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Abstract: Polar mesocyclones (MCs) are small marine atmospheric vortices. The class of intense 13 
MCs, called polar lows, are accompanied by extremely strong surface winds and heat fluxes and 14 
thus largely influencing deep ocean water formation in the polar regions. Accurate detection of 15 
polar mesocyclones in high-resolution satellite data, while challenging, is a time-consuming task, 16 
when performed manually. Existing algorithms for the automatic detection of polar mesocyclones 17 
are based on the conventional analysis of patterns of cloudiness and involve different empirically 18 
defined thresholds of geophysical variables. As a result, various detection methods typically reveal 19 
very different results when applied to a single dataset. We present a conceptually novel approach 20 
for the detection of MCs based on the use of deep convolutional neural networks (DCNNs). We 21 
demonstrate that DCNN model is capable of performing binary classification of 500x500km patches 22 
of satellite images regarding MC patterns presence in it. The training dataset is based on the 23 
reference database of MCs manually tracked in the Southern Hemisphere from satellite mosaics. 24 
This dataset is further used for testing several different DCNN setups, specifically, DCNN built 25 
“from scratch”, DCNN based on VGG16 pre-trained weights also engaging the Transfer Learning 26 
technique, and DCNN based on VGG16 with Fine Tuning technique. Each of these networks is 27 
further applied to both infrared (IR) and a combination of infrared and water vapor (IR+WV) 28 
satellite imagery. The best skills (97% in terms of the binary classification accuracy score) is achieved 29 
with the model that averages the estimates of the ensemble of different DCNNs. The algorithm can 30 
be further extended to the automatic identification and tracking numerical scheme and applied to 31 
other atmospheric phenomena characterized by a distinct signature in satellite imagery. 32 

Keywords: deep learning, convolutional neural networks, polar mesocyclones, satellite data 33 
processing, pattern recognition 34 

 35 

Nomenclature 36 
BCE – binary cross-entropy 37 
CNN – convolutional neural network 38 
DA – dataset augmentation technique 39 
DCNN – deep convolutional neural network 40 
DL – deep learning 41 
Do – Dropout technique 42 
FC – fully-connected 43 
FCNN – fully-connected neural network 44 
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FT – Fine Tuning 45 
FNR – false negative rate 46 
FPR – false positive rate 47 
IR – infrared 48 
MC – mesocyclone 49 
NH – Northern Hemisphere 50 
PL – polar low 51 
ROC – receiver operator characteristic 52 
AUC ROC – area under the curve of receiver operator characteristic 53 
SH – Southern Hemisphere 54 
SOMC – Shirshov Institute of Oceanology mesocyclone dataset for Southern Ocean 55 
TL – Transfer Learning 56 
TNR – true negative rate 57 
TPR – true positive rate 58 
VGG16 – the DCNN proposed by Visual Geometry Group (University of Oxford) [1] 59 
WV – water vapor 60 

1. Introduction 61 
Polar mesoscale cyclones (MCs) are high-latitude marine atmospheric vortices. Their sizes range 62 

from 200 to 1000 km with lifetimes typically spanning from 6 to 36 hours [2]. A specific intense type 63 
of mesocyclones, the so-called polar lows (PLs) is characterized by surface winds of more than 15 m/s 64 
and strong surface fluxes. These PLs have a significant impact on local weather conditions causing 65 
rough seas. Being relatively small in size (compared to the extratropical cyclones), PLs contribute 66 
significantly to the generation of extreme air-sea fluxes and initialize intense surface transformation 67 
of water masses resulting in the formation of ocean deep water [3–5]. These processes are most intense 68 
in the Weddel and Bellingshausen Seas in the Southern hemisphere and in the Labrador, Greenland 69 
and Irminger Seas in the Northern Hemisphere. 70 

One potential source of data is reanalyses. However, MCs, being critically important for many 71 
oceanographic and meteorological applications, are only partially detectable in different reanalysis 72 
datasets, primarily due to the inadequate resolution. Studies [4,6–9] have demonstrated the 73 
significant underestimation of both number of mesocyclones and wind speeds by modern reanalyses 74 
in contrast with satellite observations of MCs cloud signatures and wind speeds. This hints that the 75 
spatial resolution of modern reanalyses is still not good enough for reliable and accurate detection of 76 
MCs. Press et al. argued for at least 10 by 10 grid points is necessary for effective capturing the 77 
MC [10]. This implies a 30 km spatial resolution in the model or reanalysis is needed for detecting 78 
MC with the diameter of 300 km. Some studies [6,11] have demonstrated that 80% (64%) of MCs (PLs) 79 
in the SH (NH) are characterized by the diameters ranging from 200 to 500 km (250 to 450 km for NH 80 
in [11]). The most recent study of Smirnova and Golubkin [12] revealed that only 70% of those could 81 
be sustainably represented even in the very high-resolution Arctic System Reanalysis (ASR) [13]. At 82 
the same time only 53% of the observed MCs characterized by diameters less than 200 km [6] are 83 
sustainably represented in ASR [12]. It was also shown [4,6,7] that both number of MCs and 84 
associated winds in modern reanalyses are significantly underestimated compared to satellite 85 
observations of cloud signatures of MCs and satellite scatterometer observations of MC winds. 86 

One might argue for the use of operational analyses for detecting MCs. However, these products 87 
are influenced by the changing model setting over time, the performance of data assimilation system 88 
and the volume of assimilated data. This leads to artificial trends at climatological timescales. In 89 
several studies, automated cyclone tracking algorithms originally developed for mid-latitude 90 
cyclones were adapted for MCs identification and tracking [14–16]. These algorithms were applied 91 
to the preprocessed (spatially filtered) reanalysis data and delivered climatological assessments of 92 
MCs activity in reanalyses or revealed the direction for their improvement. However, reported 93 
estimates of MCs numbers, sizes and lifecycle characteristics vary significantly in these studies. 94 
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Zappa et al. [14] shows that ECMWF operational analysis makes it possible to detect up to 70% 95 
of the observed PLs, which is higher than ERA40 and ERA-Interim reanalyses (24%, 45% or 55% 96 
depending on the procedure of tracking and the choice of reanalysis [7,14]). One bandpass filter in 97 
conjunction with different combinations of criteria used for the post-processing of the MC tracking 98 
results may result in a 30% spread in the number of PLs [14]. Observational satellite-based 99 
climatologies of MCs and PLs [6,11,17–19] consistently reveal a mean vortex diameter of 300-350 km. 100 
In a number of reanalysis-based automated studies [15,20], the upper limit of MC and PL diameters 101 
was set to 1000 km, resulting in the mean values between 500 and 800 km. Thus, the estimates of MC 102 
sizes are still inconsistently derived with automated tracking algorithms. This inconsistency contrasts 103 
with the estimates for midlatitude cyclones’ characteristics derived with the ensemble of tracking 104 
schemes [21] applied to a single dataset. 105 

Satellite imagery of cloudiness is another data source for identification and tracking of MCs. 106 
These data allow for visual identification of cloud signatures associated with MCs. However, the 107 
manual procedure requires enormous effort to build long enough dataset. Pioneering work of 108 
Wilhelmsen [22] used ten years of consecutive synoptic weather maps, coastal observational stations 109 
and several satellite images over the Norwegian and Barents Seas to describe local PLs activity. Later 110 
in the 1990s, the number of instruments and satellite crossovers increased. It provoked many studies 111 
[17,23–28] evaluating characteristics of MCs occurrence and lifecycle in different regions of both NH 112 
and SH. These studies identified major MCs generation regions, their dominant migration directions, 113 
and cloudiness signature types associated with MCs. Increases in the amount of satellite observations 114 
allowed for the development of robust regional climatologies of MCs occurrence and characteristics. 115 
For the SH, Carleton [27] used twice daily cloudiness imagery of West Antarctica and classified for 116 
the first time four types of cloud signatures associated with PLs (comma, spiral, transitional type, and 117 
merry-go-round). This classification has been confirmed later in many works and is widely used now. 118 
Harold et al. [17,26] used daily satellite imagery for building one of the most detailed datasets of MC 119 
characteristics for the Nordic Seas (Greenland, Norwegian, Iceland and Northern Seas). Also, Harold 120 
et al. [17,26] developed a detailed description of the conventional methodology for the identification 121 
and tracking of MCs using satellite IR imageries. 122 

There are also several studies regarding polar MCs and PLs activity in the Sea of Japan. 123 
Gang et al. [29] conducted the first long-term (three winter months) research of PLs in the Sea of Japan 124 
based on visible and IR imagery from the geostationary satellite with hourly resolution. In the era of 125 
multi-sensor satellite observations, Gurvich and Pichugin [30] developed the 9-year climatology of 126 
polar MCs based on water vapor, cloud water content and surface wind satellite data over the 127 
Western Pacific. This study reveals a mean MCs diameter of 200 400 km as well. 128 

As these examples illustrate, most studies of MCs activity are regional [11,18,19,31,32] and cover 129 
relatively short time periods [6] due to the very costly and time-consuming procedure of visual 130 
identification and tracking of MCs. Thus, development of the reliable long-term (multiyear) dataset 131 
covering the whole circumpolar Arctic or Antarctic remains a challenge. 132 

Recently, machine learning methods have been found to be quite effective for the classification 133 
of different cloud characteristics such as solar disk state and cloud types. There are studies in which 134 
different machine learning techniques are used for recognizing cloud types [33–35]. Methodologies 135 
employed include deep convolutional neural networks (DCNNs [36,37]), k-nearest-neighbor 136 
classifier (KNN) and Support Vector Machine (SVM) and fully-connected neural networks (FCNNs). 137 
Krinitskiy [38] used FCNNs for the detection of solar disk state and reported very high accuracy 138 
(96.4%) of the proposed method. Liu et al. [39] applied DCNNs to the fixed-size multichannel images 139 
to detect extreme weather events and reported the success score of the detection of 89 to 99%. Huang 140 
et al. [40] applied the neural network “DeepEddy” to the synthetic aperture radar images for 141 
detection of ocean meso- and submesoscale eddies. Their results are also characterized by high 142 
accuracy exceeding 96% success rate. However, Deep Learning (DL) methods have never been 143 
applied for detecting MCs yet. 144 

DCNNs are known to demonstrate high skills in classification, pattern recognition, and semantic 145 
segmentation, when applied to 2-dimensional (2D) fields, such as images. The major advantage of 146 
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DCNNs is the depth of processing of the input 2D field. Similarly to the processing levels of satellite 147 
data (L0, L1, L2, L3, etc.), which allow retrieving, e.g. wind speeds (L2 processing) from the raw 148 
remote measurements (L0), DCNNs are dealing with multiple levels of subsequent non-linear 149 
processing of an input image. In contrast to the expert-designed algorithms, the neural network levels 150 
of processing (so-called layers) are built in a manner that is common within each specific layer type 151 
(convolutional, fully-connected, subsampling, etc.). During the network training process, these layers 152 
of a DCNN acquire the ability to extract a broad set of patterns of different scales from the initial data 153 
[41–44]. In this sense, a trained DCNN closely simulates the visual pattern recognition process 154 
naturally used by a human operator. There exist several state-of-the-art network architectures such 155 
as "AlexNet" [36], "VGG16" and "VGG19" [1], "Inception" of several subversions [45], "Xception" [46] 156 
and residual networks [47]. Each of these networks has been trained and tested using a range of 157 
datasets including the one that is considered as a “reference” for the further image processing, the 158 
so-called ImageNet [48]. Continuous development of all DCNNs aims to improve the accuracy of the 159 
ImageNet classification. Today, the existing architectures demonstrate high accuracy with the error 160 
rate from 2% to 16% [49]. 161 

A DCNN by design closely simulates the visual recognition process. IR and WV satellite mosaics 162 
can be interpreted as images. Thus, assuming that a human expert detects MCs on these mosaics on 163 
the basis of his visual perception, application of DCNN looks a promising in this problem. 164 
Liu et al. [39] described a DCNN applied to the detection of tropical cyclones and atmospheric rivers 165 
in the 2D fields of surface pressure, temperature and precipitation stacked together into "image 166 
patches." However, the proposed approach cannot be directly applied to the MC detection. This 167 
method is skillful for the detection of large-scale weather extremes that are discernible in reanalysis 168 
products. However, as noted above, MCs have poorly observable footprint in geophysical variables 169 
of reanalyses. 170 

In this study, we apply the Deep Learning technique [50–52] to the satellite IR and WV mosaics 171 
distributed by Antarctic Meteorological Research Center [53,54]. This allows for the automated 172 
recognition of MCs cloud signatures. Our focus here is exclusively on the capability of DCNNs to 173 
perform a binary classification task regarding MCs patterns presence in patches of satellite imagery 174 
of cloudiness and/or water vapor, rather than on the DCNN-based MC tracking. This will indicate 175 
that a DCNN is capable of learning the hidden representation that is in accordance with the data and 176 
the MCs detection problem. 177 

The paper is organized as follows. Section 2 describes the source data based on MC trajectories 178 
database [6]. Section 3 describes the development of the MC detection method based on deep 179 
convolutional neural networks and necessary data preprocessing. In Section 4 we present the results 180 
of the application of the developed methodology. Section 5 summarizes the paper with the 181 
conclusions and provides an outlook. 182 

2. Data 183 
For the training of DCNNs, we use MCs dataset for the Southern Ocean 184 

(SOMC, http://sail.ocean.ru/antarctica/) consisting of 1735 MC trajectories, resulting in 9252 MC 185 
locations and associated estimates of MC sizes [6] for the 4-months period (June, July, August, 186 
September) of 2004 (Figure 1a). The dataset was developed by visual identification and tracking of 187 
MCs using 976 consecutive 3-hourly satellite IR (10.3 - 11.3 micron) and WV (~6.7 microns) mosaics 188 
provided by the Antarctic Meteorological Research Center (AMRC) Antarctic Satellite Composite 189 
Imagery (AMRC ASCI) [53,54]. The dataset contains longitudes and latitudes of MC centers at each 190 
3-hourly time step of the MC track as well as MC diameter and the cloudiness signature type through 191 
the MC life cycle [6]. These characteristics were used along with the associated cloudiness patterns of 192 
MCs from the initial IR and WV mosaics for training DCNNs. 193 

AMRC ASCI mosaics spatially combine observations from geostationary and polar-orbiting 194 
satellites and cover the area to the South of ~40°S with 3-hourly temporal and 5 km spatial resolution 195 
(Fig. 1bc). While the IR channel is widely used for MCs identification [17,18,26,27,32], we also 196 
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additionally employ the WV channel imagery which provides a better accuracy over the ice-covered 197 
ocean, where the IR images are potentially incorrect. 198 

 199 

 200 
Figure 1. The input for the deep convolutional neural networks (DCNNs). (a) Trajectories of all 201 
mesocyclones (MCs) in Southern Ocean MesoCylones (SOMC) dataset, blue dots mark the point of 202 
generation of MC. Snapshots of satellite mosaics for Southern Hemisphere for (b) InfraRed (IR) and 203 
(c) Water Vapor (WV) channels at 00:00 UTC 02/06/2004. The red/blue squares indicate patches 204 
centered over the MCs (red squares) and those having no MC cloudiness signature in (blue) being cut 205 
from the mosaics for DCNNs training. 206 

3. Methodology 207 

3.1. Data preprocessing 208 
For training models, we first co-located a square (patch) of 100x100 mosaic pixels (500x500 km) 209 

with each MC center location from SOMC dataset (9252 locations in total) (Figure 2a-d). Since the 210 
distance between MCs in the multiple systems such as the merry-go-round pattern may be 211 
comparable to each mesocyclone diameter, and to ensure that (i) each patch covers only one MC and 212 
(ii) covers it completely, we require that MC diameters fall into 200-400 km range. Hereafter we call 213 
this set of samples ‘the true samples’. The chosen set of true samples includes 67% of the whole 214 
population of samples in SOMC dataset. 215 
 216 

 
Figure 2. Examples (IR only) of true and false samples for DCNNs training and testing of DCNNs 217 
results assessment. 100x100 grid points (500x500km) patches of IR mosaics for (a-d) true samples and 218 
false (e-h) samples. 219 
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We additionally built the set of ‘false samples’ for DCNNs training. False samples were 220 
generated from the patches that do not consist of MC-associated cloudiness signatures (Figure 2e-h) 221 
according to the SOMC dataset. Table 1 summarizes the numbers of true and false samples that both 222 
make up the source dataset for our further analysis of IR and WV mosaics. The total number of 223 
snapshots used (both IR and WV) is 11189. The true samples are 6177 (55%) of them, and 5012 (45%) 224 
are the false samples (see Fig. 2). In order to unify images in the dataset, we normalized them by the 225 
maximum and the minimum brightness temperature (in the case of IR) over the whole dataset: 226 

 227 

௡௢௥௠ݔ =
ݔ − min(ܺ)

max(ܺ) − min(ܺ)
	, (1)

 228 
where ݔ denotes the individual sample (represented by a matrix of 100x100 pixels), ܺ is the whole 229 
dataset of 11189 IR snapshots. The same normalization was applied to WV snapshots. 230 

3.2. Formulation of the problem 231 

We consider MC identification as a binary classification problem. We use the set of true and false 232 
samples (Figure 2) as input (“objects” herein). We have developed two DCNN architectures 233 
following two conditional requirements: either (i) the object is described by the IR image only or (ii) 234 
the object is described by both IR and WV images. Since the training dataset is almost target-balanced 235 
(see Table 1), assuming ~50/50 ratio of true/false samples, we further use the accuracy score as the 236 
measure of the classification quality. The accuracy score cannot be used as a reliable quality measure 237 
of any machine learning method in the case of the unbalanced training dataset. For example, in the 238 
case of a highly unbalanced dataset with the true/false ratio being 95/5 it is easy to achieve 95% 239 
accuracy score by just forcing the model to produce only the true outcome. Thus, balancing the source 240 
dataset with false samples is critical for building the reliable classification model. 241 

 242 
Table 1. Total number of true and false samples. 243 

 True samples False samples Total samples 
IR 6177 (55%) 5012 (45%) 11189 (100%) 

WV 6177 (55%) 5012 (45%) 11189 (100%) 

3.3. Justification of using DCNN 244 
There is a set of best practices commonly used to construct DCNNs for solving classification 245 

problems [55]. While building and training DCNNs for MCs identifications, we applied the technique 246 
proposed by LeCun [41]. This technique implies the usage of consecutive convolutional layers which 247 
detect spatial data patterns, alternating with subsampling layers which reduce the sample 248 
dimensions. The set of these layers is followed by a set of so-called fully-connected (FC) layers 249 
representing a neural classifier. The whole model built in this manner represents a non-linear 250 
classifier capable of directly predicting a target value for the input sample. A very detailed 251 
description of this model architecture can be found in [41]. We will further term the FC layers set as 252 
"FC classifier," and the preceding part containing convolutional and pooling layers as "convolutional 253 
core" (see Figures 3,4). The outcome of the whole model is the probability of MC presence in the input 254 
sample. 255 

While handling multiple concurrent and spatially aligned geophysical fields, it is important to 256 
choose a suitable approach. LeCun [41] proposed the DCNN focused on the processing of only 257 
grayscale images – meaning just one 2D field. In order to handle multiple 2D fields, they may be 258 
stacked together to form a 3D matrix by analogy with colorful images which have three color 259 
channels: red, green and blue. This approach can be applied when one uses pre-trained networks like 260 
AlexNet [36], VGG16[1], ResNet [47] or similar architectures because of the original purpose of these 261 
networks to classify colorful images. However, this approach should be exploited carefully when 262 
applied to geophysical fields, because the mentioned networks were trained using massive datasets 263 
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(e.g., ImageNet) of real photographed scenes, which means specific dependencies laying between 264 
channels (red, green and blue) within each image. In contrast to the stacking approach applied by 265 
Liu et al. [39], we use separate CNN branch for each channel (IR and WV) to ensure that we are not 266 
limiting the overall quality of the whole network (see Fig. 4). In the following, we describe in details 267 
each DCNN architecture for both cases: IR+WV (Fig. 4) and IR alone (Fig. 3). 268 

