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Abstract: A geometric interpretation of the Minkowski metric and thus of phenomena in special
relativity is provided. It is shown that a change of basis in Minkowski space is the equivalent
of a change of basis in Euclidean space if one basis element is replaced by its dual element. The
methodology of the proof includes infinitesimal changes of basis using the Lie-algebras of the

involved groups. As a consequence, a direct mapping between Euclidean and Minkowski space is
defined.
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1. Introduction

The description of the effects of special relativity is carried out within the four-dimensional
Minkowski space R(3, 1), which is defined by the following scalar product:

dv - dw = g, dofdw"” with Suv = [S1] - diag (+1,+1,+1, -1) (1)

The doubly covariant tensor gy is called Minkowski metric, dv and dw can be any four-vector
element of the Minkowski space. The summation convention was applied here. The algebraic sign
[S1] = £1 can be assigned freely depending on the convention [1].

Although this description is elegant and successful, it does not allow a geometrical interpretation
of the underlying quantities; it’s usefulness is rather of a purely quantitative nature. A geometric
interpretation is not possible because the scalar product defined by g, is not positive definite, which
in turn implies that the norm induced by the scalar product ||dv|| = v/dv - dv can assume imaginary
values (Figure 1). This means that imaginary distances between two points can occur in the vector
space, and there is no intuitive geometric equivalent for this.

induces induces .
scalar product norm metric
vew = g vtw? vl =vv-v = /wvv“"" dw,w) =|lv-w| = Jyuv(V“ - wh)(v¥ —w)

Figure 1. Relation between scalar product, induced norm and metric.

This is seen as a significant shortcoming for authors who seek geometric interpretations of the
underlying systems of equations (e.g. [2] and references included therein; [3], [4], [5]).

The purpose of this article is to offer the missing piece needed to acknowledge geometrical
theories of space-time by interpreting the Minkowski metric.

2. Basics and notation

In the following, first order tensors are written in bold, second order tensors are written in bold
and have capital letters; generally, the summation convention is applied and all indexes run from 1 to
4, unless otherwise noted. To avoid confusion, elements of the dual space and their components are
marked with a ()7.
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Let R* be a four-dimensional Euclidean vector space with states v € R*. These can be expressed
as a linear combination of a canonical basis {e] } € R** with elements from the dual space (orig. [6],
available at [7]; introductions e.g. in [8], [9]):

1
2
5| = 2
4

X

T i T i (i x

vV = Z eix Where X =(v -e = Uj' e X = X
X

The scalar coefficients x' are called coordinates of the state v with respect to the basis {el }. They
can be summarized as a coordinate vector x (shown on the right). The coordinates are generated by

the dual basis {el} € R?*, which is defined by (el-T)j = g (ei)k with the Euclidean metric tensor
Eukl.

gjk = J]k

Analogously, any dual state w* € R** can be generated by a canonical dual basis:

wl = Z yZ-Tei where yi = (ef -w) = ((eiT)]- . wj) y' = (y{ vy Y3 yi) =T TT]
3)

The coefficients y; are called dual coordinates of the dual state w with respect to the dual basis
{el}. They can be consolidated as a dual coordinate vector y™ (on the right).
Thus, scalar and tensor products can be directly defined and visualized (in coordinates):

yi-x=ylx' eR x@y"' =M € R¥  with Mij:xiy]-T 4)

[EED-ED ol [11]= 3)

The state v does not vary when there’s a change of basis. For this to be the case, the coordinates x
must change inversely to the basis.

Changes of orthonormal bases in the four-dimensional Euclidean space are isomorphic to the
Lie-group SO(4), which can be represented by the special orthogonal matrices of fourth order SO(4) =
{R € GL(4) | RTR = 1,detR = 1}. Consider the change of basis from {ejT} to {e"}. The elements of
the new basis can be written as a linear combination of the elements of the old basis:

e;’ = Z e]-T Rij (6)
j=1.4

This translates into the following transformation rule for the coordinate vectors:

, i ,
X =R 1.x=R"-x XP=(R7')  xF =R x* )
k k

The transposition of the matrix R is expressed in the component notation on the right by
interchanging the indices. The inverse transformation of the coordinates is true for any change
of basis; the fact that this corresponds to the transposed transformation matrix is a consequence of the
orthonormality of the considered bases. The components of the transformation matrix and its inverse
are:

1 1 1 1

R.j:e{T.ej (R_l)‘]:Rﬁ:eﬂ.r.e/j (8)
1
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It is said that the basis {e]} transforms covariantly, whereas the coordinates x transform
contravariantly. As required, the state v remains unchanged:

V=Y e™i= ) ejTRi]Rikxk: Y ejT(Sljcxk: ) eijj:v )
i=1.4 ij=1.4 j=T.4 j=T.4

3. Definitions

Definition 1 (mixed basis). A mixed basis {e], e;, e}, e4} is defined as a basis where all elements belong to

the canonical basis, except one which is replaced by its dual element, with (ei)]. = ]E]?"l- (64)k.

Definition 2 (mixed change of basis). Let a mixed change of basis be the change of basis between two mixed
bases {e], e], e}, et} and {e], e}, el e"}.

Remark 1. It is clear that mixed bases as in definition 1 do not change like reqular bases in Euclidean space;
nor can the scalar or tensor product of the Euclidean space be applied to the mixed bases.

The question now is whether it is possible to define a vector space in which the mixed bases can be described
in a coherent mathematical manner. Hence the following proposition:

4. Proposition and proof

Proposition 1. A mixed basis {e], e}, e}, e*} in Euclidean space as the one in definition 1 undergoing
mixed changes of basis as the ones in definition 2 behaves just like a reqular basis {f;} would in the
Minkowski space, where the scalar product is defined as:

y-Xx :gljylx] with 8ij = dlag (+1,+1, +1, _1)

Proof. Let R* be the Euclidean space with the canonical basis {e } and dual basis {e'}; R(3,1) the
Minkowski space with the orthonormalized basis {f;"}. It has to be shown that, when doing a change
of basis, the element e* of the dual Euclidean basis transforms like the element f; of the Minkowski
basis.

The regular changes of basis in Euclidean space SO(4) = {R € GL(4) | RTR = 1,detR = 1} can
be expressed as an exponential series:

R =¢" R1=RT=¢" (10)

Where t is the parameter of the transformation (the rotation angle) and A is a skew symmetric
matrix, where AT = —A. The skew symmetry of these matrices is what finally causes the orthogonality
of the transformations and the coordinate vectors to change with the transposed transformation rule.
More precisely, the matrices A build, together with the commutator [A, B] = AB — BA, the Lie-algebra
so(4) of the Lie-group SO(4): the algebra that generates all infinitesimal orthogonal linear coordinate
transformations, which through the exponential mapping span the whole of the SO(4) Lie-group (for
introductions see e.g. [10], [11]).

In the case of infinitesimal transformations (t very small) it is sufficient to only consider the first
terms of the exponential series. The special role of the Lie-algebra is seen here:
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R =cA ~ (1+1A) R 1=¢"x(1-tA) (11)

The elements A of the Lie-algebra can once more be expressed as a linear combination of a basis,
which in the case of so(4) consists of six skew symmetrical matrices, e.g.:

00 0 0 0 0 1 0 0 -1 0 0
00 -1 0 0 00 0 1 0 00
L= L, = L = 12
1 01 0 0 2 100 0 3 0 0 00 (12)
00 0 0 0 00 0 0 0 00
000 —1 000 0 000 0
000 0 000 -1 000 0
I lo oo o 27 1o 00 o 710 0 0 —1 (13)
100 0 010 0 001 0
With
[Li Lj] = eiplx Ky Kj] =&l [LiKj] =&3Ke and  tA = (tiLi + SiKi)
i=1,2,3
(14)

To apply a change of the mixed basis, a transformation rule has to be constructed which transforms
the element e4 of the basis with the same coefficients that a coordinate vector e? is transformed with.
The infinitesimal change of a normalized coordinate vector et = (0,0,0,1)" can be written as follows
(componentwise notation in the second row):

et =(1-tA)e! = (1 - siKi> et = (1 + siKi1> et
i=12,3 =123 (15)
() = (o 1) () = (o =k () = (o (7)) ()

Where the (pseudo-)inverse K; ! is the inverse on the subspace spanned by e[ and e].
On the other hand, the transformation rule for ey is:

ef =e] (5]+tA ) }(54f+si(1<i)4f) (16)

For the new mixed transformation to be useful, it must again function as a Lie algebra. Although
it cannot be presumed that such a Lie algebra exists, if a corresponding algebra is found that fulfills
the requirements, its existence is proven automatically.

Looking for a Lie algebra, it must satisfy by definition the transformation rule 16. By definition of
the base transformations, the coordinates must also satisfy equation 15.

In order for e] to transform additionally in the same way as e?, according to equations 15 (last

term) and 16 (last term), the following must hold true: (Kl-_l)4] = (Kj) 4] . Each K; must therefore be
its inverse in the subspace spanned by itself.

This condition cannot be fulfilled by regular Euclidean transformations, since in this case the K;
are skew symmetric, K; ' = —K;.

To nonetheless find a change of basis which has the same effect on the element of the basis e} as
it has on the coordinate vector e*, one must depart from changes of basis in the ordinary Euclidean
sense. Consider a new transformation rule (marked with a tilde):

A=Y (tiLi+§if<i) (17)

i=1,2,3
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Different elements K; of the basis are sought, which are their own inverses in their own spanned
subspace. A possible choice is:

000 1 0000 0000

_ 0000 _ 000 1 . 0000

Ki=1o 0 0 o K2=10 0 0 o Ks=10 0 0 1 (18)
1000 0100 0010

The new elements retain the form of the transformations for ey, yet without orthogonality, since
the skew symmetry of the Lie-algebra’s elements had to be abandoned.

Hence, a transformation rule was constructed which takes a basis of the Euclidean space {e] } and
changes it as a mixed basis {e], e}, e}, e*} as in definition 1 would change when exposed to regular
Euclidean changes of basis. The contravariant transformation property of {e*} was hereby transferred
to {eq}.

The unchanged matrices {L;} build, together with the new matrices {K;} and the commutator
as Lie bracket, the Lie-algebra so(3, 1), with its elements A€ s0(3,1). By means of the exponential
mapping this Lie-Algebra translates into the Lorentz group SO(3, 1), where:

A=cA A € 50(3,1) (19)

Yet the elements of the Lorentz group A are defined as those changes of basis taking place within
Minkowski space R(1,3), having metric tensor g;; = diag (+1, +1,+1, —1).

Thus, if one creates a transformation in Euclidean space, where one of the elements of the
Euclidean basis transforms contravariantly, the defined basis will be equivalent to a regular basis of
the Minkowski space and the discovered transformation will be equivalent to regular changes of bases
in the Minkowski space. [

5. Results

A transformation which changes mixed bases into each other according to definition 2, was
created. For this, orthogonality had to be abandoned and Euclidean lengths are no longer preserved. It
has been shown that the changes between mixed bases are transferable to the Minkowski space, where
a coherent description, preserving the Minkowski length element, is possible.

This result corresponds to a mapping between Euclidean space and Minkowski space. Complex
distances in the Minkowski space can thus be interpreted geometrically as effects resulting from the
switch of a basis” element with its corresponding dual element.

6. Discussion

The mapping between Euclidean and Minkowski space also implies a phenomenological mapping.
As a consequence, one important realization is that all effects arising within the Minkowski space can
be explained by purely metric quantities — in other words, quantities obtained through a measurement
of distance. The cause of the effects observed can thus be directly transferred to the act of measurement
within a mixed basis.

This may have far-reaching consequences for physics, especially when interpreting relativistic
effects. However this topic is not pursued further here, as the purpose of this article is only to test the
self-coherence of the mathematical foundation.

On my private homepage http://elasticuniverse.org an analogous concept with direct
applications to physics can be found in unreviewed form. The proof developed here, in form of
an earlier, less accurate version, is employed. This article concerns itself with its clarification and the
generalization of its results.
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6.1. Next steps

Geometrically, changing the sign of an element of the metric tensor corresponds to switching the
role of basis and coordinate in the affected component. This in principle defines a mapping between the
Euclidean and Minkowski space. But this mapping is not a homomorphism, it might not be bijective
or linear. In a next step, therefore, this mapping will be examined in more detail.
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