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Abstract: Reliable and robust control of power converters is a key issue in the performance of
1 numerous technological devices. In this paper we show a design technique for the control of a DC-DC
2z buck converter with a switching technique that guarantees not only good performance but also global
s stability. We show that making use of the contraction theorem in the Jordan canonical form of the
«  buck converter, it is possible to find a switching surface that guarantees stability but it is incapable
s of rejecting load perturbations. To overcome this, we expand the system to include the dynamics of
s the voltage error and we demonstrate that the same design procedure is not only able to stabilize
7 the system to the desired operation point but also to reject load, input voltage and reference voltage
s perturbations.
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1. Introduction

-
[

12 Many industrial and residential applications use voltage regulation with DC-DC power converters;
1z such applications include fuel cells [1], photovoltaic sources [2,3], control of DC motors [4], lighting
1« appliances [5], computer power supplies [6], and many others. Power converters use a kind of non
s regulated voltage/current source (DC or AC) to convert to a regulated voltage/current one (DC or
1s  AC) that can be larger or lower than the initial one. Usually, the underlying structures in these devices
1w are the so-called buck (step-down), boost (step-up), buck-boost (step down-step up), flyback, Cuk, to
1= mention few, depending on the type of application [7,8]. DC-DC power converters show both fast
1»  speed and capability of managing high power if needed [9]. More than 90% of the total amount of
20 power supply in the world is processed through power converters [10]. For this reason, a precise
=z control of these converters is a critical factor and therefore a vast amount of literature has been devoted
22 to their control. For instance, PID-based schemes [11], Fuzzy PID control [12], robust controllers [13],
= predictive control [14], sliding mode control [15] and a controller based on a modified pulse-adjustment
22 of the PWM [16], just to mention few.

25 The DC-DC buck power converter supplies a lower voltage than the input voltage and is one
26 of the most studied power converters due to its simple design. The underlying topology of the buck
2z converter is non-smooth as it switches back and forth according to a control signal, from continuous to
2s  discontinuous mode, to guarantee the required output voltage. Some examples of control techniques
20 applied to the Buck converter include zero voltage control technique [17], fractional derivative control
30 [18], controller based on active ramp tracking [19] and fuzzy PID controllers [20].
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31 Even though the effectiveness of these non-smooth control actions is out of doubt, usually the
sz design of such controllers are based either on the averaged version of the system which effectively
ss  disregards the non-smoothness; or via linearization. This is because the effect of the nonlinearity is
s« not always entirely understood and therefore the system can only be analyzed in the vicinity of the
s operation point (see [21] for a review on stability methods). This may result in undesired effects such
36 as destabilization when the system is far from the operation point and limits the range of operation in
sz which the DC-DC converter can work. This is because linearizing the system can only assure local
s stability, and the region of attraction is usually unknown.

30 Recently, a novel method to design an asymptotically globally stable controller for switched
20 systems has been introduced in the literature [22,23] following the ideas of contraction theory, also
a1 used in [24]. Although some academic examples were shown using this theory [23], no examples
a2 of technological applications have been yet reported. In this paper, we propose to use these novel
a3 concepts to design a switched controller with applications to DC-DC power converters, specifically
4 to the buck converter, such that the controlled system is asymptotically globally stable. With this
4 purpose, the paper is organized as follows: In section 2 we present some preliminary concepts needed
s for the development of the paper, specifically on linear transformations, matrix measure, Filippov
«z systems and contraction theory. After, in section 3, the buck power converter is presented as well as its
«s principle of operation. In section 4, a controller based on contraction theory is designed and tested
a0 for the buck power converter. As the system is not robust, in section 5 we develop a modified control
so action that uses the principles of integral control which shows robustness preserving global stability.
51 We conclude this paper with some remarks and future perspectives.

s2 2. Mathematical methods

53 In this section we present some standard theory on linear systems (see [25]), matrix measures
s [26-28] and contraction theory applied to stability of switched systems [22,23] Most of the material can
ss be found in the cited documents and references therein.

s 2.1. Linear transformations

Let us consider the piece-wise linear system (PWLS) given by
x = Ax+ Bu, (1)

where u € {u1, uy} and it commutes between booth values depending on the value of the switching
surface h(x)=0. A is a Hurwitz matrix, the pair (A, B) is controllable and all eigenvalues are distinct
but not necessarily real. Then, there exists a real matrix P which transforms the original system into a
canonical form, so called the Jordan form, in the following way:

Aj=P'AP  B;=P'B. @)

57 The transformation matrix can be constructed as follows: For each real eigenvalue, its
ss corresponding eigenvector is computed and assigned to one column of the matrix P. For every
s pair of complex eigenvalues their corresponding complex eigenvectors are computed but only one of
s them is used to construct two column vectors of the matrix P. The first one is composed by the real
e1 parts of the complex eignevector, while the other one is composed by the imaginary parts of the same
ez eigenvector. For example, in a system with one real eigenvector v; and two complex conjugate v, and
63 V¥ the matrix P takes the form

P=[vi Re(vz) Im(vz)]. ®)

Using this transformation matrix we obtain that every real eigenvalue (A; = 7;) produces a column
in the matrix A; with the eigenvalue in the corresponding diagonal element with other elements equal
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to zero. Every complex pair of eigenvalues (Ay y+1 = &y £ By) instead, generates a 2 x 2 block in the
Jordan matrix such that the diagonal part corresponds to the real part of the eigenvalues and the other
positions correspond to the positive and negative imaginay part: other elements are zero. A general
example of this Jordan form is:

m 0 0 0 0 0 T
’ 0 0 0 0
w —B 0 0 .
‘Bk Ky 0 0 . (4)

0 0 a2 —Pr2
0 0 Bri2  ki2

>
—
|
o O O O O

2.2. Matrix measure

The norm-2 induced measure of a matrix A is defined as:
Uz (A) = Amax [A/ + A] /2, ®)

where A4y [] is the largest eigenvalue and A’ is the transpose of A. It is possible to verify that, if the
matrix A in (1) is Hurwitz, then py(Aj) is always negative. This is an important issue in the stability
analysis performed in this paper.

2.3. Contraction analysis for Filippov systems

Another way to define the system (1), is as a bimodal Filippov system

. ) Ff(x) ifxeST

X_{ F(x) ifxes . ©)
where

Ff(x) = Ax+Bu; and F~(x) = Ax+ Bup
being
St={xelU:h(x) >0} and S~ ={xeU:h(x)<0}.
Here, h : Y — R is a smooth function called switching function and the surface X defined as
Y={xelU:h(x)=0} (7)

is called the switching surface.

According to [22,23], the bimodal Filippov system (6) is incrementally exponentially stable in a
so-called K-reachable set C C U with convergence rate r = min{ry, 7, }, if there exists some norm in C
with associated measure y such that for some positive constants 1, r»

oF Tt (x) —
< _ +
U I ) < —n Vx € 5T,

oF (x —
y< ax( )>§—r2 Vx e S,

®)

and
u((F*(x) = F (x))-Vh(x)) =0 Vx€Z, )

d0i:10.20944/preprints201809.0398.v1
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Figure 1. Schematic diagram of a buck power converter.

7 where ST and S~ represent the closures of the sets S* and S~ respectively.
If system (6) is incrementally exponentially stable then there exist constants k > 1 and A > 0 such
that
x() = y ()] < ke [x(0) — y(0)] V¢ > to ¥x(0), y(0) € C

22 where x(t) and y(t) are solutions of the system. Thus we can establish global stability properties for
7s  system (1). Making use of the previous concepts, we will design an hybrid control for a buck power
=a converter that guarantees not only global stability, but is also robust to different disturbances.

7 3. The buck power converter

The scheme of a buck power converter is depicted in Figure 1. The equations describing this
dynamical system are

C-CEDC)(E)

7 where R is the load resistance, C is the capacitor’s capacitance, L is the coil’s inductance, and E is
7z the voltage provided by the power source. The state variable v corresponds to the voltage across the
7e capacitor and i quantifies the current flowing through the inductor. The control signal u takes values
7o in the discrete set {0, 1}. When u = 0 the switch is opened and the power source (input voltage) does
s not feed the system. In this case, the load is being fed by the capacitor and the inductor. For simplicity
e we will perform a first transformation which maps the original system (10) into a dimensionless
2 framework by means of the following similarity transformation x = M~!(v i)/, where

E 0
M—<o E ) an
VvL/C

Also we perform a normalization of the time as T = t/+/LC, such that a new and unique

parameter y = %\/g holds the information of the parameters in the system. Therefore we can rewrite

the equations as:
X 1 -y 1 X1 0
= 12

es Or in a compact form as x = Ax + Bu.
With the aim of designing the controller, it is necessary to transform the system to the Jordan
normal form. As the pair (A, B) is controllable, then as outlined in Section 2.1, there exists a
transformation matrix P given by
/2 p
P = (13)
1 0
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which transforms the system into:

1\ _ | —=v/2 —p 21 1
()07 ) (2) (e ) oo

where z = P~!x and we have used p := p(y) = /4 — 72/2. These equations are noted in a compact
formas z = Ajz + Bju.

