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Abstract: Visual inertial odometry (VIO) has recently received much attention for efficient and
accurate ego-motion estimation of unmanned aerial vehicle systems (UAVs). Recent studies have
shown that optimization-based algorithms achieve typically high accuracy when given enough
amount of information, but occasionally suffer from divergence when solving highly non-linear
problems. Further, their performance significantly depends on the accuracy of the initialization of
inertial measurement unit (IMU) parameters. In this paper, we propose a novel VIO algorithm of
estimating the motional state of UAVs with high accuracy. The main technical contributions are
the fusion of visual information and pre-integrated inertial measurements in a joint optimization
framework, and the stable initialization of scale and gravity using relative pose constraints. To handle
ambiguity and uncertainty of VIO initialization due to unpredictable motion patterns, a local scale
parameter is adopted in the online optimization. Quantitative comparisons with the state-of-the-art
algorithms on the EuRoC dataset verify the efficacy and accuracy of the proposed method.
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1. Introduction

In robots and Unmanned Aerial Vehicle systems (UAVs), the ego-motion estimation is essential.
To estimate the current pose of a robot, various sensors such as GPS, inertial measurement unit (IMU),
wheel odometry, and camera have been used. In recent years, the visual-inertial odometry (VIO)
algorithm, which fuses the information from a camera and an IMU, has been garnering increasing
interest because it overcomes the disadvantages of other sensors and can operate robustly. For example,
a GPS sensor can estimate the global position of the device, but it can only operate in outdoors, and
cannot get precise positions needed for UAV navigation. An IMU sensor measures acceleration and
angular velocity with high frequency, but the pose estimated by integrating the sensor readings easily
drift due to the sensor noise and time-varying biases. The visual odometry (VO) is more accurate than
other sensors for estimating the device poses because it utilizes the long-term observations of distant
visual features. However, it is vulnerable to motion blur from fast motions, lack of scene textures,
and abrupt illumination changes. Also monocular VO systems cannot estimate the absolute scale of
motion. By fusing IMU and visual information, VIO operates in extreme environments where the VO
fails, and achieve higher accuracy with metric scale.

Initially VIO is approached by loosely-coupled fusion of visual and inertial sensors [1,2]. An
Extended Kalman Filter (EKF) [3,4] is also used as it can update the current state (e.g., the 3D pose and
covariance) by solving a linearized optimization problem for all state variables in a tightly-coupled
manner [5-7]. The filtering-based approaches can estimate the current poses fast enough for real-time
applications; however they are less accurate than the optimization-based approach because of the
approximation in the update step. Recently the optimization-based algorithms [5-8] have been
developed for higher accuracy, but they require higher computation cost and suffer from divergence
when the observation is poor or the initialization is not correct. Certainly there is a trade-off between
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performance and speed, and it is difficult to optimize all the parameters in the initialization and update
phase, especially when the information is insufficient.

In this work, we propose a VIO system that uses the tightly-couple optimization framework with
a robust initialization method for the scale and gravity. A non-linear problem for visual-inertial system
may not have a unique solution depending on the some types of the motions [9], and it makes the
initialization task a challenging research. We jointly optimize a relative motion constraint together
with other parameters and update by the accuracy of the optimization result rather than waiting
for a precise scale to be computable. And we verified that we can estimate the reliable camera pose
quantitatively on real scale for EuRoC [10] benchmark dataset including dynamic illumination changes
and fast motion. Our main contributions are summarized as follows:

e We propose a novel visual-inertial odometry algorithm using non-linear optimization of
tightly-coupled visual and pre-integrated IMU observations with a local scale variable.

e A robust online initialization algorithm for the metric scale and gravity directions is introduced.
By enforcing the relative pose constraints between keyframes acquired from visual observations
the initial scale and gravity vectors can be estimated reliably.

o To avoid the failure due to the divergent scale variable in optimization, the proposed system
determines the initialization window size adaptively and autonomously.

e  The experimental results show that the proposed method achieves higher accuracy than the
state-of-the-art VIO algorithms on the well-known EuRoC benchmark dataset.

2. Related work

The VIO algorithms focus on highly accurate pose estimation of a device by fusing visual and
IMU information. Cameras provide the global and stationary information of the world but the visual
features are heavily affected by the external disturbances like fast motion, lighting, etc. IMU sensors
generate instantaneous and metric motion cues, but integrating the motions for a long period of time
results a noisy and drifting trajectory. As these two sensors are complementary there have been many
attempts to combine the two observations.

Recent VIO algorithms can be classified into filtering-based approach which feeds the visual and
inertial measurements to filters, and optimization-based approach using non-linear optimization for state
estimation. The former approaches use an Extended Kalman Filter (EKF) [11] which represents the
state as a normal distribution with the mean and covariance. The EKF-based system are faster than the
optimization-based methods since they use linearized motion and observation models. In the multistate
constrained Kalman filter (MSCKEF) [3], the visual information and IMU data are combined into a filter
and the body poses are updated by a 3D keypoints processing with high accuracy. Li and Mourikis [4]
proposes the new closed-form representation for the IMU error state transition matrix to improve the
performance of MSCKF and the online model with extrinsic calibration. Hesch et al. [12] develop an
observability constraint, OC-VINS, that explicitly enforces the system’s unobservable direction, to
prevent spurious information gain and reduce discrepancies. The optimization-based methods are
more accurate than the filtering-based method; however, it suffers from a high computational cost.
To overcome this limitation, optimizing only a small window of poses or running an incremental
smoothing is proposed [13,14]. Leutenegger et al. [5] propose to calculate the position and velocity
by integrating IMU measurements with VO’s keyframe interval while marginalizing out to old
keyframe poses to mitigate complexity. However, these methods use the propagated poses of the
IMU measurements for a certain interval, which has the disadvantage of re-integrating the linear
acceleration value according to the device orientation changes for the local window. Forster et al. [8]
proposed extending the IMU pre-integration method [15] to efficiently update the bias variables
by calculating linear approximation IMU biases Jacobian for a very short interval using the IMU
pre-integration method. Lupton and Sukkarieh [16] proposed a slide window optimization framework
for the IMU pre-integration method and old keyframe marginalization in local window, and Qin and
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Figure 1. Overview of the proposed system

Shen [17] and Raul Mur-Artal and Tardos [6] combined VIO with the SLAM system for more accurate
pose estimation.

The optimization methods directly use IMU sensor measurements together with the visual features
as the constraints of the pose variables which results a highly non-linear formulation. For accurate and
stable pose estimation, the initialization of metric scale and gravity direction is critical because the
time-varying IMU biases needs to be calculated from the device poses. If the biases are not estimated
accurately the following online pose optimization is likely to diverge. Martinelli [9] demonstrates that
there may exist multiple solutions in the visual-inertial structure from motion formulation. Mur-Artal
and Tardos [6] proposes closed-form formulation for vision-based structure from motion with scale
and IMU biases; however they should wait initialization until 15 seconds to make sure all values
are observable. Weiss et al. [18] proposed an initialization method that converges quickly using the
extracted velocity and the dominant terrain plane based on the optical flow between two consecutive
frames, but it requires aligning the initial pose and the gravity direction at the beginning. We discuss
in Section 5 how to calculate the metric scale and gravity using the pose graph optimization (PGO) [19]
and IMU pre-integration.

3. System overview

The proposed visual-inertial odometry algorithm consists of visual feature tracking, IMU
pre-integration, initialization, and optimization modules. We use the KLT-feature tracker [20] to
find the correspondence of feature points for geometric modeling of camera poses and scene structure.
Alternatively one can use descriptor matching algorithms [21-24] for this task, which is necessary
for visual SLAM systems. We introduce a tightly coupled visual-inertial odometry system, which
continuously estimates the motional state with a local scale parameter by minimizing the cost from
visual information and IMU measurements (Section 4). We also present a robust initialization algorithm
of the metric scale and gravity using pose graph optimization (Section 5).
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Figure 2. (a) is the result of proposed system for V1 02 in EuRoC benchmark dataset, blue line is the
estimated trajectory, black dots show reconstructed sparse landmarks, and red square represents the
current camera pose. (b) shows a captured camera images in the EuRoC, which has experience of
challenging environmental changes such as motion blur and illumination changes. Our proposed
system has been verified to be able to estimate reliable poses for all sequences in Section 6.

4. Visual inertial optimization

The goal of the visual-inertial odometer is to estimate the current motional state using visual
information and inertial measurements at every time. The state s; at time ¢ is defined as a quadruple

st = (T, Vv, dpa,, dbwt% 1)

where, §T = [4R,Vp] € SE(3) is the transformation from the device to the world coordinate system,
v is the velocity of the device, and 01ba, db@ are the sensor bias. The coordinate systems are denoted as
a prescript on the left side of the symbol, and there are the world ("), the device (¢), and the camera (°)
coordinate systems. The time is denoted as a subscript (;) of the symbol. The world coordinate system
is defined so that the gravity direction is aligned with the negative z-axis. We follow the convention
that the device coordinate system is aligned with the IMU coordinate system. The transformation
from the camera to the device coordinate system is written as ¢T and it is pre-calculated in the device
calibration process [25,26].
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4.1. Visual reprojection error

The visual error term of our proposed method uses the re-projection error in the conventional local
bundle adjustment. The error is the difference between the projected location x;; of a 3D landmark X;
and its tracked location X;; at the keyframe i. The visual cost C}; from the tracked features is defined
as:

cti=p (')A (i)1)) )
e’ (i,l) =% — 7'((CC1T_1 *‘gT_l *WXZ> , (3)

where AY, is the information matrix associated with the tracked feature point at the keyframe, and
7t denotes the camera projection function. x and ~! denotes the composition/application and the
inversion operators for SE(3) transformations respectively, and p is the Huber norm [27], which is
defined as:

1, ifx>1
p(x) = . : @)
2yx—1, ifx<1

v

Figure 3. Visualization of visual error. The green dashed line represents re-projection error e’ and
visual error term optimizes the summation of these errors for local window.

4.2. IMU Pre-Integration

The IMU sensors measure the angular velocity and translational acceleration and in theory the 3D
pose (orientation and position) of the device can be calculated by integrating the sensor readings over
time. However, the raw IMU measurements contain significant noise and time-varying non-zero bias,
and these make the integration-based pose estimation very challenging. The IMU angular velocity 9@

d

and acceleration “4 measurements at time ¢ are modeled with the true acceleration "a and angular

velocity 9w as

8, =R/ (Ya; — “g) +“b* +n?, and ®)
@ = dwi + bY; 4+ nv, (6)

where "gRtT is the rotation from the world to the device coordinates (note the transpose), g is the
constant gravity vector in the world, dpa t db“’t are the acceleration and gyroscope biases, and n?, n¢
are the additive zero-mean noise. From the following relations,
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Figure 4. IMU sensor measurements are typically much faster than the camera frame rate. In this study,

we verified the algorithm using a 200Hz IMU sensor and a 20fps camera on the EuRoC benchmark
dataset, where i and j are the camera capture time and ¢ is the IMU measurement time.

Wp — Wy 0 —Wy a)y
Wy =Wa , where [w]x = | w; 0 —wxl, @)
"R ="R[1w]« —wy, wy 0

for the image frames k and k + 1 (at time #; and ¢, respectively), the position, velocity, and
orientation of the device can be propagated through the first and second-integration used in [28],

piit = "B+ Vbt [ [ (AR = % — ) + Vg)de® ®)
tet b1
Mg =YVt (4Ri(‘a - b% — %) + “g)dt ©
tEtg bk
Vc\i,Rk-&-l = V;Rk EXp (/ (d(:]t — dbwt — I‘lw)dt) . (10)
tetp b

Assuming the acceleration 43, and the angular velocity 4@y are constant between time interval #;
and t 1, we can simplify the above equations as follows:

1 1 . d
“Prr1 = Pk + Vit + 3 VAR g + 5 WRy, (Yay, — b2, —n?)AL (11)
MV = "Vi+ VgA + YRy (YA — 9B, — n?) Aty (12)
WRep1 = 4Ry, Exp ((dd’tk —dpe, — nw)Atk,kJrl) : (13)

The measurement rate of the IMU is much faster than that of the camera, as illustrated in Figure 4,
and it is computationally burdensome to re-integrate the values according to the changes of the state
in the optimization framework. Thus, we follow the pre-integration method, which represents IMU
measurements to the poses of the consecutive frames by adding IMU factors incrementally as in [7,8].

For two consecutive keyframes [i, j] where the time between two (t;, t;) can vary, the changes of
position, velocity, and orientation that are not dependent to the biases can be written as follows from
the Equations 11- 13:

1 e T
Apij = RS ("pj = pi = "Vilti; — S VgAL) = Y oRi(Yay — bt —nhAR, (14)
k=i
-1 4
AVI',]‘ = nglT (ij — WVi - ngti,j) = Z R;c(dﬁtk — batk - na)Atk,k_H (15)
k=i

AR;; = (qRi) TWR HEXP Wy, — wtk_nw)Atk,k+1)/ (16)
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Figure 5. Illustration of the proposed visual inertial local bundle adjustment. All keyframe poses
(%To,%T1,...,%Tx) contain visual terms with landmarks and IMU pre-integration factor with local
scale variable. The current frame 7 is included in the local window with the accumulated IMU
pre-integration.

where Rf{ represents the rotation from the frame k to the time i. We can calculate the right side of
above equation directly from the IMU measurements and the biases between the two keyframes.
However, these equations are the function of the bias dbatk and db“’tk. If the biases 9b? and b
between the keyframes are assumed to be fixed, we can obtain the values of Ap; j, Av; ;, AR, ; from the
IMU measurements without re-integration.

However, in the case of bias, it changes slightly in the optimization window, and we use recent
IMU pre-integration described in [7,8] to reflect the bias changes in the optimization by updating delta
measurements of bias using the Jacobians which describe how the measurements change due to the
estimation of the bias, as

1
Vpj =i+ Vil + 5 VAL + R (Ap;; + %, e, + Tap b)) (17)
WVj =%y, + WgAtiJ‘ + ‘21] i(AVi,j + JZ’U dbwl‘ + JZ?} dbai) (18)
d
WR;j = §R; AR; ; Exp(Jig “b“;), (19)

where J? and J¢ are the Jacobians which are first-order approximations of the variation of the IMU
biases.

Finally, the local optimization cost of the IMU residual e;f f for the interval of keyframes i and j
using pre-integration is defined as follows:

= e(i,j) Al (i} 20)

WRT(Vpj — pi — il — 3 VgAR) — (Bpij + %, b +4, b))
WRT (M) = Yvi = WgAL ;) — (Avij 4%, b+ 4, 9b%)

e’(i,j) = Log((AR;; Exp(J%x 9b“)) T (4R;) T %R) (21)
dbaj . dbai
dbw, - dbw,

] 1

where, AZ jis the information matrix associated with the IMU pre-integration covariance between the
keyframes, reflecting the IMU factor noise. As the IMU biases follow the Brownian motion model, we
penalize abrupt changes of the biases between consecutive keyframes with the bias costs at the bottom
two entries in Equation 21.
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4.3. Online optimization

Considering UAVs, the VIO system should estimate the current pose in real-time using captured
visual information and IMU measurement. We use the visual-inertial bundle adjustment framework
and solve the optimization problem with the Gauss-Newton algorithm implemented in the ceres-solver
[29]. For the state s, and the 3D landmarks 1,,, the cost function is defined as follows for the
optimization window
(22)

Sonline = <50/ S$1,---Sn, 1m>

{CP +) O+ G

ki k
where, CF is the prior information from marginalization which is the factor for the states out of the
local optimization window.

% - .
Sonline = argmin

online

} kelon],iem (23)

The scale estimated from initialization is often not observable since it has a dependent on motion.
In order to estimate a optimal metric scale, we include the local scale factor into our cost function
and optimize it with other variables such as poses. When a new keyframe is added, we assumed that
the device experiences the motion changes and perform jointly optimization including local scale s

variable.
UR((Mpj = Wpi)s — Wil — 5 WgAR) — (Api; +]%, b +14,9bY)
- R (M =i = VgAti) _d(A"i,j +J%, b + 4, b%)
e’(i,j) = Log((AR;;Exp(J¥ “b“i)) T (4WR;) " 4R;) (24)
dba‘ _ dba,
] 1
dbwj _ dbwi

Figure 5 shows the graphical model of our visual inertial local bundle adjustment. We perform
local optimization with sufficiently accurate scale variable which is computed through bootstrapping
in Section 5, and the optimized reliable local scale is marginalized to prior information along with the
pose of the old keyframe.

Trajectory (80.1397m)
absolute translational error.rmse 0.243772 m

Trajectory (80.1397m)
absolute translational error.rmse 0.147435 m
10
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— ground truth
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Figure 6. The difference estimated trajectories with ground truth of MH 01 for the non-scale
optimization (left) and the proposed optimization involving scale (right). The proposed method

is able to accurately estimate the poses by updating the scale incrementally.
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4.4. Marginalization

The optimization-based VIO algorithms need to marginalize out the old information not to slow
down the processing speed [5,7]. The marginalization does not eliminate the old information outside
of the local optimization window of keyframes, but converts it into a linearized approximate form to
the remaining state variables using Schur complement [30]. When a new keyframe is added into the
local optimization window and the window size exceeds the preset threshold, the state of the oldest
keyframe in the window including the pose, velocity, and bias is marginalized (Figure 7 illustrates
keyframe marginalization in a graphical model). On the other hand, if the current frame is not selected
as a keyframe, only the visual information is dropped while the IMU measurements are kept for IMU
pre-integration. The marginalized factor is applied to be a prior of the next optimization, which helps
to find a better solution than simply fixing the keyframe poses outside of the optimization window.

Local window

_ :Local scale

Marginal ization @ : Keyframe pose

-
\
\
\
| \\
4
'/
I
’
’
I
g

' -
L-.:-.-l

Figure 7. Old keyframe marginalization with optimized scale. Marginalized measurements are used as
prior for the next optimization.

5. Bootstrapping

Unlike the monocular visual odometry where the camera parameters are known and the absolute
scale of the map is not recoverable, the visual-inertial odometry needs to find the critical parameters
such as the scale of the map and gravity direction to robustly estimate the state. Moreover there are
many motion patterns in which the multiple solutions of IMU bias parameters exist, such as constant
velocity motions including no motion [9]; thus, optimization involving all state variables without
precise initialization may not converge to the true solution. For these reasons, some VIO systems
require approximate manual initialization of the gravity vectors or IMU biases, or real scale distance
information using different sensors [31]. The map of visual features are constructed starting from the
two keyframes with sufficient parallax, and it is continuously updated as more keyframes are observed.
However, the IMU measurements for these keyframes may not observe any significant changes in
acceleration, and this can cause failure in bootstrapping the VIO system.

In this work, we propose a bootstrapping method that computes the accurate scale and gravity
through stepwise optimization using relative pose constraints. Our method consists of vision-only
map building, pose graph optimization with IMU pre-integration, convergence check, and IMU bias
update.

5.1. Vision-only map building

The first step, vison-only map building, is identical to monocular visual odometry [32,33] and
structure from motion algorithms (SFM) [34]. The system finds the first two keyframes % Ty and
WT; with sufficient motion, by checking the numbers of inlier features by a Homography and a
unit-translation SE3 motion by the five-point algorithm [35]. Since the absolute scale of motion is not
available, the visual map is initialized in an arbitrary scale and the inlier features are triangulated
and their 3D positions are registered. The gravity direction is roughly initialized with the average of
the first acceleration vectors (we experimentally use the first 30 readings @ 200Hz), and the world
coordinate system is set by aligning the gravity to y-down. Once the initial map with 3D points is
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Algorithm 1: Proposed online VIO algorithm

Data: Images, accelerations and gyro
Result: 6DOF poses and landmarks
Initialization : Select 2 keyframes for visual motion based initialization and perform visual odometry to
estimate relative keyframe motion [37]. Then, calculate the metric scale and gravity by PGO with IMU
factor. Check the convergence of the optimized parameters and re-propagate the pre-integration factor
using the initial bias, scale and gravity;
for k=1toKdo
Extract and tracking keypoints using KLT [20];
if k™" frame is keyframe then
Add new landmarks;
Perform online optimization minimizing cost function with local scale factor Eqn. 24;
Marginalize old keyframe’s variables with scale.;
else
Performs pose optimization by Eqn. 22 with fixed previous keyframe’s poses;
Marginalize visual information observed on current frame;
end

end
return optimized 6DOF pose and landmarks involving real scale

built the pose of later keyframes are computed by the PNP algorithm [36] Local bundle adjustment
using Equation 2 is performed initially and whenever a keyframe is added to improve the accuracy
of pose and point positions. Until the scale and gravity is reliably measured in the next steps, purely
vision-only map building is continued.

5.2. Pose graph optimization with IMU pre-integration

While purely visual mapping is running, we try to estimate the metric scale using the
pre-integrated IMU factor. For easy formulation and efficient estimation, we adopt the pose graph
optimization (PGO) framework [19,38,39] which constructs a graph of keyframes whose edges
represent the relative pose constraints between keyframes, and optimizes the keyframe poses so
that the inconsistency of the relative poses and constraints are minimized (note that this is equivalent
to marginalizing the landmarks in bundle adjustment). PGO is commonly used in monocular SLAM
systems to fix the scale drift in loop closures using Sim(3) relative poses. In contrast we use SE(3)
relative poses with a global scale parameter s to the entire map, as the scale drift for a short period
of initialization time is not significant. Additional constraints from the pre-integrated IMU and the
gravity vector are added to PGO, and the factors in our formulation are illustrated in Figure 8.

Formally we define the state for PGO with all keyframe poses, velocities, the gravity, and the
global scale s as

Spgo = <WT0/WT1/ v /WTHIWTOI WV]/ v lwvnrwgl S>- (25)

In this section we parameterize an SE(3) transformation with a pair of a translation vector p and a
Hamiltonian quaternion [40] q, i.e,, T = [R(q), p], where R(-) is the function converting a quaternion
to a 3 x 3 rotation matrix.

While performing visual pose estimation, we calculate IMU pre-integration for keyframes using
Equations 17- 19, in which bias and noise are initialized as zero. Using Equations 17- 18 for consecutive
keyframes i and j, we obtain the scale error cost e} j

Cis,]' = (es(i/j))TA?,jes(i/j) (26)

R(a:) T ((Vpj —"pi)s — Vvildty; — 3 VAL ) — (Api; +]%, dpo; + Tap Ib2))

R(Wq')T(WV‘—WV‘—W Af")—(AV"—l-]w dbw“f‘la dba,) (27)
i j i 8AlLi ij TJav iT Ay i

e(i,j) =
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Figure 8. Proposed pose graph optimization model including metric scale and gravity variables. We
estimate the metric scale and gravity while maintaining the fundamental relationship of the relative
pose for whole keyframes.

Hereby, A? j denotes the information matrix, and we use the sub-block of Ag‘ i Experimentally, the
metric scale can be calculated to be zero if the motion is partially small or involve no motion. To
prevent this case, the scale factor in the proposed method uses exponential parameterization.

For the relative pose between two keyframes i and j is given as p;; = R(q;)("p; — “p;) and
qi; = 19; ‘39, the relative pose costs in PGO are given as follows:

C{jl _ erel(i,j)TAfjlerel(i,j) (28)
erel i, N — Pi,j - pi,jA 29
(i,j) 2 x Vec(q;; 7)) @9)

where (p; j, q; ;) is the relative pose constraint between keyframe i and j in the current map, Vec(q)
returns the vector (imaginary) part of the q and Alr-jl is the information matrix from the keyframe pose
covariance.

We define the optimization cost for a new state S;¢, by combining Equations 29 and 26 for whole
keyframes n as follows:

S;go = argmin { Z Creli,]' + ZCZ,kH} , kelo,n]. (30)
Spgo i,jEk k

Note that, because we know that the magnitude of gravity g is 9.8, we include the constraint g ' g = 9.8
when performing the optimization.

5.3. Convergence check

The proposed scale and gravity optimization can be calculated in real-time at the moment of
insertion of a new keyframe, and we update the optimized variable at a point sufficient to initialize
VIO. We use two ways to measure the accuracy: covariance of X* and variance of optimized scale
variables. The covariance of S;, is given by,

-1
C(Sie0) = (I (S50) V(Sig0)) (31)

*

where J(S},,) is the Jacobian of Equation 30 at S},,,. We apply the optimized scale and gravity to the
system initialization when the largest eigenvalue of the optimized covariance Ayax(C(S}g,)) is less
than the threshold 7°°” and the scale variance is less than the threshold 7" at the same time. The scale
variance is calculated from the optimized scale value during the registration of few keyframes and
measures the continuous accuracy of estimates. Experimentally, the scale and gravity initialization
in the bootstrapping step are estimated to reliable values within 5 seconds on average for the EuRoC
dataset, and then converge to an accurate value through continuous scale optimization in Section 4.
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Figure 9. The optimized scale variable for the sequence MH 01. The optimal scale value is computed
aligning the estimated trajectory with the ground-truth via Sim(3) [41]. Our bootstrapping algorithm
estimate reliable initial scale within the 50-th frame, then optimizes the local scale to the optimal value
by Eqn. 24 and update incrementally.

5.4. IMU biases update

After the optimized scale and gravity are applied to state S, we can calculate the initial IMU
biases while fixing the pose variables (" Ty, " Ty, ..., " T) in the optimization using Equation 22. The
pre-integration factors for the local window keyframes are re-propagated using biases computed
through initialization. At this point, the bootstrapping of the VIO is complete and online optimization
is performed using the framework presented in Section 4.3.

6. Experiments

We used the EuRoC [10] dataset, which contains various challenging motions, to evaluate the
quantitative performance of the proposed algorithm. The dataset was collected from a "Firefly"
micro-aerial vehicle equipped with a stereo camera and inertial measurement at high flying speeds.
We used only the left images with inertial sensor data. The sensor data in the EuRoC dataset were
captured as a global shutter WVGA monochrome image at 20 fps and IMU data at 200 Hz. This dataset
consists of five "Machine Hall" sequences and six "Vicon Room" sequences, which are labeled into
easy, normal and difficult, depending on the motion speed and illumination environment changes.
Both types of datasets measure the ground truth position from the Leica MS50 laser tracker and Vicon
motion capture systems and are well calibrated to be used as benchmark datasets in various SLAM
applications. We implemented the proposed system in C ++ without GPU and was executed it on Intel
Core i7 3.0G CPU laptops with 16GB RAM in real-time.

6.1. Comparison

We compared our proposed algorithm with recent state-of-the-art approaches using the same
evaluation method as Delmerico and Scaramuzza [31], who evaluated the benchmark VIO performance
in advance. They used the recommended parameter settings maintained in all tests of each algorithm
and evaluated the RMSE position error over the align trajectory to ground truth pose via SE(3) [42].
Note that, because our proposed method is not a SLAM system, we conducted the comparison
evaluation with algorithms that do not include loop closing. We directly compared the RMSE results
with OKVIS [5], ROVIO [43], VINS-Mono [17], SVO+MSF [44,45] and SVO+GTSAM [46] using [31].

OKVIS is the open source VIO system that solves the visual re-projection errors for landmarks
and IMU measurement with non-linear optimization they use a directly integration model without
using the IMU pre-integration method. ROVIO is an EKF based VIO system to update pose state
using multi-level patches around feature points with propagated IMU motion and minimization of
photometric errors. VINS-Mono algorithm is similar to OKVIS with non-linear optimization based
sliding window estimator, but uses the IMU pre-integration error term for relative pose between
keyframes. In addition, the author proposed a loop closure using 4DOF pose graph optimization,
but we compare it with the results without the module activated. SVO+MSF is an algorithm that
combines Semi-Direct Visual Odometry (SVO) [44] which is quickly estimate frame pose based on
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MH 01 (easy) MH 02 (easy)
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0.20m (130.40m) 0.22m (97.34m) 0.20m (91.49m)
MH 03 (medium) MH 04 (difficult) MH 05 (difficult)

0.05m (58.43m) 0.07m (75.80m) 0.16m (78.84m)
V101 (easy) V1 02 (medium) V1 03 (difficult)

0.04m (36.31m) 0.11m (83.09m) 0.17m (85.92m)
V201 (easy) V2 02 (medium) V2 03 (difficult)

Figure 10. Trajectory result of the proposed method and ground truth. Estimated trajectories are
aligned to ground truth pose via SE(3). The green line represents ground truth trajectory and the red
dashed line is ours. For overall sequences, the proposed method estimates the accurate poses without
any failure cases in tightly coupled optimization framework with a robust initialization method using
relative pose constraints.

visual patches and IMU measurement with EKF framework. Note that, this VIO system needs manual
initialization using extra sensors. SVO+GTSM optimize structureless visual reprojection error with
IMU pre-integration term performing full-smoothing factor graph optimization by [14]. These several
methods differ from visual term (re-projection and photometric error), IMU term (IMU pre-integration
and direct integration) and minimization method. Since the VIO system is a pose estimation method
in continuous situations that does not involve re-localization, partial pose estimation failures can not
be restored in extreme environments changes such as fast motion or dramatic illumination changes
(V103 (difficult), V2 03 (difficult)).

Table 1 shows the RMSE of our proposed algorithm and the other VIO system results and
estimated full trajectories of EoRoC are shown in Figure 10. We propose a robust algorithm that
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Table 1. Average distance error on EuRoC dataset (unit: meters).

EuRoC seq Ours | SVO+MSF [45] | OKVIS [5] | ROVIO [43] | VINS-MONGO [17] | SVO+GTSAM [46]
MH 01 (easy) 0.14 0.14 0.16 0.21 0.27 0.05
MH 02 (easy) 0.13 0.20 0.22 0.25 0.12 0.03

MH 03 (medium) | 0.20 0.48 0.24 0.25 0.13 0.12
MH 04 (difficult) | 0.22 1.38 0.34 0.49 0.23 0.13
MH 05 (difficult) | 0.20 0.51 0.47 0.52 0.35 0.16

V101 (easy) 0.05 0.40 0.09 0.10 0.07 0.07

V102 (medium) 0.07 0.63 0.20 0.10 0.10 0.11
V1 03 (difficult) 0.16 X 0.24 0.14 0.13 X
V201 (easy) 0.04 0.20 0.13 0.12 0.08 0.07
V2 02 (medium) 0.11 0.37 0.16 0.14 0.08 X
V2 03 (difficult) | 0.17 X 0.29 0.14 0.21 X
Overall 0.13 0.23 0.22 0.16

works well with the same parameters for whole sequences without any failures. ROVIO, VINS and
OKUVIS operate robustly in all sequences, but get low accuracy at V2 03, which is difficult to robust
initialization due to fast motion and MH 05 which contains night-time outdoor scene. SVO+GTSAM
makes a challenging performance in the "Machine Hall" with far features with illumination changes,
however it fails to estimate temporal poses on "Vicon Room" including fast motion (V1 03, V2 02-03).
Our algorithm performs well in the MH 04-05 and V1-2 03 which are the most difficult dataset with
dramatic illumination changes involving motion blur and darkness scene. Accurate scale and gravity
initialization can reliably update the bias, and it is also possible to estimate exact pose in unstable
feature tracking case through continuous scale updating. We make the best performance for overall
without any failure cases in tightly coupled optimization framework with a robust initialization
method using relative pose constraints. The most important aspect of the UAVs is to estimate the pose
stably for the entire running without other extra sensors. The proposed method suited for this since it
uses all the visual observation of the previous state by calculating the global metric scale and gravity
while stably estimating the pose using visual information from the start.

7. Conclusions

In this paper, we propose a stable and accurate monocular visual inertial odometry system, which
can be applied to UAVs in unknown environments. Even when we do not know the initial motion
well, we optimize the relative motion with the IMU pre-integration factor to effectively solve the high
non-linear problem and estimate reliable states by performing jointly optimization. We also estimate
the local scale and update it into the marginalization to overcome the limitation of the sliding window
approach where the observations are reduced. Further, We present that our proposed method makes
stable and accurate results for EuRoC benchmark dataset experiencing various environmental changes.

The problem of state estimation of UAVs is a challenging research topic due to various
environment changes that have not been unstructured before. Therefore, we are interested in studying
the integration of additional sensors for stable operation of real unmanned environment system.
Further, we are considering the dense map reconstruction from the reliable device pose estimated from
various sensors. The high-density reconstructed environment can be applied to various applications
such as obstacle detection, re-localization and 3D object tracking, which will make UAVs a more
helpful application.
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