Since we consider the binary classification, and the source dataset is almost target-balanced 269 
(see Tab. 1), we use as a quality measure the accuracy score or ܿܿܣ which is a rate of objects, classified 270 
correctly compared to the ground truth: 271 

ܿܿܣ = 	
1
‖࣮‖෍

పෝݕ] = [௜ݕ
࣮

	, (2)

where ࣮ denotes the dataset and ‖࣮‖ is its total samples count; ݕ௜ is expert-defined target value 272 
(ground truth), ݕపෝ  is the model decision whether the ݅-th object contain MC. 273 
In addition to the baseline which is the network proposed in [41], we applied a set of additional 274 
approaches commonly used to improve the DCNN accuracy and generalization ability 275 
(see Appendix A). Specifically, we used Transfer Learning (TL) [56–61] with the VGG16 [1] network 276 
pre-trained on ImageNet [48] dataset; Fine Tuning (FT) [62], Dropout (Do) [63] and dataset 277 
augmentation (DA) [64] (see Appendix A). With these techniques applied in various combinations, 278 
we constructed six DCNN architectures that are summarized in Table 2. All of these architectures are 279 
built in a common manner: the FC classifier follows the one- (for IR only) or two-branched (for 280 
IR+WV) convolutional core. If the convolutional core is one-branched, its output itself is input data 281 
for the corresponding FC classifier. If the convolutional core is two-branched, then concatenation 282 
product of their outputs is the input data for the corresponding FC classifier. The very detailed 283 
description of the constructed architectures is presented in Appendix A. For each DCNN structure 284 
we trained a set of models as described in detail in section 3.5. We also applied ensemble averaging 285 
(see Appendix A) of a set of models of identical configuration via averaging probabilities of true class 286 
for each object of the dataset. We term these six ensemble-averaged models the “second-order” 287 
models. We also applied ensemble averaging per sample of all trained DCNNs trained in this work. 288 
We term this model the “third-order” model. Each of these models was trained using the method of 289 
backpropagation of error (BCE loss, see Appendix A) [65] denoted as “backprop training” in Figures 290 
3 and 4. 291 

3.4. Proposed DCNN architectures 292 
Six DCNNs that we have constructed are able to perform binary classification on satellite 293 

mosaics data (IR alone or IR+WV) represented as grayscale 100x100px images: 294 
1. 1. CNN #1. This model is built “from scratch” which means we have not used any pre-trained 295 

networks. CNN #1 is built in the manner proposed in [36]. We varied sizes of convolutional 296 
kernels of each convolutional layers from 3x3 to 5x5. We also varied sizes of subsampling layers’ 297 
receptive fields from 2x2 to 3x3. For each convolutional layers, we varied the number of 298 
convolutional kernels: 8, 16, 32, 64 and 100. The network convolutional core consists of three 299 
convolutional layers alternated with subsampling layers. Each pair of convolutional and 300 
subsampling layers is followed by a dropout layer. CNN #1 is one-branched, and objects are 301 
described by IR 500x500 km satellite snapshots only. 302 

2. CNN #2. This model is built “from scratch” with two separate branches - for IR and WV data. 303 
The convolutional core of each branch is built in the same manner as the convolutional core for 304 
CNN #1 and as proposed in [41]. We varied the same parameters of the structure here in the 305 
same ranges as for CNN #1. 306 

3. CNN #3. This model is built with Transfer Learning approach. We used VGG16 pre-trained 307 
convolutional core to construct this model. None of VGG16 weights were optimized within this 308 
model, and only the weights of the FC classifier were trainable. This model is one-branched, and 309 
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objects are described by IR 500x500 km satellite snapshots only. CNN #3 structure is shown in 310 
Fig. 3. 311 

4. CNN #4. This model is two-branched, and each branch of its convolutional core is built with 312 
Transfer Learning approach, in the same manner as the convolutional core of CNN #3. Input 313 
data are IR and WV. None of VGG16 weights of this model in any of the two branches were 314 
optimized, and only the weights of the FC classifier were trainable. CNN #4 structure is shown 315 
in Fig. 4. 316 

5. CNN #5 is built with both Transfer Learning and Fine Tuning approaches. We built the 317 
convolutional core of this model with the use of VGG16 pre-trained network. VGG16 318 
convolutional core consists of five similar blocks of layers. For the CNN #5 we turned the last of 319 
these five blocks to be trainable. This model is one-branched, and objects are IR 500x500 km 320 
satellite snapshots only. CNN #5 structure is shown in Fig. 3. 321 

6. CNN #6 is two-branched, and branches of its convolutional core are built in the same manner as 322 
the convolutional core of CNN #5. The last of five blocks of each VGG16 convolutional cores 323 
were turned to be trainable. Input data are IR and WV 500x500 km satellite snapshots of dataset 324 
samples. CNN #6 structure is shown in Fig. 4. 325 
 326 

3.5. Computational experiment design 327 
The following hyper-parameters are included in each of the six networks: 328 

 Size (number of nodes) of the first layer of FC classifier (denoted as FC1 in Figures 3,4) 329 
 Convolutional kernels count for each convolutional layer (only applies to CNN #1 and CNN #2) 330 
 Sizes of convolutional kernels (only applies to CNN #1 and CNN #2) 331 
 Sizes of receptive fields of subsampling layers (only applies to CNN #1 and CNN #2) 332 
The whole dataset was split into training (8952 samples) and testing (2237 samples) sets stratified by 333 
target value meaning that each set has the same (55:45) ratio of true/false samples as the whole dataset 334 
(i.e., 4924:4028 and 1253:984 samples in training and testing sets correspondingly). We have 335 
conducted hyper-parameters optimization for each of these DCNNs using stratified K-fold (K=5) 336 
cross-validation approach. We trained several (typically 14-18) models with the best 337 
hyper-parameters configuration on the training set for each architecture. Then we drop models with 338 
the maximal and minimal accuracy score estimated with the cross-validation approach. The rest of 339 
the models are evaluated on the testing set, which was never seen by the model. We estimated the 340 
accuracy score for each individual model and the variance of accuracy score for the particular 341 
architecture with the best hyper-parameters combination (see Table 2). 342 

With the ensemble averaging approach, we evaluated the second-order models on the 343 
“never-seen by the model” testing set. As described in section 3.3 we estimated the optimal 344 
probability threshold ݌௧௛ for each second-order and third-order models (see Table 2) for the best 345 
accuracy score estimation. These scores are treated as the quality measure of each particular 346 
architecture. 347 

Numerical optimization and evaluation of models were performed at the Data Center of FEB 348 
RAS [66] and Deep Learning computational resources of Sea-Air Interactions Laboratory of IORAS 349 
(https://sail.ocean.ru/). Exploited computational nodes contain two graphics processing units (GPU) 350 
NVIDIA Tesla P100 16GB RAM. With these resources, the total GPU time of calculations is 3792 351 
hours. 352 

 353 
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Figure 3. CNN #3 and CNN #5 structures. Green dots denote elements of the convolutional core 354 
output reshaped to a vector, which is the fully-connected classifier input data. 355 

 356 

 
Figure 4. CNN #4 and CNN #6 structures. Green dots denote elements of convolutional cores outputs 357 
reshaped to vectors, which are, being concatenated to a combined features vector, the fully-connected 358 
classifier input data. 359 
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4. Results 360 

The designed DCNNs were applied to detect of Antarctic MCs for the period from June to 361 
September 2004. Summary of the results of the application of six models is presented in Table 2. As 362 
we noted above, each model is characterized by the utilized data source (IR alone or IR+WV, columns 363 
“IR” and “WV” in Table 2). These DCNNs are further categorized according to a chosen set of applied 364 
techniques in addition to the basic approach (see Table 2 legend). Table 2 also provides accuracy 365 
scores and probability thresholds estimated as described in section 3.5, for the individual, second- 366 
and third-order models of each architecture. 367 

 368 
Table 2. Accuracy score of each model with the best hyper-parameters combination. BA - basic 369 
approach [41], TL - transfer learning, FT - fine tuning, Do - dropout, DA - dataset augmentation. 370 ܿܿܣ 
is the accuracy score averaged across models of the particular architecture. AsEA is the accuracy score 371 
of the ensemble averaged models with the optimal probability threshold. ݌௧௛  is the optimal 372 
probability threshold value. 373 

model 
name 

IR WV BA TL FT Do DA ܿܿܣ AsEA ݌௧௛ 

CNN #1 X - X - - X X 86.89 ± 1.1 % 89.3 % 0.381 
CNN #2 X X X - - X X 94.1 ± 1.4 % 96.3 % 0.272 
CNN #3 X - X X - X X 95.8 ± 0.1 % 96.6 % 0.556 
CNN #4 X X X X - X X 95.5 ± 0.3 % 96.3 % 0.526 
CNN #5 X - X X X X X 96 ± 0.2 % 96.6 % 0.5715 
CNN #6 X X X X X X X 95.7 ± 0.2 % 96.4 % 0.656 
Third-order model CNN #1-6 averaged ensemble 97% 0.598 

 374 
As shown in Table 2, CNN #3 and CNN #5 demonstrated the best accuracy among the 375 

second-order models on a never-seen subset of objects. The best combination of hyper-parameters 376 
for these networks is presented in Appendix B. Confusion matrices and receiver operating 377 
characteristic (ROC) curves for these models are shown in Fig. 6 a-d. Confusion matrices, and ROC 378 
curves for all evaluated models are presented in Appendix C. Figure 6 clearly confirms that these two 379 
models perform almost equally for the true and the false samples. According to Table 2, the best 380 
accuracy score is reached using different probability thresholds for each second- or third-order 381 
model. 382 

Comparison of CNN #1, CNN #2, on the one hand, and the remaining models, on the other hand, 383 
shows that DCNNs built with the use of Transfer Learning technique demonstrate better 384 
performance compared to the models built “from scratch”. Moreover, the accuracy score variances 385 
of CNN #1 and CNN #2 are higher than for the other architectures. Thus, models built with Transfer 386 
Learning approach seem to be more stable, and their generalization ability is better, compared to 387 
models built "from-the-scratch." 388 

Comparing CNN #1 and CNN #2 qualities, we may conclude that the use of an additional data 389 
source (WV) results in the significant increase of the model accuracy score. Comparison of models 390 
within each pair of the network configurations (CNN #3 vs. CNN #5; CNN #4 vs. CNN #6) 391 
demonstrates that Fine Tuning approach does not provide significant improvement of the accuracy 392 
score in case of such a small size of the dataset. It is also obvious that the averaging over the ensemble 393 
members does increase the accuracy score from 0.6% for CNN #5 to 2.41% for CNN #1. However, in 394 
some cases, these score increases are comparable to the corresponding accuracy standard deviations. 395 

It is also clear from the last row of Table 2, that the third-order model, which averages 396 
probabilities estimated by all trained models CNN #1-6, produces the accuracy of ܿܿܣ = 97% which 397 
outperforms all scores of individual models and second-order ensemble models. ROC curve and 398 
confusion matrices for this model are presented in Figure 6ef. 399 

 400 
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 401 
Figure 5. False classified objects. 402 

 
Figure 6. Confusion matrices and receiver operating characteristic curve for (a,b) CNN #3 and (c,d) 403 
CNN #5, both with the ensemble averaging approach applied (second-order models); and (e,f) third-404 
order model CNN #1-6 averaged ensemble. 405 
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Figure 5 demonstrates four main types of false classified objects. The first and the second types 406 
are the ones for which IR data are missing completely or partially. The third type is the one for which 407 
the source satellite data were suspected to be corrupted. These three types of classifier errors 408 
originating from the lack of source data or the corruption of source data. For the fourth type, the 409 
source satellite data was realistic but the classifier has made a mistake. Thus some of false 410 
classifications are model mistakes, and some are associated with the labeling issue where human 411 
expert could guess on the MC propagation over the area with missing or corrupted satellite data. 412 

Figure 7 demonstrates the characteristics of the best model (third-order ensemble-averaging 413 
model) regarding false negatives (FN). Since the testing set is unbalanced with respect to stages, types 414 
of cyclogenesis and cloud vortex types, we present in Figure 7acd relative FN rates for each separate 415 
class in each taxonomy. We present the testing set distribution of classes for these taxonomies as well. 416 
Note that scales are different for reference distributions of classes of the testing set and the 417 
distributions of missed MCs. Detailed false negatives characteristics may be found in Appendix D. 418 

 419 

  

  
Figure 7. False negatives (missed MCs) in the never-seen by the model testing set with respect to 420 
(a) lifecycle stages; (b) diameters; (c) cyclogenesis types; (d) types of cloud vortex. 421 

Tracking procedure requires the sustainable ability of the MCs detection scheme to recognize 422 
mesocyclone cloud shape imprints during the whole MC life cycle. Figure 7a demonstrates that the 423 
best model classifies mesocyclone imprints almost equally for incipient (~4.6% incipient missed) and 424 
mature (~4% mature missed) stages. The fraction of missed MCs in its dissipating stage is lower (~4% 425 
missed among MCs in dissipating stage). As for distribution of missed MCs with respect to their 426 
diameters (see Fig. 7b), the histogram demonstrates fractions of FN objects relative to the whole FN 427 
number. The distribution of MC diameters in the testing set in Figure 7b is shown as a reference. 428 
There is a peak around the diameter value of 325 km, which does not coincide with any issues of 429 
distributions of MC diameters when the testing set is subset by any particular class of any taxonomy. 430 
However, since the total number of missed MCs is too small, there is no obvious reason to make 431 
assumptions on the origin of this issue. The FN rates per cyclogenesis types (Fig. 7c) demonstrate the 432 
only issue for the orography-induced MCs. This issue is caused by the total number of that 433 
cyclogenesis type, which is small (only 27 MCs in the testing set and only 134 in the training set), so 434 
the 4 which were missed is a substantial fraction of it. The same issue is demonstrated for the FN 435 
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rates per cloud vortex types. Since the total number of “spiral cloud” type in the testing set is 436 
relatively small (59 of 1253), the 5 missed are a substantial fraction of it, compared to 33 missed of 437 
1006 for “comma cloud” type. 438 

5. Conclusions and outlook 439 
In this study, we present an adaptation of a DCNN method resulting in an algorithm for the 440 

detection of MCs from satellite imageries of cloudiness. The DCNN technique shows very high 441 
accuracy in recognition of MCs cloud signatures. The best accuracy score of 97% is reached using the 442 
third-order ensemble-averaging model (6 models ensemble) and the combination of both IR and WV 443 
images as input. We assess the accuracy of MCs recognition by comparison of identified MCs 444 
(true/false - image contain MC/no MC on the image parameter) with a reference dataset [6]. We 445 
demonstrate that deep convolutional networks are capable of effectively detecting polar mesocyclone 446 
signatures in satellite imagery. We also conclude that the quality of the satellite mosaics is sufficient 447 
enough for performing the task of binary classification regarding the MCs presence in 500x500km 448 
patches, and for performing other similar tasks of pattern recognition type, e.g., semantic 449 
segmentation of MCs. 450 

Since the satellite-based studies of polar mesocyclone activity conducted in the Southern 451 
Hemisphere (and in NH as well) have never reported season-dependent variations of IR imprint of 452 
cloud shapes of MCs [23,27,67,68], we assume the proposed methodology to be applicable to satellite 453 
imageries of polar MCs available for the whole satellite observation era in Southern Hemisphere. In 454 
the Northern Hemisphere, the direct application of the models that were trained on SH dataset is 455 
restricted due to the opposite sign of relative vorticity and thus, different cloud shape orientation. 456 
However the proposed approach is still applicable, and the only need is a dataset of tracks of MCs 457 
from the Northern Hemisphere. 458 

It was also shown that the accuracy of MCs detection by DCNNs is sensitive to the single (IR 459 
only) or double (IR+WV) input data usage. IR+WV combination provides significant improvement of 460 
the detection of MCs and allows a weak DCNN (CNN #2) to detect MCs with higher accuracy 461 
compared to the weak CNN #1 (89.3% and 96.3% correspondingly). The computational cost of DCNN 462 
training and hyper-parameters optimization for deep neural networks are time- and computational-463 
consuming. However, once trained, the computational cost of the DCNN inference is low. 464 
Furthermore, the trained DCNN performs much faster compared to a human expert. Another 465 
advantage of the proposed method is the low computational cost of data preprocessing that allows 466 
the processing of satellite imagery in real time or the processing of large amounts of collected satellite 467 
data. 468 

We plan to extend the usage of this set of DCNNs (Table 2) for the development of an MCs 469 
tracking method based on machine learning and using satellite IR and WV mosaics. These efforts 470 
would be mainly focused on the development of the optimal choice of the “cut-off” window that has 471 
to be applied to the satellite mosaic. In the case of a sliding-window approach (e.g., running the 472 
500x500km sliding window through the mosaics), the virtual testing dataset of the whole mosaic is 473 
highly unbalanced, so a model with non-zero FPR evaluated on balanced dataset would produce 474 
much higher FPR. In the future, instead of the sliding-window, the Unet-like [69] architecture should 475 
be considered with the binary semantic segmentation problem formulation. Considering MC 476 
tracking development, an approach proposed in a number of face recognition studies should be 477 
reassuring [70,71]. This approach can be applied in a manner of triple-based training of the DCNN to 478 
estimate a measure of similarity between one particular MC signatures in consecutive satellite 479 
mosaics. 480 
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Appendix A. DCNN best practices and additional techniques 498 
There is a set of best practices commonly used to construct DCNNs for solving classification 499 

problems [55]. Modern DCNNs are built on the basis of consecutive convolutional and subsampling 500 
layers by performing nonlinear transformation of the initial data (see Fig. 2 in [41]). The primary layer 501 
type of convolutional neural networks (CNNs) is the so-called convolutional layer which is designed 502 
to extract visual patterns density map using discrete convolution operation with ܭ (tends to be from 503 
3 to 1000) kernels followed by a nonlinear transformation operation (activation function). One 504 
additional layer type is a pooling layer performing subsampling operation with one of the following 505 
aggregation functions: maximum, minimum, mean or others. In the current practice the maximum is 506 
used. 507 

Since the LeNet DCNN [41] several studies [41–44] have demonstrated that the usage of 508 
consecutive convolutional and subsampling layers results in a skillful detection of various spatial 509 
patterns from the input 2D sample. The approach proposed in [41] implies the use of the output of 510 
these stacked layers set as an input data for a classifier, which in general may be any method suitable 511 
for classification problems, such as linear models, logistic regression, etc. LeCun [41] suggested to 512 
use the neural classifier, and this is now a conventional approach. The advantage of using a neural 513 
classifier is the ability to train the whole model at once (the so-called end-to-end training). 514 

The whole model built in this manner represents a classifier capable of direct predicting a target 515 
value for the sample. We term the fully-connected (FC) layers set as "FC classifier", and the preceding 516 
part containing convolutional and pooling layers as "convolutional core" (see Figures 3,4). 517 