4. Application to 2D-case

4.1. Controller design

Using the contraction theorem outlined in Sec. 2.3, we can establish that the converter operating
with the switched signal control u will be stable if the following two conditions are satisfied:

a)ur(Ay) < —r1,Vz

b)puz(By - Vh(z)) =0,Vz € h(z) =0. (15)

One can easily show that ji5(Aj) = —7/2, hence condition a) is always met as <y is always positive.
Then, considering /(z) as a linear function of the states h(z) = (hy hy) - (21 z2)’, the condition b) can

be written as:
! () | =0 (16)
A\ —1/(2p) A

It is possible to demonstrate (see Appendix A) that the following choice of h(z):

B;(2)
I’l(Z) hiz1 + B](l)
where B (i) is the i — th row element in By, fulfills condition (16) if the pairs {B; (i), h(i)} have opposite
signs. Then, according to the signs of Bj(i), it is necessary to choose /11 < 0 and h; > 0. In this way, the
matrix from which the maximum eigenvalue needs to be calculated according to Eq. (5), has one null
eigenvalue and the other one can be computed as A, = hy/p?, which is smaller than zero. Since the
switching surface has been calculated in the canonical space, this result needs to be transformed back
into the dimensionless state variables through x = Pz. The switching manifold is then obtained as
h(x) = h; - P71 - x, or equivalently:

hzy = (b —h1v/(20)) - (21 22) :=hz - 2, (17)

h(x) = (h1 h(1+(v/(20))%) - (x1 x2) = hy - x (18)

Of course, the term hy correspond the vector in the normal direction of the switching surface.
With the aim of simplifying the calculations we normalize such vector such that |/1,| = 1. Moreover,
we need to subtract the reference values to the states to ensure the regulation to the operation point.

— 2 = - —
h(x) - <_ \/4’:7 \/m) : (xl = Xiref X2 — eref)/ =0. 19)
Finally, we can define the switching manifold in terms of the original state variables
(x1 x2) = M~ !(v i)’ leading to:

. o 2y/L/C _ . o o
h(o,i) = <_E = wwmz).(v_vref i—T.) 0. (20)

d0i:10.20944/preprints201809.0398.v1
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Figure 2. A) Time trace of the voltage in the capacitor v. During the first 30ms a 7,y = 32V is used,
after this a drastic change to 0,,y = 16V is applied (depicted in the dashed lines). The time trace
of the steady state percentage error is also depicted in the insets for both values of 7,,¢. B) Phase
representation of the steady state for 7,,f = 32 and C) 0,y = 16, with the equilibrium point indicated
by the red star. Simulations were performed with an RK4 algorithm with event detection to identify
collisions with the hysteresis band. Steady state was considered after 20ms of simulation time. Initial
conditions were chosen as (v,1) = (0,0). Other parameters as in the main text.

107 It is worth noticing that neither /; nor h appear in the calculations. On the one hand h; is
10e parametrized via hy (see appendix A), on the other hand h; disappear via the normalization, reducing
10e  effectively two degrees of freedom.

1o 4.2. Simulation results

111 Unless otherwise stated we will use the following set of parameters for numerical computations:
12 R=20Q), L =2mH, C = 40uF, E = 40V and 7, ;= 32V. The desired current reference can be assumed
us  tobe i, s = U, /R = 1.6A. With this, ¥ = 0.35 and p ~ 0.98. Also, as electronic devices cannot switch
us  with infinite speed, it is necessary to implement a hysteresis band for simulating the change in the
us position of the MOSFET. We have designed this band in such a way that the switching time is close to
us  175ps. Under these assumptions, Eq. (20) takes the following values:

h(v,i) = (—44x 1072 0.1741) - (0~ Bpep i — Ipep)’ +0.02 a2

117 In Fig. 2 we show the performance of the designed control. In particular, in Fig. 2A) the time
us  trace of the voltage v is depicted in response to a drastic change in the reference output voltage 7, .
1o During the first 30ms, where the system is subject to 0,y = 32V (top dashed line), the output voltage
120 reaches the steady state close to 5.7ms, with no overshoot and the maximum error in steady state is
122 lower than 0.6% (see inset). After 30ms, the reference voltage is changed to 0,y = 16V (bottom dashed
122 line) and the system is able to track the change and stabilize to the new value of output voltage. In Fig.
12s 2B) and C) we plot the orbit in the (v, i) space during the steady state for the two references used in
122 panel A) of the same figure. From this, one can observe that indeed the equilibrium value (7,, fr Ire f) is
12 reached through the continuous rippling of the orbit around the equilibrium point (red symbol).
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Figure 3. Time response of the capacitor’s voltage v. During the first 30ms, the value of the resistor
is set to R = 20Q), after this the load is changed to R = 18(). Inset: Steady state percentage error
(considered 15ms after the presentation of the disturbance). The desired output is plot with the dashed
line. Other details as in Fig. 2.

127 We also tested the robustness of the control to changes in the load. In Fig. 3 is depicted the time
126 trace of the voltage in this scenario. Following a similar procedure as in Fig. 2, after 30ms, a change in
120 the resistance from R = 2002 to R = 150} (10% difference) is applied. From this figure it is possible to
130 see that the system drifts away from the reference output ,,y = 32V (dashed line), producing a steady
131 state error of around 18% (see inset).

133 So far, the controller designed with contraction theory has been successful to operate in a desired
13« way and reject disturbances in the output voltage. However, when a disturbance in the load is
135 presented (a common situation in power converters) the system loses the ability to follow the desired
13 output voltage, indicating that the controller is not robust. To solve this problem, we extend the
13z proposed controller based on the idea of an integral control action.

13s 5. Application to 3D-case

130 5.1. Controller design based on a modified integral control action

140 In control theory it is known that perturbations are better rejected by a PI controller; however, in
11 this case, adding a PI controller implies to add a pole in the origin of the system which prevents us
12 from applying contraction theorem. Then, with the aim of enhancing the robustness of the controlled
13 system, we will modify the control action in such a way that it introduces the dynamics of the error.
12 To do so we introduce a new state variable x3 in the dimensionless system in the following way:
s X3 = e — 6x3, with e = Xy, — x1 defined as the output error and ¢ as the time constant of x3. As
1s X1 = v/E, then Xy,,f = T,¢/E. Under these assumptions, the system takes the following form:

X1 -y 1 0 X1 0 0
» |=[ -1 0 o o [+ 1 Jut| 0| Fiey (22)
X3 -1 0 —¢ X3 0 1

147 Wlth
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u_{ 1 ifh(x) <0 23

0 otherwise.

or in compact form x = Ax + Bu + QF1ref- The aim of the term —J appearing in position {3,3} in
the matrix A is to stabilize the system allowing us to apply the contraction theorem. In this way, the
value of § must be very small to avoid high steady state error. As the pair (A, B) is controllable we
then proceed to apply the general theory with a new consideration: In the construction of the matrix P
we will take into account the norm of the eigenvectors v;, which will allow us to gain more degrees of
freedom in the system to tune the controller. Indeed this is not an issue when obtaining the canonical
form A; as the operation P! AP cancels out any norm that may have been considered. However, the
transformed matrix Bj, which is critical for the stability conditions Eq. (15), may depend on the chosen
modules of the eigenvectors. To take this into account, we need to include in Eq. (3) the magnitude of
the eigenvectors via the scaling factors ¢ and ¢, as follows:

P=[civi cRe(vy) colm(v)]. (24)

The general form of the transformation matrix can then be written as

0 ca(y—20)/2 —cop
P= 0 c2(2—90)/2 —cpé (25)
c1 cH 0

which leads to the transformed system z = Ajz + Bju + QjXy,.f, where

—6 0 0

A = 0 —v/2 0 (26)
0 -0 —v/2

—1/(c1(6* =6 +1))
B = 1/(c2(8% =46 +1))
—(26 —7)/(2c20(6* — y6 + 1))

/

(100)

The purpose will be again to find a switching function h(z) = hyz1 + hpzy + h3z3 that meets the
conditions of global stability in Eq. (15) in the transformed space. One can easily verify that, provided
that & < /2, u(Aj) = —/2, fulfilling condition a). Moreover, one of the eigenvalues of By - Vh(z) is
always 0 due to the fact that the matrix is constructed using only two linearly independent vectors

(see Appendix A.2). Also, following a similar procedure as in the 2D case, choosing the following
switching function :

Qy

B;(3)
By(1)

B;(2)
By(1)

the condition b) in Eq. (9) is always guaranteed if, for every pair {B;(i), h(i)}, its elements have
opposite signs and the signs of c1 and h; are equal (see appendix A) . From this, the switching surface
in the canonical space is:

h(z) = hizq + hizp + hizs, (27)

. €126 —7)
2¢0p0
It is worth noticing that for the 2D case, considering arbitrary norms for the eigenvectors does not
have an effect in the possible switching functions, in contrast to the extended system. This is because
there is only one constant associated to that norm (two complex eigenvalues). Another important

h(z) = (h1 —h% > (21 20 23) == hs 2 (28)

d0i:10.20944/preprints201809.0398.v1
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166 aspect is that the plane defined in Eq. (28) depends on the ratio ¢; /c2 and not on their individual values
167 which effectively reduces one degree of freedom in the tunning parameters of the hybrid controller
16 based on the integral action. As in the previous case, the next steps in the design are i) apply the
10 transformation to the dimensionless variables; ii) normalize by the norm of the resulting orthogonal
70 vector to the switching surface in the x space, i.e. |, - P~1| ; and iii) transform back to the original
i1 buck converter states variables (v, i) via the matrix M (recall that the similarity transformation is
w2 x = M~1(v i)"). It is important to notice that for the 3D system, the matrix M is not unique, as we don't
173 know the exact mapping between the extended variable x3 and its counterpart in the real system y. We
17a  can assume without loss of generality and preserving the idea of the integral action, that the mapping
175 between x3 and y is given by a scaling factor, which after some algebra can be demonstrated to be
we x3 = y/(EVLC). This results preserves the information of the error defined by 3,, . The similarity
1z transformation matrix is then given by:

E 0 0
M=| 0 E/VL/C 0 : (29)
0 0 EvLC
178 We will avoid displaying the rather long expression of performing the aforementioned steps, but

e they can be summarized in the operation:

hy-P1

. _ -1 . /
h(v,i,y) = TP M (v i y). (30)
180 The system finally reads in its original variables as:
v - ¢ O v 0 0
i|= -t 0 o i |+ E/L Ju+| 0 | (31)
. )
181 with
1 ifh(v,i,y) <0
= 32
! { 0 otherwise. (32)
12 5.1.1. Simulation results
163 From Egs. (30) and (31), the resulting controlled system can be tuned via two parameters, namely

1es the time constant of the extended variable J, and the ratio ¢1/c, of the norm of the eigenvectors
s associated with matrix A. To tune these parameters, we performed an optimization routine which
1es  explored several possible combinations of parameters J and c; /c; in a wide range of values. Following
17 an heuristic approximation we chose the values which met some desired criteria, namely small
1 overshoot and small settling time. From this analysis we concluded that a sufficiently small value of
180 0 is necessary in order for the steady state error to be small. Also, as ¢1/c; is decreased, the system
10 evolves faster but produces large overshoots; conversely, increasing the ratio reduces the overshoot but
101 slows down the system. A good performance was achieved by choosing 6 = 1 x 10~* and ¢; /¢, = 9.
102 With these choices, the numerical values for the switching surface are:

h(v,i,y) = (—4.3x107% 01741 —1.03)-(v i y) +0.05, (33)

193 where we have set the hysteresis to a value that meets the MOSFET switching frequency criterion
10s  as in the previous section. It can be noted that this controller does not require any information about
15 current reference as in 2D-case.

196
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Figure 4. A) Time trace of the voltage in the capacitor v. During the first 40ms a 7,,y = 32V is used,
after this a drastic change to 7,,y = 16V is applied (depicted in the dashed lines). The time trace
of the steady state percentage error is also depicted in the insets for both values of 0,.¢. B) Phase
representation of the steady state for 7,,f = 32 and C) 7,y = 16, with the equilibrium point indicated
by the red star. This results were obtained by making c;/c, = 9 and § = 1 x 10~%. Steady state was
considered after 25ms of transient dynamics. Other parameters as in the main text and Fig. 2.

The results of the 3D system behavior and its ability to reject disturbances in the reference voltage
are depicted in Figure 4. In this figure, a reference voltage of 7,,y = 32V is applied during the first
40ms of the simulation, after this, the reference voltage is drastically decreased by a 50%, i.e 7,y = 16V
and the system is allowed to evolve during 40ms more. From Fig. 4A) it is possible to deduce that, in
the 3D system, the controller is also able to regulate with a settling time of ~ 10ms and a steady state
error smaller than 1%. Not only this, but also the control is robust against disturbances in the reference
output value. Panels B) and C) of the same figure show the orbit exhibited by the system in the steady
state before and after the disturbance, which clearly evolves in the neighborhood of the equilibrium
value (0y,f, irer) (red star).

We also tested the capability of the system to reject disturbances both in the load R and the input
voltage E. To do so we simulated a similar set-up to the one described for the 2D system. In particular
we evolved the unperturbed system during 40ms to achieve a steady state, and immediately after the
perturbation is presented. For Fig. 5A) the perturbation is induced as a sudden change in the load
from R = 20Q) to R = 15Q) (25% change). As depicted in the main figure of the panel and its inset, the
system recovers to the reference voltage 7,,y = 32V (dashed line) with a percentage error smaller than
1%. A similar scenario is plotted in Fig 5B), in this case the perturbation is presented as a change in the
input voltage from E = 40V to E = 50V. Even though the perturbation in the input corresponds to a
25% change, the system doesn’t drift away from the equilibrium point.

It should be noticed that the first two elements in the normal vector of the switching surface in
Eq. (33), are exactly those of Eq. (21) for the 2D case, where neither the norm of the vectors nor J were
involved. Hence, the effect of ¢; /¢, and J are only exhibited in the third term.

6. Conclusions

In this paper a stable hybrid control technique was designed and analyzed in a buck power
converter, applying results from contraction analysis which make use of the induced matrix measure.

doi:10.20944/preprints201809.0398.v1
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Figure 5. A) Time response of the capacitor’s voltage v. During the first 40ms, the value of the resistor
is set to R = 20Q), after this the load is changed to R = 15Q). Insets: Steady state percentage error
(considered 25ms after the presentation of the disturbance). The desired output is plot with the dashed
line. B) Same as A) for a disturbance in the input voltage E. During the first 40ms E = 40V, after this it
is changed to E = 50V. Other details as in Fig. 2.

223 We took advantage of the Jordan canonical form of the system to guarantee the conditions of stability
224 resulting from contraction analysis, which wouldn’t have been met in the original form of the system.
22 For the original 2D buck converter, two reference points X1, and X,y were introduced in the switching
226 function to allow for regulation to the desired state. Under these conditions, the controller presented
227 good performance and robustness to voltage reference change, however, as the load varies, regulation
226 is lost. To overcome this issue we extended the system to take into account the dynamics of the error,
220 in a similar similar way to the design of a PI controller. With this design, the controlled system showed
230 robustness to several types of disturbances including load and input voltage changes.

231 Although the 3D system is robust, it comes with the price of increasing the settling time to around
232 10ms. Other controllers applied to the buck converter may show better performance in this particular
233 matter. Nonetheless it should be stressed that the method outlined in this paper is not based on the
23s  linearized system but on the nonlinear form, such that the final controller is globally stable which
235 cannot be guaranteed using linearization. Indeed we have numerically tested the globally stability
ass  property by performing extensive simulations for different initial conditions in the (v, i, y) space. These
237 tests showed convergence for all the simulations.

238 For the sake of simplifying the calculations we have considered throughout this manuscript a
230 switching function with zero offset. Introducing the offset in this function, which amounts to perform a
2¢0 translation of the switching surface, does not change any of the stability criteria that we have presented
2a1 here, but it could certainly serve as a further tunning parameter of the controller. A general direction is
2a2  to choose the offset in such a way that the trajectory of the system enters in sliding mode as early as
2a3  possible.

240 The analytic results presented here hold for the theoretical set-up in which perfect sliding over the
2as  switching manifold is allowed. Realistically speaking this is unachievable due to the finite frequency
2es  Of the MOSFET used to implement the switching action, and therefore we are constrained to include
2z in the simulations a hysteresis band which allows for finite switching frequencies. The size of the
2es  hysteresis band is an important issue because its width determines the size of the chattering in the
2a0  voltage variable.
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250 Finally, whether the approach presented here can be applied to other power converters such as the
21 Boost, is currently an open problem. This is because not every single system can be easily approached
22 by contraction theory and other standard tools for stability analysis might be the best option in these
253 Cases.
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203 Appendix A

204 In this appendix we prove that, for a particular selection of the constants h;, (B - Vh(x)) :=
265 ]/lz(B . ]’l) <0.

206 Appendix A.1 Matrix measure for a 2D system

267 Without loss of generality, we can consider two vectors B = [by by] and h = [l hy]. The matrix
26 N is formed as

N=B-h+HK B.

