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13 Abstract: Polar mesocyclones (MCs) are small marine atmospheric vortices. The class of intense
14 MCs, called polar lows, are accompanied by extremely strong surface winds and heat fluxes and
15 thus largely influencing deep ocean water formation in the polar regions. Accurate detection of
16 polar mesocyclones in high-resolution satellite data, while challenging, is a time-consuming task,
17 when performed manually. Existing algorithms for the automatic detection of polar mesocyclones
18 are based on the conventional analysis of patterns of cloudiness and involve different empirically
19 defined thresholds of geophysical variables. As a result, various detection methods typically reveal
20 very different results when applied to a single dataset. We present a conceptually novel approach

21 for the detection of MCs based on the use of deep convolutional neural networks (DCNNs). We
22 demonstrate that DCNN model is capable of performing binary classification of 500x500km patches
23 of satellite images regarding MC patterns presence in it. The training dataset is based on the
24 reference database of MCs manually tracked in the Southern Hemisphere from satellite mosaics.
25 This dataset is further used for testing several different DCNN setups, specifically, DCNN built
26 “from scratch”, DCNN based on VGG16 pre-trained weights also engaging the Transfer Learning
27 technique, and DCNN based on VGG16 with Fine Tuning technique. Each of these networks is
28 further applied to both infrared (IR) and a combination of infrared and water vapor (IR+WV)

29 satellite imagery. The best skills (97% in terms of the binary classification accuracy score) is achieved
30 with the model that averages the estimates of the ensemble of different DCNNs. The algorithm can
31 be further extended to the automatic identification and tracking numerical scheme and applied to
32 other atmospheric phenomena characterized by a distinct signature in satellite imagery.

33 Keywords: deep learning, convolutional neural networks, polar mesocyclones, satellite data
34 processing, pattern recognition

35

36 Nomenclature

37 BCE - binary cross-entropy

38 CNN - convolutional neural network

39 DA - dataset augmentation technique

40 DCNN - deep convolutional neural network
41 DL - deep learning

42 Do — Dropout technique

43 FC - fully-connected

44 FCNN - fully-connected neural network
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45 FT - Fine Tuning
46 FNR - false negative rate
47 FPR - false positive rate
48 IR - infrared
49 MC - mesocyclone
50 NH - Northern Hemisphere
51 PL - polar low
52 ROC - receiver operator characteristic
53 AUC ROC - area under the curve of receiver operator characteristic
54 SH - Southern Hemisphere
55 SOMC - Shirshov Institute of Oceanology mesocyclone dataset for Southern Ocean
56 TL - Transfer Learning
57 TNR - true negative rate
58 TPR - true positive rate
59 VGG16 - the DCNN proposed by Visual Geometry Group (University of Oxford) [1]
60 WYV — water vapor
61 1. Introduction
62 Polar mesoscale cyclones (MCs) are high-latitude marine atmospheric vortices. Their sizes range

63  from 200 to 1000 km with lifetimes typically spanning from 6 to 36 hours [2]. A specific intense type
64  of mesocyclones, the so-called polar lows (PLs) is characterized by surface winds of more than 15 m/s
65  and strong surface fluxes. These PLs have a significant impact on local weather conditions causing
66  rough seas. Being relatively small in size (compared to the extratropical cyclones), PLs contribute
67  significantly to the generation of extreme air-sea fluxes and initialize intense surface transformation
68  of water masses resulting in the formation of ocean deep water [3-5]. These processes are most intense
69  in the Weddel and Bellingshausen Seas in the Southern hemisphere and in the Labrador, Greenland
70 and Irminger Seas in the Northern Hemisphere.

71 One potential source of data is reanalyses. However, MCs, being critically important for many
72 oceanographic and meteorological applications, are only partially detectable in different reanalysis
73 datasets, primarily due to the inadequate resolution. Studies [4,6-9] have demonstrated the
74 significant underestimation of both number of mesocyclones and wind speeds by modern reanalyses
75  in contrast with satellite observations of MCs cloud signatures and wind speeds. This hints that the
76  spatial resolution of modern reanalyses is still not good enough for reliable and accurate detection of
77  MCs. Press et al. argued for at least 10 by 10 grid points is necessary for effective capturing the
78  MC[10]. This implies a 30 km spatial resolution in the model or reanalysis is needed for detecting
79  MC with the diameter of 300 km. Some studies [6,11] have demonstrated that 80% (64%) of MCs (PLs)
80  in the SH (NH) are characterized by the diameters ranging from 200 to 500 km (250 to 450 km for NH
81 in [11]). The most recent study of Smirnova and Golubkin [12] revealed that only 70% of those could
82  be sustainably represented even in the very high-resolution Arctic System Reanalysis (ASR) [13]. At
83 the same time only 53% of the observed MCs characterized by diameters less than 200 km [6] are
84  sustainably represented in ASR [12]. It was also shown [4,6,7] that both number of MCs and
85  associated winds in modern reanalyses are significantly underestimated compared to satellite
86  observations of cloud signatures of MCs and satellite scatterometer observations of MC winds.