 518 
For building a DCNN it is important to account for data dimensionality during its 519 

transformations from layer to layer. The input for a DCNN is an image represented by a matrix of 520 
the size (ℎ, ,ݓ ݀), where ℎ and ݓ correspond to the image height and width in pixels, ݀ is its levels 521 
number, the so-called depth (e.g., ݀ = 3 when levels are red, green and blue channels of a colorful 522 
image). For the water vapor or radio-brightness temperature satellite data, ݀ = 1. A convolutional 523 
layer and subsampling layer are described in details in [41]. Convolutional layers are characterized 524 
by their kernel sizes (e.g. 3x3, 5x5), their kernel numbers ܭ and the nonlinear operation used (e.g. 525 
 ℎ in [41]). Subsampling layers are characterized by their receptive field sizes e.g. 3x3, 5x5 etc. The 526݊ܽݐ
output of a convolutional layer with ܭ kernels is the so-called feature maps which is a matrix of the 527 
size (ℎ, ,The nonlinear operation transforms it to a matrix of size (ℎ .(ܭ,ݓ ,ݓ 1). The following 528 
subsampling layer reduces the matrix size depending on the subsampling layer kernel size. Typically, 529 
this size is (2, 2) or (3, 3). Thus, the subsampling operation reduces the sample size by a factor 2 or 3, 530 
respectively. The output of a convolutional core is a set of abstract feature maps which is represented 531 
by a 3D matrix. This matrix, being reshaped into a vector, is passed as the input to the FC classifier 532 
(see Figures 3,4). 533 

FC classifier of all models of this study includes hidden FC layers whose count varied 534 
from 2 to 4. Nodes (artificial neurons) count of FC1 which is the layer following the convolutional 535 
core (see Figures 3,4), is chosen from the set {128, 256, 512, 1024}. The size of each following FC layer 536 
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is half of the preceding one, but not less than 128. The output layer is fully-connected as well and 537 
contains one output node. For example, the structure of FC classifier in terms of nodes count of layers 538 
might be the following: {512; 256; 128; 1}. All FC layers are alternated with dropout layers in order to 539 
prevent overfitting of the model. All trainable layers’ activation functions are Rectified Linear Unit 540 
(ReLU): 541 

(ݖ)ோ௘௅௎ߪ = max(0; (A1) ,	(ݖ

except the output layer whose activation function is sigmoid: 542 

(ݖ)௦௜௚௠ߪ =
1

1 + ݁ିఏ௭ 	, (A2)

where ߠ are layers’ trainable parameters. 543 
 544 
In order to measure the error of the network on each individual sample during the training 545 

process we use the binary cross-entropy as a loss function: 546 

ℒ =෍(ݕ௜logݕො௜ + (1 − (1	௜)logݕ − ((ො௜ݕ
ே

௜ୀ଴

	, (A3)

where ݕ௜ is the expert-defined ground truth for the target value, ݕො௜ is the estimated probability of 547 
the ݅-th sample to be true, ܰ is samples count of the training set or a training mini-batch. This loss 548 
function is minimized in the space of the model weights using the method of backpropagation of 549 
error [65] denoted as “backprop training” in Figures 3,4. The outcome of the the whole model is the 550 
probability of each class for the input sample. In the case of binary classification, the FC classifier has 551 
one output unit, producing probability of MC presence for the input sample. 552 

 553 
In addition to the basic approach proposed in [41] a number of techniques may be applied. Using 554 

them one can construct and train DCNNs of various accuracy and various generalization abilities 555 
which is characterized by the quality of a model estimated on a never-seen test data. 556 

A.1. Transfer learning 557 
One of the additional approaches is Transfer Learning [56–61]. Generally, this technique focuses 558 

on storing the knowledge obtained by some network while being trained for one problem and 559 
applying it to another problem of a similar kind. In practice, this approach implies the DCNN 560 
structure to be built using some part of a network previously trained on a considerable amount of 561 
data, for example, ImageNet [48]. In these terms, VGG16 [1] is not only an efficient architecture, but 562 
also the pre-trained network containing optimized weights values (also known as network 563 
parameters). Best practice for building a new advanced DCNN based on transfer learning approach 564 
is to compose it using convolutional core of the pre-trained model (e.g. VGG16) followed by a new 565 
FC neural classifier. Weights of the convolutional part in this case are fixed, and only FC part is 566 
optimized. In this approach, the convolutional core may be considered as a feature extractor (see 567 
[41]), which computes a highly relevant low-dimensional (compared to original samples 568 
dimensionality) vector, representing the data (e.g. “reshaped to vector” output of the convolutional 569 
core in Fig. 3). 570 

A.2. Fine Tuning 571 
Transfer Learning approach relies on the similarity of data distributions within two datasets. 572 

But in the case of significant differences, for example in terms of Kullback–Leibler divergence 573 
between some particular feature approximated probability distributions, the new FC classifier 574 
capabilities may not cover all of those differences. In this case, some layers of the convolutional core, 575 
that are close to FC classifier, can be turned on to be optimized (the so-called Fine Tuning). Regarding 576 
DCNNs application to satellite mosaics, we have to consider that VGG16 was optimized on ImageNet 577 
dataset which contains everyday-observed objects like buildings, dogs, cats, cars etc., without any 578 
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satellite imageries or even clouds. So FT approach can be considered as a promising approach when 579 
composing MC-detecting DCNN at IR and WV satellite mosaic data. 580 

A.3. Preventing overfitting 581 
Machine learning models and neural networks in particular may vary in terms of complexity. In 582 

the case of too strong model, there exist an overfitting problem: the effect of poor target prediction 583 
quality on unseen data concurrently with nearly exact prediction of target values on training data. 584 
There are several state-of-the-art approaches to prevent overfitting of neural networks. We used most 585 
fruitful and reliable ones: dropout [63] and data augmentation also called auxiliary variables [64]. We 586 
also used ensemble averaging of the models outcome. 587 

A.4. Preventing overfitting with dropout 588 

Dropout approach is the way of preventing overfit with a computationally inexpensive but still 589 
powerful method of regularizing neural networks through bagging [72] and virtually ensembling 590 
models of similar architecture. Bagging involves training multiple models and testing each of them 591 
on test samples. Since training and evaluating of deep neural networks tend to be time-consuming 592 
and computationally expensive, the original bagging approach [72] seems to be impractical. With the 593 
dropout approach applied, the network may be thought of as an ensemble of all sub-networks that 594 
can be composed by removing non-output nodes from the base network. In practice, this approach 595 
is implemented by dropout layer which turns the preceding layer output to zero for each node with 596 
some probability ݌. This procedure repeats for each mini-batch at the training time. At the inference 597 
time, the dropout approach involves network weights scaling by 1/݌. Each of our models includes 598 
dropout layers between trainable layers. Rate ݌ was set to 0.1 for each dropout layer of each model. 599 

A.5. Preventing overfitting with dataset augmentation 600 
Dataset augmentation is the state-of-the-art way to make a machine learning model generalize 601 

better. When available dataset size is limited, the way to get around that is to generate fake data 602 
which should be similar to real samples. Best practice for DCNNs is generating fake samples by 603 
adding some noise or applying slight transformations like shift, shear, rotation, scaling etc. Formally, 604 
with data augmentation one can increase variability of features of the original dataset and 605 
substantially extend its size. This approach often improves generalization ability of the trained 606 
model. 607 

