

1 Article

2 Improvement of Tubular Permanent Magnet 3 Machine Performance Using Dual-Segment Halbach 4 Array

5 Minh-Trung Duong ^{1,2}, Yon-Do Chun ^{1,2}

6 ¹ Energy and Power Conversion Engineering, University of Science and Technology; Duong.MT@keri.re.kr

7 ² Electric Motor Research Center, Korea Electrotechnology Research Institute; Ydchun@keri.re.kr

8 * Correspondence: Ydchun@keri.re.kr; Tel.: +82-055-280-1490

9

10 **Abstract:** In this paper, modification of dual-Halbach permanent magnet (PM) array is investigated
11 to improve performance of tubular linear machine, in terms of flux density and output power.
12 Instead of a classical Halbach array with only radial and axial PMs, proposed model involves
13 insertion of mid-magnets, which have magnetized angle shifted from the reference magnetized
14 angles of axial and radial PMs. This structure leads to elimination of flux leakage and concentration
15 of flux linkage in middle of the coil; therefore, the performance of machine is increased.

16 **Keywords:** electromagnetic shock absorber, tubular machine, energy harvesting, Halbach array.

17

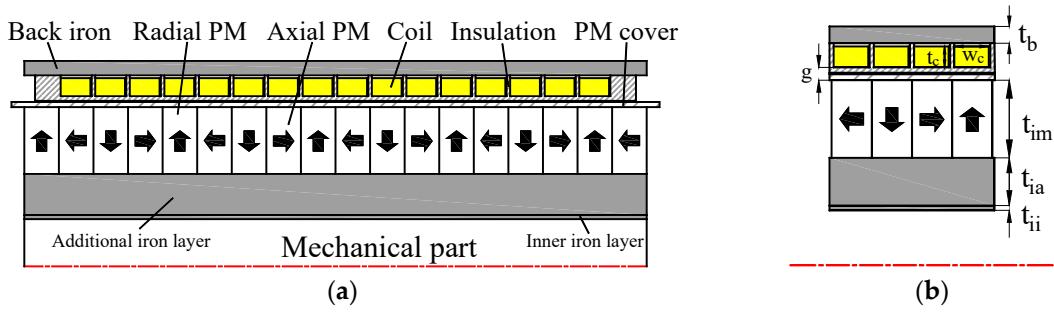
18 1. Introduction

19 Tubular machine are commonly applied in many industrial applications, such as cryocoolers,
20 linear compressors, or refrigerators [1–3]. Recent research activities for energy harvesting in vehicle
21 suspension systems [4] or using ocean wave energy [5] have proposed the new trend for the tubular
22 machines. From a design viewpoint, at a particular volume, the increase of the output power is very
23 difficult. L. Zou *et al.* [6] provide the original design, which is composed of one magnet layer using a
24 Halbach arrangement instead of only axial magnets or radial magnets array. In the following step, by
25 using the same Halbach array structure, X. Tang *et al.* [7] modified the original model with a double
26 layer of permanent magnet; this method eliminates the flux leakage, while flux density in the middle
27 of the coil is concentrated. This leads to an eightfold improvement of the output power and a 3.8
28 times improvement of the power density compared to those values of the original design.

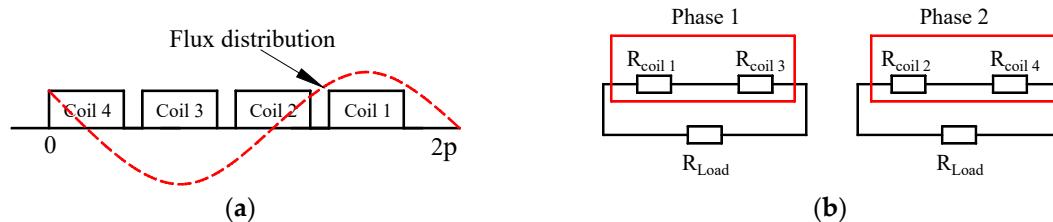
29 Another technique was studied by Y. Shen, in which mid-magnets of which the magnetization
30 angle is shifted from the reference angle of axial and radial magnets are inserted [8]. There are two
31 possible structures, including odd-segment or even-segment, and these structures define the number
32 of magnet segments over a pole pitch as an odd or even number. The FEM and analytical results for
33 a 12-slot/ 10-pole PM brushless machine illustrate that the 3-segment Halbach array exhibits
34 significantly higher fundamental airgap flux density than of the magnet cylinder having a traditional
35 Halbach array with two segments. Under the same theory, W. Zhao designed a linear generator for
36 energy harvesting from body motion [9] using an even-segment Halbach array. The eight-segment
37 dual Halbach array is employed in the optimized generator because its magnetic flux density is
38 greater than that of the four-segment array.