87 One might argue for the use of operational analyses for detecting MCs. However, these products
88  are influenced by the changing model setting over time, the performance of data assimilation system
89  and the volume of assimilated data. This leads to artificial trends at climatological timescales. In
90  several studies, automated cyclone tracking algorithms originally developed for mid-latitude
91  cyclones were adapted for MCs identification and tracking [14-16]. These algorithms were applied
92 to the preprocessed (spatially filtered) reanalysis data and delivered climatological assessments of
93  MCs activity in reanalyses or revealed the direction for their improvement. However, reported
94 estimates of MCs numbers, sizes and lifecycle characteristics vary significantly in these studies.
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95 Zappa et al. [14] shows that ECMWF operational analysis makes it possible to detect up to 70%
96  of the observed PLs, which is higher than ERA40 and ERA-Interim reanalyses (24%, 45% or 55%
97  depending on the procedure of tracking and the choice of reanalysis [7,14]). One bandpass filter in
98  conjunction with different combinations of criteria used for the post-processing of the MC tracking
99  results may result in a 30% spread in the number of PLs [14]. Observational satellite-based
100  climatologies of MCs and PLs [6,11,17-19] consistently reveal a mean vortex diameter of 300-350 km.
101  In a number of reanalysis-based automated studies [15,20], the upper limit of MC and PL diameters
102 was set to 1000 km, resulting in the mean values between 500 and 800 km. Thus, the estimates of MC
103 sizesarestill inconsistently derived with automated tracking algorithms. This inconsistency contrasts
104  with the estimates for midlatitude cyclones’ characteristics derived with the ensemble of tracking
105  schemes [21] applied to a single dataset.
106 Satellite imagery of cloudiness is another data source for identification and tracking of MCs.
107  These data allow for visual identification of cloud signatures associated with MCs. However, the
108  manual procedure requires enormous effort to build long enough dataset. Pioneering work of
109  Wilhelmsen [22] used ten years of consecutive synoptic weather maps, coastal observational stations
110 and several satellite images over the Norwegian and Barents Seas to describe local PLs activity. Later
111  in the 1990s, the number of instruments and satellite crossovers increased. It provoked many studies
112 [17,23-28] evaluating characteristics of MCs occurrence and lifecycle in different regions of both NH
113 and SH. These studies identified major MCs generation regions, their dominant migration directions,
114 and cloudiness signature types associated with MCs. Increases in the amount of satellite observations
115  allowed for the development of robust regional climatologies of MCs occurrence and characteristics.
116  For the SH, Carleton [27] used twice daily cloudiness imagery of West Antarctica and classified for
117 the first time four types of cloud signatures associated with PLs (comma, spiral, transitional type, and
118  merry-go-round). This classification has been confirmed later in many works and is widely used now.
119  Harold et al. [17,26] used daily satellite imagery for building one of the most detailed datasets of MC
120 characteristics for the Nordic Seas (Greenland, Norwegian, Iceland and Northern Seas). Also, Harold
121 etal. [17,26] developed a detailed description of the conventional methodology for the identification
122 and tracking of MCs using satellite IR imageries.
123 There are also several studies regarding polar MCs and PLs activity in the Sea of Japan.
124 Gang et al. [29] conducted the first long-term (three winter months) research of PLs in the Sea of Japan
125  based on visible and IR imagery from the geostationary satellite with hourly resolution. In the era of
126  multi-sensor satellite observations, Gurvich and Pichugin [30] developed the 9-year climatology of
127  polar MCs based on water vapor, cloud water content and surface wind satellite data over the
128  Western Pacific. This study reveals a mean MCs diameter of 200 400 km as well.
129 As these examples illustrate, most studies of MCs activity are regional [11,18,19,31,32] and cover
130 relatively short time periods [6] due to the very costly and time-consuming procedure of visual
131  identification and tracking of MCs. Thus, development of the reliable long-term (multiyear) dataset
132 covering the whole circumpolar Arctic or Antarctic remains a challenge.
133 Recently, machine learning methods have been found to be quite effective for the classification
134 of different cloud characteristics such as solar disk state and cloud types. There are studies in which
135  different machine learning techniques are used for recognizing cloud types [33-35]. Methodologies
136  employed include deep convolutional neural networks (DCNNs [36,37]), k-nearest-neighbor
137 classifier (KNN) and Support Vector Machine (SVM) and fully-connected neural networks (FCNNs).
138 Krinitskiy [38] used FCNNSs for the detection of solar disk state and reported very high accuracy
139 (96.4%) of the proposed method. Liu et al. [39] applied DCNNSs to the fixed-size multichannel images
140 to detect extreme weather events and reported the success score of the detection of 89 to 99%. Huang
141 et al. [40] applied the neural network “DeepEddy” to the synthetic aperture radar images for
142 detection of ocean meso- and submesoscale eddies. Their results are also characterized by high
143 accuracy exceeding 96% success rate. However, Deep Learning (DL) methods have never been
144 applied for detecting MCs yet.
145 DCNNs are known to demonstrate high skills in classification, pattern recognition, and semantic
146  segmentation, when applied to 2-dimensional (2D) fields, such as images. The major advantage of
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147  DCNNs is the depth of processing of the input 2D field. Similarly to the processing levels of satellite
148 data (LO, L1, L2, L3, etc.), which allow retrieving, e.g. wind speeds (L2 processing) from the raw
149  remote measurements (L0), DCNNs are dealing with multiple levels of subsequent non-linear
150  processing of an input image. In contrast to the expert-designed algorithms, the neural network levels
151  of processing (so-called layers) are built in a manner that is common within each specific layer type
152 (convolutional, fully-connected, subsampling, etc.). During the network training process, these layers
153  of a DCNN acquire the ability to extract a broad set of patterns of different scales from the initial data
154  [41-44]. In this sense, a trained DCNN closely simulates the visual pattern recognition process
155  naturally used by a human operator. There exist several state-of-the-art network architectures such
156 as "AlexNet" [36], "VGG16" and "VGG19" [1], "Inception” of several subversions [45], "Xception" [46]
157  and residual networks [47]. Each of these networks has been trained and tested using a range of
158  datasets including the one that is considered as a “reference” for the further image processing, the
159  so-called ImageNet [48]. Continuous development of all DCNNs aims to improve the accuracy of the
160  ImageNet classification. Today, the existing architectures demonstrate high accuracy with the error
161  rate from 2% to 16% [49].

162 A DCNN by design closely simulates the visual recognition process. IR and WV satellite mosaics
163 canbe interpreted as images. Thus, assuming that a human expert detects MCs on these mosaics on
164  the basis of his visual perception, application of DCNN looks a promising in this problem.
165  Liuetal. [39] described a DCNN applied to the detection of tropical cyclones and atmospheric rivers
166  in the 2D fields of surface pressure, temperature and precipitation stacked together into "image
167  patches." However, the proposed approach cannot be directly applied to the MC detection. This
168  method is skillful for the detection of large-scale weather extremes that are discernible in reanalysis
169  products. However, as noted above, MCs have poorly observable footprint in geophysical variables
170  of reanalyses.

171 In this study, we apply the Deep Learning technique [50-52] to the satellite IR and WV mosaics
172 distributed by Antarctic Meteorological Research Center [53,54]. This allows for the automated
173 recognition of MCs cloud signatures. Our focus here is exclusively on the capability of DCNNs to
174  perform a binary classification task regarding MCs patterns presence in patches of satellite imagery
175  of cloudiness and/or water vapor, rather than on the DCNN-based MC tracking. This will indicate
176  that a DCNN is capable of learning the hidden representation that is in accordance with the data and
177  the MCs detection problem.

178 The paper is organized as follows. Section 2 describes the source data based on MC trajectories
179  database [6]. Section 3 describes the development of the MC detection method based on deep
180  convolutional neural networks and necessary data preprocessing. In Section 4 we present the results
181  of the application of the developed methodology. Section 5 summarizes the paper with the
182  conclusions and provides an outlook.

183  2.Data

184 For the training of DCNNs, we wuse MCs dataset for the Southern Ocean
185  (SOMC, http://sail.ocean.ru/antarctica/) consisting of 1735 MC trajectories, resulting in 9252 MC
186  locations and associated estimates of MC sizes [6] for the 4-months period (June, July, August,
187  September) of 2004 (Figure 1a). The dataset was developed by visual identification and tracking of
188  MCs using 976 consecutive 3-hourly satellite IR (10.3 - 11.3 micron) and WV (~6.7 microns) mosaics
189  provided by the Antarctic Meteorological Research Center (AMRC) Antarctic Satellite Composite
190  Imagery (AMRC ASCI) [53,54]. The dataset contains longitudes and latitudes of MC centers at each
191  3-hourly time step of the MC track as well as MC diameter and the cloudiness signature type through
192 the MClife cycle [6]. These characteristics were used along with the associated cloudiness patterns of
193 MCs from the initial IR and WV mosaics for training DCNNSs.

194 AMRC ASCI mosaics spatially combine observations from geostationary and polar-orbiting
195  satellites and cover the area to the South of ~40°S with 3-hourly temporal and 5 km spatial resolution
196 (Fig. 1bc). While the IR channel is widely used for MCs identification [17,18,26,27,32], we also
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197  additionally employ the WV channel imagery which provides a better accuracy over the ice-covered
198  ocean, where the IR images are potentially incorrect.

199

200 10°w 20°W  30°W 40°W 50°W 60°W 70"W 80°W 0w

201 Figure 1. The input for the deep convolutional neural networks (DCNNSs). (a) Trajectories of all
202 mesocyclones (MCs) in Southern Ocean MesoCylones (SOMC) dataset, blue dots mark the point of
203 generation of MC. Snapshots of satellite mosaics for Southern Hemisphere for (b) InfraRed (IR) and
204 (c) Water Vapor (WV) channels at 00:00 UTC 02/06/2004. The red/blue squares indicate patches
205 centered over the MCs (red squares) and those having no MC cloudiness signature in (blue) being cut
206 from the mosaics for DCNNSs training.

207  3.Methodology

208  3.1. Data preprocessing

209 For training models, we first co-located a square (patch) of 100x100 mosaic pixels (500x500 km)
210  with each MC center location from SOMC dataset (9252 locations in total) (Figure 2a-d). Since the
211  distance between MCs in the multiple systems such as the merry-go-round pattern may be
212 comparable to each mesocyclone diameter, and to ensure that (i) each patch covers only one MC and
213 (ii) covers it completely, we require that MC diameters fall into 200-400 km range. Hereafter we call
214 this set of samples ‘the true samples’. The chosen set of true samples includes 67% of the whole
215  population of samples in SOMC dataset.

216

TRUE samples (MC presented)
217 Figure 2. Examples (IR only) of true and false samples for DCNNs training and testing of DCNNs
218 results assessment. 100x100 grid points (500x500km) patches of IR mosaics for (a-d) true samples and

219 false (e-h) samples.


http://dx.doi.org/10.20944/preprints201809.0361.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2018 d0i:10.20944/preprints201809.0361.v2

6 of 26

220 We additionally built the set of ‘false samples’ for DCNNs training. False samples were
221  generated from the patches that do not consist of MC-associated cloudiness signatures (Figure 2e-h)
222 according to the SOMC dataset. Table 1 summarizes the numbers of true and false samples that both
223 make up the source dataset for our further analysis of IR and WV mosaics. The total number of
224 snapshots used (both IR and WV) is 11189. The true samples are 6177 (55%) of them, and 5012 (45%)
225  are the false samples (see Fig. 2). In order to unify images in the dataset, we normalized them by the
226  maximum and the minimum brightness temperature (in the case of IR) over the whole dataset:

227

x — min(X)

= )

x )
T max(X) — min(X)

228

229  where x denotes the individual sample (represented by a matrix of 100x100 pixels), X is the whole
230  dataset of 11189 IR snapshots. The same normalization was applied to WV snapshots.

231 3.2. Formulation of the problem

232 We consider MC identification as a binary classification problem. We use the set of true and false
233 samples (Figure?2) as input (“objects” herein). We have developed two DCNN architectures
234  following two conditional requirements: either (i) the object is described by the IR image only or (ii)
235  the object is described by both IR and WV images. Since the training dataset is almost target-balanced
236  (see Table 1), assuming ~50/50 ratio of true/false samples, we further use the accuracy score as the
237  measure of the classification quality. The accuracy score cannot be used as a reliable quality measure
238  of any machine learning method in the case of the unbalanced training dataset. For example, in the
239  case of a highly unbalanced dataset with the true/false ratio being 95/5 it is easy to achieve 95%
240  accuracy score by just forcing the model to produce only the true outcome. Thus, balancing the source
241  dataset with false samples is critical for building the reliable classification model.

242
243 Table 1. Total number of true and false samples.

True samples  False samples  Total samples
IR 6177 (55%) 5012 (45%) 11189 (100%)
WV 6177 (55%) 5012 (45%) 11189 (100%)

244 3.3. Justification of using DCNN

245 There is a set of best practices commonly used to construct DCNNs for solving classification
246  problems [55]. While building and training DCNNs for MCs identifications, we applied the technique
247  proposed by LeCun [41]. This technique implies the usage of consecutive convolutional layers which
248  detect spatial data patterns, alternating with subsampling layers which reduce the sample
249  dimensions. The set of these layers is followed by a set of so-called fully-connected (FC) layers
250  representing a neural classifier. The whole model built in this manner represents a non-linear
251  classifier capable of directly predicting a target value for the input sample. A very detailed
252 description of this model architecture can be found in [41]. We will further term the FC layers set as

253 "FC classifier," and the preceding part containing convolutional and pooling layers as "convolutional
254  core" (see Figures 3,4). The outcome of the whole model is the probability of MC presence in the input
255  sample.

256 While handling multiple concurrent and spatially aligned geophysical fields, it is important to

257  choose a suitable approach. LeCun [41] proposed the DCNN focused on the processing of only
258  grayscale images — meaning just one 2D field. In order to handle multiple 2D fields, they may be
259  stacked together to form a 3D matrix by analogy with colorful images which have three color
260  channels: red, green and blue. This approach can be applied when one uses pre-trained networks like
261 AlexNet [36], VGG16[1], ResNet [47] or similar architectures because of the original purpose of these
262  networks to classify colorful images. However, this approach should be exploited carefully when
263  applied to geophysical fields, because the mentioned networks were trained using massive datasets
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264  (e.g., ImageNet) of real photographed scenes, which means specific dependencies laying between
265  channels (red, green and blue) within each image. In contrast to the stacking approach applied by
266  Liu et al. [39], we use separate CNN branch for each channel (IR and WV) to ensure that we are not
267  limiting the overall quality of the whole network (see Fig. 4). In the following, we describe in details
268  each DCNN architecture for both cases: IR+WYV (Fig. 4) and IR alone (Fig. 3).

269 Since we consider the binary classification, and the source dataset is almost target-balanced
270  (see Tab. 1), we use as a quality measure the accuracy score or Acc which is a rate of objects, classified
271  correctly compared to the ground truth:

1
A = — Al =y,
CC= T ET 7, = il @)

272 where T denotes the dataset and ||T|| is its total samples count; y; is expert-defined target value
273 (ground truth), 3, is the model decision whether the i-th object contain MC.

274  In addition to the baseline which is the network proposed in [41], we applied a set of additional
275  approaches commonly used to improve the DCNN accuracy and generalization ability
276  (see Appendix A). Specifically, we used Transfer Learning (TL) [56-61] with the VGG16 [1] network
277  pre-trained on ImageNet [48] dataset; Fine Tuning (FT) [62], Dropout (Do) [63] and dataset
278  augmentation (DA) [64] (see Appendix A). With these techniques applied in various combinations,
279  we constructed six DCNN architectures that are summarized in Table 2. All of these architectures are
280  built in a common manner: the FC classifier follows the one- (for IR only) or two-branched (for
281  IR+WV) convolutional core. If the convolutional core is one-branched, its output itself is input data
282  for the corresponding FC classifier. If the convolutional core is two-branched, then concatenation
283  product of their outputs is the input data for the corresponding FC classifier. The very detailed
284  description of the constructed architectures is presented in Appendix A. For each DCNN structure
285  we trained a set of models as described in detail in section 3.5. We also applied ensemble averaging
286  (see Appendix A) of a set of models of identical configuration via averaging probabilities of true class
287  for each object of the dataset. We term these six ensemble-averaged models the “second-order”
288  models. We also applied ensemble averaging per sample of all trained DCNNSs trained in this work.
289  We term this model the “third-order” model. Each of these models was trained using the method of
290  backpropagation of error (BCE loss, see Appendix A) [65] denoted as “backprop training” in Figures
291 3and4.

292 3.4. Proposed DCNN architectures

293 Six DCNNs that we have constructed are able to perform binary classification on satellite
294  mosaics data (IR alone or IR+WV) represented as grayscale 100x100px images:
295 1. 1. CNN #1. This model is built “from scratch” which means we have not used any pre-trained

296 networks. CNN #1 is built in the manner proposed in [36]. We varied sizes of convolutional
297 kernels of each convolutional layers from 3x3 to 5x5. We also varied sizes of subsampling layers’
298 receptive fields from 2x2 to 3x3. For each convolutional layers, we varied the number of
299 convolutional kernels: 8, 16, 32, 64 and 100. The network convolutional core consists of three
300 convolutional layers alternated with subsampling layers. Each pair of convolutional and
301 subsampling layers is followed by a dropout layer. CNN #1 is one-branched, and objects are
302 described by IR 500x500 km satellite snapshots only.

303 2. CNN #2. This model is built “from scratch” with two separate branches - for IR and WV data.
304 The convolutional core of each branch is built in the same manner as the convolutional core for
305 CNN #1 and as proposed in [41]. We varied the same parameters of the structure here in the
306 same ranges as for CNN #1.

307 3. CNN #3. This model is built with Transfer Learning approach. We used VGG16 pre-trained
308 convolutional core to construct this model. None of VGG16 weights were optimized within this

309 model, and only the weights of the FC classifier were trainable. This model is one-branched, and
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310 objects are described by IR 500x500 km satellite snapshots only. CNN #3 structure is shown in
311 Fig. 3.
312 4. CNN #4. This model is two-branched, and each branch of its convolutional core is built with
313 Transfer Learning approach, in the same manner as the convolutional core of CNN #3. Input
314 data are IR and WV. None of VGG16 weights of this model in any of the two branches were
315 optimized, and only the weights of the FC classifier were trainable. CNN #4 structure is shown
316 in Fig. 4.
317 5. CNN #5 is built with both Transfer Learning and Fine Tuning approaches. We built the
318 convolutional core of this model with the use of VGG16 pre-trained network. VGG16
319 convolutional core consists of five similar blocks of layers. For the CNN #5 we turned the last of
320 these five blocks to be trainable. This model is one-branched, and objects are IR 500x500 km
321 satellite snapshots only. CNN #5 structure is shown in Fig. 3.
322 6. CNN #6 is two-branched, and branches of its convolutional core are built in the same manner as
323 the convolutional core of CNN #5. The last of five blocks of each VGG16 convolutional cores
324 were turned to be trainable. Input data are IR and WV 500x500 km satellite snapshots of dataset
325 samples. CNN #6 structure is shown in Fig. 4.
326

327  3.5. Computational experiment design

328 The following hyper-parameters are included in each of the six networks:

329 e Size (number of nodes) of the first layer of FC classifier (denoted as FC1 in Figures 3,4)

330 e Convolutional kernels count for each convolutional layer (only applies to CNN #1 and CNN #2)
331 e Sizes of convolutional kernels (only applies to CNN #1 and CNN #2)

332 e Sizes of receptive fields of subsampling layers (only applies to CNN #1 and CNN #2)

333 The whole dataset was split into training (8952 samples) and testing (2237 samples) sets stratified by
334 target value meaning that each set has the same (55:45) ratio of true/false samples as the whole dataset
335  (i.e, 4924:4028 and 1253:984 samples in training and testing sets correspondingly). We have
336  conducted hyper-parameters optimization for each of these DCNNs using stratified K-fold (K=5)
337  cross-validation approach. We trained several (typically 14-18) models with the best
338  hyper-parameters configuration on the training set for each architecture. Then we drop models with
339  the maximal and minimal accuracy score estimated with the cross-validation approach. The rest of
340  the models are evaluated on the testing set, which was never seen by the model. We estimated the
341  accuracy score for each individual model and the variance of accuracy score for the particular
342  architecture with the best hyper-parameters combination (see Table 2).

343 With the ensemble averaging approach, we evaluated the second-order models on the
344  “mever-seen by the model” testing set. As described in section 3.3 we estimated the optimal
345  probability threshold p,, for each second-order and third-order models (see Table 2) for the best
346  accuracy score estimation. These scores are treated as the quality measure of each particular
347  architecture.

348 Numerical optimization and evaluation of models were performed at the Data Center of FEB
349  RAS [66] and Deep Learning computational resources of Sea-Air Interactions Laboratory of IORAS
350  (https://sail.ocean.ru/). Exploited computational nodes contain two graphics processing units (GPU)
351 NVIDIA Tesla P100 16GB RAM. With these resources, the total GPU time of calculations is 3792
352 hours.

353
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360  4.Results

361 The designed DCNNs were applied to detect of Antarctic MCs for the period from June to
362  September 2004. Summary of the results of the application of six models is presented in Table 2. As
363 we noted above, each model is characterized by the utilized data source (IR alone or IR+WYV, columns
364  “IR” and “WV” in Table 2). These DCNNs are further categorized according to a chosen set of applied
365  techniques in addition to the basic approach (see Table 2 legend). Table 2 also provides accuracy
366  scores and probability thresholds estimated as described in section 3.5, for the individual, second-
367  and third-order models of each architecture.

368
369 Table 2. Accuracy score of each model with the best hyper-parameters combination. BA - basic
370 approach [41], TL - transfer learning, FT - fine tuning, Do - dropout, DA - dataset augmentation. Acc
371 is the accuracy score averaged across models of the particular architecture. AsEA is the accuracy score
372 of the ensemble averaged models with the optimal probability threshold. p;, is the optimal
373 probability threshold value.
model o Wy BA TL FT Do DA Acc ASEA Den
name
CNN#l X - X - - X X 86.89+1.1% 89.3 % 0.381
CNN#2 X X X - - X X 941+1.4% 96.3 % 0.272
CNN#3 X - X X - X X 95.8£0.1 % 96.6 % 0.556
CNN#4 X X X X - X X 95.5+£0.3 % 96.3 % 0.526
CNN# X - X X X X X 96 £0.2 % 96.6 % 0.5715
CNN#6 X X X X X X X 95.7+£0.2% 96.4 % 0.656
Third-order model CNN #1-6 averaged ensemble 97% 0.598
374
375 As shown in Table 2, CNN #3 and CNN #5 demonstrated the best accuracy among the

376  second-order models on a never-seen subset of objects. The best combination of hyper-parameters
377  for these networks is presented in Appendix B. Confusion matrices and receiver operating
378  characteristic (ROC) curves for these models are shown in Fig. 6 a-d. Confusion matrices, and ROC
379  curves for all evaluated models are presented in Appendix C. Figure 6 clearly confirms that these two
380  models perform almost equally for the true and the false samples. According to Table 2, the best
381  accuracy score is reached using different probability thresholds for each second- or third-order
382  model

383 Comparison of CNN #1, CNN #2, on the one hand, and the remaining models, on the other hand,
384  shows that DCNNs built with the use of Transfer Learning technique demonstrate better
385  performance compared to the models built “from scratch”. Moreover, the accuracy score variances
386  of CNN #1 and CNN #2 are higher than for the other architectures. Thus, models built with Transfer
387  Learning approach seem to be more stable, and their generalization ability is better, compared to
388  models built "from-the-scratch.”

389 Comparing CNN #1 and CNN #2 qualities, we may conclude that the use of an additional data
390  source (WV) results in the significant increase of the model accuracy score. Comparison of models
391  within each pair of the network configurations (CNN #3 vs. CNN #5; CNN #4 vs. CNN #6)
392  demonstrates that Fine Tuning approach does not provide significant improvement of the accuracy
393 score in case of such a small size of the dataset. It is also obvious that the averaging over the ensemble
394  members does increase the accuracy score from 0.6% for CNN #5 to 2.41% for CNN #1. However, in
395  some cases, these score increases are comparable to the corresponding accuracy standard deviations.
396 It is also clear from the last row of Table 2, that the third-order model, which averages
397  probabilities estimated by all trained models CNN #1-6, produces the accuracy of Acc = 97% which
398  outperforms all scores of individual models and second-order ensemble models. ROC curve and
399  confusion matrices for this model are presented in Figure 6ef.

400
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406 Figure 5 demonstrates four main types of false classified objects. The first and the second types
407  are the ones for which IR data are missing completely or partially. The third type is the one for which
408  the source satellite data were suspected to be corrupted. These three types of classifier errors
409  originating from the lack of source data or the corruption of source data. For the fourth type, the
410  source satellite data was realistic but the classifier has made a mistake. Thus some of false
411  classifications are model mistakes, and some are associated with the labeling issue where human
412 expert could guess on the MC propagation over the area with missing or corrupted satellite data.
413 Figure 7 demonstrates the characteristics of the best model (third-order ensemble-averaging
414  model) regarding false negatives (FN). Since the testing set is unbalanced with respect to stages, types
415  of cyclogenesis and cloud vortex types, we present in Figure 7acd relative FN rates for each separate
416  classin each taxonomy. We present the testing set distribution of classes for these taxonomies as well.
417  Note that scales are different for reference distributions of classes of the testing set and the
418  distributions of missed MCs. Detailed false negatives characteristics may be found in Appendix D.