We trained each of our models with data augmentation approach applied. The rotation angle 608 
range was 90° in both direction; independent width and height scaling performed within range from 609 
0.8 to 1.2; zoom range from 0.8 to 1.2; shear angle range from -2° to 2°. We did not use flipping 610 
upside-down and left-to-right. 611 

A.6. Preventing overfitting with ensemble averaging 612 
In general, during the parameters optimization (learning process) each DCNN converges to a 613 

local minimum of the loss function in the space of its weights. The training process starts from a 614 
randomly generated point of this space. Due to a non-convexity of loss function, every new DCNN 615 
model converges to a new local minimum. Some models may converge to a minimum that is not 616 
really close to a global one in terms of loss function value, and thus the quality measure of that model 617 
remains poor. Other models may converge to a good minimum that is close to a global one in terms 618 
of loss function value, but this proximity may lead to a poor generalization ability which means low 619 
quality measure estimated on a testing subset of data. There are approaches for improving the 620 
generalization ability of several models that are generally similar, but differ in detailed predictions. 621 
In our study we applied simple ensemble averaging [73], which is one of state-of-the-art approaches 622 
for improving machine learning models generalization ability. With this approach several models of 623 
each architecture are trained, and probabilities of these models are averaged. The prediction of this 624 
model is treated as an ensemble outcome: 625 
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௜݌ =
෍ ௜݌

(௠)
ெ

௠ୀ଴
ܯ 	, 

(A4)

where ݌௜ is the estimated probability of the ensemble of ܯ models for ݅-th sample to be true; each 626 
݉-th model`s probability estimation for ݅-th sample to be true is ݌௜

(௠) . In this study we applied 627 
ensembling on DCNNs of identical architectures. The resulting models we term second-order models 628 
in this study. They are synthetic ones that are not trained, but are ensembles. 629 

Satellite IR+WV snapshots or satellite IR snapshot alone are essentially the object description, 630 
and each model that is presented in our study produces the outcome for each object regardless of the 631 
description - whether it is IR snapshot alone or IR+WV snapshots. So there is an opportunity to 632 
average probability outcomes of all the models of this study. The resulting model that produces 633 
averaged probabilities of the ensemble containing all trained models we term third-order model. It is a 634 
synthetic one that is not trained, but is an ensemble. 635 

A.7. Adjustment of the probability threshold 636 
The outcome of each model of this study is the estimation of the probability for the sample to be 637 

true (i.e. to contain an MC). So there is an arbitrariness in choosing the threshold of this probability 638 
to get the outcome which is binary. The most common way to choose this threshold is the ROC curve 639 
analysis. Each point of this curve represents the False Positive Rate (FPR) and True Positive Rate 640 
(TPR) combination for the particular probability threshold ݌௧௛  (e.g. see Fig. 6bdf). The model 641 
performing true random choice between true and false outcome has a ROC curve on the main 642 
diagonal of this plot. The ROC curve of the perfect classifier follows from the point (0.0, 0.0) straight 643 
to the point (0.0, 1.0) and then to the point (1.0, 1.0). The area under the ROC curve (AUC ROC) may 644 
be considered as a measure of model quality. The best model AUC ROC is 1.0, the true random choice 645 
model AUC ROC is 0.5, and the worst model AUC ROC is 0.0. 646 

In a range of cases the best accuracy score might not be reached with ݌௧௛ = 0.5. The lines of equal 647 
accuracy score, as presented in Fig. 6bdf, are diagonal. In case of perfect 50/50 ratio of true/false 648 
samples they are parallel to the main diagonal. In case of slight inequality of true and false samples 649 
count these lines have slightly different slope as shown in Fig. 6bdf. For each accuracy score there are 650 
two, one or no points of the ROC curve intersection with the accuracy isoline. So if a model is 651 
represented with a ROC curve, the maximum value of its ܿܿܣ is located at the point of this curve 652 
where the accuracy isoline is tangent to it. For each model of this study including second- and third-653 
order models, the optimal probability threshold was estimated based on ROC curve analysis. 654 
  655 
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Appendix B. CNN #3 and CNN #5 Best hyper-parameters combinations. 656 

According to section 3.4, CNN #3 and CNN #5 are both constructed to have one-branched 657 
convolutional core. Best combination of hyper-parameters of these networks are the same. The only 658 
difference is the FT approach that was applied in case of CNN #5. 659 

 660 
Table B1. CNN #3 and CNN #5 best hyper-parameters combination. 661 

Layer (block) name Layer (block) nodes count or 
output dimensions Connected to 

Input_data_IR 100x100 - 
VGG_16_conv_core see [1]; output: 3x3x512 Input_data_IR 

Reshape_1 4608 VGG_16_conv_core 
Dropout_1 4608 Reshape_1 

FC1 1024 Dropout_1 
Dropout_2 1024 FC1 

FC2 512 Dropout_2 
Dropout_3 512 FC2 

FC3 256 Dropout_3 
Dropout_4 256 FC3 

FC4 128 Dropout_4 
FC_output 1 FC3 

 662 
  663 
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Appendix C. Detailed performance metrics of all DCNN models. 664 

 
Figure C1. Confusion matrices for all models and the third-order model CNN #1-6 averaged 665 
ensemble, computed on test never-seen subset of data. For each architecture the ensemble averaging 666 
technique is applied. 667 
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Figure C2. Receiver operating characteristic curves computed on test never-seen subset of data for all 668 
models. For each architecture the ensemble averaging technique is applied.  669 

  670 
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Appendix D. Detailed false negative rates of the third-order ensemble-averaging model. 671 
Table D1. False negative rates per cyclogenesis types. 672 

Cyclogenesis type Testing set, 
objects number 

False negatives, 
objects number 

FN relative rate, 
% 

Pressure trough 841 23 2.7 
Centre of mid-latitude cyclone 147 2 1.4 

Low-gradient pressure field 48 2 4.2 
Cold-air outbreak 45 4 8.9 

Low-pressure post-occlusion zone 84 4 4.8 
High pressure gradient field 61 4 6.6 

Orography-induced cyclogenesis 27 4 14.8 

 673 
Table D2. False negative rates per cloud vortex types. 674 

Cloud vortex type Testing set, 
objects number 

False negatives, 
objects number 

FN relative rate, 
% 

Comma cloud 1006 33 3.3 
Spiral cloud 59 5 8.5 

Comma-to-spiral 177 5 2.3 
Merry-go-round 11 0 0.0 

 675 
Table D3. False negative rates per MC stages. 676 

MC stage Testing set, 
objects number 

False negatives, 
objects number 

FN relative rate, 
% 

Incipient 352 16 4.6 
Mature 574 23 4.0 

Dissipating 327 4 1.2 

 677 
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