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Abstract: Reliable and robust control of power converters is a key issue in the performance of 
numerous technological devices. In this paper we show a design technique for the control of a DC-DC 
buck converter with a switching technique that guarantees not only good performance but also global 
stability. We show that making use of the contraction theorem in the Jordan canonical form of the 
buck converter, it is possible to find a switching surface that guarantees stability but it is incapable 
of rejecting load perturbations. To overcome this, we expand the system to include the dynamics of 
the voltage error and we demonstrate that the same design procedure is not only able to stabilize 
the system to the desired operation point but also to reject load, input voltage and reference voltage 
perturbations.
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1. Introduction11

Many industrial and residential applications use voltage regulation with DC-DC power converters;12

such applications include fuel cells [1], photovoltaic sources [2,3], control of DC motors [4], lighting13

appliances [5], computer power supplies [6], and many others. Power converters use a kind of non14

regulated voltage/current source (DC or AC) to convert to a regulated voltage/current one (DC or15

AC) that can be larger or lower than the initial one. Usually, the underlying structures in these devices16

are the so-called buck (step-down), boost (step-up), buck-boost (step down-step up), flyback, Ćuk, to17

mention few, depending on the type of application [7,8]. DC-DC power converters show both fast18

speed and capability of managing high power if needed [9]. More than 90% of the total amount of19

power supply in the world is processed through power converters [10]. For this reason, a precise20

control of these converters is a critical factor and therefore a vast amount of literature has been devoted21

to their control. For instance, PID-based schemes [11], Fuzzy PID control [12], robust controllers [13],22

predictive control [14], sliding mode control [15] and a controller based on a modified pulse-adjustment23

of the PWM [16], just to mention few.24

The DC-DC buck power converter supplies a lower voltage than the input voltage and is one25

of the most studied power converters due to its simple design. The underlying topology of the buck26

converter is non-smooth as it switches back and forth according to a control signal, from continuous to27

discontinuous mode, to guarantee the required output voltage. Some examples of control techniques28

applied to the Buck converter include zero voltage control technique [17], fractional derivative control29

[18], controller based on active ramp tracking [19] and fuzzy PID controllers [20].30
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Even though the effectiveness of these non-smooth control actions is out of doubt, usually the31

design of such controllers are based either on the averaged version of the system which effectively32

disregards the non-smoothness; or via linearization. This is because the effect of the nonlinearity is33

not always entirely understood and therefore the system can only be analyzed in the vicinity of the34

operation point (see [21] for a review on stability methods). This may result in undesired effects such35

as destabilization when the system is far from the operation point and limits the range of operation in36

which the DC-DC converter can work. This is because linearizing the system can only assure local37

stability, and the region of attraction is usually unknown.38

Recently, a novel method to design an asymptotically globally stable controller for switched39

systems has been introduced in the literature [22,23] following the ideas of contraction theory, also40

used in [24]. Although some academic examples were shown using this theory [23], no examples41

of technological applications have been yet reported. In this paper, we propose to use these novel42

concepts to design a switched controller with applications to DC-DC power converters, specifically43

to the buck converter, such that the controlled system is asymptotically globally stable. With this44

purpose, the paper is organized as follows: In section 2 we present some preliminary concepts needed45

for the development of the paper, specifically on linear transformations, matrix measure, Filippov46

systems and contraction theory. After, in section 3, the buck power converter is presented as well as its47

principle of operation. In section 4, a controller based on contraction theory is designed and tested48

for the buck power converter. As the system is not robust, in section 5 we develop a modified control49

action that uses the principles of integral control which shows robustness preserving global stability.50

We conclude this paper with some remarks and future perspectives.51

2. Mathematical methods52

In this section we present some standard theory on linear systems (see [25]), matrix measures53

[26–28] and contraction theory applied to stability of switched systems [22,23] Most of the material can54

be found in the cited documents and references therein.55

2.1. Linear transformations56

Let us consider the piece-wise linear system (PWLS) given by

ẋ = Ax + Bu , (1)

where u ∈ {u1, u2} and it commutes between booth values depending on the value of the switching
surface h(x)=0. A is a Hurwitz matrix, the pair (A, B) is controllable and all eigenvalues are distinct
but not necessarily real. Then, there exists a real matrix P which transforms the original system into a
canonical form, so called the Jordan form, in the following way:

AJ = P−1 AP BJ = P−1B . (2)

The transformation matrix can be constructed as follows: For each real eigenvalue, its57

corresponding eigenvector is computed and assigned to one column of the matrix P. For every58

pair of complex eigenvalues their corresponding complex eigenvectors are computed but only one of59

them is used to construct two column vectors of the matrix P. The first one is composed by the real60

parts of the complex eignevector, while the other one is composed by the imaginary parts of the same61

eigenvector. For example, in a system with one real eigenvector v1 and two complex conjugate v2 and62

v̂2 the matrix P takes the form63

P = [v1 Re(v2) Im(v2)] . (3)

Using this transformation matrix we obtain that every real eigenvalue (λj = ηj) produces a column
in the matrix AJ with the eigenvalue in the corresponding diagonal element with other elements equal
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to zero. Every complex pair of eigenvalues (λk,k+1 = αk ± βk) instead, generates a 2× 2 block in the
Jordan matrix such that the diagonal part corresponds to the real part of the eigenvalues and the other
positions correspond to the positive and negative imaginay part: other elements are zero. A general
example of this Jordan form is:

AJ =



η1 0 0 0 0 0 · · ·

0
. . . 0 0 0 0 · · ·

0 · · · αk −βk 0 0 · · ·
0 · · · βk αk 0 0 · · ·
0 · · · 0 0 αk+2 −βk+2 · · ·
0 · · · 0 0 βk+2 αk+2 · · ·
...

...
...

...
...

...
. . .


. (4)

2.2. Matrix measure64

The norm-2 induced measure of a matrix A is defined as:

µ2(A) = λmax[A′ + A]/2 , (5)

where λmax[·] is the largest eigenvalue and A′ is the transpose of A. It is possible to verify that, if the65

matrix A in (1) is Hurwitz, then µ2(AJ) is always negative. This is an important issue in the stability66

analysis performed in this paper.67

2.3. Contraction analysis for Filippov systems68

Another way to define the system (1), is as a bimodal Filippov system

ẋ =

{
F+(x) if x ∈ S+

F−(x) if x ∈ S−.
(6)

where
F+(x) = Ax + Bu1 and F−(x) = Ax + Bu2

being
S+ = {x ∈ U : h(x) > 0} and S− = {x ∈ U : h(x) < 0} .

Here, h : U → R is a smooth function called switching function and the surface Σ defined as

Σ = {x ∈ U : h(x) = 0} (7)

is called the switching surface.69

70

According to [22,23], the bimodal Filippov system (6) is incrementally exponentially stable in a
so-called K-reachable set C ⊆ U with convergence rate r = min{r1, r2}, if there exists some norm in C
with associated measure µ such that for some positive constants r1, r2

µ

(
∂F+(x)

∂x

)
≤ −r1 ∀x ∈ S+,

µ

(
∂F−(x)

∂x

)
≤ −r2 ∀x ∈ S−,

(8)

and
µ((F+(x)− F−(x)) · ∇h(x)) = 0 ∀x ∈ Σ, (9)
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Figure 1. Schematic diagram of a buck power converter.

where S+ and S− represent the closures of the sets S+ and S− respectively.71

If system (6) is incrementally exponentially stable then there exist constants k ≥ 1 and λ > 0 such
that

|x(t)− y(t)| ≤ ke−λ(t−t0)|x(0)− y(0)| ∀t ≥ t0 ∀x(0), y(0) ∈ C

where x(t) and y(t) are solutions of the system. Thus we can establish global stability properties for72

system (1). Making use of the previous concepts, we will design an hybrid control for a buck power73

converter that guarantees not only global stability, but is also robust to different disturbances.74

3. The buck power converter75

The scheme of a buck power converter is depicted in Figure 1. The equations describing this
dynamical system are (

v̇
i̇

)
=

(
− 1

RC
1
C

− 1
L 0

)(
v
i

)
+

(
0
E
L

)
u (10)

where R is the load resistance, C is the capacitor’s capacitance, L is the coil’s inductance, and E is76

the voltage provided by the power source. The state variable v corresponds to the voltage across the77

capacitor and i quantifies the current flowing through the inductor. The control signal u takes values78

in the discrete set {0, 1}. When u = 0 the switch is opened and the power source (input voltage) does79

not feed the system. In this case, the load is being fed by the capacitor and the inductor. For simplicity80

we will perform a first transformation which maps the original system (10) into a dimensionless81

framework by means of the following similarity transformation x = M−1(v i)′, where82

M =

(
E 0
0 E√

L/C

)
(11)

Also we perform a normalization of the time as τ = t/
√

LC, such that a new and unique

parameter γ = 1
R

√
L
C holds the information of the parameters in the system. Therefore we can rewrite

the equations as: (
ẋ1

ẋ2

)
=

(
−γ 1
−1 0

)(
x1

x2

)
+

(
0
1

)
u (12)

or in a compact form as ẋ = Ax + Bu.83

With the aim of designing the controller, it is necessary to transform the system to the Jordan
normal form. As the pair (A, B) is controllable, then as outlined in Section 2.1, there exists a
transformation matrix P given by

P =

 γ/2 ρ

1 0

 (13)
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which transforms the system into:(
ż1

ż2

)
=

(
−γ/2 −ρ

ρ −γ/2

)(
z1

z2

)
+

(
1

−γ/(2ρ)

)
u (14)

where z = P−1x and we have used ρ := ρ(γ) =
√

4− γ2/2. These equations are noted in a compact84

form as ż = AJz + BJu.85

86

4. Application to 2D-case87

4.1. Controller design88

Using the contraction theorem outlined in Sec. 2.3, we can establish that the converter operating89

with the switched signal control u will be stable if the following two conditions are satisfied:90

a)µ2(AJ) < −r1 , ∀z
b)µ2(BJ · ∇h(z)) = 0, ∀z ∈ h(z) = 0 .

(15)

One can easily show that µ2(AJ) = −γ/2, hence condition a) is always met as γ is always positive.91

Then, considering h(z) as a linear function of the states h(z) = (h1 h2) · (z1 z2)
′, the condition b) can92

be written as:93

µ2

((
1

−γ/(2ρ)

)
· (h1 h2)

)
= 0 . (16)

It is possible to demonstrate (see Appendix A) that the following choice of h(z):94

h(z) = h1z1 +
BJ(2)
BJ(1)

h1z2 = (h1 − h1γ/(2ρ)) · (z1 z2)
′ := hz · z , (17)

where BJ(i) is the i− th row element in BJ , fulfills condition (16) if the pairs {BJ(i), h(i)} have opposite95

signs. Then, according to the signs of BJ(i), it is necessary to choose h1 < 0 and h2 > 0. In this way, the96

matrix from which the maximum eigenvalue needs to be calculated according to Eq. (5), has one null97

eigenvalue and the other one can be computed as λ2 = h1/ρ2, which is smaller than zero. Since the98

switching surface has been calculated in the canonical space, this result needs to be transformed back99

into the dimensionless state variables through x = Pz. The switching manifold is then obtained as100

h(x) = hz · P−1 · x, or equivalently:101

h(x) =
(
h1 h1(1 + (γ/(2ρ))2) · (x1 x2)

′ := hx · x (18)

Of course, the term hx correspond the vector in the normal direction of the switching surface.102

With the aim of simplifying the calculations we normalize such vector such that |hx| = 1. Moreover,103

we need to subtract the reference values to the states to ensure the regulation to the operation point.104

h(x) =

(
− γ√

4+γ2
2√

4+γ2

)
· (x1 − x̄1re f x2 − x̄2re f )

′ = 0 . (19)

Finally, we can define the switching manifold in terms of the original state variables105

(x1 x2) = M−1(v i)′ leading to:106

h(v, i) =

(
− γ

E
√

4+γ2
2
√

L/C
E
√

4+γ2

)
· (v− v̄re f i− īre f )

′ = 0 . (20)
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Figure 2. A) Time trace of the voltage in the capacitor v. During the first 30ms a v̄re f = 32V is used,
after this a drastic change to v̄re f = 16V is applied (depicted in the dashed lines). The time trace
of the steady state percentage error is also depicted in the insets for both values of v̄re f . B) Phase
representation of the steady state for v̄re f = 32 and C) v̄re f = 16, with the equilibrium point indicated
by the red star. Simulations were performed with an RK4 algorithm with event detection to identify
collisions with the hysteresis band. Steady state was considered after 20ms of simulation time. Initial
conditions were chosen as (v, i) = (0, 0). Other parameters as in the main text.

It is worth noticing that neither h1 nor h2 appear in the calculations. On the one hand h2 is107

parametrized via h1 (see appendix A), on the other hand h1 disappear via the normalization, reducing108

effectively two degrees of freedom.109

4.2. Simulation results110

Unless otherwise stated we will use the following set of parameters for numerical computations:111

R = 20Ω, L =2mH, C = 40µF, E = 40V and v̄re f = 32V. The desired current reference can be assumed112

to be īre f = v̄re f /R = 1.6A. With this, γ ≈ 0.35 and ρ ≈ 0.98. Also, as electronic devices cannot switch113

with infinite speed, it is necessary to implement a hysteresis band for simulating the change in the114

position of the MOSFET. We have designed this band in such a way that the switching time is close to115

175µs. Under these assumptions, Eq. (20) takes the following values:116

h(v, i) =
(
−4.4× 10−3 0.1741

)
· (v− v̄re f i− īre f )

′ ± 0.02
.

(21)

In Fig. 2 we show the performance of the designed control. In particular, in Fig. 2A) the time117

trace of the voltage v is depicted in response to a drastic change in the reference output voltage v̄re f .118

During the first 30ms, where the system is subject to v̄re f = 32V (top dashed line), the output voltage119

reaches the steady state close to 5.7ms, with no overshoot and the maximum error in steady state is120

lower than 0.6% (see inset). After 30ms, the reference voltage is changed to v̄re f = 16V (bottom dashed121

line) and the system is able to track the change and stabilize to the new value of output voltage. In Fig.122

2B) and C) we plot the orbit in the (v, i) space during the steady state for the two references used in123

panel A) of the same figure. From this, one can observe that indeed the equilibrium value (v̄re f , īre f ) is124

reached through the continuous rippling of the orbit around the equilibrium point (red symbol).125

126
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Figure 3. Time response of the capacitor’s voltage v. During the first 30ms, the value of the resistor
is set to R = 20Ω, after this the load is changed to R = 18Ω. Inset: Steady state percentage error
(considered 15ms after the presentation of the disturbance). The desired output is plot with the dashed
line. Other details as in Fig. 2.

We also tested the robustness of the control to changes in the load. In Fig. 3 is depicted the time127

trace of the voltage in this scenario. Following a similar procedure as in Fig. 2, after 30ms, a change in128

the resistance from R = 20Ω to R = 15Ω (10% difference) is applied. From this figure it is possible to129

see that the system drifts away from the reference output v̄re f = 32V (dashed line), producing a steady130

state error of around 18% (see inset).131

132

So far, the controller designed with contraction theory has been successful to operate in a desired133

way and reject disturbances in the output voltage. However, when a disturbance in the load is134

presented (a common situation in power converters) the system loses the ability to follow the desired135

output voltage, indicating that the controller is not robust. To solve this problem, we extend the136

proposed controller based on the idea of an integral control action.137

5. Application to 3D-case138

5.1. Controller design based on a modified integral control action139

In control theory it is known that perturbations are better rejected by a PI controller; however, in140

this case, adding a PI controller implies to add a pole in the origin of the system which prevents us141

from applying contraction theorem. Then, with the aim of enhancing the robustness of the controlled142

system, we will modify the control action in such a way that it introduces the dynamics of the error.143

To do so we introduce a new state variable x3 in the dimensionless system in the following way:144

ẋ3 = e− δx3, with e = x̄1re f − x1 defined as the output error and δ as the time constant of x3. As145

x1 = v/E, then x̄1re f = v̄re f /E. Under these assumptions, the system takes the following form:146  ẋ1

ẋ2

ẋ3

 =

 −γ 1 0
−1 0 0
−1 0 −δ


 x1

x2

x3

+

 0
1
0

 u +

 0
0
1

 x̄1re f (22)

with147
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u =

{
1 if h(x) ≤ 0
0 otherwise.

(23)

or in compact form ẋ = Ax + Bu + Qx̄1re f . The aim of the term −δ appearing in position {3, 3} in148

the matrix A is to stabilize the system allowing us to apply the contraction theorem. In this way, the149

value of δ must be very small to avoid high steady state error. As the pair (A, B) is controllable we150

then proceed to apply the general theory with a new consideration: In the construction of the matrix P151

we will take into account the norm of the eigenvectors vi, which will allow us to gain more degrees of152

freedom in the system to tune the controller. Indeed this is not an issue when obtaining the canonical153

form AJ as the operation P−1 AP cancels out any norm that may have been considered. However, the154

transformed matrix BJ , which is critical for the stability conditions Eq. (15), may depend on the chosen155

modules of the eigenvectors. To take this into account, we need to include in Eq. (3) the magnitude of156

the eigenvectors via the scaling factors c1 and c2 as follows:157

P = [c1v1 c2Re(v2) c2Im(v2)] . (24)

The general form of the transformation matrix can then be written as158

P =

 0 c2(γ− 2δ)/2 −c2ρ

0 c2(2− γδ)/2 −c2ρδ

c1 c2 0

 (25)

which leads to the transformed system ż = AJz + BJu + QJ x̄1re f , where159

AJ =

 −δ 0 0
0 −γ/2 ρ

0 −ρ −γ/2

 (26)

BJ =

 −1/(c1(δ
2 − γδ + 1))

1/(c2(δ
2 − γδ + 1))

−(2δ− γ)/(2c2ρ(δ2 − γδ + 1))


QJ =

(
1 0 0

)′
The purpose will be again to find a switching function h(z) = h1z1 + h2z2 + h3z3 that meets the

conditions of global stability in Eq. (15) in the transformed space. One can easily verify that, provided
that δ < γ/2, µ(AJ) = −γ/2, fulfilling condition a). Moreover, one of the eigenvalues of BJ · ∇h(z) is
always 0 due to the fact that the matrix is constructed using only two linearly independent vectors
(see Appendix A.2). Also, following a similar procedure as in the 2D case, choosing the following
switching function :

h(z) = h1z1 +
BJ(2)
BJ(1)

h1z2 +
BJ(3)
BJ(1)

h1z3 , (27)

the condition b) in Eq. (9) is always guaranteed if, for every pair {BJ(i), h(i)}, its elements have160

opposite signs and the signs of c1 and h1 are equal (see appendix A) . From this, the switching surface161

in the canonical space is:162

h(z) =
(

h1 − h1
c1

c2
h1

c1(2δ− γ)

2c2ρ

)
· (z1 z2 z3)

′ := hz · z (28)

It is worth noticing that for the 2D case, considering arbitrary norms for the eigenvectors does not163

have an effect in the possible switching functions, in contrast to the extended system. This is because164

there is only one constant associated to that norm (two complex eigenvalues). Another important165
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aspect is that the plane defined in Eq. (28) depends on the ratio c1/c2 and not on their individual values166

which effectively reduces one degree of freedom in the tunning parameters of the hybrid controller167

based on the integral action. As in the previous case, the next steps in the design are i) apply the168

transformation to the dimensionless variables; ii) normalize by the norm of the resulting orthogonal169

vector to the switching surface in the x space, i.e. |hz · P−1| ; and iii) transform back to the original170

buck converter states variables (v, i) via the matrix M (recall that the similarity transformation is171

x = M−1(v i)′). It is important to notice that for the 3D system, the matrix M is not unique, as we don’t172

know the exact mapping between the extended variable x3 and its counterpart in the real system y. We173

can assume without loss of generality and preserving the idea of the integral action, that the mapping174

between x3 and y is given by a scaling factor, which after some algebra can be demonstrated to be175

x3 = y/(E
√

LC). This results preserves the information of the error defined by v̄re f . The similarity176

transformation matrix is then given by:177

M =

 E 0 0
0 E/

√
L/C 0

0 0 E
√

LC

 . (29)