419
False negatives (partial) per stage Diameters of false negatives
(a) 2 (b)
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420 Figure 7. False negatives (missed MCs) in the never-seen by the model testing set with respect to
y
421 a) lifecycle stages; (b) diameters; (c) cyclogenesis types; (d) types of cloud vortex.
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422 Tracking procedure requires the sustainable ability of the MCs detection scheme to recognize

423 mesocyclone cloud shape imprints during the whole MC life cycle. Figure 7a demonstrates that the
424 best model classifies mesocyclone imprints almost equally for incipient (~4.6% incipient missed) and
425  mature (~4% mature missed) stages. The fraction of missed MCs in its dissipating stage is lower (~4%
426  missed among MCs in dissipating stage). As for distribution of missed MCs with respect to their
427  diameters (see Fig. 7b), the histogram demonstrates fractions of FN objects relative to the whole FN
428  number. The distribution of MC diameters in the testing set in Figure 7b is shown as a reference.
429  There is a peak around the diameter value of 325 km, which does not coincide with any issues of
430  distributions of MC diameters when the testing set is subset by any particular class of any taxonomy.
431 However, since the total number of missed MCs is too small, there is no obvious reason to make
432 assumptions on the origin of this issue. The FN rates per cyclogenesis types (Fig. 7c) demonstrate the
433  only issue for the orography-induced MCs. This issue is caused by the total number of that
434  cyclogenesis type, which is small (only 27 MCs in the testing set and only 134 in the training set), so
435  the 4 which were missed is a substantial fraction of it. The same issue is demonstrated for the FN
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436  rates per cloud vortex types. Since the total number of “spiral cloud” type in the testing set is
437  relatively small (59 of 1253), the 5 missed are a substantial fraction of it, compared to 33 missed of
438 1006 for “comma cloud” type.

439 5. Conclusions and outlook

440 In this study, we present an adaptation of a DCNN method resulting in an algorithm for the
441  detection of MCs from satellite imageries of cloudiness. The DCNN technique shows very high
442 accuracy in recognition of MCs cloud signatures. The best accuracy score of 97% is reached using the
443 third-order ensemble-averaging model (6 models ensemble) and the combination of both IR and WV
444  images as input. We assess the accuracy of MCs recognition by comparison of identified MCs
445  (true/false - image contain MC/no MC on the image parameter) with a reference dataset [6]. We
446  demonstrate that deep convolutional networks are capable of effectively detecting polar mesocyclone
447  signatures in satellite imagery. We also conclude that the quality of the satellite mosaics is sufficient
448  enough for performing the task of binary classification regarding the MCs presence in 500x500km
449  patches, and for performing other similar tasks of pattern recognition type, e.g., semantic
450  segmentation of MCs.

451 Since the satellite-based studies of polar mesocyclone activity conducted in the Southern
452  Hemisphere (and in NH as well) have never reported season-dependent variations of IR imprint of
453 cloud shapes of MCs [23,27,67,68], we assume the proposed methodology to be applicable to satellite
454  imageries of polar MCs available for the whole satellite observation era in Southern Hemisphere. In
455  the Northern Hemisphere, the direct application of the models that were trained on SH dataset is
456  restricted due to the opposite sign of relative vorticity and thus, different cloud shape orientation.
457  However the proposed approach is still applicable, and the only need is a dataset of tracks of MCs
458  from the Northern Hemisphere.

459 It was also shown that the accuracy of MCs detection by DCNN:ss is sensitive to the single (IR
460  only) or double (IR+WV) input data usage. IR+WV combination provides significant improvement of
461  the detection of MCs and allows a weak DCNN (CNN #2) to detect MCs with higher accuracy
462  compared to the weak CNN #1 (89.3% and 96.3% correspondingly). The computational cost of DCNN
463  training and hyper-parameters optimization for deep neural networks are time- and computational-
464  consuming. However, once trained, the computational cost of the DCNN inference is low.
465  Furthermore, the trained DCNN performs much faster compared to a human expert. Another
466  advantage of the proposed method is the low computational cost of data preprocessing that allows
467  the processing of satellite imagery in real time or the processing of large amounts of collected satellite
468  data.

469 We plan to extend the usage of this set of DCNNs (Table 2) for the development of an MCs
470  tracking method based on machine learning and using satellite IR and WV mosaics. These efforts
471  would be mainly focused on the development of the optimal choice of the “cut-off” window that has
472 to be applied to the satellite mosaic. In the case of a sliding-window approach (e.g., running the
473 500x500km sliding window through the mosaics), the virtual testing dataset of the whole mosaic is
474  highly unbalanced, so a model with non-zero FPR evaluated on balanced dataset would produce
475  much higher FPR. In the future, instead of the sliding-window, the Unet-like [69] architecture should
476  be considered with the binary semantic segmentation problem formulation. Considering MC
477  tracking development, an approach proposed in a number of face recognition studies should be
478  reassuring [70,71]. This approach can be applied in a manner of triple-based training of the DCNN to
479  estimate a measure of similarity between one particular MC signatures in consecutive satellite
480  mosaics.

481
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498  Appendix A. DCNN best practices and additional techniques

499 There is a set of best practices commonly used to construct DCNNs for solving classification
500  problems [55]. Modern DCNNSs are built on the basis of consecutive convolutional and subsampling
501 layers by performing nonlinear transformation of the initial data (see Fig. 2 in [41]). The primary layer
502  type of convolutional neural networks (CNNs) is the so-called convolutional layer which is designed
503  toextract visual patterns density map using discrete convolution operation with K (tends to be from
504 3 to 1000) kernels followed by a nonlinear transformation operation (activation function). One
505  additional layer type is a pooling layer performing subsampling operation with one of the following
506  aggregation functions: maximum, minimum, mean or others. In the current practice the maximum is
507  used.

508 Since the LeNet DCNN [41] several studies [41-44] have demonstrated that the usage of
509  consecutive convolutional and subsampling layers results in a skillful detection of various spatial
510  patterns from the input 2D sample. The approach proposed in [41] implies the use of the output of
511  these stacked layers set as an input data for a classifier, which in general may be any method suitable
512 for classification problems, such as linear models, logistic regression, etc. LeCun [41] suggested to
513 use the neural classifier, and this is now a conventional approach. The advantage of using a neural
514 classifier is the ability to train the whole model at once (the so-called end-to-end training).

515 The whole model built in this manner represents a classifier capable of direct predicting a target
516  value for the sample. We term the fully-connected (FC) layers set as "FC classifier", and the preceding
517  part containing convolutional and pooling layers as "convolutional core" (see Figures 3,4).

