Preprint
Article

Optimization of Time-Weighted Average Air Sampling by Solid-Phase Microextraction Fibers Using Finite Element Analysis Software

Altmetrics

Downloads

300

Views

1083

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

18 September 2018

Posted:

19 September 2018

You are already at the latest version

Alerts
Abstract
Determination of time-weighted average (TWA) concentrations of volatile organic compounds (VOCs) in air using solid-phase microextraction (SPME) is advantageous over other sampling techniques, but is often characterized by insufficient accuracies, particularly at longer sampling times. Experimental investigation of this issue and disclosing the origin of the problem is problematic and often not practically feasible due to high uncertainties. This research is aimed at developing the model of TWA extraction process and optimization of TWA air sampling by SPME using finite element analysis software (COMSOL Multiphysics). It was established that sampling by porous SPME coatings with high affinity to analytes is affected by slow diffusion of analytes inside the coating, an increase of analytes concentrations in the air near the fiber tip due to equilibration, and eventual lower sampling rate. The increase of a fiber retraction depth (Z) resulted in better recoveries. Sampling of studied VOCs using 23-ga Car/PDMS assembly at maximum possible Z (40 mm) was proven to provide more accurate results. Alternative sampling configuration based on 78.5 x 0.75 mm i.d. SPME liner was proven to provide similar accuracy at improved detection limits. Its modification with the decreased internal diameter from the sampling side should provide even better recoveries. The developed model offers new insight into optimization of air and gas sampling using SPME.
Keywords: 
Subject: Chemistry and Materials Science  -   Analytical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated