

1 Article

2

Application of subcritical water to dechlorinate

3

Polyvinyl Chloride Electric Wires

4

5 **Aurora Soler¹, Juan A. Conesa^{1*}, Nuria Ortúñoz¹**6 ¹ Department of Chemical Engineering, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain;
7 aurorasoler.guillen@ua.es (A.S.); nuria.ortuno@ua.es (N.O.)

8 * Correspondence: ja.conesa@ua.es; Tel.: +34-965-903-400

9

10 **Abstract:** Polyvinyl chloride (PVC) electric wires were subjected to dechlorination in subcritical
11 water at three different temperatures in a high-pressure reactor. About 2.09, 73.08 and 95.96 wt. %
12 of chlorine in PVC wires was removed during dechlorination at 200, 250 and 300 °C, respectively.
13 The solid residues were analyzed and characterized by thermogravimetry, at three different heating
14 rates (5, 10 and 20 °C/min) in inert and oxidizing atmosphere. With the purpose of studying the
15 emission of chlorinated pollutants, pyrolysis experiments at 850 °C were also performed in a
16 laboratory scale reactor with the dechlorinated materials, as well as with the original PVC electric
17 wire. Polycyclic aromatic hydrocarbons (PAH) formation increased, but chlorobenzenes (ClBz) and
18 chlorophenols (ClPh) formation decreased as the temperature of dechlorination increased;
19 naphthalene was the most abundant PAH and monochlorobenzene and monochlorinated phenols
20 (3-+4-) were the most abundant chlorinated compounds.21 **Keywords:** dechlorination; hydrothermal treatment; thermogravimetric study; pyrolysis;
22 chlorophenols; chlorobenzenes

23

24

1. Introduction

25 At present, there are more than 20 different types of electric wires available, designed for
26 applications ranging from transmission to heavy industrial use. Electric wires consist of one
27 conductor, which usually is copper or aluminum, covered with insulating material, which can be
28 polyvinyl chloride (PVC), polyethylene (PE), rubber, etc. [1].29 Electric wires are designed with a limited useful life [2], normally they work for 10-30 years, so
30 they become obsolete after a certain period of time. Consequently, electric wires waste generation has
31 increased noticeably in recent years. Therefore, it is essential to take appropriate measures about the
32 fate of this waste to avoid a negative environmental impact. Prevention of the generation of this waste,
33 reuse and recycling are essential to preserve the environment and public health [3].34 Recycling is crucial, not only to diminish the quantity of waste requiring treatment, but also to
35 recover some of the raw materials such as plastics and base metals, as well as to eliminate the
36 hazardous compounds (heavy metals such as mercury, nickel, lead, cadmium, etc. and brominated
37 flame retardants) [4]. The stages of recycling process are: (1) disassembly, (2) separation of metallic
38 and non-metallic fractions and (3) recycling of both fractions separately. The metallic fraction, which
39 represents 50 % of the total weight of electric wires [5], is considered the most valuable fraction and
40 becomes part of new industrial processes on the one hand and, on the other, the non-metallic fraction
41 is used for recycling for material, chemical or energy recovery [2].42 When plastics of electric wires waste are PVC, thermal treatment is turned into a very
43 problematic way of recovery because important quantities of toxic or harmful compounds, such
44 as chlorophenols (ClPhs), chlorobenzenes (ClBzs), and polychlorodibenzo-*p*-dioxins and

45 furans (PCDD/Fs), are emitted during the thermal decomposition of PVC in an inert and oxidizing
 46 atmosphere [6] and the thermal decomposition of PVC electric wires in air [5]. One solution is the
 47 development of removal techniques of chlorine from PVC electric wires before its thermal treatment.
 48

49 Hydrothermal treatment with supercritical or subcritical water has become an effective and
 50 promising technique to remove the chlorine contained in PVC-containing wastes [7] and thus the
 51 emissions of chlorinated pollutants in thermal treatment of this waste could be reduced.
 52 Poerschmann et al. [8] subjected PVC to subcritical water treatment at 180–260 °C and concluded that
 53 dechlorination increased with the increase of treatment temperature. Xiu et al. [9] carried out
 54 subcritical water oxidation of waste printed circuit boards and PVC, obtaining a total dechlorination
 55 of PVC when treatment temperature exceeded 250 °C. Kubátová et al. [10] obtained a solid residue
 56 that contained less than 1 wt. % of chlorine after subcritical water treatment of PVC at 300 °C. In the
 57 same research line, Endo and Emori [11] examined the hydrothermal degradation of PVC under high
 58 pressure and high temperature, concluding that the dechlorination efficiency could reach 100 % at
 59 300 °C.

60 In accordance with the previous studies, the objectives of this research are: (1) to assess the
 61 dechlorination efficiency of subcritical water treatment on PVC electric wire waste; (2) to identify the
 62 pollutants present in the water after the treatment; (3) to study the thermal degradation of the
 63 dechlorinated residues, as well as the decomposition of the original PVC electric wire by
 64 thermogravimetry; and (4) to analyze pollutant emissions during the thermal decomposition in inert
 65 atmosphere of the dechlorinated residues and the original PVC electric wire, with particular focus on
 the chlorinated pollutants.

66 2. Materials and Methods

67 The electric wire was supplied by General Cable, Co. The cover material is PVC, the insulation
 68 material is reticulated polyethylene and the conductor is copper [12].

69 As only the non-metallic fraction (cover and insulation material) was used in this study, this
 70 fraction was manually separated from the metallic fraction and it was crushed into small particles (<1
 71 mm) using a cutting mill RETSCH SM200. Then, the sample was characterized. Elemental analysis
 72 was performed in elemental microanalyzer (Thermo Finnigan Flash 1112 Series). Oxygen plus ash
 73 content was calculated by difference. The analysis of the rest of elements was performed in a
 74 sequential X-ray fluorescence spectrometer (Philips Magix Pro PW2400). Table 1 shows the
 75 characterization of the cover and the insulation.

76 **Table 1.** Characterization of the materials used in the study.

wt. %	Cover	Insulation	PVC wire
Ashes	46.02	0.65	38.23
<i>Elemental analysis</i>			
C	34.58	84.57	43.16
H	4.45	14.68	6.20
N	nd	nd	nd
S	nd	nd	nd
O (by difference)	14.96	0.10	12.41
<i>Fluorescence analysis</i>			
Na	0.05	0.01	0.04
Mg	0.11	nd	0.09
Al	0.14	0.04	0.12
Si	0.06	0.09	0.07
P	0.01	nd	0.01
Cl	27.25	0.07	22.57

Table 2. *Cont.*

wt. %	Cover	Insulation	PVC wire
Ca	23.45	0.22	19.46
Ti	0.06	nd	0.05
Fe	0.03	0.01	0.02
Zn	0.05	0.03	0.05
Sr	0.01	nd	0.01

77 nd: not detected

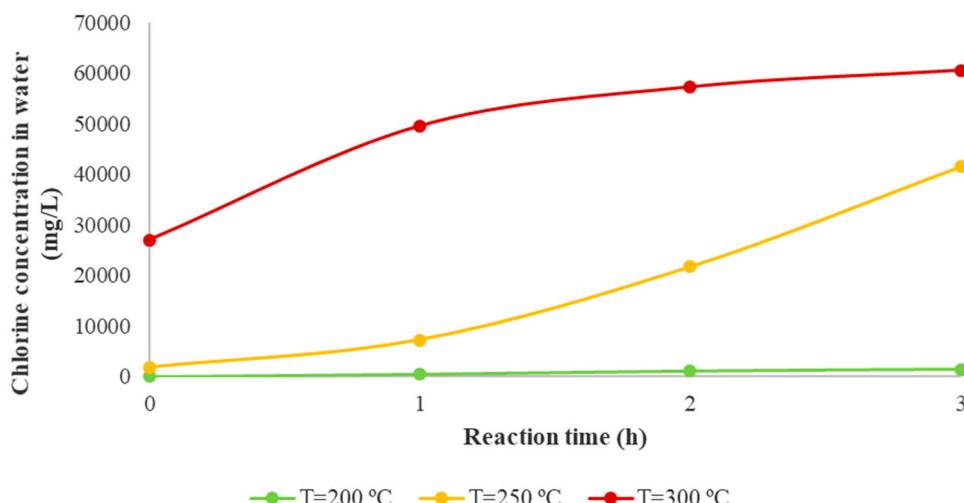
78 Dechlorination experiments with subcritical water were performed in a high-pressure batch
79 reactor with stirring (volume of 1 L).80 The parameters controlling the efficiency of this process are temperature, treatment time and
81 solid/liquid (S/L) ratio [13]. Dechlorination runs were carried out at 200 °C, 250 °C and 300 °C during
82 180 min, with a solid:liquid ratio (S/L) equal to 1:5 g/mL. In this way, treatment time and S/L ratio
83 were not limiting factors in the dechlorination efficiency, based on the previous work done in a
84 similar reactor working on the debromination of printed circuit boards waste [13].85 During the dechlorination experiments, samples from the liquid phase were collected every hour
86 and the remaining liquid from the reaction chamber was also collected after 24 h, in order to evaluate
87 the evolution of the dechlorination process with time. These liquid samples were analyzed for
88 chlorine by ion chromatography, and so it was possible to tally the chlorine balance. In addition, these
89 liquid samples were qualitative analyzed for organic compounds by GC- MS (Agilent GC
90 6890N/Agilent MS 5976N, Agilent Technologies, USA) following the US EPA method 8270D [14] as
91 reference. Specific conditions of this analysis have been described in detail in a previous study
92 realized by Soler, et al. [15].93 The solid residues obtained (that will be referred to as R200, R250 and R300, indicating the
94 temperature of the treatment) were dried at 105 °C until reaching a constant weight. Elemental
95 analysis and chlorine content of the dechlorinated residues were also determined.96 TGA was performed on a Perkin Elmer thermogravimetric analyzer (model STA6000). PVC
97 electric wires (before and after the dechlorination process) were subjected to three different heating
98 rates (5, 10 and 20 °C/min) from room temperature up to 900 °C in inert and oxidizing atmospheres.
99 The flow rate of carrier gas was set at 100 mL/min. For each run, approximately 8 mg of sample were
100 used.101 Prior to each TGA run, a blank run was carried out using the same experimental conditions but
102 with the crucible empty to ensure the system errors were corrected. So, these weight values recorded
103 for each experimental time were subtracted from the values obtained in the TGA runs with sample.104 Duplicated runs were done in the thermobalance to prove the outstanding reproducibility of the
105 thermobalance. Really good reproducibility was obtained for the decomposition of these samples.106 Pyrolysis of original PVC and residues R200, R250 and R300 were performed in a moving tubular
107 quartz reactor located inside a horizontal laboratory furnace described by Aracil et al. and Moltó et
108 al. [6, 16].109 Once the set-point temperature was reached (850 °C in all runs), the sample was introduced in
110 the horizontal furnace at constant speed (0.5 mm·s⁻¹) using a quartz boat and maintained inside the
111 reactor for 10 min, while the emitted pollutants were sampled for later analysis. A nitrogen flow of
112 300 mL/min (measured at 1 atm and 20 °C) was introduced in parallel to the sample movement during
113 the experiment. The sample weight was 25 mg approximately in each experiment.114 Before the experiments, a control run with no sample was realized under the same conditions
115 (blank). The blank values were subtracted from the values obtained in the pyrolysis runs with sample.116 To analyze the emissions of inorganic chlorine was carried out by passing the evolved gases
117 through two impingers which contained a dilute sulfuric acid solution (0.1 N) and then other two
118 which contained a dilute sodium hydroxide solution (0.1 N). This experimental setup allows
119 analyzing HCl and Cl₂ by ion chromatography, according to the US EPA method 26 [17].

120 The HCl solubilizes in the acidic solution and forms chloride ions, whereas the Cl_2 passes
 121 through to the alkaline solution where it is hydrolyzed to form a proton (H^+), the chloride ion (Cl^-)
 122 and the hypochlorous acid (HClO). To facilitate formation of a second chloride ion, sodium
 123 thiosulfate was added in excess to the alkaline solution. In this way, two chloride ions are formed for
 124 each molecule of Cl_2 .

125 A polyaromatic Amberlite® XAD-2 resin (Supelco, Bellefonte, USA) was used to collect the
 126 semivolatile compounds generated during the entire experiment. This resin was placed at the exit of
 127 the furnace. Three internal standards were added to the resin before the extraction to determine the
 128 concentration of PAHs, ClBzs and ClPhs. Dr. Ehrenstorfer-Schäfers (Augsburg, Germany) supplied
 129 the deuterated standards used for the analysis of the PAHs and Wellington Laboratories (Ontario,
 130 Canada) supplied the ^{13}C -labeled standards for ClPhs and ClBzs.

131 The next step was to extract the semivolatile compounds adsorbed to the resin with a mixture of
 132 dichloromethane/acetone (1:1 v/v) using ASE 100® Accelerated Solvent Extractor (Dionex-Thermo
 133 Fisher Scientific, California, USA) following the US EPA method 3545A [18]. The resultant extract
 134 was concentrated up to 1.5 mL using a rotary evaporator and straightaway with a moderate stream
 135 of nitrogen. Lastly, 3 μL of 2000 $\mu\text{g}/\text{mL}$ of anthracene-d10 (AccuStandard, USA) was added as
 136 recovery standard.

137 PAHs, ClBzs and ClPhs were analyzed by GC- MS (Agilent GC 6890N/Agilent MS 5976N,
 138 Agilent Technologies, USA) following the US EPA method 8270D [14] as reference. Specific
 139 conditions of this analysis just as the identification and quantification of the compounds have been
 140 described in detail in a previous work realized by Soler. et al. [15].


141 3. Results

142 3.1. Dechlorination treatment

143 The rate of dechlorination depends on several factors including temperature, time of the
 144 treatment and solid/liquid ratio (S/L). The reaction time was set to 3 h and the ratio of PVC wire/water
 145 was fixed in 1:5 by weight. In this way, in this study, the most important factor influencing the
 146 dechlorination efficiency is the reaction temperature.

147 The process took place at the water vapor pressure at the corresponding temperature
 148 (approximately 1.6 MPa at 200 °C, 4.0 MPa at 250 °C and 8.6 MPa at 300 °C) giving rise to a partial
 149 degradation of the original PVC wire.

150 Figure 1 shows the chlorine concentration in the liquid at different reaction times during the
 151 dechlorination treatment carried out at 200, 250 and 300 °C. The initial chlorine concentration
 152 corresponds to the sample from the liquid phase collected when the reaction chamber reached the
 153 treatment temperature, after heating up to this temperature at 3 °C/min approximately.

154
 155 **Figure 1.** Effects of temperature and time on dechlorination process.

156 As can be observed, dechlorination was not almost visible at 200 °C, whereas dechlorination
 157 increased significantly at 250 °C, because at this temperature region thermal degradation of PVC takes
 158 places. Xiu et al. [9] also concluded that dechlorination of PVC was no noticeable below 200 °C, but
 159 the dechlorination reached almost 100 % above 300 °C. Regarding to the effect of the reaction time, it
 160 can be observed that the chlorine concentration in liquid phase at all process temperatures increased
 161 with increasing time. Therefore, the dechlorination treatment was more effective as reaction time
 162 increased. At 300 °C the initial dechlorination rate (slope of the curves presented in Figure 1), is quite
 163 high. Nevertheless, it seems that after 2 h the rate decreases in an important way, indicating that a
 164 maximum level of dechlorination has been reached.

165 As can be seen in Table 2, all the experiments were carried out with 50 g of PVC wire and a final
 166 solid yield of 79.2, 40.2 and 23.9 wt. % was obtained at 200, 250 and 300 °C, respectively. The chlorine
 167 content of the solid residues obtained after the treatment was measured by X-ray fluorescence
 168 spectrometry, obtaining 27.9, 15.1 and 3.8 wt. %, at 200, 250 and 300 °C, respectively. These results
 169 show that the chlorine content in the solid residue decreased with the increase dechlorination
 170 temperature. As a result, the subcritical water treatment was more effective as the dechlorination
 171 temperature increased. Poerschmann et al. [8] also subjected PVC to dechlorination treatment in
 172 subcritical water at high temperatures (180-260 °C) and concluded that dechlorination increased with
 173 increasing treatment temperature.

174 **Table 2.** Results of dechlorination experiments.

Experiment	Initial wire (g)	Solid residue (g)	Cl in solid residue (g)	Cl in final liquid (g)	DE (%)
Dechlorination at 300 °C	50.06	11.98	0.46	10.78	95.96
Dechlorination at 250 °C	50.01	20.12	3.04	8.25	73.08
Dechlorination at 200 °C	50.04	39.65	11.06	0.28	2.09

175 The percentage of chlorine removed can be calculated as:

176
$$\text{Dechlorination efficiency, DE (\%)} = \frac{m_{\text{Cl i}} - m_{\text{Cl f}}}{m_{\text{Cl i}}} \cdot 100 \quad (1)$$

177 where $m_{\text{Cl i}}$ is the initial weight of chlorine in the PVC wire and $m_{\text{Cl f}}$ is the weight of chlorine in
 178 the solid residue obtained.

179 According to the chlorine content in the solid residues, hardly any chlorine was removed in the
 180 subcritical water treatment at 200 °C, while a total of 73.08 and 95.96 wt. % of chlorine was removed
 181 when the dechlorination treatment was performed at 250 °C and 300 °C, respectively. This chlorine
 182 should have been removed in the gas or liquid phase.

183 Yu et al. [19] concluded that the chlorine of PVC was not transferred to gas phase, because it was
 184 nearly completely transferred to liquid phase. For this reason, the chlorine content in the gas phase
 185 was not analyzed in this study. The dechlorination efficiency (DE) can be also calculated by the
 186 following equation:

187
$$\text{DE (\%)} = \frac{m_{\text{Cl in liquid}}}{m_{\text{Cl i}}} \cdot 100 \quad (2)$$

188 The higher the treatment temperature, the greater was the dechlorination efficiency, being 2.48,
 189 73.06 and 95.45 wt. %, for the runs at 200, 250 and 300 °C. The dechlorination efficiency values
 190 obtained by both previous equations were practically similar; it can be concluded that the chlorine
 191 removed of original PVC wire was retained in liquid phase. Therefore, the dechlorination treatment
 192 at high pressure and high temperature could break the chemical bonds of the polymeric matrix,

193 favoring PVC degradation. Possible decomposition pathways of PVC have been proposed by several
194 authors [20-22].

195 In this way, the subcritical water treatment proved to be an efficacious method to remove the
196 chlorine present in PVC electric wires. Endo and Emori [11] studied the hydrothermal degradation
197 of PVC under high pressure and concluded that a total dechlorination of the material could be
198 possible at 300 °C.

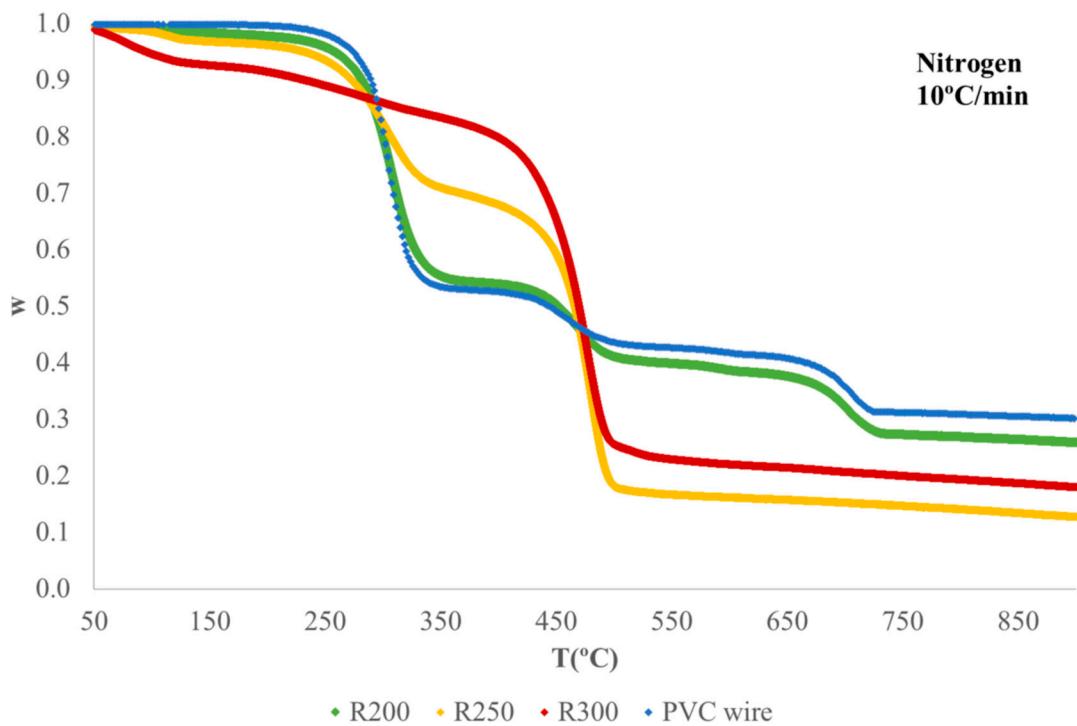
199 Upon hydrothermal treatment, the pH of liquid phase was measured, and it was obtained that
200 the pH dropped progressively with the treatment temperature, obtaining pH values of 7.18, 2.40 and
201 2.84 at 200, 250 and 300 °C, respectively, due to the release of HCl in the solution. Phenol, benzoic
202 acid, benzaldehyde, cyclohexanone and methyl cyclopentane were identified in the liquid phase.
203 These compounds were also determined in liquid phase after dechlorination treatment by
204 Takeshita et al. [21], obtaining a total amount of these compounds of 179 mg/L.

205 Table 3 shows the elemental analysis results of the solid residues. Carbon and hydrogen content
206 in the solid residue increased as the operating temperature increased. The content of H was not
207 decreased due to hydrolysis reaction. Therefore, the chlorine should be replaced by the base [23].

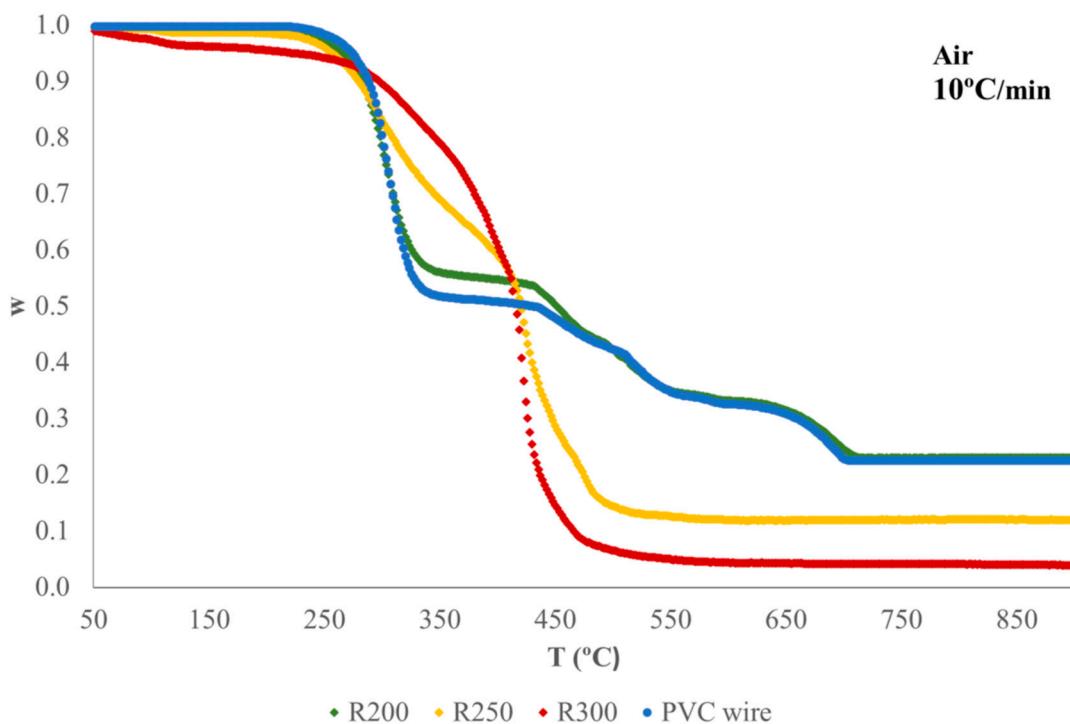
208 **Table 3.** Elemental analysis of the solid residue obtained and net calorific values.

wt. %	C	H	O	Ash	H/C	Net calorific value (kJ/kg)
R200	34.46	4.66	19.50	41.38	0.14	17269
R250	63.20	8.08	10.44	18.27	0.13	32281
R300	74.40	8.41	8.72	8.46	0.11	37766

209 Oxygen content reach to about 8-20% in solid residues, decreasing with the increase of treatment
210 temperature. The net calorific value of the residues also increased gradually, obtaining a maximum
211 value of 37766 kJ/kg in the solid residue obtained after the treatment at 300 °C. Lu et al. [23] and
212 Takeshita et al. [21] also obtained similar net calorific values of the residual solid after dechlorination
213 treatment (35798 kJ/kg at 260°C and 38749 kJ/kg at 300 °C, respectively). Therefore, the solid residues
214 may be employed as high-quality fuel for blast furnace or a feedstock for producing activated carbon,
215 etc. because their net calorific values are as good as coal and coke (18800-33500 and 25100-31400 kJ/kg,
216 respectively) [21]. In addition, the ratio of H/C decreased, indicating that the unsaturation degree of
217 the hydrolysis product increased. It can be concluded that the hydrolysis reaction of PVC includes
218 the cracking of C-C chain and substitution of Cl with -OH [23].


219 3.2. Thermogravimetric analysis

220 Thermogravimetric experiments in inert (pyrolysis) and oxidizing atmosphere (combustion)
221 were performed to characterize dechlorinated residues and the original PVC wire. Dynamic runs at
222 5, 10 and 20 °C/min were carried out for each material from room temperature up to 900 °C. Figure
223 S1 shows the details on the TG-curves obtained during the pyrolysis of original PVC wire (only
224 plastic fraction), R200, R250 and R300. Figure S2 presents the thermal decomposition in air.


225 All samples present mass loss curves moving to the right (towards higher temperatures) with
226 the increase of the heating rate. This is a habitual behavior which has been observed in many
227 materials; this can be explained just taking the kinetic law into consideration [24-26]. On the other
228 hand, thermal decomposition of the materials accelerates in the presence of oxygen, since the
229 oxidation of the final pyrolytic residue occurs, giving rise to out a higher mass loss.

230 Figure 2 shows a comparison of the curves obtained at 10 °C/min for the four materials tested in
231 nitrogen, and Figure 3 is the one corresponding to combustion in air. As can be observed (Figure 2),
232 the mass loss curve of the original PVC wire presents three main stages (centered at about 300, 480
233 and 780 °C). The decomposition of R200 is very similar to that of the original wire, but there is a great
234 change in the thermal decomposition of R250 and R300. In this case, only the first two stages are

235 present. This can be due to the obtaining of a more degraded material when the pretreatment
 236 occurred at higher temperature. The dechlorinated residues begin to decompose at lower temperatures,
 237 which means a further degradation of the polymeric matrix when pretreatment temperature
 238 increases. The TG runs performed in oxidizing atmosphere (Figure 3) present an analogous variation
 239 when comparing the diverse materials tested.

240
241 **Figure 2.** TG-curves obtained during the pyrolysis at 10 °C/min.

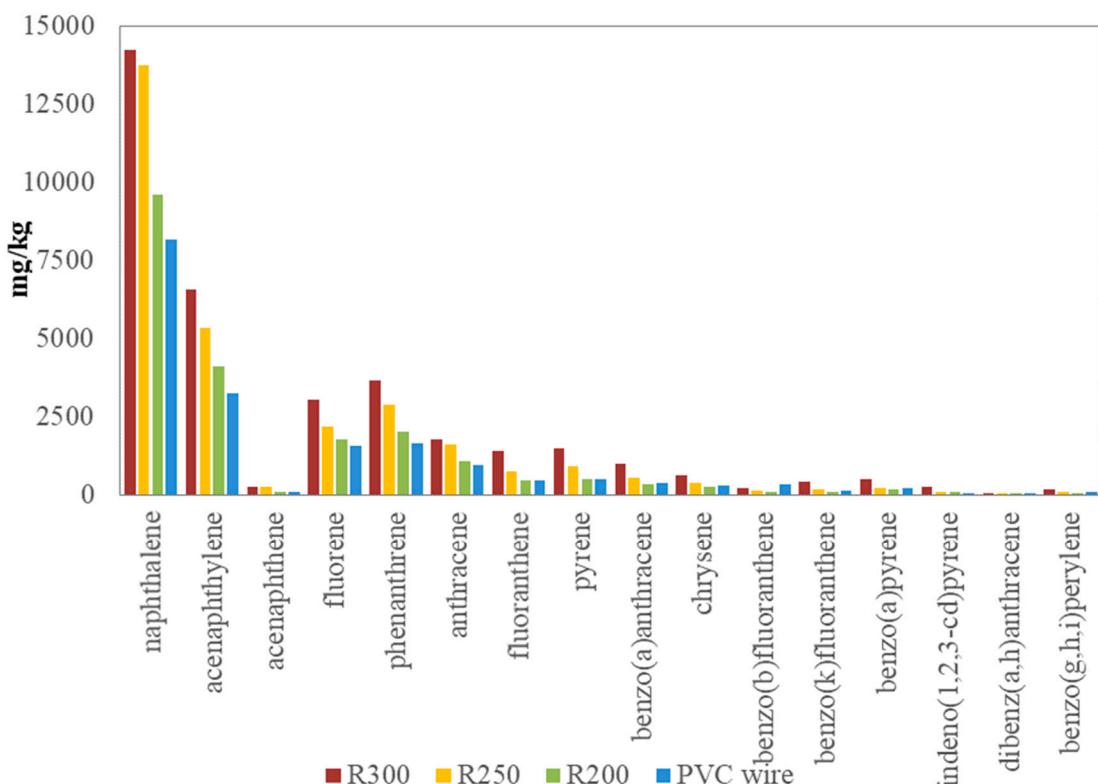
242
243 **Figure 3.** TG-curves obtained during the combustion at 10 °C/min.

245 3.3. Pollutant emissions in pyrolysis runs

246 As mentioned in the experimental section, pyrolysis of the residues R200, R250 and R300, as well
 247 as of the original PVC wire, were carried out in a horizontal furnace at 850 °C to check for the pollutant
 248 formation.

249 3.3.1. Hydrogen halide and halogen emissions

250 Inorganic chlorine emissions in the pyrolysis runs are shown in Table 4. Emissions significantly
 251 decreased when the material had been subjected to dechlorination process at the higher temperature,
 252 i.e., the emission decreased as the dechlorination temperature increased. The materials obtained after
 253 dechlorination at 200, 250 and 300 °C emitted 4.0, 81.9 and 92.4 % less inorganic chlorine than the
 254 starting material.


255 **Table 4.** Emission of inorganic chlorine during the pyrolysis at 850 °C.

Compound	PVC wire	R200	R250	R300
	mg /kg sample			
HCl	155300	149200	18750	2140
Cl ₂	10780	10210	11320	10550

256
 257 Emission factors of HCl were higher than the ones for Cl₂ for all materials, except the residue
 258 obtained in dechlorination treatment at 300 °C. This behavior was also found for other wastes, such
 259 as printed circuit boards (PCBs) [27] and debrominated PCBs [13].

260 3.3.2. PAHs

261 Figure 4 shows the emissions of the 16 priority PAHs during pyrolysis at 850 °C. Data are also
 262 provided in Table S1 of Supplementary Material. All the samples presented similar emission pattern
 263 of these compounds. The most abundant compound was naphthalene, followed by acenaphthylene,
 264 phenanthrene and fluorene.

265 266 **Figure 4.** PAH emissions during the pyrolysis at 850 °C.

267 These results coincide with several previous studies [5, 13, 28, 29] where the naphthalene was
 268 the principal PAH emitted during the thermal decomposition of different wastes.

269 PAH formation effectively increased during pyrolysis as the temperature of hydrothermal
 270 dechlorination increased, i.e., the emission factors increased when pyrolysis was performed with the
 271 dechlorinated residues obtained from the dechlorination process at higher temperatures. PAH
 272 formation reached its maximum in pyrolysis at 850 °C because the thermal decomposition in inert
 273 atmosphere was confirmed as the primary source of PAH formation [30] Total PAH yields in
 274 pyrolysis were 18070 mg/kg for the original PVC wire, 20690, 29260 and 35710 mg/kg for the
 275 dechlorinated materials obtained at 200, 250 and 300 °C, respectively. These results are of the same
 276 order of magnitude as those obtained in a previous study done by Aracil et al. [6], where the total
 277 yield was 35000 mg/kg in the pyrolysis of PVC pellets at 850 °C.

278 3.3.3. ClBzs

279 Table 5 presents the detail of ClBz congeners and the total amount of ClBzs in the pyrolysis at
 280 850 °C. Total yields of ClBzs were 1751 mg/kg for the original PVC wire, 2178, 928 and 500 mg/kg for
 281 the dechlorinated materials prepared at 200, 250 and 300 °C, respectively. The maximum total yield
 282 was obtained for the decomposition of the sample dechlorinated at 200 °C, as it presented the highest
 283 chlorine content. Therefore, the total yields of ClBzs decreased with the increase of dechlorination
 284 temperature to which the samples had been subjected. This can indicate that the formation of chlorine
 285 structures during the pyrolysis is less effective. In this way, the increase in the emission of PAHs from
 286 this material can be justified. PAHs could transform into chlorinated species at temperatures between
 287 300 and 1000 °C [31].

288 **Table 5.** Yields of ClBzs during the pyrolysis at 850 °C.

Compound	PVC wire	R200	R250	R300
mono-	919	1360	125	11.3
1,3-	nd	nd	nd	nd
1,4-	5.48	4.27	1.14	0.26
1,2-	826	814	802	488
1,3,5-	0.03	0.02	0.02	nd
1,2,4-	0.03	0.02	0.02	nd
1,2,3-	0.03	0.03	0.02	0.01
1,2,3,5+1,2,4,5-	0.02	0.02	0.02	0.01
1,2,3,4-	0.04	0.03	0.02	0.02
penta-	0.04	0.01	0.02	0.01
hexa-	nd	nd	nd	nd
TOTAL	1751	2178	928	500

289 nd: not detected (<0.01 mg/kg sample)

290 Respect to the ClBz congener distribution, all samples present the same trend. For all the
 291 materials, mono- and dichlorinated congeners were the main products emitted, particularly
 292 dichlorinated congeners with chlorine in the position 1,2- and 1,4-. Aracil et al. [6] also found a
 293 predominance of mono- and dichlorobenzenes in pyrolysis of PVC at 850 °C.

294 Conesa et al. [5] analyzed ClBz emissions during thermal treatment of two types of wires (PVC
 295 wire and halogen-free wire) and concluded that ClBz formation was higher for the PVC wire, and
 296 increased in the presence of metal. Therefore, it can be concluded that hydrothermal dechlorination
 297 could reduce the formation of chlorinated compounds in thermal processes, now that the material
 298 obtained after dechlorination treatment at 300 °C emitted 71.4 % less ClBzs than the original PVC
 299 wire during the pyrolysis at 850 °C.

300 3.3.4. ClPhs

301 Table 6 presents the total amount of ClPhs detected in the pyrolysis runs carried out at 850 °C.
 302 ClPh total yields decreased with the increase of dechlorination temperature to which the samples had
 303 been subjected. ClPh total yields of all solid residues (100.7 mg/kg, 57.5 mg/kg and 56.9 mg/kg for the
 304 solid residue obtained at 200, 250 and 300 °C, respectively) were lower than total yield from the
 305 original PVC wire (113.2 mg/kg). Therefore, subcritical water treatment could decrease the emissions
 306 of chlorinated compounds in thermal processes, now that R300 emitted 49.7 % less ClPhs than the
 307 original PVC wire.

308 **Table 6.** Emission of ClPhs during the pyrolysis at 850 °C.

Compound	PVC wire	R200	R250	R300
	mg/kg sample			
2-	nd	nd	nd	nd
3-+4-	61.7	57.6	55.1	54.5
2,4-	nd	nd	nd	nd
2,5-	0.13	0.07	0.07	0.06
2,3-	nd	nd	nd	nd
2,6-	0.03	nd	nd	nd
3,5-	51.0	42.7	2.15	2.13
3,4-	0.26	0.16	0.10	0.10
2,3,5-	nd	nd	nd	nd
2,4,6-	nd	nd	nd	nd
2,4,5-	nd	nd	nd	nd
2,3,4-	nd	nd	nd	nd
2,3,6-	nd	nd	nd	nd
3,4,5-	nd	0.11	nd	nd
2,3,5,6-	0.04	0.03	0.02	0.02
2,3,4,5-	0.04	0.04	0.02	0.02
2,3,4,6-	0.03	0.03	0.02	0.02
penta-	nd	nd	nd	nd
TOTAL	113.2	100.7	57.5	56.9

309 nd: not detected (<0.01 mg/kg sample)

310 Table 6 also shows the detail of ClPh congeners. In all the runs, monochlorinated phenols (3-+4-)
 311 were the most abundant congeners, followed by 3,5-dichlorinated phenol. Kaivosoja et al. [32] and
 312 Soler et al. [15] also concluded that the most emitted ClPhs were monochlorinated phenols (3-+4-) in
 313 their studies about thermal treatment of different wastes.

314 **4. Conclusions**

315 Subcritical water treatment for dechlorination of PVC wire was more effective as the treatment
 316 temperature increased. Therefore, dechlorination efficiency increased as the process temperature
 317 increased, obtaining a maximum efficiency of 95.96 wt. % at 300 °C. The concentration of chlorine in
 318 solid residue decreased because the chlorine present in PVC wire was nearly completely transferred
 319 to the water. In addition, these solid residues obtained high net calorific values, with a maximum
 320 value of 37766 kJ/kg for the solid residue obtained after the treatment at 300 °C, which may be
 321 employed as high-quality fuel consequently.

322 TG curve of the original PVC wire presented three main stages, but as the material was subjected
 323 to a more severe dechlorination the TG curve presented fewer stages; the decomposition of R200 was

324 very similar to that of the original wire, while the decomposition of R250 and R300 only presented
325 the first two stages and one stage, respectively. Therefore, dechlorination process produced a more
326 degraded material as the treatment temperature increased.

327 Regarding pollutant emissions during pyrolysis, emissions of inorganic chlorine significantly
328 decreased when increasing the increase of the dechlorination temperature. R200, R250 and R300
329 emitted 4.0, 81.9 and 92.4 % less inorganic chlorine than the original PVC wire. PAH formation
330 increased as the temperature of dechlorination process increased. This increase in the emission of
331 PAHs can justify that the formation of chlorine structures was less effective during the pyrolysis.
332 Thus, the emissions of organic chlorinated compounds (ClBzs and ClPhs) decreased with the increase
333 of dechlorination temperature to which the samples had been subjected and total yields originating
334 from the thermal decomposition of dechlorinated residues were lower than the total yield from the
335 original PVC wire. All the materials presented a much more emission of ClBzs than ClPhs.
336 Furthermore, the main chlorinated compounds were monochlorobenzene and monochlorinated
337 phenols (3+4-).

338 Therefore, it can be concluded that the subcritical water treatment was an efficient method for
339 dechlorination of PVC wires and could reduce the formation of chlorinated compounds in
340 subsequent thermal processes of this waste.

341 **Supplementary Materials:** The following are available online, Figure S1: TG-curves obtained during the
342 pyrolysis of: (a) R200, (b) R250, (c) R300 and (d) original PVC wire. Figure S2: TG-curves obtained during the
343 combustion of: (a) R200, (b) R250, (c) R300 and (d) original PVC wire. Table S1: Yields of PAHs during the
344 pyrolysis at 850 °C.

345 **Author Contributions:** Conceptualization, Juan A. Conesa and Nuria Ortúñoz; Data curation, Aurora Soler;
346 Formal analysis, Aurora Soler; Funding acquisition, Juan A. Conesa; Methodology, Juan A. Conesa; Supervision,
347 Juan A. Conesa and Nuria Ortúñoz; Validation, Nuria Ortúñoz; Writing – original draft, Aurora Soler; Writing –
348 review & editing, Juan A. Conesa and Nuria Ortúñoz.

349 **Funding:** This research was funded by Ministry of Economy, Industry and Competitiveness (Spain) grant
350 number CTQ2016-76608-R.

351 **Conflicts of Interest:** The authors declare no conflict of interest.

352 **References**

- 353 1. Sheih, S. W.; Tsai, M. S., Hot water separation process for copper and insulating material recovery from
354 electric cable waste. *Waste Manage. Res.* **2000**, *18*, (5), 478-484.
- 355 2. Hagstrom, B.; Hampton, R. N.; Helmesjo, B.; Hjertberg, T., Disposal of cables at the "end of life"; some of the
356 environmental considerations. *IEEE Electrical Insulation Magazine* **2006**, *22*, (2), 21-30.
- 357 3. European Commission, Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012
358 on waste electrical and electronic equipment (WEEE) In *Official Journal of the European Commission*,
359 European Commission, Ed. European Commission: Brussels, 2012; Vol. L 197, pp 38-71.
- 360 4. Buekens, A.; Yang, J., Recycling of WEEE plastics: a review. *J. Mater. Cycles Waste Manage.* **2014**, *16*, (3), 415-
361 434.
- 362 5. Conesa, J. A.; Egea, S.; Moltó, J.; Ortúñoz, N.; Font, R., Decomposition of two types of electric wires considering
363 the effect of the metal in the production of pollutants. *Chemosphere* **2013**, *91*, (2), 118-123.
- 364 6. Aracil, I.; Font, R.; Conesa, J. A., Semivolatile and volatile compounds from the pyrolysis and combustion of
365 polyvinyl chloride. *J. Anal. Appl. Pyrol.* **2005**, *74*, (1), 465-478.
- 366 7. Zhao, P.; Li, Z.; Li, T.; Yan, W.; Ge, S., The study of nickel effect on the hydrothermal dechlorination of PVC.
367 *Journal of Cleaner Production* **2017**, *152*, 38-46.
- 368 8. Poerschmann, J.; Weiner, B.; Woszidlo, S.; Koehler, R.; Kopinke, F. D., Hydrothermal carbonization of
369 poly(vinyl chloride). *Chemosphere* **2015**, *119*, 682-689.