518

519 For building a DCNN it is important to account for data dimensionality during its
520  transformations from layer to layer. The input for a DCNN is an image represented by a matrix of
521  thesize (h,w,d), where h and w correspond to the image height and width in pixels, d is its levels
522 number, the so-called depth (e.g., d = 3 when levels are red, green and blue channels of a colorful
523 image). For the water vapor or radio-brightness temperature satellite data, d = 1. A convolutional
524  layer and subsampling layer are described in details in [41]. Convolutional layers are characterized
525 by their kernel sizes (e.g. 3x3, 5x5), their kernel numbers K and the nonlinear operation used (e.g.
526  tanh in [41]). Subsampling layers are characterized by their receptive field sizes e.g. 3x3, 5x5 etc. The
527  output of a convolutional layer with K kernels is the so-called feature maps which is a matrix of the
528 size (h,w,K). The nonlinear operation transforms it to a matrix of size (h,w,1). The following
529  subsampling layer reduces the matrix size depending on the subsampling layer kernel size. Typically,
530  thissizeis (2, 2) or (3, 3). Thus, the subsampling operation reduces the sample size by a factor 2 or 3,
531  respectively. The output of a convolutional core is a set of abstract feature maps which is represented
532 by a 3D matrix. This matrix, being reshaped into a vector, is passed as the input to the FC classifier
533 (see Figures 3,4).

534 FC classifier of all models of this study includes hidden FC layers whose count varied
535  from 2 to 4. Nodes (artificial neurons) count of FC1 which is the layer following the convolutional
536 core (see Figures 3,4), is chosen from the set {128, 256, 512, 1024}. The size of each following FC layer
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537 s half of the preceding one, but not less than 128. The output layer is fully-connected as well and
538  contains one output node. For example, the structure of FC classifier in terms of nodes count of layers
539  might be the following: {512; 256; 128; 1}. All FC layers are alternated with dropout layers in order to
540  prevent overfitting of the model. All trainable layers’ activation functions are Rectified Linear Unit

541  (ReLU):
OreLy (2) = max(0; z), (A1)
542  except the output layer whose activation function is sigmoid:
1
asigm(z) = 1+ e-02’ (A2)
543 where 6 are layers’ trainable parameters.
544
545 In order to measure the error of the network on each individual sample during the training
546  process we use the binary cross-entropy as a loss function:
N
L= (vilogy; + (1 - ylog(1 - ), (*3)
i=0

547  where y; is the expert-defined ground truth for the target value, J; is the estimated probability of
548  the i-th sample to be true, N is samples count of the training set or a training mini-batch. This loss
549  function is minimized in the space of the model weights using the method of backpropagation of
550  error [65] denoted as “backprop training” in Figures 3,4. The outcome of the the whole model is the
551  probability of each class for the input sample. In the case of binary classification, the FC classifier has
552 one output unit, producing probability of MC presence for the input sample.

553

554 In addition to the basic approach proposed in [41] a number of techniques may be applied. Using
555  them one can construct and train DCNNs of various accuracy and various generalization abilities
556  which is characterized by the quality of a model estimated on a never-seen test data.

557  A.1. Transfer learning

558 One of the additional approaches is Transfer Learning [56—61]. Generally, this technique focuses
559  on storing the knowledge obtained by some network while being trained for one problem and
560  applying it to another problem of a similar kind. In practice, this approach implies the DCNN
561  structure to be built using some part of a network previously trained on a considerable amount of
562 data, for example, ImageNet [48]. In these terms, VGG16 [1] is not only an efficient architecture, but
563  also the pre-trained network containing optimized weights values (also known as network
564  parameters). Best practice for building a new advanced DCNN based on transfer learning approach
565 s to compose it using convolutional core of the pre-trained model (e.g. VGG16) followed by a new
566  FC neural classifier. Weights of the convolutional part in this case are fixed, and only FC part is
567  optimized. In this approach, the convolutional core may be considered as a feature extractor (see
568  [41]), which computes a highly relevant low-dimensional (compared to original samples
569  dimensionality) vector, representing the data (e.g. “reshaped to vector” output of the convolutional
570  corein Fig. 3).

571 A.2. Fine Tuning

572 Transfer Learning approach relies on the similarity of data distributions within two datasets.
573  But in the case of significant differences, for example in terms of Kullback-Leibler divergence
574  between some particular feature approximated probability distributions, the new FC classifier
575  capabilities may not cover all of those differences. In this case, some layers of the convolutional core,
576  thatare close to FC classifier, can be turned on to be optimized (the so-called Fine Tuning). Regarding
577  DCNNs application to satellite mosaics, we have to consider that VGG16 was optimized on ImageNet
578  dataset which contains everyday-observed objects like buildings, dogs, cats, cars etc., without any
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579  satellite imageries or even clouds. So FT approach can be considered as a promising approach when
580  composing MC-detecting DCNN at IR and WV satellite mosaic data.

581  A.3. Preventing overfitting

582 Machine learning models and neural networks in particular may vary in terms of complexity. In
583 the case of too strong model, there exist an overfitting problem: the effect of poor target prediction
584  quality on unseen data concurrently with nearly exact prediction of target values on training data.
585  There are several state-of-the-art approaches to prevent overfitting of neural networks. We used most
586  fruitful and reliable ones: dropout [63] and data augmentation also called auxiliary variables [64]. We
587  also used ensemble averaging of the models outcome.

588  A.4. Preventing overfitting with dropout

589 Dropout approach is the way of preventing overfit with a computationally inexpensive but still
590  powerful method of regularizing neural networks through bagging [72] and virtually ensembling
591  models of similar architecture. Bagging involves training multiple models and testing each of them
592 on test samples. Since training and evaluating of deep neural networks tend to be time-consuming
593  and computationally expensive, the original bagging approach [72] seems to be impractical. With the
594  dropout approach applied, the network may be thought of as an ensemble of all sub-networks that
595  can be composed by removing non-output nodes from the base network. In practice, this approach
596  is implemented by dropout layer which turns the preceding layer output to zero for each node with
597  some probability p. This procedure repeats for each mini-batch at the training time. At the inference
598  time, the dropout approach involves network weights scaling by 1/p. Each of our models includes
599  dropout layers between trainable layers. Rate p was set to 0.1 for each dropout layer of each model.

600  A.5. Preventing overfitting with dataset augmentation

601 Dataset augmentation is the state-of-the-art way to make a machine learning model generalize
602  better. When available dataset size is limited, the way to get around that is to generate fake data
603  which should be similar to real samples. Best practice for DCNNs is generating fake samples by
604  adding some noise or applying slight transformations like shift, shear, rotation, scaling etc. Formally,
605  with data augmentation one can increase variability of features of the original dataset and
606  substantially extend its size. This approach often improves generalization ability of the trained
607  model.

