Preprint
Article

Plasmonic Sensing Characteristics of Gold Nanorods with Large Aspect Ratios

Altmetrics

Downloads

395

Views

228

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

18 September 2018

Posted:

19 September 2018

You are already at the latest version

Alerts
Abstract
Plasmonic gold nanorods play important roles in nowadays state-of-the-art plasmonic sensing techniques. Most of the previous studies and applications focused on gold nanorods with relatively small aspect ratios, where the plasmon wavelengths are smaller than 900 nm. Gold nanorods with large aspect ratios are predicted to exhibit high refractive-index sensitivity (Langmir 2008, 24, 5233–5237.), which therefore should be promising for developing of high-performance plasmonic chemical- and bio-sensors. In this study, we developed gold nanorods with aspect ratios over 7.9, which exhibit plasmon resonances around 1064 nm. The refractive index (RI) sensitivity of these nanorods have been evaluated by varying their dielectric environment, whereby a sensitivity as high as 473 nm/RIU can be obtained. Furthermore, we have demonstrated the large-aspect-ratio nanorods as efficient substrate for surface enhanced Raman spectroscopy (SERS), where an enhancement factor (EF) as high as 9.47×108 was measured using 4-methylbenzenethiol (4-MBT) as probe molecule. Finally, a type of flexible SERS substrate is developed by conjugating the gold nanorods with the polystyrene (PS) polymer. The results obtained in our study can benefit the development of plasmonic sensing techniques utilized in the near-infrared spectral region.
Keywords: 
Subject: Chemistry and Materials Science  -   Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated