies [15,20], the upper limit of MC and PL diameters
102 was set to 1000 km, resulting in the mean values between 500 and 800 km. Thus, the estimates of MC
103 sizes are still inconsistently derived with automated tracking algorithms. This inconsistency contrasts
104 with the estimates for midlatitude cyclones' characteristics derived with the ensemble of tracking
105 schemes [21] applied to a single dataset.

106 Satellite imagery of cloudiness is another data source for identification and tracking of MCs.
107 These data allow for visual identification of cloud signatures associated with MCs. However, the
108 manual procedure requires enormous effort to build long enough dataset. Pioneering work of
109 Wilhelmsen [22] used ten years of consecutive synoptic weather maps, coastal observational stations
110 and several satellite images over the Norwegian and Barents Seas to describe local PLs activity. Later
111 in the 1990s, the number of instruments and satellite crossovers increased. It provoked many studies
112 [17,23–28] evaluating characteristics of MCs occurrence and lifecycle in different regions of both NH
113 and SH. These studies identified major MCs generation regions, their dominant migration directions,
114 and cloudiness signature types associated with MCs. Increases in the amount of satellite observations
115 allowed for the development of robust regional climatologies of MCs occurrence and characteristics.
116 For the SH, Carleton [27] used twice daily cloudiness imagery of West Antarctica and classified for
117 the first time four types of cloud signatures associated with PLs (comma, spiral, transitional type, and
118 merry-go-round). This classification has been confirmed later in many works and is widely used now.
119 Harold et al. [17,26] used daily satellite imagery for building one of the most detailed datasets of MC
120 characteristics for the Nordic Seas (Greenland, Norwegian, Iceland and Northern Seas). Also, Harold
121 et al. [17,26] developed a detailed description of the conventional methodology for the identification
122 and tracking of MCs using satellite IR imageries.

123 There are also several studies regarding polar MCs and PLs activity in the Sea of Japan.
124 Gang et al. [29] conducted the first long-term (three winter months) research of PLs in the Sea of Japan
125 based on visible and IR imagery from the geostationary satellite with hourly resolution. In the era of
126 multi-sensor satellite observations, Gurvich and Pichugin [30] developed the 9-year climatology of
127 polar MCs based on water vapor, cloud water content and surface wind satellite data over the
128 Western Pacific. This study reveals a mean MCs diameter of 200–400 km as well.

129 As these examples illustrate, most studies of MCs activity are regional [11,18,19,31,32] and cover
130 relatively short time periods [6] due to the very costly and time-consuming procedure of visual
131 identification and tracking of MCs. Thus, development of the reliable long-term (multiyear) dataset
132 covering the whole circumpolar Arctic or Antarctic remains a challenge.

133 Recently, machine learning methods have been found to be quite effective for the classification
134 of different cloud characteristics such as solar disk state and cloud types. There are studies in which
135 different machine learning techniques are used for recognizing cloud types [33–35]. Methodologies
136 employed include deep convolutional neural networks (DCNNs [36,37]), k-nearest-neighbor
137 classifier (KNN) and Support Vector Machine (SVM) and fully-connected neural networks (FCNNs).
138 Krinit斯基 [38] used FCNNs for the detection of solar disk state and reported very high accuracy
139 (96.4%) of the proposed method. Liu et al. [39] applied DCNNs to the fixed-size multichannel images
140 to detect extreme weather events and reported the success score of the detection of 89 to 99%. Huang
141 et al. [40] applied the neural network "DeepEddy" to the synthetic aperture radar images for
142 detection of ocean meso- and submesoscale eddies. Their results are also characterized by high
143 accuracy exceeding 96% success rate. However, Deep Learning (DL) methods have never been
144 applied for detecting MCs yet.

145 DCNNs are known to demonstrate high skills in classification, pattern recognition, and semantic
146 segmentation, when applied to 2-dimensional (2D) fields, such as images. The major advantage of

147 DCNNs is the depth of processing of the input 2D field. Similarly to the processing levels of satellite
148 data (L0, L1, L2, L3, etc.), which allow retrieving, e.g. wind speeds (L2 processing) from the raw
149 remote measurements (L0), DCNNs are dealing with multiple levels of subsequent non-linear
150 processing of an input image. In contrast to the expert-designed algorithms, the neural network levels
151 of processing (so-called layers) are built in a manner that is common within each specific layer type
152 (convolutional, fully-connected, subsampling, etc.). During the network training process, these layers
153 of a DCNN acquire the ability to extract a broad set of patterns of different scales from the initial data
154 [41–44]. In this sense, a trained DCNN closely simulates the visual pattern recognition process
155 naturally used by a human operator. There exist several state-of-the-art network architectures such
156 as "AlexNet" [36], "VGG16" and "VGG19" [1], "Inception" of several subversions [45], "Xception" [46]
157 and residual networks [47]. Each of these networks has been trained and tested using a range of
158 datasets including the one that is considered as a "reference" for the further image processing, the
159 so-called ImageNet [48]. Continuous development of all DCNNs aims to improve the accuracy of the
160 ImageNet classification. Today, the existing architectures demonstrate high accuracy with the error
161 rate from 2% to 16% [49].

162 A DCNN by design closely simulates the visual recognition process. IR and WV satellite mosaics
163 can be interpreted as images. Thus, assuming that a human expert detects MCs on these mosaics on
164 the basis of his visual perception, application of DCNN looks a promising in this problem.
165 Liu et al. [39] described a DCNN applied to the detection of tropical cyclones and atmospheric rivers
166 in the 2D fields of surface pressure, temperature and precipitation stacked together into "image
167 patches." However, the proposed approach cannot be directly applied to the MC detection. This
168 method is skillful for the detection of large-scale weather extremes that are discernible in reanalysis
169 products. However, as noted above, MCs have poorly observable footprint in geophysical variables
170 of reanalyses.

171 In this study, we apply the Deep Learning technique [50–52] to the satellite IR and WV mosaics
172 distributed by Antarctic Meteorological Research Center [53,54]. This allows for the automated
173 recognition of MCs cloud signatures. Our focus here is exclusively on the capability of DCNNs to
174 perform a binary classification task regarding MCs patterns presence in patches of satellite imagery
175 of cloudiness and/or water vapor, rather than on the DCNN-based MC tracking. This will indicate
176 that a DCNN is capable of learning the hidden representation that is in accordance with the data and
177 the MCs detection problem.

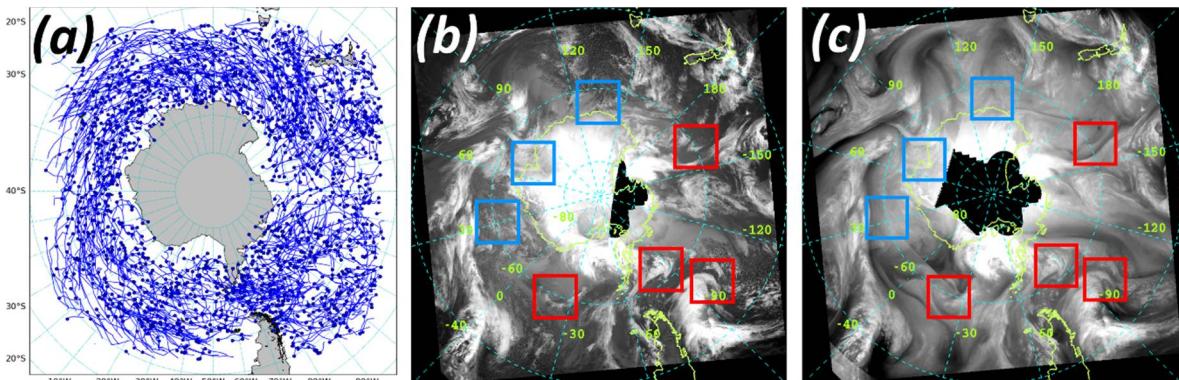
178 The paper is organized as follows. Section 2 describes the source data based on MC trajectories
179 database [6]. Section 3 describes the development of the MC detection method based on deep
180 convolutional neural networks and necessary data preprocessing. In Section 4 we present the results
181 of the application of the developed methodology. Section 5 summarizes the paper with the
182 conclusions and provides an outlook.

183 2. Data

184 For the training of DCNNs, we use MCs dataset for the Southern Ocean
185 (SOMC, <http://sail.ocean.ru/antarctica/>) consisting of 1735 MC trajectories, resulting in 9252 MC
186 locations and associated estimates of MC sizes [6] for the 4-months period (June, July, August,
187 September) of 2004 (Figure 1a). The dataset was developed by visual identification and tracking of
188 MCs using 976 consecutive 3-hourly satellite IR (10.3 - 11.3 micron) and WV (~6.7 microns) mosaics
189 provided by the Antarctic Meteorological Research Center (AMRC) Antarctic Satellite Composite
190 Imagery (AMRC ASCI) [53,54]. The dataset contains longitudes and latitudes of MC centers at each
191 3-hourly time step of the MC track as well as MC diameter and the cloudiness signature type through
192 the MC life cycle [6]. These characteristics were used along with the associated cloudiness patterns of
193 MCs from the initial IR and WV mosaics for training DCNNs.

194 AMRC ASCI mosaics spatially combine observations from geostationary and polar-orbiting
195 satellites and cover the area to the South of ~40°S with 3-hourly temporal and 5 km spatial resolution
196 (Fig. 1bc). While the IR channel is widely used for MCs identification [17,18,26,27,32], we also

197 additionally employ the WV channel imagery which provides a better accuracy over the ice-covered
 198 ocean, where the IR images are potentially incorrect.
 199

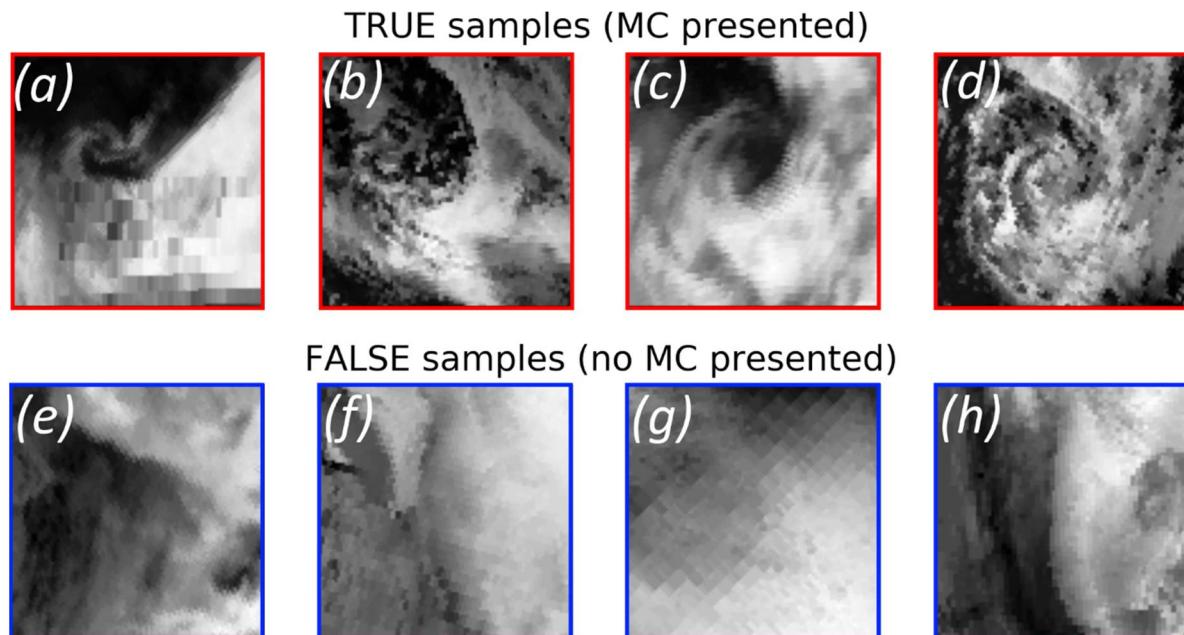


200
 201 **Figure 1.** The input for the deep convolutional neural networks (DCNNs). (a) Trajectories of all
 202 mesocyclones (MCs) in Southern Ocean MesoCyclones (SOMC) dataset, blue dots mark the point of
 203 generation of MC. Snapshots of satellite mosaics for Southern Hemisphere for (b) InfraRed (IR) and
 204 (c) Water Vapor (WV) channels at 00:00 UTC 02/06/2004. The red/blue squares indicate patches
 205 centered over the MCs (red squares) and those having no MC cloudiness signature in (blue) being cut
 206 from the mosaics for DCNNs training.

