

Article

CONTROL OF A DC-DC BUCK CONVERTER THROUGH CONTRACTION TECHNIQUES

David Angulo-García ^{1,‡*}, Fabiola Angulo ^{2,†,‡}, Gustavo Osorio ^{2,‡}, and Gerard Olivar ³,

¹ Universidad de Cartagena. Instituto de Matemáticas Aplicadas. Grupo de Modelado Computacional - Dinámica y Complejidad de Sistemas. Carrera 6 # 36 - 100, Cartagena de Indias, Bolívar - Colombia. e-mail: dangulog@unicartagena.edu.co

² Universidad Nacional de Colombia - Sede Manizales. Facultad de Ingeniería y Arquitectura. Departamento de Ingeniería Eléctrica, Electrónica y Computación. Percepción y Control Inteligente - Bloque Q, Campus La Nubia. Manizales, 170003 - Colombia. e-mail: {fangulog,gaosoriol}@unal.edu.co

³ Universidad Nacional de Colombia - Sede Manizales. Facultad de Ciencias Exactas y Naturales. Departamento de Matemáticas. Percepción y Control Inteligente - Bloque Q, Campus La Nubia. Manizales, 170003 - Colombia. e-mail: golivart@unal.edu.co

* Correspondence: dangulog@unicartagena.edu.co

Abstract: Reliable and robust control of power converters is a key issue in the performance of numerous technological devices. In this paper we show a design technique for the control of a DC-DC buck converter with a switching technique that guarantees not only good performance but also global stability. We show that making use of the contraction theorem in the Jordan canonical form of the buck converter, it is possible to find a switching surface that guarantees stability but it is incapable of rejecting load perturbations. To overcome this, we expand the system to include the dynamics of the voltage error and we demonstrate that the same design procedure is not only able to stabilize the system to the desired operation point but also to reject load, input voltage and reference voltage perturbations.

Keywords: DC-DC Buck Converter; Contraction Analysis; Global Stability; Matrix Norm

10

11 1. Introduction

12 Many industrial and residential applications use voltage regulation with DC-DC power converters; 13 such applications include fuel cells [1], photovoltaic sources [2,3], control of DC motors [4], lighting 14 appliances [5], computer power supplies [6], and many others. Power converters use a kind of non 15 regulated voltage/current source (DC or AC) to convert to a regulated voltage/current one (DC or 16 AC) that can be larger or lower than the initial one. Usually, the underlying structures in these devices 17 are the so-called buck (step-down), boost (step-up), buck-boost (step down-step up), flyback, Ćuk, to 18 mention few, depending on the type of application [7,8]. DC-DC power converters show both fast 19 speed and capability of managing high power if needed [9]. More than 90% of the total amount of 20 power supply in the world is processed through power converters [10]. For this reason, a precise 21 control of these converters is a critical factor and therefore a vast amount of literature has been devoted 22 to their control. For instance, PID-based schemes [11], Fuzzy PID control [12], robust controllers [13], 23 predictive control [14], sliding mode control [15] and a controller based on a modified pulse-adjustment 24 of the PWM [16], just to mention few.

25 The DC-DC buck power converter supplies a lower voltage than the input voltage and is one 26 of the most studied power converters due to its simple design. The underlying topology of the buck 27 converter is non-smooth as it switches back and forth according to a control signal, from continuous to 28 discontinuous mode, to guarantee the required output voltage. Some examples of control techniques 29 applied to the Buck converter include zero voltage control technique [17], fractional derivative control 30 [18], controller based on active ramp tracking [19] and fuzzy PID controllers [20].

Even though the effectiveness of these non-smooth control actions is out of doubt, usually the design of such controllers are based either on the averaged version of the system which effectively disregards the non-smoothness; or via linearization. This is because the effect of the nonlinearity is not always entirely understood and therefore the system can only be analyzed in the vicinity of the operation point (see [21] for a review on stability methods). This may result in undesired effects such as destabilization when the system is far from the operation point and limits the range of operation in which the DC-DC converter can work. This is because linearizing the system can only assure local stability, and the region of attraction is usually unknown.

Recently, a novel method to design an asymptotically globally stable controller for switched systems has been introduced in the literature [22,23] following the ideas of contraction theory, also used in [24]. Although some academic examples were shown using this theory [23], no examples of technological applications have been yet reported. In this paper, we propose to use these novel concepts to design a switched controller with applications to DC-DC power converters, specifically to the buck converter, such that the controlled system is asymptotically globally stable. With this purpose, the paper is organized as follows: In section 2 we present some preliminary concepts needed for the development of the paper, specifically on linear transformations, matrix measure, Filippov systems and contraction theory. After, in section 3, the buck power converter is presented as well as its principle of operation. In section 4, a controller based on contraction theory is designed and tested for the buck power converter. As the system is not robust, in section 5 we develop a modified control action that uses the principles of integral control which shows robustness preserving global stability. We conclude this paper with some remarks and future perspectives.

2. Mathematical methods

In this section we present some standard theory on linear systems (see [25]), matrix measures [26–28] and contraction theory applied to stability of switched systems [22,23]. Most of the material can be found in the cited documents and references therein.

2.1. Linear transformations

Let us consider the piece-wise linear system (PWLS) given by

$$\dot{\mathbf{x}} = A\mathbf{x} + Bu, \quad (1)$$

where $u \in \{u_1, u_2\}$ and it commutes between booth values depending on the value of the switching surface $h(\mathbf{x})=0$. A is a Hurwitz matrix, the pair (A, B) is controllable and all eigenvalues are distinct but not necessarily real. Then, there exists a real matrix P which transforms the original system into a canonical form, so called the Jordan form, in the following way:

$$A_J = P^{-1}AP \quad B_J = P^{-1}B. \quad (2)$$

The transformation matrix can be constructed as follows: For each real eigenvalue, its corresponding eigenvector is computed and assigned to one column of the matrix P . For every pair of complex eigenvalues their corresponding complex eigenvectors are computed but only one of them is used to construct two column vectors of the matrix P . The first one is composed by the real parts of the complex eigenvector, while the other one is composed by the imaginary parts of the same eigenvector. For example, in a system with one real eigenvector \mathbf{v}_1 and two complex conjugate \mathbf{v}_2 and $\hat{\mathbf{v}}_2$ the matrix P takes the form

$$P = [\mathbf{v}_1 \quad \text{Re}(\mathbf{v}_2) \quad \text{Im}(\mathbf{v}_2)]. \quad (3)$$

Using this transformation matrix we obtain that every real eigenvalue ($\lambda_j = \eta_j$) produces a column in the matrix A_J with the eigenvalue in the corresponding diagonal element with other elements equal

to zero. Every complex pair of eigenvalues ($\lambda_{k,k+1} = \alpha_k \pm \beta_k$) instead, generates a 2×2 block in the Jordan matrix such that the diagonal part corresponds to the real part of the eigenvalues and the other positions correspond to the positive and negative imaginary part: other elements are zero. A general example of this Jordan form is:

$$A_J = \begin{bmatrix} \eta_1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & \ddots & 0 & 0 & 0 & 0 & \cdots \\ 0 & \cdots & \alpha_k & -\beta_k & 0 & 0 & \cdots \\ 0 & \cdots & \beta_k & \alpha_k & 0 & 0 & \cdots \\ 0 & \cdots & 0 & 0 & \alpha_{k+2} & -\beta_{k+2} & \cdots \\ 0 & \cdots & 0 & 0 & \beta_{k+2} & \alpha_{k+2} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}. \quad (4)$$

64 2.2. Matrix measure

The norm-2 induced measure of a matrix A is defined as:

$$\mu_2(A) = \lambda_{\max}[A' + A]/2, \quad (5)$$

65 where $\lambda_{\max}[\cdot]$ is the largest eigenvalue and A' is the transpose of A . It is possible to verify that, if the
66 matrix A in (1) is Hurwitz, then $\mu_2(A_J)$ is always negative. This is an important issue in the stability
67 analysis performed in this paper.

68 2.3. Contraction analysis for Filippov systems

Another way to define the system (1), is as a bimodal Filippov system

$$\dot{\mathbf{x}} = \begin{cases} F^+(\mathbf{x}) & \text{if } \mathbf{x} \in S^+ \\ F^-(\mathbf{x}) & \text{if } \mathbf{x} \in S^-. \end{cases} \quad (6)$$

where

$$F^+(\mathbf{x}) = A\mathbf{x} + Bu_1 \quad \text{and} \quad F^-(\mathbf{x}) = A\mathbf{x} + Bu_2$$

being

$$S^+ = \{\mathbf{x} \in \mathcal{U} : h(\mathbf{x}) > 0\} \quad \text{and} \quad S^- = \{\mathbf{x} \in \mathcal{U} : h(\mathbf{x}) < 0\}.$$

Here, $h : \mathcal{U} \rightarrow \mathbb{R}$ is a smooth function called switching function and the surface Σ defined as

$$\Sigma = \{\mathbf{x} \in \mathcal{U} : h(\mathbf{x}) = 0\} \quad (7)$$

69 is called the switching surface.

70

According to [22,23], the bimodal Filippov system (6) is incrementally exponentially stable in a so-called K -reachable set $\mathcal{C} \subseteq \mathcal{U}$ with convergence rate $r = \min\{r_1, r_2\}$, if there exists some norm in \mathcal{C} with associated measure μ such that for some positive constants r_1, r_2

$$\begin{aligned} \mu\left(\frac{\partial F^+(\mathbf{x})}{\partial \mathbf{x}}\right) &\leq -r_1 & \forall \mathbf{x} \in \overline{S^+}, \\ \mu\left(\frac{\partial F^-(\mathbf{x})}{\partial \mathbf{x}}\right) &\leq -r_2 & \forall \mathbf{x} \in \overline{S^-}, \end{aligned} \quad (8)$$

and

$$\mu((F^+(\mathbf{x}) - F^-(\mathbf{x})) \cdot \nabla h(\mathbf{x})) = 0 \quad \forall \mathbf{x} \in \Sigma, \quad (9)$$

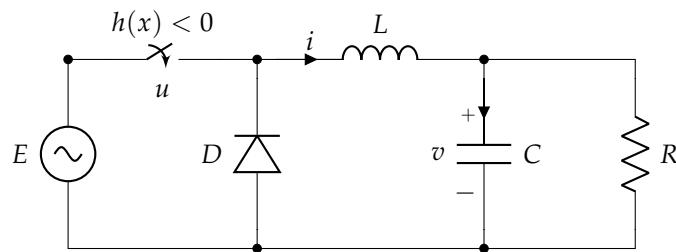


Figure 1. Schematic diagram of a buck power converter.

71 where $\overline{S^+}$ and $\overline{S^-}$ represent the closures of the sets S^+ and S^- respectively.

72 If system (6) is incrementally exponentially stable then there exist constants $k \geq 1$ and $\lambda > 0$ such
73 that

$$74 |\mathbf{x}(t) - \mathbf{y}(t)| \leq ke^{-\lambda(t-t_0)}|\mathbf{x}(0) - \mathbf{y}(0)| \quad \forall t \geq t_0 \quad \forall \mathbf{x}(0), \mathbf{y}(0) \in \mathcal{C}$$

75 where $\mathbf{x}(t)$ and $\mathbf{y}(t)$ are solutions of the system. Thus we can establish global stability properties for
76 system (1). Making use of the previous concepts, we will design an hybrid control for a buck power
77 converter that guarantees not only global stability, but is also robust to different disturbances.

78 3. The buck power converter

79 The scheme of a buck power converter is depicted in Figure 1. The equations describing this
80 dynamical system are

$$81 \begin{pmatrix} \dot{v} \\ \dot{i} \end{pmatrix} = \begin{pmatrix} -\frac{1}{RC} & \frac{1}{C} \\ -\frac{1}{L} & 0 \end{pmatrix} \begin{pmatrix} v \\ i \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{E}{L} \end{pmatrix} u \quad (10)$$

82 where R is the load resistance, C is the capacitor's capacitance, L is the coil's inductance, and E is
83 the voltage provided by the power source. The state variable v corresponds to the voltage across the
84 capacitor and i quantifies the current flowing through the inductor. The control signal u takes values
85 in the discrete set $\{0, 1\}$. When $u = 0$ the switch is opened and the power source (input voltage) does
86 not feed the system. In this case, the load is being fed by the capacitor and the inductor. For simplicity
87 we will perform a first transformation which maps the original system (10) into a dimensionless
88 framework by means of the following similarity transformation $x = M^{-1}(v \ i)'$, where

$$89 M = \begin{pmatrix} E & 0 \\ 0 & \frac{E}{\sqrt{L/C}} \end{pmatrix} \quad (11)$$

90 Also we perform a normalization of the time as $\tau = t/\sqrt{LC}$, such that a new and unique
91 parameter $\gamma = \frac{1}{R}\sqrt{\frac{L}{C}}$ holds the information of the parameters in the system. Therefore we can rewrite
92 the equations as:

$$93 \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -\gamma & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u \quad (12)$$

94 or in a compact form as $\dot{\mathbf{x}} = A\mathbf{x} + Bu$.

95 With the aim of designing the controller, it is necessary to transform the system to the Jordan
96 normal form. As the pair (A, B) is controllable, then as outlined in Section 2.1, there exists a
97 transformation matrix P given by

$$98 P = \begin{pmatrix} \gamma/2 & \rho \\ 1 & 0 \end{pmatrix} \quad (13)$$

which transforms the system into:

$$\begin{pmatrix} \dot{z}_1 \\ \dot{z}_2 \end{pmatrix} = \begin{pmatrix} -\gamma/2 & -\rho \\ \rho & -\gamma/2 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} 1 \\ -\gamma/(2\rho) \end{pmatrix} u \quad (14)$$

where $\mathbf{z} = P^{-1}\mathbf{x}$ and we have used $\rho := \rho(\gamma) = \sqrt{4 - \gamma^2}/2$. These equations are noted in a compact form as $\dot{\mathbf{z}} = A_J \mathbf{z} + B_J u$.

86

87 4. Application to 2D-case

88 4.1. Controller design

89 Using the contraction theorem outlined in Sec. 2.3, we can establish that the converter operating
90 with the switched signal control u will be stable if the following two conditions are satisfied:

$$\begin{aligned} a) \mu_2(A_J) &< -r_1, \forall \mathbf{z} \\ b) \mu_2(B_J \cdot \nabla h(\mathbf{z})) &= 0, \forall \mathbf{z} \in h(\mathbf{z}) = 0. \end{aligned} \quad (15)$$

91 One can easily show that $\mu_2(A_J) = -\gamma/2$, hence condition a) is always met as γ is always positive.
92 Then, considering $h(\mathbf{z})$ as a linear function of the states $h(\mathbf{z}) = (h_1 \ h_2) \cdot (z_1 \ z_2)'$, the condition b) can
93 be written as:

$$\mu_2 \left(\begin{pmatrix} 1 \\ -\gamma/(2\rho) \end{pmatrix} \cdot (h_1 \ h_2) \right) = 0. \quad (16)$$

94 It is possible to demonstrate (see Appendix A) that the following choice of $h(\mathbf{z})$:

$$h(\mathbf{z}) = h_1 z_1 + \frac{B_J(2)}{B_J(1)} h_1 z_2 = (h_1 - h_1 \gamma/(2\rho)) \cdot (z_1 \ z_2)' := h_z \cdot \mathbf{z}, \quad (17)$$

95 where $B_J(i)$ is the i -th row element in B_J , fulfills condition (16) if the pairs $\{B_J(i), h(i)\}$ have opposite
96 signs. Then, according to the signs of $B_J(i)$, it is necessary to choose $h_1 < 0$ and $h_2 > 0$. In this way, the
97 matrix from which the maximum eigenvalue needs to be calculated according to Eq. (5), has one null
98 eigenvalue and the other one can be computed as $\lambda_2 = h_1/\rho^2$, which is smaller than zero. Since the
99 switching surface has been calculated in the canonical space, this result needs to be transformed back
100 into the dimensionless state variables through $\mathbf{x} = P\mathbf{z}$. The switching manifold is then obtained as
101 $h(\mathbf{x}) = h_z \cdot P^{-1} \cdot \mathbf{x}$, or equivalently:

$$h(\mathbf{x}) = (h_1 \ h_1(1 + (\gamma/(2\rho))^2)) \cdot (x_1 \ x_2)' := h_x \cdot \mathbf{x} \quad (18)$$

102 Of course, the term h_x correspond the vector in the normal direction of the switching surface.
103 With the aim of simplifying the calculations we normalize such vector such that $|h_x| = 1$. Moreover,
104 we need to subtract the reference values to the states to ensure the regulation to the operation point.

$$h(\mathbf{x}) = \left(-\frac{\gamma}{\sqrt{4 + \gamma^2}} \quad \frac{2}{\sqrt{4 + \gamma^2}} \right) \cdot (x_1 - \bar{x}_{1ref} \quad x_2 - \bar{x}_{2ref})' = 0. \quad (19)$$

105 Finally, we can define the switching manifold in terms of the original state variables
106 $(x_1 \ x_2) = M^{-1}(v \ i)'$ leading to:

$$h(v, i) = \left(-\frac{\gamma}{E\sqrt{4 + \gamma^2}} \quad \frac{2\sqrt{L/C}}{E\sqrt{4 + \gamma^2}} \right) \cdot (v - \bar{v}_{ref} \quad i - \bar{i}_{ref})' = 0. \quad (20)$$

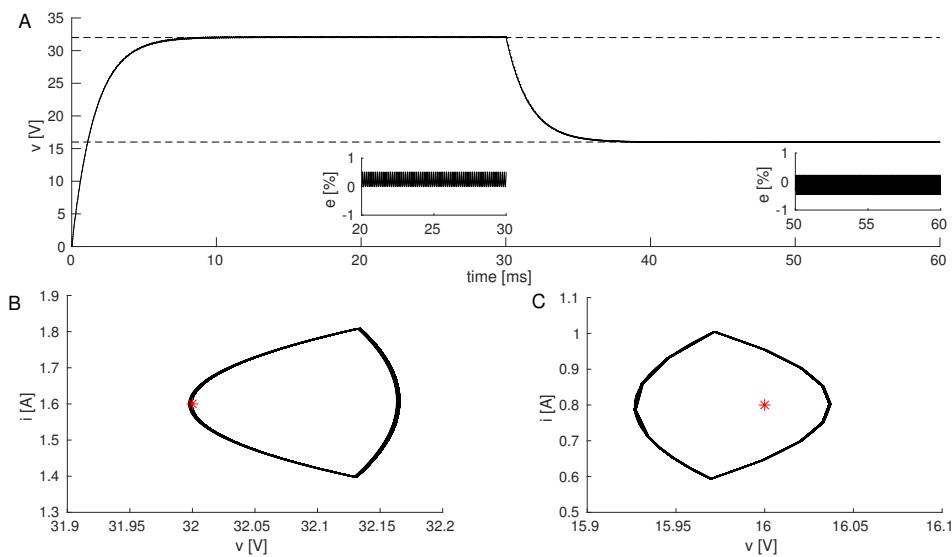


Figure 2. A) Time trace of the voltage in the capacitor v . During the first 30ms a $\bar{v}_{ref} = 32$ V is used, after this a drastic change to $\bar{v}_{ref} = 16$ V is applied (depicted in the dashed lines). The time trace of the steady state percentage error is also depicted in the insets for both values of \bar{v}_{ref} . B) Phase representation of the steady state for $\bar{v}_{ref} = 32$ and C) $\bar{v}_{ref} = 16$, with the equilibrium point indicated by the red star. Simulations were performed with an RK4 algorithm with event detection to identify collisions with the hysteresis band. Steady state was considered after 20ms of simulation time. Initial conditions were chosen as $(v, i) = (0, 0)$. Other parameters as in the main text.

107 It is worth noticing that neither h_1 nor h_2 appear in the calculations. On the one hand h_2 is
 108 parametrized via h_1 (see appendix A), on the other hand h_1 disappear via the normalization, reducing
 109 effectively two degrees of freedom.

110 *4.2. Simulation results*

111 Unless otherwise stated we will use the following set of parameters for numerical computations:
 112 $R = 20\Omega$, $L = 2\text{mH}$, $C = 40\mu\text{F}$, $E = 40\text{V}$ and $\bar{v}_{ref} = 32\text{V}$. The desired current reference can be assumed
 113 to be $\bar{i}_{ref} = \bar{v}_{ref}/R = 1.6\text{A}$. With this, $\gamma \approx 0.35$ and $\rho \approx 0.98$. Also, as electronic devices cannot switch
 114 with infinite speed, it is necessary to implement a hysteresis band for simulating the change in the
 115 position of the MOSFET. We have designed this band in such a way that the switching time is close to
 116 $175\mu\text{s}$. Under these assumptions, Eq. (20) takes the following values:

$$h(v, i) = (-4.4 \times 10^{-3} \quad 0.1741) \cdot (v - \bar{v}_{ref} \quad i - \bar{i}_{ref})' \pm 0.02 \quad (21)$$

117 In Fig. 2 we show the performance of the designed control. In particular, in Fig. 2A) the time
 118 trace of the voltage v is depicted in response to a drastic change in the reference output voltage \bar{v}_{ref} .
 119 During the first 30ms, where the system is subject to $\bar{v}_{ref} = 32\text{V}$ (top dashed line), the output voltage
 120 reaches the steady state close to 5.7ms, with no overshoot and the maximum error in steady state is
 121 lower than 0.6% (see inset). After 30ms, the reference voltage is changed to $\bar{v}_{ref} = 16\text{V}$ (bottom dashed
 122 line) and the system is able to track the change and stabilize to the new value of output voltage. In Fig.
 123 2B) and C) we plot the orbit in the (v, i) space during the steady state for the two references used in
 124 panel A) of the same figure. From this, one can observe that indeed the equilibrium value $(\bar{v}_{ref}, \bar{i}_{ref})$ is
 125 reached through the continuous rippling of the orbit around the equilibrium point (red symbol).

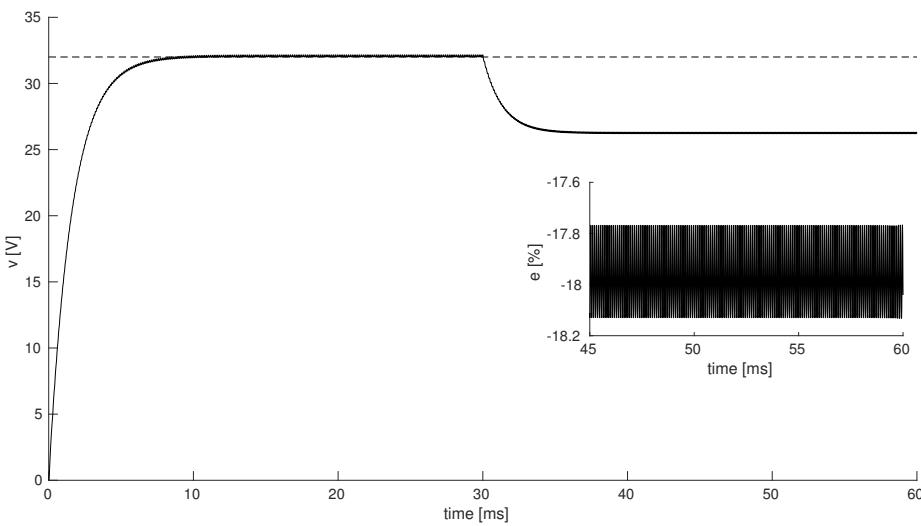


Figure 3. Time response of the capacitor's voltage v . During the first 30ms, the value of the resistor is set to $R = 20\Omega$, after this the load is changed to $R = 18\Omega$. Inset: Steady state percentage error (considered 15ms after the presentation of the disturbance). The desired output is plot with the dashed line. Other details as in Fig. 2.

127 We also tested the robustness of the control to changes in the load. In Fig. 3 is depicted the time
 128 trace of the voltage in this scenario. Following a similar procedure as in Fig. 2, after 30ms, a change in
 129 the resistance from $R = 20\Omega$ to $R = 15\Omega$ (10% difference) is applied. From this figure it is possible to
 130 see that the system drifts away from the reference output $\bar{v}_{ref} = 32V$ (dashed line), producing a steady
 131 state error of around 18% (see inset).

132
 133 So far, the controller designed with contraction theory has been successful to operate in a desired
 134 way and reject disturbances in the output voltage. However, when a disturbance in the load is
 135 presented (a common situation in power converters) the system loses the ability to follow the desired
 136 output voltage, indicating that the controller is not robust. To solve this problem, we extend the
 137 proposed controller based on the idea of an integral control action.

138 **5. Application to 3D-case**

139 **5.1. Controller design based on a modified integral control action**

140 In control theory it is known that perturbations are better rejected by a PI controller; however, in
 141 this case, adding a PI controller implies to add a pole in the origin of the system which prevents us
 142 from applying contraction theorem. Then, with the aim of enhancing the robustness of the controlled
 143 system, we will modify the control action in such a way that it introduces the dynamics of the error.
 144 To do so we introduce a new state variable x_3 in the dimensionless system in the following way:
 145 $\dot{x}_3 = e - \delta x_3$, with $e = \bar{x}_{1ref} - x_1$ defined as the output error and δ as the time constant of x_3 . As
 146 $x_1 = v/E$, then $\bar{x}_{1ref} = \bar{v}_{ref}/E$. Under these assumptions, the system takes the following form:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} -\gamma & 1 & 0 \\ -1 & 0 & 0 \\ -1 & 0 & -\delta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} u + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \bar{x}_{1ref} \quad (22)$$

147 with

$$u = \begin{cases} 1 & \text{if } h(\mathbf{x}) \leq 0 \\ 0 & \text{otherwise.} \end{cases} \quad (23)$$

148 or in compact form $\dot{\mathbf{x}} = A\mathbf{x} + Bu + Q\bar{x}_{1ref}$. The aim of the term $-\delta$ appearing in position $\{3, 3\}$ in
 149 the matrix A is to stabilize the system allowing us to apply the contraction theorem. In this way, the
 150 value of δ must be very small to avoid high steady state error. As the pair (A, B) is controllable we
 151 then proceed to apply the general theory with a new consideration: In the construction of the matrix P
 152 we will take into account the norm of the eigenvectors \mathbf{v}_i , which will allow us to gain more degrees of
 153 freedom in the system to tune the controller. Indeed this is not an issue when obtaining the canonical
 154 form A_J as the operation $P^{-1}AP$ cancels out any norm that may have been considered. However, the
 155 transformed matrix B_J , which is critical for the stability conditions Eq. (15), may depend on the chosen
 156 modules of the eigenvectors. To take this into account, we need to include in Eq. (3) the magnitude of
 157 the eigenvectors via the scaling factors c_1 and c_2 as follows:

$$P = [c_1\mathbf{v}_1 \quad c_2\text{Re}(\mathbf{v}_2) \quad c_2\text{Im}(\mathbf{v}_2)]. \quad (24)$$

158 The general form of the transformation matrix can then be written as

$$P = \begin{pmatrix} 0 & c_2(\gamma - 2\delta)/2 & -c_2\rho \\ 0 & c_2(2 - \gamma\delta)/2 & -c_2\rho\delta \\ c_1 & c_2 & 0 \end{pmatrix} \quad (25)$$

159 which leads to the transformed system $\dot{\mathbf{z}} = A_J\mathbf{z} + B_Ju + Q_J\bar{x}_{1ref}$, where

$$\begin{aligned} A_J &= \begin{pmatrix} -\delta & 0 & 0 \\ 0 & -\gamma/2 & \rho \\ 0 & -\rho & -\gamma/2 \end{pmatrix} \\ B_J &= \begin{pmatrix} -1/(c_1(\delta^2 - \gamma\delta + 1)) \\ 1/(c_2(\delta^2 - \gamma\delta + 1)) \\ -(2\delta - \gamma)/(2c_2\rho(\delta^2 - \gamma\delta + 1)) \end{pmatrix} \\ Q_J &= (1 \ 0 \ 0)' \end{aligned} \quad (26)$$

The purpose will be again to find a switching function $h(\mathbf{z}) = h_1z_1 + h_2z_2 + h_3z_3$ that meets the conditions of global stability in Eq. (15) in the transformed space. One can easily verify that, provided that $\delta < \gamma/2$, $\mu(A_J) = -\gamma/2$, fulfilling condition a). Moreover, one of the eigenvalues of $B_J \cdot \nabla h(\mathbf{z})$ is always 0 due to the fact that the matrix is constructed using only two linearly independent vectors (see Appendix A.2). Also, following a similar procedure as in the 2D case, choosing the following switching function :

$$h(\mathbf{z}) = h_1z_1 + \frac{B_J(2)}{B_J(1)}h_1z_2 + \frac{B_J(3)}{B_J(1)}h_1z_3, \quad (27)$$

160 the condition b) in Eq. (9) is always guaranteed if, for every pair $\{B_J(i), h(i)\}$, its elements have
 161 opposite signs and the signs of c_1 and h_1 are equal (see appendix A) . From this, the switching surface
 162 in the canonical space is:

$$h(\mathbf{z}) = \begin{pmatrix} h_1 & -h_1\frac{c_1}{c_2} & h_1\frac{c_1(2\delta - \gamma)}{2c_2\rho} \end{pmatrix} \cdot (z_1 \ z_2 \ z_3)' := h_z \cdot \mathbf{z} \quad (28)$$

163 It is worth noticing that for the 2D case, considering arbitrary norms for the eigenvectors does not
 164 have an effect in the possible switching functions, in contrast to the extended system. This is because
 165 there is only one constant associated to that norm (two complex eigenvalues). Another important

166 aspect is that the plane defined in Eq. (28) depends on the ratio c_1/c_2 and not on their individual values
 167 which effectively reduces one degree of freedom in the tuning parameters of the hybrid controller
 168 based on the integral action. As in the previous case, the next steps in the design are i) apply the
 169 transformation to the dimensionless variables; ii) normalize by the norm of the resulting orthogonal
 170 vector to the switching surface in the \mathbf{x} space, i.e. $|h_z \cdot P^{-1}|$; and iii) transform back to the original
 171 buck converter states variables (v, i) via the matrix M (recall that the similarity transformation is
 172 $\mathbf{x} = M^{-1}(v \ i)'$). It is important to notice that for the 3D system, the matrix M is not unique, as we don't
 173 know the exact mapping between the extended variable x_3 and its counterpart in the real system y . We
 174 can assume without loss of generality and preserving the idea of the integral action, that the mapping
 175 between x_3 and y is given by a scaling factor, which after some algebra can be demonstrated to be
 176 $x_3 = y/(E\sqrt{LC})$. This results preserves the information of the error defined by \bar{v}_{ref} . The similarity
 177 transformation matrix is then given by:

$$M = \begin{pmatrix} E & 0 & 0 \\ 0 & E/\sqrt{L/C} & 0 \\ 0 & 0 & E\sqrt{LC} \end{pmatrix}. \quad (29)$$

178 We will avoid displaying the rather long expression of performing the aforementioned steps, but
 179 they can be summarized in the operation:

$$h(v, i, y) = \frac{h_z \cdot P^{-1}}{|h_z \cdot P^{-1}|} \cdot M^{-1}(v \ i \ y)'. \quad (30)$$

180 The system finally reads in its original variables as:

$$\begin{pmatrix} \dot{v} \\ \dot{i} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -\frac{1}{RC} & \frac{1}{C} & 0 \\ -\frac{1}{L} & 0 & 0 \\ -1 & 0 & -\frac{\delta}{\sqrt{LC}} \end{pmatrix} \begin{pmatrix} v \\ i \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ E/L \\ 0 \end{pmatrix} u + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \bar{v}_{ref} \quad (31)$$

181 with

$$u = \begin{cases} 1 & \text{if } h(v, i, y) \leq 0 \\ 0 & \text{otherwise.} \end{cases} \quad (32)$$

182 5.1.1. Simulation results

183 From Eqs. (30) and (31), the resulting controlled system can be tuned via two parameters, namely
 184 the time constant of the extended variable δ , and the ratio c_1/c_2 of the norm of the eigenvectors
 185 associated with matrix A . To tune these parameters, we performed an optimization routine which
 186 explored several possible combinations of parameters δ and c_1/c_2 in a wide range of values. Following
 187 an heuristic approximation we chose the values which met some desired criteria, namely small
 188 overshoot and small settling time. From this analysis we concluded that a sufficiently small value of
 189 δ is necessary in order for the steady state error to be small. Also, as c_1/c_2 is decreased, the system
 190 evolves faster but produces large overshoots; conversely, increasing the ratio reduces the overshoot but
 191 slows down the system. A good performance was achieved by choosing $\delta = 1 \times 10^{-4}$ and $c_1/c_2 = 9$.
 192 With these choices, the numerical values for the switching surface are:

$$h(v, i, y) = (-4.3 \times 10^{-3} \ 0.1741 \ -1.03) \cdot (v \ i \ y)' \pm 0.05, \quad (33)$$

193 where we have set the hysteresis to a value that meets the MOSFET switching frequency criterion
 194 as in the previous section. It can be noted that this controller does not require any information about
 195 current reference as in 2D-case.

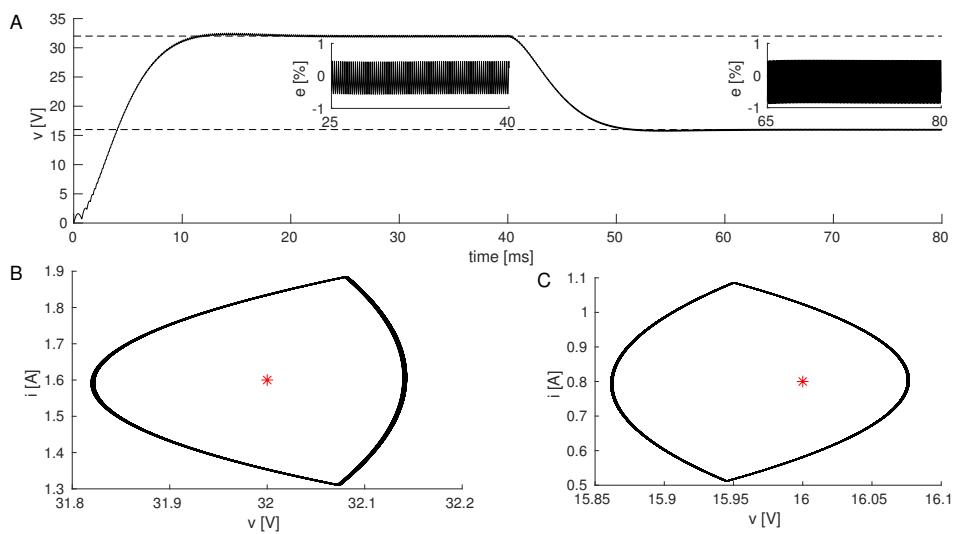


Figure 4. A) Time trace of the voltage in the capacitor v . During the first 40ms a $\bar{v}_{ref} = 32$ V is used, after this a drastic change to $\bar{v}_{ref} = 16$ V is applied (depicted in the dashed lines). The time trace of the steady state percentage error is also depicted in the insets for both values of \bar{v}_{ref} . B) Phase representation of the steady state for $\bar{v}_{ref} = 32$ and C) $\bar{v}_{ref} = 16$, with the equilibrium point indicated by the red star. This results were obtained by making $c_1/c_2 = 9$ and $\delta = 1 \times 10^{-4}$. Steady state was considered after 25ms of transient dynamics. Other parameters as in the main text and Fig. 2.

197 The results of the 3D system behavior and its ability to reject disturbances in the reference voltage
 198 are depicted in Figure 4. In this figure, a reference voltage of $\bar{v}_{ref} = 32$ V is applied during the first
 199 40ms of the simulation, after this, the reference voltage is drastically decreased by a 50%, i.e $\bar{v}_{ref} = 16$ V
 200 and the system is allowed to evolve during 40ms more. From Fig. 4A) it is possible to deduce that, in
 201 the 3D system, the controller is also able to regulate with a settling time of ≈ 10 ms and a steady state
 202 error smaller than 1%. Not only this, but also the control is robust against disturbances in the reference
 203 output value. Panels B) and C) of the same figure show the orbit exhibited by the system in the steady
 204 state before and after the disturbance, which clearly evolves in the neighborhood of the equilibrium
 205 value $(\bar{v}_{ref}, \bar{i}_{ref})$ (red star).

206

207 We also tested the capability of the system to reject disturbances both in the load R and the input
 208 voltage E . To do so we simulated a similar set-up to the one described for the 2D system. In particular
 209 we evolved the unperturbed system during 40ms to achieve a steady state, and immediately after the
 210 perturbation is presented. For Fig. 5A) the perturbation is induced as a sudden change in the load
 211 from $R = 20\Omega$ to $R = 15\Omega$ (25% change). As depicted in the main figure of the panel and its inset, the
 212 system recovers to the reference voltage $\bar{v}_{ref} = 32$ V (dashed line) with a percentage error smaller than
 213 1%. A similar scenario is plotted in Fig 5B), in this case the perturbation is presented as a change in the
 214 input voltage from $E = 40$ V to $E = 50$ V. Even though the perturbation in the input corresponds to a
 215 25% change, the system doesn't drift away from the equilibrium point.

216

217 It should be noticed that the first two elements in the normal vector of the switching surface in
 218 Eq. (33), are exactly those of Eq. (21) for the 2D case, where neither the norm of the vectors nor δ were
 219 involved. Hence, the effect of c_1/c_2 and δ are only exhibited in the third term.

220 6. Conclusions

221 In this paper a stable hybrid control technique was designed and analyzed in a buck power
 222 converter, applying results from contraction analysis which make use of the induced matrix measure.

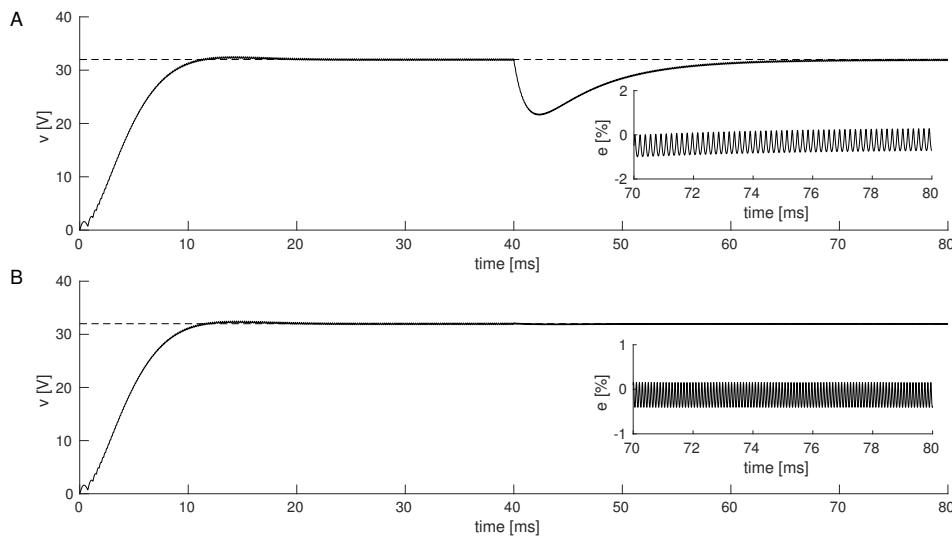


Figure 5. A) Time response of the capacitor's voltage v . During the first 40ms, the value of the resistor is set to $R = 20\Omega$, after this the load is changed to $R = 15\Omega$. Insets: Steady state percentage error (considered 25ms after the presentation of the disturbance). The desired output is plot with the dashed line. B) Same as A) for a disturbance in the input voltage E . During the first 40ms $E = 40V$, after this it is changed to $E = 50V$. Other details as in Fig. 2.

223 We took advantage of the Jordan canonical form of the system to guarantee the conditions of stability
 224 resulting from contraction analysis, which wouldn't have been met in the original form of the system.
 225 For the original 2D buck converter, two reference points \bar{x}_{1ref} and \bar{x}_{2ref} were introduced in the switching
 226 function to allow for regulation to the desired state. Under these conditions, the controller presented
 227 good performance and robustness to voltage reference change, however, as the load varies, regulation
 228 is lost. To overcome this issue we extended the system to take into account the dynamics of the error,
 229 in a similar similar way to the design of a PI controller. With this design, the controlled system showed
 230 robustness to several types of disturbances including load and input voltage changes.

231 Although the 3D system is robust, it comes with the price of increasing the settling time to around
 232 10ms. Other controllers applied to the buck converter may show better performance in this particular
 233 matter. Nonetheless it should be stressed that the method outlined in this paper is not based on the
 234 linearized system but on the nonlinear form, such that the final controller is globally stable which
 235 cannot be guaranteed using linearization. Indeed we have numerically tested the globally stability
 236 property by performing extensive simulations for different initial conditions in the (v, i, y) space. These
 237 tests showed convergence for all the simulations.

238 For the sake of simplifying the calculations we have considered throughout this manuscript a
 239 switching function with zero offset. Introducing the offset in this function, which amounts to perform a
 240 translation of the switching surface, does not change any of the stability criteria that we have presented
 241 here, but it could certainly serve as a further tuning parameter of the controller. A general direction is
 242 to choose the offset in such a way that the trajectory of the system enters in sliding mode as early as
 243 possible.

244 The analytic results presented here hold for the theoretical set-up in which perfect sliding over the
 245 switching manifold is allowed. Realistically speaking this is unachievable due to the finite frequency
 246 of the MOSFET used to implement the switching action, and therefore we are constrained to include
 247 in the simulations a hysteresis band which allows for finite switching frequencies. The size of the
 248 hysteresis band is an important issue because its width determines the size of the chattering in the
 249 voltage variable.

250 Finally, whether the approach presented here can be applied to other power converters such as the
 251 Boost, is currently an open problem. This is because not every single system can be easily approached
 252 by contraction theory and other standard tools for stability analysis might be the best option in these
 253 cases.

254 **Author Contributions:** “Conceptualization was made by F.A. and D.A-G.; Supervision and Project Administration
 255 were made by F.A., Gu.O and Ge.O.; Software and Validation and Funding Acquisition by D.A-G, F.A. and Gu.O.;
 256 Visualization made by D.A-G and Gu.O. All authors contributed to Formal Analysis, Investigation and Writing.”

257 **Funding:** F.A and Gu.O were supported by Universidad Nacional de Colombia, Manizales, Project 31492
 258 from Vicerrectoría de Investigación, DIMA, and COLCIENCIAS under Contract FP44842-052-2016. D.A-G
 259 was supported by Universidad de Cartagena through the “Novena Convocatoria de Proyectos de Investigación”.

260 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the design
 261 of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
 262 decision to publish the results.

263 Appendix A

264 In this appendix we prove that, for a particular selection of the constants h_i , $\mu_2(B \cdot \nabla h(\mathbf{x})) :=$
 265 $\mu_2(B \cdot h) \leq 0$.

266 Appendix A.1 Matrix measure for a 2D system

267 Without loss of generality, we can consider two vectors $B = [b_1 \ b_2]'$ and $h = [h_1 \ h_2]$. The matrix
 268 N is formed as

$$N = B \cdot h + h' \cdot B'.$$

269 The measure of this matrix must be equal to zero over the switching surface to meet the theorem
 270 in [22,23]. As this matrix is symmetric, then:

$$\mu_2(N) = \lambda_{\max}[N' + N]/2 = \lambda_{\max}[N] = 0 \quad (\text{A1})$$

271 This condition is equivalent to the matrix N being negative semidefinite, or the matrix $-N$ being
 272 positive semidefinite, i.e.

$$\lambda_{\min}[-N] = 0$$

273 An extensive discussion about positive definiteness can be found in [25,26]. Then, the conditions
 274 associated with the eigenvalues can be computed using theory of positive definite matrices which
 275 states that in a symmetric matrix all its eigenvalues are greater than zero if and only if all its principal
 276 minors are positive. This matrix is called positive definite. A matrix is positive semidefinite if all its
 277 eigenvalues are greater than or equal to zero. On the other hand, a matrix N is negative semidefinite if
 278 $-N$ is positive semidefinite.

279

In this way, the matrix N is given by:

$$N = \begin{pmatrix} 2b_1h_1 & b_1h_2 + b_2h_1 \\ b_1h_2 + b_2h_1 & 2b_2h_2 \end{pmatrix}. \quad (\text{A2})$$

280 To fulfill the condition to be negative semidefinite, we have to check that all principal minors of
 281 $-N$ are greater than or equal to zero ($\Delta_k \geq 0$)

282

First order principal minors. The matrix has two first order principal minors which are:

$$M_1^1(-N) := \Delta_{11}(-N) = -N_{11} = -2b_1h_1 \geq 0 \quad (\text{A3})$$

and

$$M_1^2(-N) := \Delta_{12}(-N) = -N_{22} = -2b_2h_2 \geq 0 \quad (\text{A4})$$

283 As it can be seen, the only condition is that the pairs $\{b_i, h_i\}$ have opposite signs.

284

Second order principal minors. This system has only one second order principal minor which is computed as:

$$\Delta_2^1(-N) = \det \begin{pmatrix} -2b_1h_1 & -b_1h_2 - b_2h_1 \\ -b_1h_2 - b_2h_1 & -2b_2h_2 \end{pmatrix} \geq 0$$

From this inequality is obtained:

$$b_1h_2 = b_2h_1 \quad (\text{A5})$$

Supposing h_1 as a free parameter to tune, it is obtained that:

$$h_2 = \frac{b_2}{b_1}h_1 \quad (\text{A6})$$

285 Replacing A6 in A4 it can be seen that independently of the value and sign of b_2 the inequality is
286 satisfied.

287

288 The proof is complete.

289 *Appendix A.2 Measure matrix for 3D system*

Following the ideas of previous section, N is given by:

$$N = \begin{pmatrix} 2b_1h_1 & b_1h_2 + b_2h_1 & b_1h_3 + b_3h_1 \\ b_1h_2 + b_2h_1 & 2b_2h_2 & b_2h_3 + b_3h_2 \\ b_1h_3 + b_3h_1 & b_2h_3 + b_3h_2 & 2b_3h_3 \end{pmatrix} \quad (\text{A7})$$

290 To fulfill the condition to be negative semidefinite, we have to check that all principal minors of
291 $-N$ are greater than or equal to zero ($\Delta_k \geq 0$)

292

293 **First order principal minors.** Here, there are three first order principal minors, they are:

$$M_1^1(-N) := \Delta_{11}(-N) = -N_{11} = -2b_1h_1 \geq 0 \quad (\text{A8})$$

$$M_1^2(-N) := \Delta_{12}(-N) = -N_{22} = -2b_2h_2 \geq 0 \quad (\text{A9})$$

and

$$M_1^3(-N) := \Delta_{13}(-N) = -N_{33} = -2b_3h_3 \geq 0 \quad (\text{A10})$$

293 As it can be seen, the only condition is that the pairs $\{b_i, h_i\}$ have opposite signs.

294

Second order principal minor. In this case, there are three second order principal minors. The first one is:

$$\Delta_2^1(-N) = \det \begin{pmatrix} -2b_2h_2 & -b_2h_3 - b_3h_2 \\ -b_2h_3 - b_3h_2 & -2b_3h_3 \end{pmatrix} \geq 0$$

After some computations the following equation is obtained.

$$b_2h_3 = b_3h_2 \quad (\text{A11})$$

Other second order principal minor is given by:

$$\Delta_2^2(-N) = \det \begin{pmatrix} -2b_1h_1 & -b_1h_3 - b_3h_1 \\ -b_1h_3 - b_3h_1 & -2b_3h_3 \end{pmatrix} \geq 0$$

As in previous case, it is obtained:

$$b_1h_3 = b_3h_1 \quad (\text{A12})$$

The last second order principal minor is computed as:

$$\Delta_2^3(-N) = \det \begin{pmatrix} -2b_1h_1 & -b_1h_2 - b_2h_1 \\ -b_1h_2 - b_2h_1 & -2b_2h_2 \end{pmatrix} \geq 0$$

and in a similar way it is obtained:

$$b_1h_2 = b_2h_1 \quad (\text{A13})$$

Taking into account these three inequalities and considering h_1 as a free parameter to tune, it is obtained from A13

$$h_2 = \frac{b_2}{b_1}h_1$$

From A12

$$h_3 = \frac{b_3}{b_1}h_1$$

To finally prove from A11 that h_3 takes the same value as already given. Replacing these values in expressions A8 to A10, the equalities still are preserved regardless of the value and sign of constants b_i .

297

Third order principal minor. As matrix N is obtained from two vectors, its range cannot be greater than two, then its third order principal minor namely

$$\Delta_3^1(-N) = \det(-N) = 0$$

298

The proof is complete.