We will avoid displaying the rather long expression of performing the aforementioned steps, but178

they can be summarized in the operation:179

h(v, i, y) =
hz · P−1

|hz · P−1| ·M
−1(v i y)′ . (30)

The system finally reads in its original variables as:180  v̇
i̇
ẏ

 =

 −
1

RC
1
C 0

− 1
L 0 0
−1 0 − δ√

LC


 v

i
y

+

 0
E/L

0

 u +

 0
0
1

 v̄re f (31)

with181

u =

{
1 if h(v, i, y) ≤ 0
0 otherwise.

(32)

5.1.1. Simulation results182

From Eqs. (30) and (31), the resulting controlled system can be tuned via two parameters, namely183

the time constant of the extended variable δ, and the ratio c1/c2 of the norm of the eigenvectors184

associated with matrix A. To tune these parameters, we performed an optimization routine which185

explored several possible combinations of parameters δ and c1/c2 in a wide range of values. Following186

an heuristic approximation we chose the values which met some desired criteria, namely small187

overshoot and small settling time. From this analysis we concluded that a sufficiently small value of188

δ is necessary in order for the steady state error to be small. Also, as c1/c2 is decreased, the system189

evolves faster but produces large overshoots; conversely, increasing the ratio reduces the overshoot but190

slows down the system. A good performance was achieved by choosing δ = 1× 10−4 and c1/c2 = 9.191

With these choices, the numerical values for the switching surface are:192

h(v, i, y) =
(
−4.3× 10−3 0.1741 − 1.03

)
· (v i y)′ ± 0.05 , (33)

where we have set the hysteresis to a value that meets the MOSFET switching frequency criterion193

as in the previous section. It can be noted that this controller does not require any information about194

current reference as in 2D-case.195

196
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Figure 4. A) Time trace of the voltage in the capacitor v. During the first 40ms a v̄re f = 32V is used,
after this a drastic change to v̄re f = 16V is applied (depicted in the dashed lines). The time trace
of the steady state percentage error is also depicted in the insets for both values of v̄re f . B) Phase
representation of the steady state for v̄re f = 32 and C) v̄re f = 16, with the equilibrium point indicated
by the red star. This results were obtained by making c1/c2 = 9 and δ = 1× 10−4. Steady state was
considered after 25ms of transient dynamics. Other parameters as in the main text and Fig. 2.

The results of the 3D system behavior and its ability to reject disturbances in the reference voltage197

are depicted in Figure 4. In this figure, a reference voltage of v̄re f = 32V is applied during the first198

40ms of the simulation, after this, the reference voltage is drastically decreased by a 50%, i.e v̄re f = 16V199

and the system is allowed to evolve during 40ms more. From Fig. 4A) it is possible to deduce that, in200

the 3D system, the controller is also able to regulate with a settling time of ≈ 10ms and a steady state201

error smaller than 1%. Not only this, but also the control is robust against disturbances in the reference202

output value. Panels B) and C) of the same figure show the orbit exhibited by the system in the steady203

state before and after the disturbance, which clearly evolves in the neighborhood of the equilibrium204

value (v̄re f , īre f ) (red star).205

206

We also tested the capability of the system to reject disturbances both in the load R and the input207

voltage E. To do so we simulated a similar set-up to the one described for the 2D system. In particular208

we evolved the unperturbed system during 40ms to achieve a steady state, and immediately after the209

perturbation is presented. For Fig. 5A) the perturbation is induced as a sudden change in the load210

from R = 20Ω to R = 15Ω (25% change). As depicted in the main figure of the panel and its inset, the211

system recovers to the reference voltage v̄re f = 32V (dashed line) with a percentage error smaller than212