608 We trained each of our models with data augmentation approach applied. The rotation angle
609  range was 90° in both direction; independent width and height scaling performed within range from
610 0.8 to 1.2; zoom range from 0.8 to 1.2; shear angle range from -2° to 2°. We did not use flipping
611  upside-down and left-to-right.

612 A.6. Preventing overfitting with ensemble averaging

613 In general, during the parameters optimization (learning process) each DCNN converges to a
614  local minimum of the loss function in the space of its weights. The training process starts from a
615  randomly generated point of this space. Due to a non-convexity of loss function, every new DCNN
616  model converges to a new local minimum. Some models may converge to a minimum that is not
617  really close to a global one in terms of loss function value, and thus the quality measure of that model
618  remains poor. Other models may converge to a good minimum that is close to a global one in terms
619  of loss function value, but this proximity may lead to a poor generalization ability which means low
620  quality measure estimated on a testing subset of data. There are approaches for improving the
621  generalization ability of several models that are generally similar, but differ in detailed predictions.
622  In our study we applied simple ensemble averaging [73], which is one of state-of-the-art approaches
623  for improving machine learning models generalization ability. With this approach several models of
624  each architecture are trained, and probabilities of these models are averaged. The prediction of this
625  model is treated as an ensemble outcome:
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M )
626  where p; is the estimated probability of the ensemble of M models for i-th sample to be true; each

p; =

627  m-th model's probability estimation for i-th sample to be true is pi(m). In this study we applied
628  ensembling on DCNNSs of identical architectures. The resulting models we term second-order models
629  in this study. They are synthetic ones that are not trained, but are ensembles.

630 Satellite IR+WV snapshots or satellite IR snapshot alone are essentially the object description,
631  and each model that is presented in our study produces the outcome for each object regardless of the
632  description - whether it is IR snapshot alone or IR+WV snapshots. So there is an opportunity to
633  average probability outcomes of all the models of this study. The resulting model that produces
634  averaged probabilities of the ensemble containing all trained models we term third-order model. It is a
635  synthetic one that is not trained, but is an ensemble.

636  A.7. Adjustment of the probability threshold

637 The outcome of each model of this study is the estimation of the probability for the sample to be
638  true (i.e. to contain an MC). So there is an arbitrariness in choosing the threshold of this probability
639  to get the outcome which is binary. The most common way to choose this threshold is the ROC curve
640  analysis. Each point of this curve represents the False Positive Rate (FPR) and True Positive Rate
641 (TPR) combination for the particular probability threshold p,, (e.g. see Fig. 6bdf). The model
642  performing true random choice between true and false outcome has a ROC curve on the main
643  diagonal of this plot. The ROC curve of the perfect classifier follows from the point (0.0, 0.0) straight
644  to the point (0.0, 1.0) and then to the point (1.0, 1.0). The area under the ROC curve (AUC ROC) may
645  be considered as a measure of model quality. The best model AUC ROC is 1.0, the true random choice
646  model AUC ROC is 0.5, and the worst model AUC ROC is 0.0.

647 In a range of cases the best accuracy score might not be reached with p;, = 0.5. The lines of equal
648  accuracy score, as presented in Fig. 6bdf, are diagonal. In case of perfect 50/50 ratio of true/false
649  samples they are parallel to the main diagonal. In case of slight inequality of true and false samples
650  count these lines have slightly different slope as shown in Fig. 6bdf. For each accuracy score there are
651  two, one or no points of the ROC curve intersection with the accuracy isoline. So if a model is
652  represented with a ROC curve, the maximum value of its Acc is located at the point of this curve
653  where the accuracy isoline is tangent to it. For each model of this study including second- and third-
654  order models, the optimal probability threshold was estimated based on ROC curve analysis.

655
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Appendix B. CNN #3 and CNN #5 Best hyper-parameters combinations.
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According to section 3.4, CNN #3 and CNN #5 are both constructed to have one-branched
convolutional core. Best combination of hyper-parameters of these networks are the same. The only

difference is the FT approach that was applied in case of CNN #5.

Table B1. CNN #3 and CNN #5 best hyper-parameters combination.

Layer (block) name

Layer (block) nodes count or
output dimensions

Connected to

Input_data_IR
VGG_16_conv_core

100x100
see [1]; output: 3x3x512

Input_data_IR

Reshape_1 4608 VGG_16_conv_core
Dropout_1 4608 Reshape_1

FC1 1024 Dropout_1
Dropout_2 1024 FC1

FC2 512 Dropout_2
Dropout_3 512 FC2

FC3 256 Dropout_3
Dropout_4 256 FC3

FC4 128 Dropout_4
FC_output 1 FC3
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Appendix C. Detailed performance metrics of all DCNN models.
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Figure C1. Confusion matrices for all models and the third-order model CNN #1-6 averaged
ensemble, computed on test never-seen subset of data. For each architecture the ensemble averaging

technique is applied.
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Figure C2. Receiver operating characteristic curves computed on test never-seen subset of data for all

models. For each architecture the ensemble averaging technique is applied.


http://dx.doi.org/10.20944/preprints201809.0361.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2018 d0i:10.20944/preprints201809.0361.v2

21 of 26
671  Appendix D. Detailed false negative rates of the third-order ensemble-averaging model.
672 Table D1. False negative rates per cyclogenesis types.
Cvclosenesis tvoe Testing set, False negatives, FN relative rate,
yeos YP objects number objects number %
Pressure trough 841 23 2.7
Centre of mid-latitude cyclone 147 2 1.4
Low-gradient pressure field 48 2 4.2
Cold-air outbreak 45 4 8.9
Low-pressure post-occlusion zone 84 4 4.8
High pressure gradient field 61 4 6.6
Orography-induced cyclogenesis 27 4 14.8
673
674 Table D2. False negative rates per cloud vortex types.
Testing set, False negatives, = FN relative rate,
Cloud vortex t
oud vortextype objects number objects number %
Comma cloud 1006 33 3.3
Spiral cloud 59 5 8.5
Comma-to-spiral 177 5 2.3
Merry-go-round 11 0 0.0
675
676 Table D3. False negative rates per MC stages.
Testing set, False negatives, = FN relative rate,
MC st
stage objects number objects number %
Incipient 352 16 4.6
Mature 574 23 4.0
Dissipating 327 4 1.2
677
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