299 References

- 300 1. Chen, S.M.; Wang, C.Y.; Liang, T.J. A novel sinusoidal boost-flyback CCM/DCM DC-DC converter. 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014; , 2014; pp. 3512–3516.
- 301 2. Tseng, K.C.; Lin, J.T.; Cheng, C.A. An Integrated Derived Boost-Flyback Converter for fuel cell hybrid electric vehicles. 2013 1st International Future Energy Electronics Conference (IFEEC); , 2013; pp. 283–287.
- 302 3. Siouane, S.; Jovanovic, S.; Poure, P. Service Continuity of PV Synchronous Buck/Buck-Boost Converter with Energy Storage. *Energies* **2018**, *11*. doi:10.3390/en11061369.
- 303 4. Ortigoza, R.S.; Rodriguez, V.H.G.; Marquez, E.H.; Ponce, M.; Sanchez, J.R.G.; Juarez, J.N.A.; Ortigoza, G.S.; Perez, J.H. A Trajectory Tracking Control for a Boost Converter-Inverter-DC Motor Combination. *IEEE Latin America Transactions* **2018**, *16*, 1008–1014.
- 304 5. Fernando, W.A.; Lu, D.D. Bi-directional converter for interfacing appliances with HFAC enabled power distribution systems in critical applications. 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 2017, pp. 1–6. doi:10.1109/ICEMS.2017.8056490.
- 305 6. Singh, S.; Singh, B.; Bhuvaneswari, G.; Bist, V. A Power Quality Improved Bridgeless Converter-Based Computer Power Supply. *IEEE Transactions on Industry Applications* **2016**, *52*, 4385–4394. doi:10.1109/TIA.2016.2575365.
- 306 7. Undeland, T.M.; Robbins, W.P.; Mohan, N. *Power electronics: converters, applications, and design*; New York: John Wiley and Sons, 2003.
- 307 8. Erickson, R.W.; Maksimović, D. *Fundamentals of Power Electronics*; Springer, 2001.

318 9. Mueller, J.A.; Kimball, J. Modeling Dual Active Bridge Converters in DC Distribution Systems. *IEEE*
319 *Transactions on Power Electronics* **2018**, pp. 1–1. doi:10.1109/TPEL.2018.2867434.

320 10. Banerjee, S.; Vergheze, G., Eds. *Nonlinear Phenomena in Power Electronics*; IEEE Press, 2001.

321 11. Cheng, C.H.; Cheng, P.J.; Xie, M.J. Current sharing of paralleled DC-DC converters
322 using GA-based PID controllers. *Expert Systems with Applications* **2010**, *37*, 733 – 740.
323 doi:<https://doi.org/10.1016/j.eswa.2009.05.083>.

324 12. Guo, L.; Hung, J.Y.; Nelms, R.M. Evaluation of DSP-Based PID and Fuzzy Controllers for DC-DC
325 Converters. *IEEE Transactions on Industrial Electronics* **2009**, *56*, 2237–2248.

326 13. Rodríguez-Licea, M.A.; Pérez-Pinal, F.J.; Nuñez-Perez, J.C.; Herrera-Ramirez, C.A. Nonlinear Robust
327 Control for Low Voltage Direct-Current Residential Microgrids with Constant Power Loads. *Energies* **2018**,
328 *11*. doi:10.3390/en11051130.

329 14. Aguilera, R.P.; Quevedo, D.E. Predictive Control of Power Converters: Designs With Guaranteed
330 Performance. *IEEE Transactions on Industrial Informatics* **2015**, *11*, 53–63. doi:10.1109/TII.2014.2363933.

331 15. Alsmadi, Y.M.; Utkin, V.; Haj-ahmed, M.A.; Xu, L. Sliding mode control of power converters: DC/DC
332 converters. *International Journal of Control* **2017**, *0*, 1–22, [<https://doi.org/10.1080/00207179.2017.1306112>].
333 doi:10.1080/00207179.2017.1306112.

334 16. Khaligh, A.; Rahimi, A.M.; Emadi, A. Modified Pulse-Adjustment Technique to Control DC/DC Converters
335 Driving Variable Constant-Power Loads. *IEEE Transactions on Industrial Electronics* **2008**, *55*, 1133–1146.
336 doi:10.1109/TIE.2007.909757.

337 17. Chiang, C.; Chen, C. Zero-Voltage-Switching Control for a PWM Buck Converter Under DCM/CCM
338 Boundary. *IEEE Transactions on Power Electronics* **2009**, *24*, 2120–2126. doi:10.1109/TPEL.2009.2021186.

339 18. Calderón, A.; Vinagre, B.; Feliu, V. Fractional order control strategies for power electronic buck converters.
340 *Signal Processing* **2006**, *86*, 2803–2819. Special Section: Fractional Calculus Applications in Signals and
341 Systems, doi:<https://doi.org/10.1016/j.sigpro.2006.02.022>.

342 19. Suh, J.; Seok, J.; Kong, B. A Fast Response PWM Buck Converter with Active Ramp Tracking Control
343 in Load Transient period. *IEEE Transactions on Circuits and Systems II: Express Briefs* **2018**, pp. 1–1.
344 doi:10.1109/TCSII.2018.2865643.

345 20. Chang, C.; Yuan, Y.; Jiang, T.; Zhou, Z. Field programmable gate array implementation of a single-input
346 fuzzy proportional-integral-derivative controller for DC-DC buck converters. *IET Power Electronics* **2016**,
347 *9*, 1259–1266. doi:10.1049/iet-pel.2015.0688.

348 21. El Aroudi, A.; Giaouris, D.; Iu, H.H.C.; Hiskens, I.A. A review on stability analysis methods for switching
349 mode power converters. *IEEE Journal on Emerging and Selected Topics in Circuits and Systems* **2015**, *5*, 302–315.

350 22. Fiore, D.; Hogan, S.J.; di Bernardo, M. Contraction analysis of switched systems via regularization.
351 *Automatica* **2016**, *73*, 279 – 288. doi:<https://doi.org/10.1016/j.automatica.2016.06.028>.

352 23. di Bernardo, M.; Fiore, D. Switching control for incremental stabilization of nonlinear systems
353 via contraction theory. *2016 European Control Conference (ECC)*, 2016, pp. 2054–2059.
354 doi:10.1109/ECC.2016.7810594.

355 24. Lohmiller, W.; Slotine, J.J.E. On Contraction Analysis for Non-linear Systems. *Automatica* **1998**, *34*, 683 –
356 696. doi:[https://doi.org/10.1016/S0005-1098\(98\)00019-3](https://doi.org/10.1016/S0005-1098(98)00019-3).

357 25. Chen, C.T. *Linear systems theory and design*; Oxford University Press, 1999.

358 26. Vidyasagar, M. *Nonlinear Systems Analysis*; Prentice Hall, 1993.

359 27. Slotine, J.J.E.; Li, W. *Applied nonlinear control*; Vol. 199, Prentice hall Englewood Cliffs, NJ, 1991.

360 28. Khalil, H.K. *Nonlinear control*; Pearson New York, 2015.