1%. A similar scenario is plotted in Fig 5B), in this case the perturbation is presented as a change in the213

input voltage from E = 40V to E = 50V. Even though the perturbation in the input corresponds to a214

25% change, the system doesn’t drift away from the equilibrium point.215

216

It should be noticed that the first two elements in the normal vector of the switching surface in217

Eq. (33), are exactly those of Eq. (21) for the 2D case, where neither the norm of the vectors nor δ were218

involved. Hence, the effect of c1/c2 and δ are only exhibited in the third term.219

6. Conclusions220

In this paper a stable hybrid control technique was designed and analyzed in a buck power221

converter, applying results from contraction analysis which make use of the induced matrix measure.222
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Figure 5. A) Time response of the capacitor’s voltage v. During the first 40ms, the value of the resistor
is set to R = 20Ω, after this the load is changed to R = 15Ω. Insets: Steady state percentage error
(considered 25ms after the presentation of the disturbance). The desired output is plot with the dashed
line. B) Same as A) for a disturbance in the input voltage E. During the first 40ms E = 40V, after this it
is changed to E = 50V. Other details as in Fig. 2.

We took advantage of the Jordan canonical form of the system to guarantee the conditions of stability223

resulting from contraction analysis, which wouldn’t have been met in the original form of the system.224

For the original 2D buck converter, two reference points x̄1re f and x̄2re f were introduced in the switching225

function to allow for regulation to the desired state. Under these conditions, the controller presented226

good performance and robustness to voltage reference change, however, as the load varies, regulation227

is lost. To overcome this issue we extended the system to take into account the dynamics of the error,228

in a similar similar way to the design of a PI controller. With this design, the controlled system showed229

robustness to several types of disturbances including load and input voltage changes.230

Although the 3D system is robust, it comes with the price of increasing the settling time to around231

10ms. Other controllers applied to the buck converter may show better performance in this particular232

matter. Nonetheless it should be stressed that the method outlined in this paper is not based on the233

linearized system but on the nonlinear form, such that the final controller is globally stable which234

cannot be guaranteed using linearization. Indeed we have numerically tested the globally stability235

property by performing extensive simulations for different initial conditions in the (v, i, y) space. These236

tests showed convergence for all the simulations.237

For the sake of simplifying the calculations we have considered throughout this manuscript a238

switching function with zero offset. Introducing the offset in this function, which amounts to perform a239

translation of the switching surface, does not change any of the stability criteria that we have presented240

here, but it could certainly serve as a further tunning parameter of the controller. A general direction is241

to choose the offset in such a way that the trajectory of the system enters in sliding mode as early as242

possible.243

The analytic results presented here hold for the theoretical set-up in which perfect sliding over the244

switching manifold is allowed. Realistically speaking this is unachievable due to the finite frequency245

of the MOSFET used to implement the switching action, and therefore we are constrained to include246

in the simulations a hysteresis band which allows for finite switching frequencies. The size of the247

hysteresis band is an important issue because its width determines the size of the chattering in the248

voltage variable.249
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Finally, whether the approach presented here can be applied to other power converters such as the250

Boost, is currently an open problem. This is because not every single system can be easily approached251

by contraction theory and other standard tools for stability analysis might be the best option in these252

cases.253
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Appendix A263

In this appendix we prove that, for a particular selection of the constants hi, µ2(B · ∇h(x)) :=264

µ2(B · h) ≤ 0.265

Appendix A.1 Matrix measure for a 2D system266

Without loss of generality, we can consider two vectors B = [b1 b2]
′ and h = [h1 h2]. The matrix267

N is formed as268

N = B · h + h′ · B′ .

The measure of this matrix must be equal to zero over the switching surface to meet the theorem269

in [22,23]. As this matrix is symmetric, then:270

µ2(N) = λmax[N′ + N]/2 = λmax[N] = 0 (A1)

This condition is equivalent to the matrix N being negative semidefinite, or the matrix −N being271

positive semidefinite, i.e.272

λmin[−N] = 0

An extensive discussion about positive definiteness can be found in [25,26]. Then, the conditions273

associated with the eigenvalues can be computed using theory of positive definite matrices which274

states that in a symmetric matrix all its eigenvalues are greater than zero if and only if all its principal275

minors are positive. This matrix is called positive definite. A matrix is positive semidefinite if all its276

eigenvalues are greater than or equal to zero. On the other hand, a matrix N is negative semidefinite if277

−N is positive semidefinite.278

279

In this way, the matrix N is given by:

N =

(
2b1h1 b1h2 + b2h1

b1h2 + b2h1 2b2h2

)
. (A2)

To fulfill the condition to be negative semidefinite, we have to check that all principal minors of280

−N are greater than or equal to zero (∆k ≥ 0)281

282

First order principal minors. The matrix has two first order principal minors which are:

M1
1(−N) := ∆11(−N) = −N11 = −2b1h1 ≥ 0 (A3)
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and
M2

1(−N) := ∆12(−N) = −N22 = −2b2h2 ≥ 0 (A4)

As it can be seen, the only condition is that the pairs {bi, hi} have opposite signs.283

284

Second order principal minors. This system has only one second order principal minor which is
computed as:

∆1
2(−N) = det

(
−2b1h1 −b1h2 − b2h1

−b1h2 − b2h1 −2b2h2

)
≥ 0

From this inequality is obtained:
b1h2 = b2h1 (A5)

Supposing h1 as a free parameter to tune, it is obtained that:

h2 =
b2

b1
h1 (A6)

Replacing A6 in A4 it can be seen that independently of the value and sign of b2 the inequality is285

satisfied.286

287

The proof is complete.288

Appendix A.2 Measure matrix for 3D system289

Following the ideas of previous section, N is given by:

N =

 2b1h1 b1h2 + b2h1 b1h3 + b3h1

b1h2 + b2h1 2b2h2 b2h3 + b3h2

b1h3 + b3h1 b2h3 + b3h2 2b3h3

 (A7)

To fulfill the condition to be negative semidefinite, we have to check that all principal minors of290

−N are greater than or equal to zero (∆k ≥ 0)291

292

First order principal minors. Here, there are three first order principal minors, they are:

M1
1(−N) := ∆11(−N) = −N11 = −2b1h1 ≥ 0 (A8)

M2
1(−N) := ∆12(−N) = −N22 = −2b2h2 ≥ 0 (A9)

and
M3

1(−N) := ∆13(−N) = −N33 = −2b3h3 ≥ 0 (A10)

As it can be seen, the only condition is that the pairs {bi, hi} have opposite signs.293

294

Second order principal minor. In this case, there are three second order principal minors. The
first one is:

∆1
2(−N) = det

(
−2b2h2 −b2h3 − b3h2

−b2h3 − b3h2 −2b3h3

)
≥ 0

After some computations the following equation is obtained.

b2h3 = b3h2 (A11)
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Other second order principal minor is given by:

∆2
2(−N) = det

(
−2b1h1 −b1h3 − b3h1

−b1h3 − b3h1 −2b3h3

)
≥ 0

As in previous case, it is obtained:
b1h3 = b3h1 (A12)

The last second order principal minor is computed as:

∆3
2(−N) = det

(
−2b1h1 −b1h2 − b2h1

−b1h2 − b2h1 −2b2h2

)
≥ 0

and in a similar way it is obtained:
b1h2 = b2h1 (A13)

Taking into account these three inequalities and considering h1 as a free parameter to tune, it is
obtained from A13

h2 =
b2

b1
h1

From A12
h3 =

b3

b1
h1

To finally prove from A11 that h3 takes the same value as already given. Replacing these values in295

expressions A8 to A10, the equalities still are preserved regardless of the value and sign of constants bi.296

297

Third order principal minor. As matrix N is obtained from two vectors, its range cannot be
greater than two, then its third order principal minor namely

∆1
3(−N) = det(−N) = 0

The proof is complete.298
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