269 The measure of this matrix must be equal to zero over the switching surface to meet the theorem
20 in [22,23]. As this matrix is symmetric, then:

#2(N) = Amax[N" + N]/2 = Amax[N] =0 (A1)

an This condition is equivalent to the matrix N being negative semidefinite, or the matrix —N being
22 positive semidefinite, i.e.

Amin[—-N] =0

273 An extensive discussion about positive definiteness can be found in [25,26]. Then, the conditions
27a  associated with the eigenvalues can be computed using theory of positive definite matrices which
215 states that in a symmetric matrix all its eigenvalues are greater than zero if and only if all its principal
e minors are positive. This matrix is called positive definite. A matrix is positive semidefinite if all its
277 eigenvalues are greater than or equal to zero. On the other hand, a matrix N is negative semidefinite if
2z —N is positive semidefinite.

In this way, the matrix N is given by:

. 2b1hq bihy + byl
N = ( bihy 4 byl 2bohy ) ’ (A2)

280 To fulfill the condition to be negative semidefinite, we have to check that all principal minors of
21 —N are greater than or equal to zero (A; > 0)
282

First order principal minors. The matrix has two first order principal minors which are:

Mj(=N) = Ajp(=N) = =Nig = —2bi/y >0 (A3)
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and
Mi(=N) := App(=N) = =Ny = —2bshp > 0 (A4)

As it can be seen, the only condition is that the pairs {b;, &;} have opposite signs.

Second order principal minors. This system has only one second order principal minor which is
computed as:

1/ Ay —2b1hy —biha —bohy 1\
B2(=N) _d6t< by —boly  —2bohy 20

From this inequality is obtained:
bihy = bohy (A5)

Supposing h; as a free parameter to tune, it is obtained that:

by

hzza

hy (A6)

Replacing A6 in A4 it can be seen that independently of the value and sign of by the inequality is
satisfied.

The proof is complete.

Appendix A.2 Measure matrix for 3D system

Following the ideas of previous section, N is given by:

2b1ly bihy + bohy  bihs + bshy
N = bihy + byl 2byhy byhs + bshy (A7)
bihs + bshy  bohs + bshy 2bshs

To fulfill the condition to be negative semidefinite, we have to check that all principal minors of
—N are greater than or equal to zero (Ag > 0)

First order principal minors. Here, there are three first order principal minors, they are:

M}(=N) := A3 (=N) = =Npy = —2bi/y >0 (A8)

Mi(=N) := Ap(=N) = =Ny = —2byly > 0 (A9)
and

M3 (=N) := Ai3(—=N) = —Nz3 = —2b3h3 > 0 (A10)

As it can be seen, the only condition is that the pairs {b;, h;} have opposite signs.

Second order principal minor. In this case, there are three second order principal minors. The

first one is:
1 —2byhy —byhz — b3hy
_ — >
AZ( N) det ( —bohs — bshy —2bzhs =0

After some computations the following equation is obtained.

bohs = bshy (A11)

d0i:10.20944/preprints201809.0398.v1
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Other second order principal minor is given by:
—2b1h —byhz — bzh
A2(—N) = det 1m s =03l ) o
2( ) ¢ ( —bihs — bshy —2bshs -
As in previous case, it is obtained:
bihz = b3y (A12)
The last second order principal minor is computed as:
—2b1hy —bihy — bohy
A3(—N) = det >0
2( ) ¢ ( —bihy — byl —2byhy -
and in a similar way it is obtained:
bihy = by (A13)
Taking into account these three inequalities and considering /i as a free parameter to tune, it is
obtained from A13 )
hy = 2h
2= M
From A12 )
hy = 2h

205 To finally prove from A1l that h3 takes the same value as already given. Replacing these values in
206 expressions A8 to Al0, the equalities still are preserved regardless of the value and sign of constants b;.

Third order principal minor. As matrix N is obtained from two vectors, its range cannot be
greater than two, then its third order principal minor namely

AY(—N) = det(—N) =0
208 The proof is complete.
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