370 9. Xiu, F. R.; Qi, Y.; Zhang, F. S., Co-treatment of waste printed circuit boards and polyvinyl chloride by
371 subcritical water oxidation: Removal of brominated flame retardants and recovery of Cu and Pb. *Chem. Eng.*
372 *J.* **2014**, 237, 242-249.

373 10. Kubátová, A.; Lagadec, A. J. M.; Hawthorne, S. B., Dechlorination of lindane, dieldrin, tetrachloroethane,
374 trichloroethene, and PVC in subcritical water. *Environ. Sci. Technol.* **2002**, 36, (6), 1337-1343.

375 11. Endo, K.; Emori, N., Dechlorination of poly(vinyl chloride) without anomalous units under high pressure
376 and at high temperature in water. *Polym. Degrad. Stab.* **2001**, 74, (1), 113-117.

377 12. Conesa, J. A.; Moltó, J.; Font, R.; Egea, S., Polyvinyl Chloride and Halogen-free Electric Wires Thermal
378 Decomposition. *Ind. Eng. Chem. Res.* **2010**, 49, (22), 11841-11847.

379 13. Soler, A.; Conesa, J. A.; Ortuño, N., Emissions of brominated compounds and polycyclic aromatic
380 hydrocarbons during pyrolysis of E-waste debrominated in subcritical water. *Chemosphere* **2017**, 186, 167-176.

381 14. US EPA, Method 8270D. Semivolatile organic compounds by GC/MS. In *SW-846*, US EPA, Ed. United States
382 Environmental Protection Agency, Office of Solid Waste: Washington, D.C., 2007.

383 15. Soler, A.; Conesa, J. A.; Iñiguez, M. E.; Ortuño, N., Pollutant formation in the pyrolysis and combustion of
384 materials combining biomass and e-waste. *Sci. Total Environ.* **2018**, 622-623, 1258-1264.

385 16. Moltó, J.; Egea, S.; Conesa, J. A.; Font, R., Thermal decomposition of electronic wastes: Mobile phone case
386 and other parts. *Waste Manage.* **2011**, 31, (12), 2546-2552.

387 17. US EPA, Method 26. Determination of hydrogen halide and halogen emissions from stationary sources. Non-
388 isokinetic method. In *SW-846*, US EPA, Ed. United States Environmental Protection Agency, Emissions
389 Measurement Center: Washington, D.C., 1994.

390 18. US EPA, Method 3545A. Pressurized fluid extraction (PFE). In *SW-846*, US EPA, Ed. United States
391 Environmental Protection Agency, Office of Solid Waste: Washington, D.C., 2000.

392 19. Yu, J.; Sun, L.; Ma, C.; Qiao, Y.; Yao, H., Thermal degradation of PVC: A review. *Waste Manage.* **2016**, 48, 300-
393 314.

394 20. Yoshiyuki, S.; Kiyoshi, K.; Yukitoshi, T.; Kazue, T.; Shiro, N., Decomposition of Polyvinylchloride using
395 Supercritical Water. *Japanese Journal of Applied Physics* **1998**, 37, (11R), 6270.

396 21. Takeshita, Y.; Kato, K.; Takahashi, K.; Sato, Y.; Nishi, S., Basic study on treatment of waste polyvinyl chloride
397 plastics by hydrothermal decomposition in subcritical and supercritical regions. *The Journal of Supercritical
398 Fluids* **2004**, 31, (2), 185-193.

399 22. Nagai, Y.; Jr., R. L. S.; Inomata, H.; Arai, K., Direct Observation of Polyvinylchloride Degradation in Water
400 at Temperatures up to 500°C and at Pressures up to 700 MPa. *J. Appl. Polym. Sci.* **2007**, 106, 1075-1086.

401 23. Lu, J.; Ma, S.; Gao, J., Study on the Pressurized Hydrolysis Dechlorination of PVC. *Energ. Fuel.* **2002**, 16, (5),
402 1251-1255.

403 24. Caballero, J. A.; Conesa, J. A., Mathematical considerations for nonisothermal kinetics in thermal
404 decomposition. *J. Anal. Appl. Pyrol.* **2005**, 73, (1), 85-100.

405 25. Conesa, J.; Rey, L., Thermogravimetric and kinetic analysis of the decomposition of solid recovered fuel from
406 municipal solid waste. *J. Therm. Anal. Calorim.* **2015**, 1-8.

407 26. Conesa, J. A.; Soler, A., Decomposition kinetics of materials combining biomass and electronic waste. *J.*
408 *Therm. Anal. Calorim.* **2017**, 128, (1), 225-233.

409 27. Ortuño, N.; Conesa, J. A.; Moltó, J.; Font, R., Pollutant emissions during pyrolysis and combustion of waste
410 printed circuit boards, before and after metal removal. *Sci. Total Environ.* **2014**, 499, (0), 27-35.

411 28. Conesa, J. A.; Font, R.; Fullana, A.; Martín-Gullón, I.; Aracil, I.; Gálvez, A.; Moltó, J.; Gómez-Rico, M. F.,
412 Comparison between emissions from the pyrolysis and combustion of different wastes. *J. Anal. Appl. Pyrol.*
413 **2009**, *84*, (1), 95-102.

414 29. Zhou, H.; Meng, A.; Long, Y.; Li, Q.; Zhang, Y., A review of dioxin-related substances during municipal solid
415 waste incineration. *Waste Manage.* **2015**, *36*, (0), 106-118.

416 30. Thomas, S.; Wornat, M. J., The effects of oxygen on the yields of polycyclic aromatic hydrocarbons formed
417 during the pyrolysis and fuel-rich oxidation of catechol. *Fuel* **2008**, *87*, (6), 768-781.

418 31. Zhang, Y. F.; Zhang, H.; Xu, M. Z., Transfer behavior of PAHs and PCBs from sewage sludge in the thermal
419 treatment process. *Zhongguo Huanjing Kexue/China Environmental Science* **2011**, *31*, (6), 933-937.

420 32. Kaivosoja, T.; Virén, A.; Tissari, J.; Ruuskanen, J.; Tarhanen, J.; Sippula, O.; Jokiniemi, J., Effects of a catalytic
421 converter on PCDD/F, chlorophenol and PAH emissions in residential wood combustion. *Chemosphere* **2012**,
422 *88*, (3), 278-285.