207 **3. Methodology**

208 *3.1. Data preprocessing*

209 For training models, we first co-located a square (patch) of 100x100 mosaic pixels (500x500 km)
 210 with each MC center location from SOMC dataset (9252 locations in total) (Figure 2a-d). Since the
 211 distance between MCs in the multiple systems such as the merry-go-round pattern may be
 212 comparable to each mesocyclone diameter, and to ensure that (i) each patch covers only one MC and
 213 (ii) covers it completely, we require that MC diameters fall into 200-400 km range. Hereafter we call
 214 this set of samples 'the true samples'. The chosen set of true samples includes 67% of the whole
 215 population of samples in SOMC dataset.
 216



217 **Figure 2.** Examples (IR only) of true and false samples for DCNNs training and testing of DCNNs
 218 results assessment. 100x100 grid points (500x500km) patches of IR mosaics for (a-d) true samples and
 219 false (e-h) samples.

220 We additionally built the set of 'false samples' for DCNNs training. False samples were
 221 generated from the patches that do not consist of MC-associated cloudiness signatures (Figure 2e-h)
 222 according to the SOMC dataset. Table 1 summarizes the numbers of true and false samples that both
 223 make up the source dataset for our further analysis of IR and WV mosaics. The total number of
 224 snapshots used (both IR and WV) is 11189. The true samples are 6177 (55%) of them, and 5012 (45%)
 225 are the false samples (see Fig. 2). In order to unify images in the dataset, we normalized them by the
 226 maximum and the minimum brightness temperature (in the case of IR) over the whole dataset:
 227

$$x_{norm} = \frac{x - \min(X)}{\max(X) - \min(X)}, \quad (1)$$

228 where x denotes the individual sample (represented by a matrix of 100x100 pixels), X is the whole
 229 dataset of 11189 IR snapshots. The same normalization was applied to WV snapshots.
 230

231 3.2. Formulation of the problem

232 We consider MC identification as a binary classification problem. We use the set of true and false
 233 samples (Figure 2) as input ("objects" herein). We have developed two DCNN architectures
 234 following two conditional requirements: either (i) the object is described by the IR image only or (ii)
 235 the object is described by both IR and WV images. Since the training dataset is almost target-balanced
 236 (see Table 1), assuming ~50/50 ratio of true/false samples, we further use the accuracy score as the
 237 measure of the classification quality. The accuracy score cannot be used as a reliable quality measure
 238 of any machine learning method in the case of the unbalanced training dataset. For example, in the
 239 case of a highly unbalanced dataset with the true/false ratio being 95/5 it is easy to achieve 95%
 240 accuracy score by just forcing the model to produce only the true outcome. Thus, balancing the source
 241 dataset with false samples is critical for building the reliable classification model.
 242

243 **Table 1.** Total number of true and false samples.

	True samples	False samples	Total samples
IR	6177 (55%)	5012 (45%)	11189 (100%)
WV	6177 (55%)	5012 (45%)	11189 (100%)

244 3.3. Justification of using DCNN

245 There is a set of best practices commonly used to construct DCNNs for solving classification
 246 problems [55]. While building and training DCNNs for MCs identifications, we applied the technique
 247 proposed by LeCun [41]. This technique implies the usage of consecutive convolutional layers which
 248 detect spatial data patterns, alternating with subsampling layers which reduce the sample
 249 dimensions. The set of these layers is followed by a set of so-called fully-connected (FC) layers
 250 representing a neural classifier. The whole model built in this manner represents a non-linear
 251 classifier capable of directly predicting a target value for the input sample. A very detailed
 252 description of this model architecture can be found in [41]. We will further term the FC layers set as
 253 "FC classifier," and the preceding part containing convolutional and pooling layers as "convolutional
 254 core" (see Figures 3,4). The outcome of the whole model is the probability of MC presence in the input
 255 sample.

256 While handling multiple concurrent and spatially aligned geophysical fields, it is important to
 257 choose a suitable approach. LeCun [41] proposed the DCNN focused on the processing of only
 258 grayscale images – meaning just one 2D field. In order to handle multiple 2D fields, they may be
 259 stacked together to form a 3D matrix by analogy with colorful images which have three color
 260 channels: red, green and blue. This approach can be applied when one uses pre-trained networks like
 261 AlexNet [36], VGG16[1], ResNet [47] or similar architectures because of the original purpose of these
 262 networks to classify colorful images. However, this approach should be exploited carefully when
 263 applied to geophysical fields, because the mentioned networks were trained using massive datasets

264 (e.g., ImageNet) of real photographed scenes, which means specific dependencies laying between
 265 channels (red, green and blue) within each image. In contrast to the stacking approach applied by
 266 Liu et al. [39], we use separate CNN branch for each channel (IR and WV) to ensure that we are not
 267 limiting the overall quality of the whole network (see Fig. 4). In the following, we describe in details
 268 each DCNN architecture for both cases: IR+WV (Fig. 4) and IR alone (Fig. 3).

269 Since we consider the binary classification, and the source dataset is almost target-balanced
 270 (see Tab. 1), we use as a quality measure the accuracy score or *Acc* which is a rate of objects, classified
 271 correctly compared to the ground truth:

$$Acc = \frac{1}{\|\mathcal{T}\|} \sum_{\mathcal{T}} [\hat{y}_i = y_i], \quad (2)$$

272 where \mathcal{T} denotes the dataset and $\|\mathcal{T}\|$ is its total samples count; y_i is expert-defined target value
 273 (ground truth), \hat{y}_i is the model decision whether the i -th object contain MC.

274 In addition to the baseline which is the network proposed in [41], we applied a set of additional
 275 approaches commonly used to improve the DCNN accuracy and generalization ability
 276 (see Appendix A). Specifically, we used Transfer Learning (TL) [56–61] with the VGG16 [1] network
 277 pre-trained on ImageNet [48] dataset; Fine Tuning (FT) [62], Dropout (Do) [63] and dataset
 278 augmentation (DA) [64] (see Appendix A). With these techniques applied in various combinations,
 279 we constructed six DCNN architectures that are summarized in Table 2. All of these architectures are
 280 built in a common manner: the FC classifier follows the one- (for IR only) or two-branched (for
 281 IR+WV) convolutional core. If the convolutional core is one-branched, its output itself is input data
 282 for the corresponding FC classifier. If the convolutional core is two-branched, then concatenation
 283 product of their outputs is the input data for the corresponding FC classifier. The very detailed
 284 description of the constructed architectures is presented in Appendix A. For each DCNN structure
 285 we trained a set of models as described in detail in section 3.5. We also applied ensemble averaging
 286 (see Appendix A) of a set of models of identical configuration via averaging probabilities of true class
 287 for each object of the dataset. We term these six ensemble-averaged models the “second-order”
 288 models. We also applied ensemble averaging per sample of all trained DCNNs trained in this work.
 289 We term this model the “third-order” model. Each of these models was trained using the method of
 290 backpropagation of error (BCE loss, see Appendix A) [65] denoted as “backprop training” in Figures
 291 3 and 4.

292 3.4. Proposed DCNN architectures

293 Six DCNNs that we have constructed are able to perform binary classification on satellite
 294 mosaics data (IR alone or IR+WV) represented as grayscale 100x100px images:

- 295 1. CNN #1. This model is built “from scratch” which means we have not used any pre-trained
 296 networks. CNN #1 is built in the manner proposed in [36]. We varied sizes of convolutional
 297 kernels of each convolutional layers from 3x3 to 5x5. We also varied sizes of subsampling layers’
 298 receptive fields from 2x2 to 3x3. For each convolutional layers, we varied the number of
 299 convolutional kernels: 8, 16, 32, 64 and 100. The network convolutional core consists of three
 300 convolutional layers alternated with subsampling layers. Each pair of convolutional and
 301 subsampling layers is followed by a dropout layer. CNN #1 is one-branched, and objects are
 302 described by IR 500x500 km satellite snapshots only.
- 303 2. CNN #2. This model is built “from scratch” with two separate branches - for IR and WV data.
 304 The convolutional core of each branch is built in the same manner as the convolutional core for
 305 CNN #1 and as proposed in [41]. We varied the same parameters of the structure here in the
 306 same ranges as for CNN #1.
- 307 3. CNN #3. This model is built with Transfer Learning approach. We used VGG16 pre-trained
 308 convolutional core to construct this model. None of VGG16 weights were optimized within this
 309 model, and only the weights of the FC classifier were trainable. This model is one-branched, and

310 objects are described by IR 500x500 km satellite snapshots only. CNN #3 structure is shown in
311 Fig. 3.

312 4. CNN #4. This model is two-branched, and each branch of its convolutional core is built with
313 Transfer Learning approach, in the same manner as the convolutional core of CNN #3. Input
314 data are IR and WV. None of VGG16 weights of this model in any of the two branches were
315 optimized, and only the weights of the FC classifier were trainable. CNN #4 structure is shown
316 in Fig. 4.

317 5. CNN #5 is built with both Transfer Learning and Fine Tuning approaches. We built the
318 convolutional core of this model with the use of VGG16 pre-trained network. VGG16
319 convolutional core consists of five similar blocks of layers. For the CNN #5 we turned the last of
320 these five blocks to be trainable. This model is one-branched, and objects are IR 500x500 km
321 satellite snapshots only. CNN #5 structure is shown in Fig. 3.

322 6. CNN #6 is two-branched, and branches of its convolutional core are built in the same manner as
323 the convolutional core of CNN #5. The last of five blocks of each VGG16 convolutional cores
324 were turned to be trainable. Input data are IR and WV 500x500 km satellite snapshots of dataset
325 samples. CNN #6 structure is shown in Fig. 4.

326

327 *3.5. Computational experiment design*

328 The following hyper-parameters are included in each of the six networks:

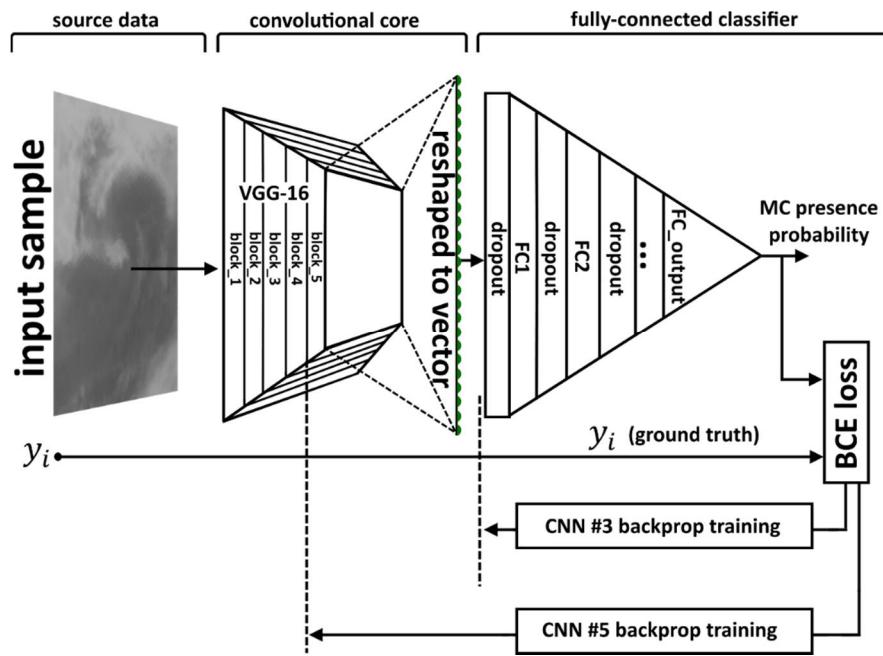
- 329 • Size (number of nodes) of the first layer of FC classifier (denoted as FC1 in Figures 3,4)
- 330 • Convolutional kernels count for each convolutional layer (only applies to CNN #1 and CNN #2)
- 331 • Sizes of convolutional kernels (only applies to CNN #1 and CNN #2)
- 332 • Sizes of receptive fields of subsampling layers (only applies to CNN #1 and CNN #2)

333 The whole dataset was split into training (8952 samples) and testing (2237 samples) sets stratified by
334 target value meaning that each set has the same (55:45) ratio of true/false samples as the whole dataset
335 (i.e., 4924:4028 and 1253:984 samples in training and testing sets correspondingly). We have
336 conducted hyper-parameters optimization for each of these DCNNs using stratified K-fold (K=5)
337 cross-validation approach. We trained several (typically 14-18) models with the best
338 hyper-parameters configuration on the training set for each architecture. Then we drop models with
339 the maximal and minimal accuracy score estimated with the cross-validation approach. The rest of
340 the models are evaluated on the testing set, which was never seen by the model. We estimated the
341 accuracy score for each individual model and the variance of accuracy score for the particular
342 architecture with the best hyper-parameters combination (see Table 2).

343 With the ensemble averaging approach, we evaluated the second-order models on the
344 “never-seen by the model” testing set. As described in section 3.3 we estimated the optimal
345 probability threshold p_{th} for each second-order and third-order models (see Table 2) for the best
346 accuracy score estimation. These scores are treated as the quality measure of each particular
347 architecture.

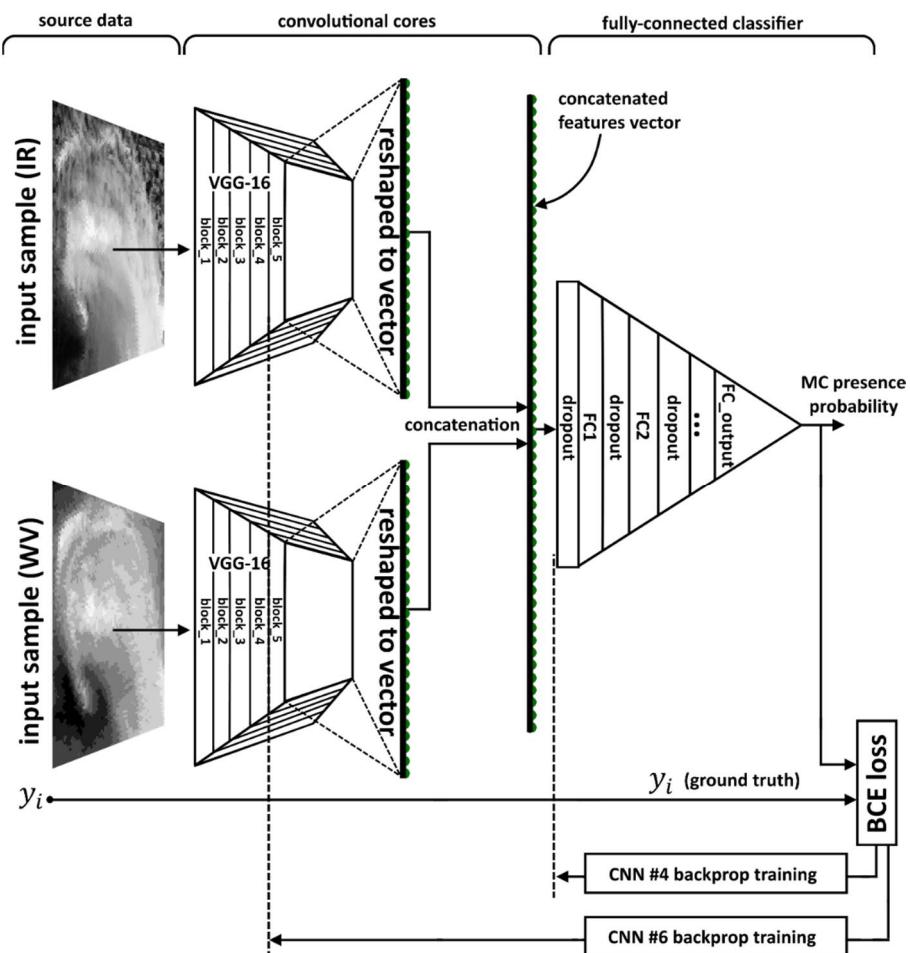
348 Numerical optimization and evaluation of models were performed at the Data Center of FEB
349 RAS [66] and Deep Learning computational resources of Sea-Air Interactions Laboratory of IORAS
350 (<https://sail.ocean.ru/>). Exploited computational nodes contain two graphics processing units (GPU)
351 NVIDIA Tesla P100 16GB RAM. With these resources, the total GPU time of calculations is 3792
352 hours.

353



354
355
Figure 3. CNN #3 and CNN #5 structures. Green dots denote elements of the convolutional core
output reshaped to a vector, which is the fully-connected classifier input data.

356



357
358
359
Figure 4. CNN #4 and CNN #6 structures. Green dots denote elements of convolutional cores outputs
reshaped to vectors, which are, being concatenated to a combined features vector, the fully-connected
classifier input data.

360 **4. Results**

361 The designed DCNNs were applied to detect of Antarctic MCs for the period from June to
 362 September 2004. Summary of the results of the application of six models is presented in Table 2. As
 363 we noted above, each model is characterized by the utilized data source (IR alone or IR+WV, columns
 364 "IR" and "WV" in Table 2). These DCNNs are further categorized according to a chosen set of applied
 365 techniques in addition to the basic approach (see Table 2 legend). Table 2 also provides accuracy
 366 scores and probability thresholds estimated as described in section 3.5, for the individual, second-
 367 and third-order models of each architecture.

368

369 **Table 2.** Accuracy score of each model with the best hyper-parameters combination. BA - basic
 370 approach [41], TL - transfer learning, FT - fine tuning, Do - dropout, DA - dataset augmentation. *Acc*
 371 is the accuracy score averaged across models of the particular architecture. AsEA is the accuracy score
 372 of the ensemble averaged models with the optimal probability threshold. p_{th} is the optimal
 373 probability threshold value.

model name	IR	WV	BA	TL	FT	Do	DA	Acc	AsEA	p_{th}
CNN #1	X	-	X	-	-	X	X	$86.89 \pm 1.1\%$	89.3 %	0.381
CNN #2	X	X	X	-	-	X	X	$94.1 \pm 1.4\%$	96.3 %	0.272
CNN #3	X	-	X	X	-	X	X	$95.8 \pm 0.1\%$	96.6 %	0.556
CNN #4	X	X	X	X	-	X	X	$95.5 \pm 0.3\%$	96.3 %	0.526
CNN #5	X	-	X	X	X	X	X	$96 \pm 0.2\%$	96.6 %	0.5715
CNN #6	X	X	X	X	X	X	X	$95.7 \pm 0.2\%$	96.4 %	0.656
Third-order model CNN #1-6 averaged ensemble									97%	0.598

374

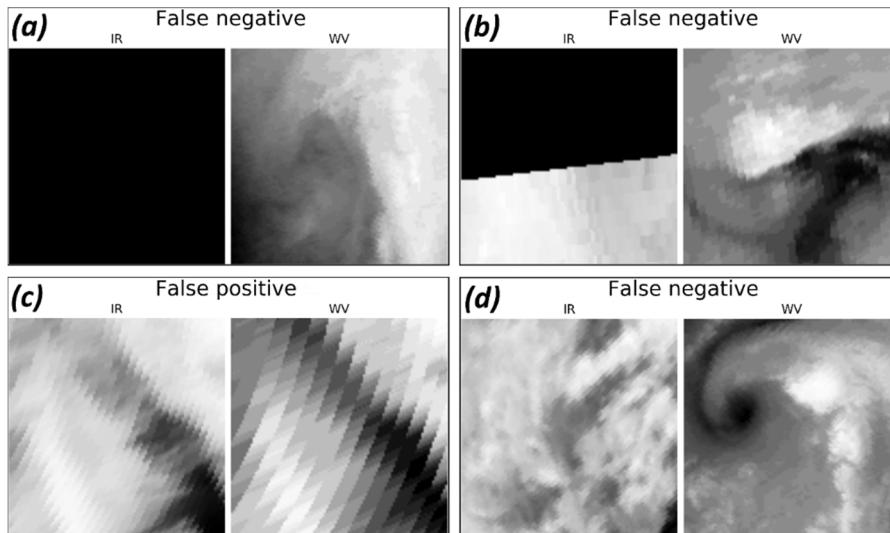
375 As shown in Table 2, CNN #3 and CNN #5 demonstrated the best accuracy among the
 376 second-order models on a never-seen subset of objects. The best combination of hyper-parameters
 377 for these networks is presented in Appendix B. Confusion matrices and receiver operating
 378 characteristic (ROC) curves for these models are shown in Fig. 6 a-d. Confusion matrices, and ROC
 379 curves for all evaluated models are presented in Appendix C. Figure 6 clearly confirms that these two
 380 models perform almost equally for the true and the false samples. According to Table 2, the best
 381 accuracy score is reached using different probability thresholds for each second- or third-order
 382 model.

383 Comparison of CNN #1, CNN #2, on the one hand, and the remaining models, on the other hand,
 384 shows that DCNNs built with the use of Transfer Learning technique demonstrate better
 385 performance compared to the models built "from scratch". Moreover, the accuracy score variances
 386 of CNN #1 and CNN #2 are higher than for the other architectures. Thus, models built with Transfer
 387 Learning approach seem to be more stable, and their generalization ability is better, compared to
 388 models built "from-the-scratch".

389 Comparing CNN #1 and CNN #2 qualities, we may conclude that the use of an additional data
 390 source (WV) results in the significant increase of the model accuracy score. Comparison of models
 391 within each pair of the network configurations (CNN #3 vs. CNN #5; CNN #4 vs. CNN #6)
 392 demonstrates that Fine Tuning approach does not provide significant improvement of the accuracy
 393 score in case of such a small size of the dataset. It is also obvious that the averaging over the ensemble
 394 members does increase the accuracy score from 0.6% for CNN #5 to 2.41% for CNN #1. However, in
 395 some cases, these score increases are comparable to the corresponding accuracy standard deviations.

396 It is also clear from the last row of Table 2, that the third-order model, which averages
 397 probabilities estimated by all trained models CNN #1-6, produces the accuracy of $Acc = 97\%$ which
 398 outperforms all scores of individual models and second-order ensemble models. ROC curve and
 399 confusion matrices for this model are presented in Figure 6ef.

400



401

402

Figure 5. False classified objects.

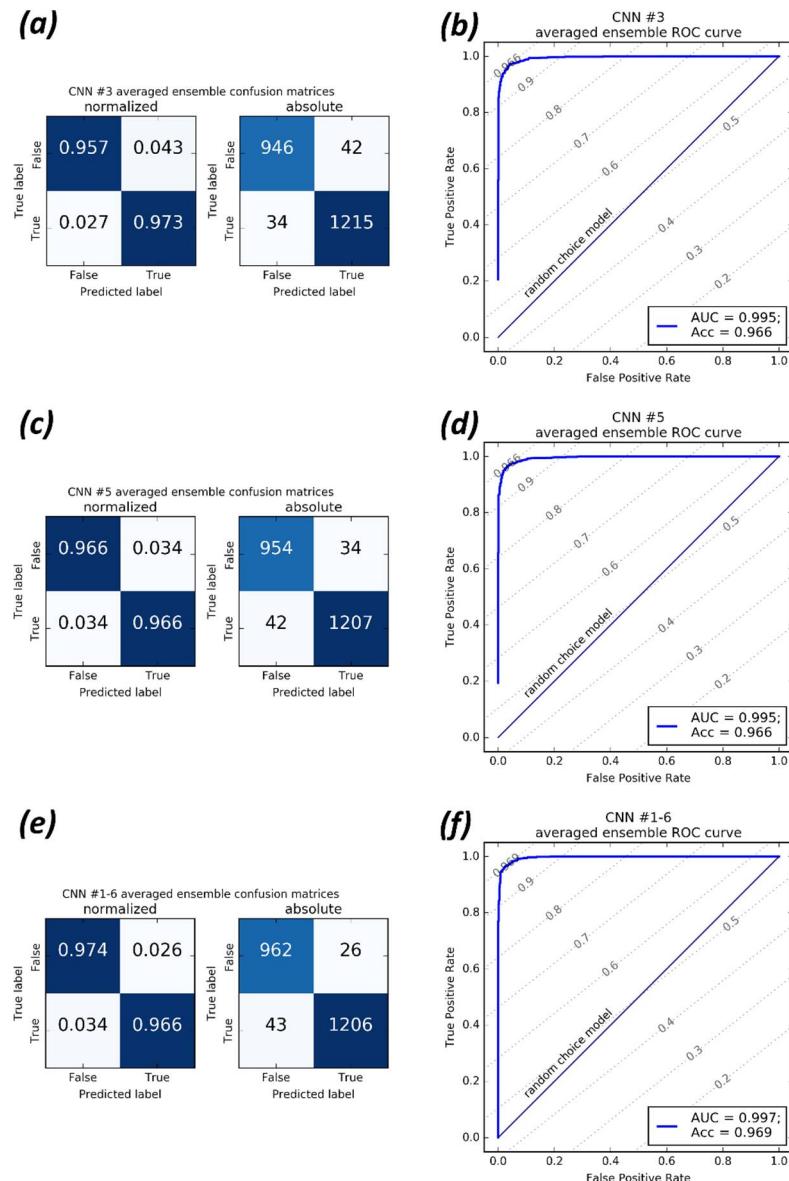
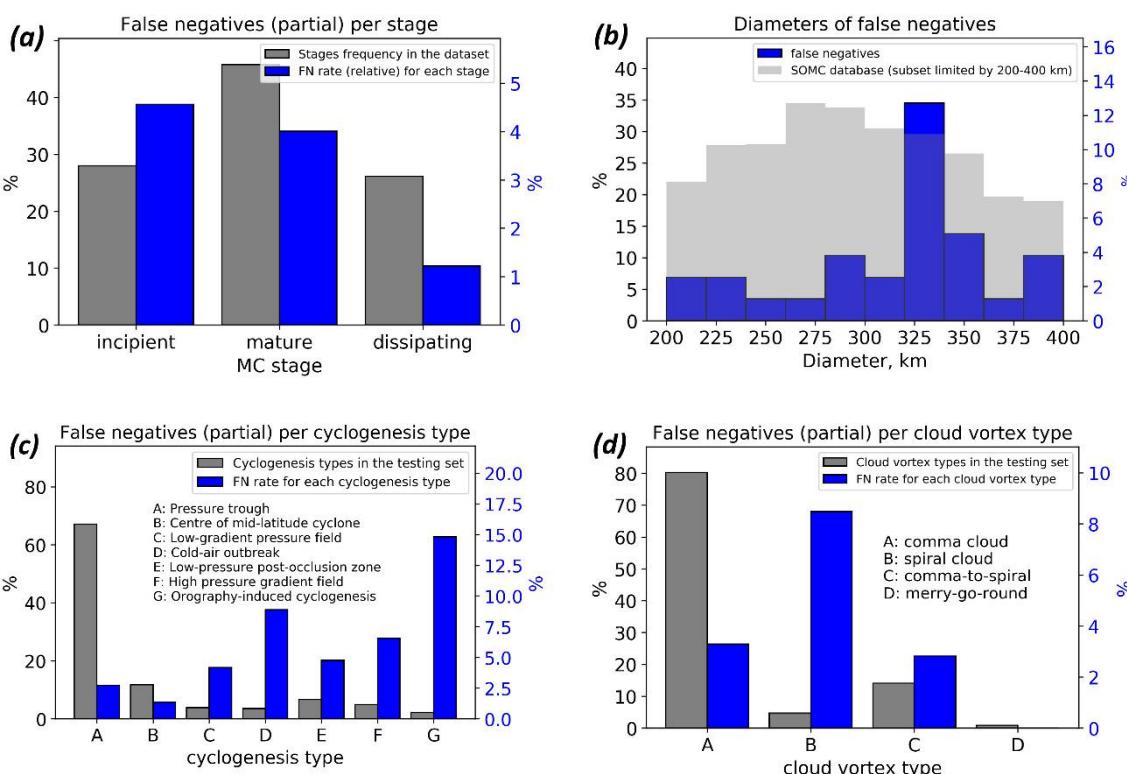
403
404
405

Figure 6. Confusion matrices and receiver operating characteristic curve for (a,b) CNN #3 and (c,d) CNN #5, both with the ensemble averaging approach applied (second-order models); and (e,f) third-order model CNN #1-6 averaged ensemble.

406 Figure 5 demonstrates four main types of false classified objects. The first and the second types
 407 are the ones for which IR data are missing completely or partially. The third type is the one for which
 408 the source satellite data were suspected to be corrupted. These three types of classifier errors
 409 originating from the lack of source data or the corruption of source data. For the fourth type, the
 410 source satellite data was realistic but the classifier has made a mistake. Thus some of false
 411 classifications are model mistakes, and some are associated with the labeling issue where human
 412 expert could guess on the MC propagation over the area with missing or corrupted satellite data.

413 Figure 7 demonstrates the characteristics of the best model (third-order ensemble-averaging
 414 model) regarding false negatives (FN). Since the testing set is unbalanced with respect to stages, types
 415 of cyclogenesis and cloud vortex types, we present in Figure 7acd relative FN rates for each separate
 416 class in each taxonomy. We present the testing set distribution of classes for these taxonomies as well.
 417 Note that scales are different for reference distributions of classes of the testing set and the
 418 distributions of missed MCs. Detailed false negatives characteristics may be found in Appendix D.
 419



420 **Figure 7.** False negatives (missed MCs) in the never-seen by the model testing set with respect to
 421 (a) lifecycle stages; (b) diameters; (c) cyclogenesis types; (d) types of cloud vortex.

422 Tracking procedure requires the sustainable ability of the MCs detection scheme to recognize
 423 mesocyclone cloud shape imprints during the whole MC life cycle. Figure 7a demonstrates that the
 424 best model classifies mesocyclone imprints almost equally for incipient (~4.6% incipient missed)
 425 and mature (~4% mature missed) stages. The fraction of missed MCs in its dissipating stage is lower (~4%
 426 missed among MCs in dissipating stage). As for distribution of missed MCs with respect to their
 427 diameters (see Fig. 7b), the histogram demonstrates fractions of FN objects relative to the whole FN
 428 number. The distribution of MC diameters in the testing set in Figure 7b is shown as a reference.
 429 There is a peak around the diameter value of 325 km, which does not coincide with any issues of
 430 distributions of MC diameters when the testing set is subset by any particular class of any taxonomy.
 431 However, since the total number of missed MCs is too small, there is no obvious reason to make
 432 assumptions on the origin of this issue. The FN rates per cyclogenesis types (Fig. 7c) demonstrate the
 433 only issue for the orography-induced MCs. This issue is caused by the total number of that
 434 cyclogenesis type, which is small (only 27 MCs in the testing set and only 134 in the training set), so
 435 the 4 which were missed is a substantial fraction of it. The same issue is demonstrated for the FN

436 rates per cloud vortex types. Since the total number of “spiral cloud” type in the testing set is
437 relatively small (59 of 1253), the 5 missed are a substantial fraction of it, compared to 33 missed of
438 1006 for “comma cloud” type.

439 **5. Conclusions and outlook**

440 In this study, we present an adaptation of a DCNN method resulting in an algorithm for the
441 detection of MCs from satellite imageries of cloudiness. The DCNN technique shows very high
442 accuracy in recognition of MCs cloud signatures. The best accuracy score of 97% is reached using the
443 third-order ensemble-averaging model (6 models ensemble) and the combination of both IR and WV
444 images as input. We assess the accuracy of MCs recognition by comparison of identified MCs
445 (true/false - image contain MC/no MC on the image parameter) with a reference dataset [6]. We
446 demonstrate that deep convolutional networks are capable of effectively detecting polar mesocyclone
447 signatures in satellite imagery. We also conclude that the quality of the satellite mosaics is sufficient
448 enough for performing the task of binary classification regarding the MCs presence in 500x500km
449 patches, and for performing other similar tasks of pattern recognition type, e.g., semantic
450 segmentation of MCs.

451 Since the satellite-based studies of polar mesocyclone activity conducted in the Southern
452 Hemisphere (and in NH as well) have never reported season-dependent variations of IR imprint of
453 cloud shapes of MCs [23,27,67,68], we assume the proposed methodology to be applicable to satellite
454 imageries of polar MCs available for the whole satellite observation era in Southern Hemisphere. In
455 the Northern Hemisphere, the direct application of the models that were trained on SH dataset is
456 restricted due to the opposite sign of relative vorticity and thus, different cloud shape orientation.
457 However the proposed approach is still applicable, and the only need is a dataset of tracks of MCs
458 from the Northern Hemisphere.

459 It was also shown that the accuracy of MCs detection by DCNNs is sensitive to the single (IR
460 only) or double (IR+WV) input data usage. IR+WV combination provides significant improvement of
461 the detection of MCs and allows a weak DCNN (CNN #2) to detect MCs with higher accuracy
462 compared to the weak CNN #1 (89.3% and 96.3% correspondingly). The computational cost of DCNN
463 training and hyper-parameters optimization for deep neural networks are time- and computational-
464 consuming. However, once trained, the computational cost of the DCNN inference is low.
465 Furthermore, the trained DCNN performs much faster compared to a human expert. Another
466 advantage of the proposed method is the low computational cost of data preprocessing that allows
467 the processing of satellite imagery in real time or the processing of large amounts of collected satellite
468 data.

469 We plan to extend the usage of this set of DCNNs (Table 2) for the development of an MCs
470 tracking method based on machine learning and using satellite IR and WV mosaics. These efforts
471 would be mainly focused on the development of the optimal choice of the “cut-off” window that has
472 to be applied to the satellite mosaic. In the case of a sliding-window approach (e.g., running the
473 500x500km sliding window through the mosaics), the virtual testing dataset of the whole mosaic is
474 highly unbalanced, so a model with non-zero FPR evaluated on balanced dataset would produce
475 much higher FPR. In the future, instead of the sliding-window, the Unet-like [69] architecture should
476 be considered with the binary semantic segmentation problem formulation. Considering MC
477 tracking development, an approach proposed in a number of face recognition studies should be
478 reassuring [70,71]. This approach can be applied in a manner of triple-based training of the DCNN to
479 estimate a measure of similarity between one particular MC signatures in consecutive satellite
480 mosaics.

481

482 **Author Contributions:** Conceptualization, Mikhail Krinitkiy, Polina Verezemskaya and Sergey Gulev; Data
483 curation, Mikhail Krinitkiy and Matthew Lazzara; Formal analysis, Mikhail Krinitkiy; Funding acquisition,
484 Sergey Gulev; Investigation, Mikhail Krinitkiy and Kirill Grashchenkov; Methodology, Mikhail Krinitkiy and
485 Polina Verezemskaya; Project administration, Mikhail Krinitkiy; Resources, Polina Verezemskaya and Sergey

486 Gulev; Software, Mikhail Krinitkiy and Kirill Grashchenkov; Supervision, Sergey Gulev; Validation, Mikhail
487 Krinitkiy, Polina Verezemskaya and Sergey Gulev; Visualization, Mikhail Krinitkiy and Polina Verezemskaya;
488 Writing – original draft, Mikhail Krinitkiy, Polina Verezemskaya, Natalia Tilinina and Matthew Lazzara;
489 Writing – review & editing, Natalia Tilinina, Sergey Gulev and Matthew Lazzara.

490 **Funding:** This research was funded by the Russian Ministry of Education and Science (agreement 14.613.21.0083,
491 project ID RFMEFI61317X0083). Materials from MAL are based upon the work funded by the United States
492 National Science Foundation under grants ANT-1244924 and ANT-1535632.

493 **Acknowledgments:** Computational resources for this research were provided by the Shared Facility Center
494 "Data Center of FEB RAS", Khabarovsk, Russia.

495 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
496 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision
497 to publish the results.

498 Appendix A. DCNN best practices and additional techniques

499 There is a set of best practices commonly used to construct DCNNs for solving classification
500 problems [55]. Modern DCNNs are built on the basis of consecutive convolutional and subsampling
501 layers by performing nonlinear transformation of the initial data (see Fig. 2 in [41]). The primary layer
502 type of convolutional neural networks (CNNs) is the so-called convolutional layer which is designed
503 to extract visual patterns density map using discrete convolution operation with K (tends to be from
504 3 to 1000) kernels followed by a nonlinear transformation operation (activation function). One
505 additional layer type is a pooling layer performing subsampling operation with one of the following
506 aggregation functions: maximum, minimum, mean or others. In the current practice the maximum is
507 used.

508 Since the LeNet DCNN [41] several studies [41–44] have demonstrated that the usage of
509 consecutive convolutional and subsampling layers results in a skillful detection of various spatial
510 patterns from the input 2D sample. The approach proposed in [41] implies the use of the output of
511 these stacked layers set as an input data for a classifier, which in general may be any method suitable
512 for classification problems, such as linear models, logistic regression, etc. LeCun [41] suggested to
513 use the neural classifier, and this is now a conventional approach. The advantage of using a neural
514 classifier is the ability to train the whole model at once (the so-called end-to-end training).

515 The whole model built in this manner represents a classifier capable of direct predicting a target
516 value for the sample. We term the fully-connected (FC) layers set as "FC classifier", and the preceding
517 part containing convolutional and pooling layers as "convolutional core" (see Figures 3,4).

518 For building a DCNN it is important to account for data dimensionality during its
519 transformations from layer to layer. The input for a DCNN is an image represented by a matrix of
520 the size (h, w, d) , where h and w correspond to the image height and width in pixels, d is its levels
521 number, the so-called depth (e.g., $d = 3$ when levels are red, green and blue channels of a colorful
522 image). For the water vapor or radio-brightness temperature satellite data, $d = 1$. A convolutional
523 layer and subsampling layer are described in details in [41]. Convolutional layers are characterized
524 by their kernel sizes (e.g. 3x3, 5x5), their kernel numbers K and the nonlinear operation used (e.g.
525 \tanh in [41]). Subsampling layers are characterized by their receptive field sizes e.g. 3x3, 5x5 etc. The
526 output of a convolutional layer with K kernels is the so-called feature maps which is a matrix of the
527 size (h, w, K) . The nonlinear operation transforms it to a matrix of size $(h, w, 1)$. The following
528 subsampling layer reduces the matrix size depending on the subsampling layer kernel size. Typically,
529 this size is (2, 2) or (3, 3). Thus, the subsampling operation reduces the sample size by a factor 2 or 3,
530 respectively. The output of a convolutional core is a set of abstract feature maps which is represented
531 by a 3D matrix. This matrix, being reshaped into a vector, is passed as the input to the FC classifier
532 (see Figures 3,4).

533 FC classifier of all models of this study includes hidden FC layers whose count varied
534 from 2 to 4. Nodes (artificial neurons) count of FC1 which is the layer following the convolutional
535 core (see Figures 3,4), is chosen from the set {128, 256, 512, 1024}. The size of each following FC layer

537 is half of the preceding one, but not less than 128. The output layer is fully-connected as well and
 538 contains one output node. For example, the structure of FC classifier in terms of nodes count of layers
 539 might be the following: {512; 256; 128; 1}. All FC layers are alternated with dropout layers in order to
 540 prevent overfitting of the model. All trainable layers' activation functions are Rectified Linear Unit
 541 (ReLU):

$$\sigma_{ReLU}(z) = \max(0; z), \quad (A1)$$

542 except the output layer whose activation function is sigmoid:

$$\sigma_{sigm}(z) = \frac{1}{1 + e^{-\theta z}}, \quad (A2)$$

543 where θ are layers' trainable parameters.

544

545 In order to measure the error of the network on each individual sample during the training
 546 process we use the binary cross-entropy as a loss function:

$$\mathcal{L} = \sum_{i=0}^N (y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)), \quad (A3)$$

547 where y_i is the expert-defined ground truth for the target value, \hat{y}_i is the estimated probability of
 548 the i -th sample to be true, N is samples count of the training set or a training mini-batch. This loss
 549 function is minimized in the space of the model weights using the method of backpropagation of
 550 error [65] denoted as "backprop training" in Figures 3,4. The outcome of the the whole model is the
 551 probability of each class for the input sample. In the case of binary classification, the FC classifier has
 552 one output unit, producing probability of MC presence for the input sample.

553

554 In addition to the basic approach proposed in [41] a number of techniques may be applied. Using
 555 them one can construct and train DCNNs of various accuracy and various generalization abilities
 556 which is characterized by the quality of a model estimated on a never-seen test data.

557 A.1. Transfer learning

558 One of the additional approaches is Transfer Learning [56–61]. Generally, this technique focuses
 559 on storing the knowledge obtained by some network while being trained for one problem and
 560 applying it to another problem of a similar kind. In practice, this approach implies the DCNN
 561 structure to be built using some part of a network previously trained on a considerable amount of
 562 data, for example, ImageNet [48]. In these terms, VGG16 [1] is not only an efficient architecture, but
 563 also the pre-trained network containing optimized weights values (also known as network
 564 parameters). Best practice for building a new advanced DCNN based on transfer learning approach
 565 is to compose it using convolutional core of the pre-trained model (e.g. VGG16) followed by a new
 566 FC neural classifier. Weights of the convolutional part in this case are fixed, and only FC part is
 567 optimized. In this approach, the convolutional core may be considered as a feature extractor (see
 568 [41]), which computes a highly relevant low-dimensional (compared to original samples
 569 dimensionality) vector, representing the data (e.g. "reshaped to vector" output of the convolutional
 570 core in Fig. 3).

571 A.2. Fine Tuning

572 Transfer Learning approach relies on the similarity of data distributions within two datasets.
 573 But in the case of significant differences, for example in terms of Kullback–Leibler divergence
 574 between some particular feature approximated probability distributions, the new FC classifier
 575 capabilities may not cover all of those differences. In this case, some layers of the convolutional core,
 576 that are close to FC classifier, can be turned on to be optimized (the so-called Fine Tuning). Regarding
 577 DCNNs application to satellite mosaics, we have to consider that VGG16 was optimized on ImageNet
 578 dataset which contains everyday-observed objects like buildings, dogs, cats, cars etc., without any

579 satellite imageries or even clouds. So FT approach can be considered as a promising approach when
580 composing MC-detecting DCNN at IR and WV satellite mosaic data.

581 *A.3. Preventing overfitting*

582 Machine learning models and neural networks in particular may vary in terms of complexity. In
583 the case of too strong model, there exist an overfitting problem: the effect of poor target prediction
584 quality on unseen data concurrently with nearly exact prediction of target values on training data.
585 There are several state-of-the-art approaches to prevent overfitting of neural networks. We used most
586 fruitful and reliable ones: dropout [63] and data augmentation also called auxiliary variables [64]. We
587 also used ensemble averaging of the models outcome.

588 *A.4. Preventing overfitting with dropout*

589 Dropout approach is the way of preventing overfit with a computationally inexpensive but still
590 powerful method of regularizing neural networks through bagging [72] and virtually ensembling
591 models of similar architecture. Bagging involves training multiple models and testing each of them
592 on test samples. Since training and evaluating of deep neural networks tend to be time-consuming
593 and computationally expensive, the original bagging approach [72] seems to be impractical. With the
594 dropout approach applied, the network may be thought of as an ensemble of all sub-networks that
595 can be composed by removing non-output nodes from the base network. In practice, this approach
596 is implemented by dropout layer which turns the preceding layer output to zero for each node with
597 some probability p . This procedure repeats for each mini-batch at the training time. At the inference
598 time, the dropout approach involves network weights scaling by $1/p$. Each of our models includes
599 dropout layers between trainable layers. Rate p was set to 0.1 for each dropout layer of each model.

600 *A.5. Preventing overfitting with dataset augmentation*

601 Dataset augmentation is the state-of-the-art way to make a machine learning model generalize
602 better. When available dataset size is limited, the way to get around that is to generate fake data
603 which should be similar to real samples. Best practice for DCNNs is generating fake samples by
604 adding some noise or applying slight transformations like shift, shear, rotation, scaling etc. Formally,
605 with data augmentation one can increase variability of features of the original dataset and
606 substantially extend its size. This approach often improves generalization ability of the trained
607 model.

608 We trained each of our models with data augmentation approach applied. The rotation angle
609 range was 90° in both direction; independent width and height scaling performed within range from
610 0.8 to 1.2; zoom range from 0.8 to 1.2; shear angle range from -2° to 2° . We did not use flipping
611 upside-down and left-to-right.

612 *A.6. Preventing overfitting with ensemble averaging*

613 In general, during the parameters optimization (learning process) each DCNN converges to a
614 local minimum of the loss function in the space of its weights. The training process starts from a
615 randomly generated point of this space. Due to a non-convexity of loss function, every new DCNN
616 model converges to a new local minimum. Some models may converge to a minimum that is not
617 really close to a global one in terms of loss function value, and thus the quality measure of that model
618 remains poor. Other models may converge to a good minimum that is close to a global one in terms
619 of loss function value, but this proximity may lead to a poor generalization ability which means low
620 quality measure estimated on a testing subset of data. There are approaches for improving the
621 generalization ability of several models that are generally similar, but differ in detailed predictions.
622 In our study we applied simple ensemble averaging [73], which is one of state-of-the-art approaches
623 for improving machine learning models generalization ability. With this approach several models of
624 each architecture are trained, and probabilities of these models are averaged. The prediction of this
625 model is treated as an ensemble outcome:

$$p_i = \frac{\sum_{m=0}^M p_i^{(m)}}{M}, \quad (\text{A4})$$

626 where p_i is the estimated probability of the ensemble of M models for i -th sample to be true; each
 627 m -th model's probability estimation for i -th sample to be true is $p_i^{(m)}$. In this study we applied
 628 ensembling on DCNNs of identical architectures. The resulting models we term *second-order models*
 629 in this study. They are synthetic ones that are not trained, but are ensembles.

630 Satellite IR+WV snapshots or satellite IR snapshot alone are essentially the object description,
 631 and each model that is presented in our study produces the outcome for each object regardless of the
 632 description - whether it is IR snapshot alone or IR+WV snapshots. So there is an opportunity to
 633 average probability outcomes of all the models of this study. The resulting model that produces
 634 averaged probabilities of the ensemble containing all trained models we term *third-order model*. It is a
 635 synthetic one that is not trained, but is an ensemble.

636 *A.7. Adjustment of the probability threshold*

637 The outcome of each model of this study is the estimation of the probability for the sample to be
 638 true (i.e. to contain an MC). So there is an arbitrariness in choosing the threshold of this probability
 639 to get the outcome which is binary. The most common way to choose this threshold is the ROC curve
 640 analysis. Each point of this curve represents the False Positive Rate (FPR) and True Positive Rate
 641 (TPR) combination for the particular probability threshold p_{th} (e.g. see Fig. 6bdf). The model
 642 performing true random choice between true and false outcome has a ROC curve on the main
 643 diagonal of this plot. The ROC curve of the perfect classifier follows from the point (0.0, 0.0) straight
 644 to the point (0.0, 1.0) and then to the point (1.0, 1.0). The area under the ROC curve (AUC ROC) may
 645 be considered as a measure of model quality. The best model AUC ROC is 1.0, the true random choice
 646 model AUC ROC is 0.5, and the worst model AUC ROC is 0.0.

647 In a range of cases the best accuracy score might not be reached with $p_{th} = 0.5$. The lines of equal
 648 accuracy score, as presented in Fig. 6bdf, are diagonal. In case of perfect 50/50 ratio of true/false
 649 samples they are parallel to the main diagonal. In case of slight inequality of true and false samples
 650 count these lines have slightly different slope as shown in Fig. 6bdf. For each accuracy score there are
 651 two, one or no points of the ROC curve intersection with the accuracy isoline. So if a model is
 652 represented with a ROC curve, the maximum value of its Acc is located at the point of this curve
 653 where the accuracy isoline is tangent to it. For each model of this study including second- and third-
 654 order models, the optimal probability threshold was estimated based on ROC curve analysis.

655

656 **Appendix B. CNN #3 and CNN #5 Best hyper-parameters combinations.**

657 According to section 3.4, CNN #3 and CNN #5 are both constructed to have one-branched
 658 convolutional core. Best combination of hyper-parameters of these networks are the same. The only
 659 difference is the FT approach that was applied in case of CNN #5.

660

661 **Table B1.** CNN #3 and CNN #5 best hyper-parameters combination.

Layer (block) name	Layer (block) nodes count or output dimensions	Connected to
Input_data_IR	100x100	-
VGG_16_conv_core	see [1]; output: 3x3x512	Input_data_IR
Reshape_1	4608	VGG_16_conv_core
Dropout_1	4608	Reshape_1
FC1	1024	Dropout_1
Dropout_2	1024	FC1
FC2	512	Dropout_2
Dropout_3	512	FC2
FC3	256	Dropout_3
Dropout_4	256	FC3
FC4	128	Dropout_4
FC_output	1	FC3

662

663

664 Appendix C. Detailed performance metrics of all DCNN models.

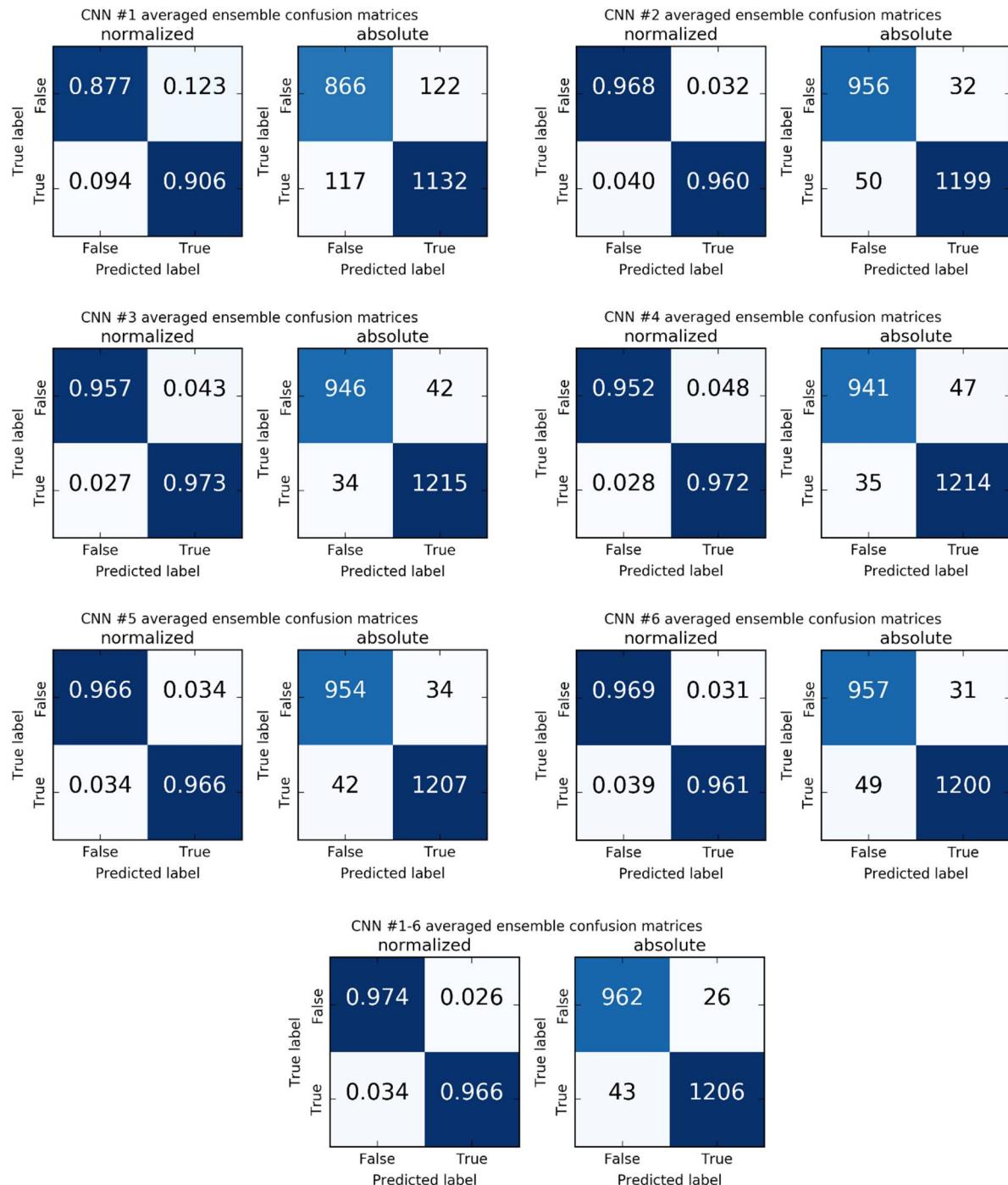
665
666
667

Figure C1. Confusion matrices for all models and the third-order model CNN #1-6 averaged ensemble, computed on test never-seen subset of data. For each architecture the ensemble averaging technique is applied.

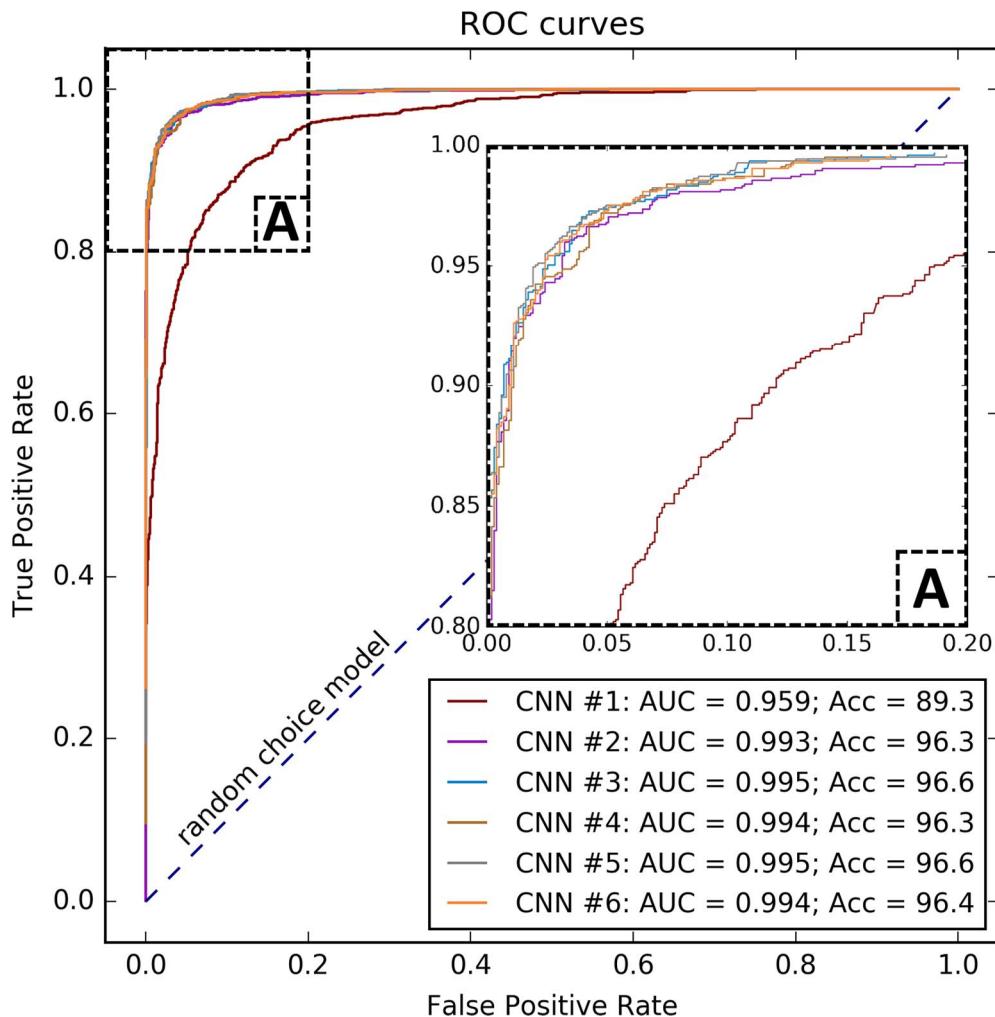
668
669

Figure C2. Receiver operating characteristic curves computed on test never-seen subset of data for all models. For each architecture the ensemble averaging technique is applied.

670

671 Appendix D. Detailed false negative rates of the third-order ensemble-averaging model.

672 **Table D1.** False negative rates per cyclogenesis types.

Cyclogenesis type	Testing set, objects number	False negatives, objects number	FN relative rate, %
Pressure trough	841	23	2.7
Centre of mid-latitude cyclone	147	2	1.4
Low-gradient pressure field	48	2	4.2
Cold-air outbreak	45	4	8.9
Low-pressure post-occlusion zone	84	4	4.8
High pressure gradient field	61	4	6.6
Orography-induced cyclogenesis	27	4	14.8

673

674 **Table D2.** False negative rates per cloud vortex types.

Cloud vortex type	Testing set, objects number	False negatives, objects number	FN relative rate, %
Comma cloud	1006	33	3.3
Spiral cloud	59	5	8.5
Comma-to-spiral	177	5	2.3
Merry-go-round	11	0	0.0

675

676 **Table D3.** False negative rates per MC stages.

MC stage	Testing set, objects number	False negatives, objects number	FN relative rate, %
Incipient	352	16	4.6
Mature	574	23	4.0
Dissipating	327	4	1.2

677

678 **References**

1. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. *arXiv:1409.1556 [cs]* **2014**.
2. *Polar Lows: Mesoscale Weather Systems in the Polar Regions*; Rasmussen, E. A., Turner, J., Eds.; Cambridge University Press: Cambridge, 2003; ISBN 978-0-511-52497-4.
3. Marshall, J.; Schott, F. Open-ocean convection: Observations, theory, and models. *Reviews of Geophysics* **1999**, *37*, 1–64, doi:10.1029/98RG02739.
4. Condron, A.; Renfrew, I. A. The impact of polar mesoscale storms on northeast Atlantic Ocean circulation. *Nature Geoscience* **2013**, *6*, 34–37, doi:10.1038/ngeo1661.
5. Condron, A.; Bigg, G. R.; Renfrew, I. A. Modeling the impact of polar mesocyclones on ocean circulation. *Journal of Geophysical Research: Oceans* **2008**, *113*, doi:10.1029/2007JC004599.

691 6. Verezemskaya, P.; Tilinina, N.; Gulev, S.; Renfrew, I. A.; Lazzara, M. Southern Ocean
692 mesocyclones and polar lows from manually tracked satellite mosaics. *Geophysical*
693 *Research Letters* **2017**, *44*, 7985–7993, doi:10.1002/2017GL074053.

694 7. Laffineur, T.; Claud, C.; Chaboureau, J.-P.; Noer, G. Polar Lows over the Nordic Seas:
695 Improved Representation in ERA-Interim Compared to ERA-40 and the Impact on
696 Downscaled Simulations. *Mon. Wea. Rev.* **2014**, *142*, 2271–2289, doi:10.1175/MWR-
697 D-13-00171.1.

698 8. Michel, C.; Terpstra, A.; Spengler, T. Polar Mesoscale Cyclone Climatology for the
699 Nordic Seas Based on ERA-Interim. *J. Climate* **2017**, *31*, 2511–2532,
700 doi:10.1175/JCLI-D-16-0890.1.

701 9. Bromwich, D. H.; Wilson, A. B.; Bai, L.-S.; Moore, G. W. K.; Bauer, P. A comparison
702 of the regional Arctic System Reanalysis and the global ERA-Interim Reanalysis for the
703 Arctic. *Quarterly Journal of the Royal Meteorological Society* **2016**, *142*, 644–658,
704 doi:10.1002/qj.2527.

705 10. Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. *Numerical recipes*
706 *3rd edition: The art of scientific computing*; Cambridge university press, 2007; ISBN
707 0-521-88068-8.

708 11. Rojo, M.; Claud, C.; Mallet, P.-E.; Noer, G.; Carleton, A. M.; Vicomte, M. Polar low
709 tracks over the Nordic Seas: a 14-winter climatic analysis. *Tellus A: Dynamic*
710 *Meteorology and Oceanography* **2015**, *67*, 24660, doi:10.3402/tellusa.v67.24660.

711 12. Smirnova, J.; Golubkin, P. Comparing Polar Lows in Atmospheric Reanalyses: Arctic
712 System Reanalysis versus ERA-Interim. *Mon. Wea. Rev.* **2017**, *145*, 2375–2383,
713 doi:10.1175/MWR-D-16-0333.1.

714 13. Hines, K. M.; Bromwich, D. H. Development and Testing of Polar Weather Research
715 and Forecasting (WRF) Model. Part I: Greenland Ice Sheet Meteorology. *Mon. Wea.*
716 *Rev.* **2008**, *136*, 1971–1989, doi:10.1175/2007MWR2112.1.

717 14. Zappa, G.; Shaffrey, L.; Hodges, K. Can Polar Lows be Objectively Identified and
718 Tracked in the ECMWF Operational Analysis and the ERA-Interim Reanalysis? *Mon.*
719 *Wea. Rev.* **2014**, *142*, 2596–2608, doi:10.1175/MWR-D-14-00064.1.

720 15. Pezza, A.; Sadler, K.; Uotila, P.; Vihma, T.; Mesquita, M. D. S.; Reid, P. Southern
721 Hemisphere strong polar mesoscale cyclones in high-resolution datasets. *Clim Dyn*
722 **2016**, *47*, 1647–1660, doi:10.1007/s00382-015-2925-2.

723 16. Xia, L.; Zahn, M.; Hodges, K.; Feser, F.; Storch, H. A comparison of two identification
724 and tracking methods for polar lows. *Tellus A: Dynamic Meteorology and*
725 *Oceanography* **2012**, *64*, 17196, doi:10.3402/tellusa.v64i0.17196.

726 17. Harold, J. M.; Bigg, G. R.; Turner, J. Mesocyclone activity over the North-East Atlantic.
727 Part 1: vortex distribution and variability. *International Journal of Climatology* **1999**,
728 *19*, 1187–1204, doi:10.1002/(SICI)1097-0088(199909)19:11<1187::AID-
729 JOC419>3.0.CO;2-Q.

730 18. Noer, G.; Saetra, Ø.; Lien, T.; Gusdal, Y. A climatological study of polar lows in the
731 Nordic Seas. *Quarterly Journal of the Royal Meteorological Society* **2011**, *137*, 1762–
732 1772, doi:10.1002/qj.846.

733 19. Smirnova, J. E.; Zabolotskikh, E. V.; Bobylev, L. P.; Chapron, B. Statistical
734 characteristics of polar lows over the Nordic Seas based on satellite passive microwave
735 data. *Izv. Atmos. Ocean. Phys.* **2016**, *52*, 1128–1136,
736 doi:10.1134/S0001433816090255.

737 20. Irving, D.; Simmonds, I.; Keay, K. Mesoscale Cyclone Activity over the Ice-Free
738 Southern Ocean: 1999–2008. *J. Climate* **2010**, *23*, 5404–5420,
739 doi:10.1175/2010JCLI3628.1.

740 21. Neu, U.; Akperov, M. G.; Bellenbaum, N.; Benestad, R.; Blender, R.; Caballero, R.;
741 Coccozza, A.; Dacre, H. F.; Feng, Y.; Fraedrich, K.; Grieger, J.; Gulev, S.; Hanley, J.;
742 Hewson, T.; Inatsu, M.; Keay, K.; Kew, S. F.; Kindem, I.; Leckebusch, G. C.; Liberato,
743 M. L. R.; Lionello, P.; Mokhov, I. I.; Pinto, J. G.; Raible, C. C.; Reale, M.; Rudeva, I.;
744 Schuster, M.; Simmonds, I.; Sinclair, M.; Sprenger, M.; Tilinina, N. D.; Trigo, I. F.;
745 Ulbrich, S.; Ulbrich, U.; Wang, X. L.; Wernli, H. IMILAST: A Community Effort to
746 Intercompare Extratropical Cyclone Detection and Tracking Algorithms. *Bull. Amer.*
747 *Meteor. Soc.* **2013**, *94*, 529–547, doi:10.1175/BAMS-D-11-00154.1.

748 22. Wilhelmsen, K. Climatological study of gale-producing polar lows near Norway. *Tellus*
749 *A: Dynamic Meteorology and Oceanography* **1985**, *37*, 451–459,
750 doi:10.3402/tellusa.v37i5.11688.

751 23. Carrasco, J. F.; Bromwich, D. H. Mesoscale cyclogenesis dynamics over the
752 southwestern Ross Sea, Antarctica. *Journal of Geophysical Research: Atmospheres*
753 **1993**, *98*, 12973–12995.

754 24. Carrasco, J. F.; Bromwich, D. H.; Liu, Z. Mesoscale cyclone activity over Antarctica
755 during 1991: 1. Marie Byrd Land. *Journal of Geophysical Research: Atmospheres*
756 **1997**, *102*, 13923–13937, doi:10.1029/97JD00905.

757 25. Turner, J.; Thomas, J. P. Summer-season mesoscale cyclones in the bellingshausen-
758 weddell region of the antarctic and links with the synoptic-scale environment.
759 *International Journal of Climatology* **1994**, *14*, 871–894, doi:10.1002/joc.3370140805.

760 26. Harold, J. M.; Bigg, G. R.; Turner, J. Mesocyclone activity over the Northeast Atlantic.
761 Part 2: An investigation of causal mechanisms. *International Journal of Climatology*
762 **1999**, *19*, 1283–1299, doi:10.1002/(SICI)1097-0088(199910)19:12<1283::AID-
763 JOC420>3.0.CO;2-T.

764 27. CARLETON, A. M. On the interpretation and classification of mesoscale cyclones from
765 satellite infrared imagery. *International Journal of Remote Sensing* **1995**, *16*, 2457–
766 2485, doi:10.1080/01431169508954569.

767 28. Claud, C.; Katsaros, K. B.; Mognard, N. M.; Scott, N. A. Comparative satellite study of
768 mesoscale disturbances in polar regions. *Global Atmos Ocean Syst* **1996**, *4*, 233–273.

769 29. Gang, F.; Qin-yu, L.; Zeng-mao, W. General features of polar lows over the Japan Sea
770 and the Northwestern Pacific. *Chin. J. Ocean. Limnol.* **1999**, *17*, 300–307,
771 doi:10.1007/BF02842823.

772 30. Gurvich, I. A.; Pichugin, M. K. Study of the comparative characteristics of typical
773 mesoscale cyclones over Far Eastern seas on the basis of satellite multisensory
774 sounding. *Sovrem. Probl. Distantionnogo Zondirovaniya Zemli Kosmosa* **2013**, *10*,
775 51–59.

776 31. Claud, C.; Carleton, A. M.; Duchiron, B.; Terray, P. Southern hemisphere winter cold-
777 air mesocyclones: climatic environments and associations with teleconnections.
778 *Climate Dynamics* **2009**, *33*, 383–408, doi:10.1007/s00382-008-0468-5.

779 32. Blechschmidt, A.-M. A 2-year climatology of polar low events over the Nordic Seas
780 from satellite remote sensing. *Geophysical Research Letters* **2008**, *35*,
781 doi:10.1029/2008GL033706.

782 33. Heinle, A.; Macke, A.; Srivastav, A. Automatic cloud classification of whole sky
783 images. *Atmospheric Measurement Techniques* **2010**, *3*, 557–567, doi:10.5194/amt-3-
784 557-2010.

785 34. Taravat, A.; Frate, F. D.; Cornaro, C.; Vergari, S. Neural Networks and Support Vector
786 Machine Algorithms for Automatic Cloud Classification of Whole-Sky Ground-Based
787 Images. *IEEE Geoscience and Remote Sensing Letters* **2015**, *12*, 666–670,
788 doi:10.1109/LGRS.2014.2356616.

789 35. Onishi, R.; Sugiyama, D. Deep Convolutional Neural Network for Cloud Coverage
790 Estimation from Snapshot Camera Images. *SOLA* **2017**, *13*, 235–239,
791 doi:10.2151/sola.2017-043.

792 36. Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet classification with deep
793 convolutional neural networks. In *Advances in neural information processing systems*;
794 2012; pp. 1097–1105.

795 37. Shin, H.-C.; Roth, H. R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.;
796 Summers, R. M. Deep Convolutional Neural Networks for Computer-Aided Detection:
797 CNN Architectures, Dataset Characteristics and Transfer Learning. *IEEE Transactions
798 on Medical Imaging* **2016**, *35*, 1285–1298, doi:10.1109/TMI.2016.2528162.

799 38. Krinit斯基, M. A. Application of machine learning methods to the solar disk state
800 detection by all-sky images over the ocean. *Oceanology* **2017**, *57*, 265–269,
801 doi:10.1134/S0001437017020126.

802 39. Liu, Y.; Racah, E.; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.;
803 Collins, W. Application of deep convolutional neural networks for detecting extreme
804 weather in climate datasets. *arXiv preprint arXiv:1605.01156* **2016**.

805 40. Huang, D.; Du, Y.; He, Q.; Song, W.; Liotta, A. DeepEddy: A simple deep architecture
806 for mesoscale oceanic eddy detection in SAR images. In *2017 IEEE 14th International
807 Conference on Networking, Sensing and Control (ICNSC)*; 2017; pp. 673–678.

808 41. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to
809 document recognition. *Proceedings of the IEEE* **1998**, *86*, 2278–2324,
810 doi:10.1109/5.726791.

811 42. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. *Nature* **2015**, *521*, 436–444,
812 doi:10.1038/nature14539.

813 43. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F. E. A survey of deep neural
814 network architectures and their applications. *Neurocomputing* **2017**, *234*, 11–26,
815 doi:10.1016/j.neucom.2016.12.038.

816 44. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M. S. Deep learning for visual
817 understanding: A review. *Neurocomputing* **2016**, *187*, 27–48,
818 doi:10.1016/j.neucom.2015.09.116.

819 45. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.;
820 Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In *Proceedings of the*
821 *IEEE conference on computer vision and pattern recognition*; 2015; pp. 1–9.

822 46. Chollet, F. Xception: Deep learning with depthwise separable convolutions, CoRR
823 abs/1610.02357. URL <http://arxiv.org/abs/1610.02357> 2016.

824 47. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In
825 *Proceedings of the IEEE conference on computer vision and pattern recognition*; 2016;
826 pp. 770–778.

827 48. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale
828 hierarchical image database. In *Computer Vision and Pattern Recognition, 2009. CVPR*
829 *2009. IEEE Conference on*; Ieee, 2009; pp. 248–255.

830 49. Eckersley, P.; Nasser, Y. AI Progress Measurement Available online:
831 <https://www.eff.org/ai/metrics> (accessed on Aug 13, 2018).

832 50. Deng, L.; Yu, D. Deep Learning: Methods and Applications. *SIG* **2014**, *7*, 197–387,
833 doi:10.1561/2000000039.

834 51. Deng, L. A tutorial survey of architectures, algorithms, and applications for deep
835 learning. *APSIPA Transactions on Signal and Information Processing* **2014**, *3*,
836 doi:10.1017/atsip.2013.9.

837 52. Schmidhuber, J. Deep learning in neural networks: An overview. *Neural networks* **2015**,
838 *61*, 85–117.

839 53. Lazzara, M. A.; Keller, L. M.; Stearns, C. R.; Thom, J. E.; Weidner, G. A. Antarctic
840 satellite meteorology: applications for weather forecasting. *Monthly Weather Review*
841 **2003**, *131*, 371–383.

842 54. Kohrs, R. A.; Lazzara, M. A.; Robaidek, J. O.; Santek, D. A.; Knuth, S. L. Global
843 satellite composites — 20 years of evolution. *Atmospheric Research* **2014**, *135–136*, 8–
844 34, doi:10.1016/j.atmosres.2013.07.023.

845 55. Simard, P. Y.; Steinkraus, D.; Platt, J. C. Best practices for convolutional neural
846 networks applied to visual document analysis. In *Proceedings of Seventh International*
847 *Conference on Document Analysis and Recognition*; IEEE: Edinburgh, Scotland, 2003;
848 p. 958.

849 56. Pratt, L. Y.; Mostow, J.; Kamm, C. A.; Kamm, A. A. Direct Transfer of Learned
850 Information Among Neural Networks. In *AAAI*; 1991; Vol. 91, pp. 584–589.

851 57. Caruana, R. Learning Many Related Tasks at the Same Time with Backpropagation.
852 *Advances in neural information processing systems* **1995**, *8*.

853 58. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep
854 neural networks with multitask learning. In *Proceedings of the 25th international*
855 *conference on Machine learning*; ACM, 2008; pp. 160–167.

856 59. Pan, S. J.; Yang, Q. A Survey on Transfer Learning. *IEEE Transactions on Knowledge*
857 *and Data Engineering* **2010**, *22*, 1345–1359, doi:10.1109/TKDE.2009.191.

858 60. Mesnil, G.; Dauphin, Y.; Glorot, X.; Rifai, S.; Bengio, Y.; Goodfellow, I.; Lavoie, E.;
859 Muller, X.; Desjardins, G.; Warde-Farley, D. Unsupervised and transfer learning
860 challenge: a deep learning approach. In *Proceedings of the 2011 International*

861 *Conference on Unsupervised and Transfer Learning workshop-Volume 27*; JMLR. org,
862 2011; pp. 97–111.

863 61. Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and Transferring Mid-Level Image
864 Representations using Convolutional Neural Networks. In *Proceedings of the IEEE*
865 *Conference on Computer Vision and Pattern Recognition*; 2014; pp. 1717–1724.

866 62. Maclin, R.; Shavlik, J. W. Combining the predictions of multiple classifiers: Using
867 competitive learning to initialize neural networks. In *Proceedings of the 1995*
868 *International Joint Conference on AI*; Citeseer: Montreal, Quebec, Canada, 1995; pp.
869 524–531.

870 63. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a
871 simple way to prevent neural networks from overfitting. *The Journal of Machine*
872 *Learning Research* **2014**, *15*, 1929–1958.

873 64. Agakov, F. V.; Barber, D. An Auxiliary Variational Method. In *Neural Information*
874 *Processing*; Lecture Notes in Computer Science; Springer, Berlin, Heidelberg, 2004;
875 pp. 561–566.

876 65. Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning representations by back-
877 propagating errors. *Nature* **1986**, *323*, 533–536, doi:10.1038/323533a0.

878 66. Sorokin, A. A.; Makogonov, S. V.; Korolev, S. P. The Information Infrastructure for
879 Collective Scientific Work in the Far East of Russia. *Sci. Tech. Inf. Proc.* **2017**, *44*, 302–
880 304, doi:10.3103/S0147688217040153.

881 67. Carleton, A. M.; Carpenter, D. A. Satellite climatology of ‘polar lows’ and broadscale
882 climatic associations for the Southern Hemisphere. *International Journal of*
883 *Climatology* **1990**, *10*, 219–246, doi:10.1002/joc.3370100302.

884 68. Carleton, A. M.; Fitch, M. Synoptic aspects of Antarctic mesocyclones. *Journal of*
885 *Geophysical Research: Atmospheres* **1993**, *98*, 12997–13018, doi:10.1029/92JD02132.

886 69. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical
887 Image Segmentation. In *Medical Image Computing and Computer-Assisted*
888 *Intervention – MICCAI 2015*; Lecture Notes in Computer Science; Springer, Cham,
889 2015; pp. 234–241.

890 70. Parkhi, O. M.; Vedaldi, A.; Zisserman, A. Deep face recognition. In *BMVC*; 2015; Vol.
891 1, p. 6.

892 71. Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face
893 Recognition and Clustering. In *Proceedings of the IEEE Conference on Computer*
894 *Vision and Pattern Recognition*; 2015; pp. 815–823.

895 72. Breiman, L. Bagging predictors. *Mach Learn* **1996**, *24*, 123–140,
896 doi:10.1007/BF00058655.

897 73. Lincoln, W. P.; Skrzypek, J. Synergy of clustering multiple back propagation networks.
898 In *Advances in neural information processing systems*; 1990; pp. 650–657.

899

900