39 In this paper, a larger model assembled with a vehicle suspension system was designed based
 40 on the proposed segment-magnet dual Halbach array. The analysis results show that under the same
 41 operating conditions, the generator with the cylinder segment magnet yeilds higher output power
 42 than that of the generator with original Halbach array structure.

43 **2. Tubular machine with classical Halbach array**


44 *2.1. Design specifications*

45 This section deals with the design specification of the tubular machine using classical Halbach
 46 array based on the actual dimensions of a commercial shock absorber in an SUV-Korando car.
 47 Analyses using FEM are validated by corresponding experiments.


48 Figure 1 shows the cross-section of the half model and its geometry over one pole pitch, as was
 49 presented in [10]. The overlapping length of the magnet array and coil windings is about 200 mm
 50 but, fortunately, this value is adjustable by ± 40 mm. That is also the condition for the outer diameter,
 51 which can be flexibly chosen at values between 80 mm and 160 mm, while the inner diameter has to
 52 be at least 40 mm, the same as the diameter of the damping part or the mechanical part [10].

53 Due to the relative position between the coils and the excited flux density, and with the desire
 54 to simplify the drive system, an external circuit is designed with two phases, in which phase 1 is in
 55 series connection with coil 1 and coil 3, phase 2 is in series connection with coil 2 and coil 4. It is
 56 mandatory to exactly set up the winding directions to achieve maximum power [6,10].

57

58 **Figure 1.** Half cross-section of the single PM layer coreless model

59 **Figure 2.** (a) Coils & excited flux density; (b) External circuit

60 The relative position between the coils and excited flux, and the external circuit, are shown in
 61 the Figure 2. According to [6,10,11] the maximum output power occurs at the maximum vibrating
 62 speed v_{max} when the load resistance R_L equals the sum of the coil resistance R_c ; this is termed full load
 63 condition:

64
$$P_{max} = V_e I_0 = B_r^2 v_z^2 \sigma V_{coil} \quad (1)$$

65 where V_{coil} is the coil volume.

66 Equation (1) shows that output power is proportional to the square of the radial flux density,
 67 square of the vibrating speed and the volumes of the coil. The relationship among the peak to peak
 68 stroke, the vibrating speed, and the vibrating frequency is calculated as follows:

$$69 \text{Stroke}_{\text{peak-to-peak}} = \frac{V_{\text{max}}}{\omega} = \frac{V_{\text{rms}} \sqrt{2}}{\pi f} \quad (2)$$

70 In addition, the instantaneous voltage of one coil centered at equilibrium position z_0 in the
 71 regenerative shock absorber is presented as a function of time, position, magnetic flux density,
 72 geometrical parameter, suspension velocity and frequency. For the 0° coil or for coil 1, which has
 73 maximum magnetic flux density, if the vibration amplitude is small, the voltage is calculated by:

$$74 V_{0^\circ} = B_0 L \left| \frac{j\omega}{\omega_n^2 - \omega^2 + 2j\zeta\omega_n\omega} e_{\text{in}} \right| \sin \omega t \quad (3)$$

75 and a 90° coil or coil 3 will have a double frequency wave:

$$76 V_{90^\circ} = B_0 L \frac{\pi V_{\text{max}}^2}{2H\omega} \sin 2\omega t \quad (4)$$

77 The additional iron layer is inserted to reduce the inner diameter of the PMs; this layer is
 78 composed of stainless steel, while the back iron is made of an electromagnetic material. Both radial
 79 PMs and axial PMs are made of DDP-40SH, which has relative flux density is $B_r=1.26$ T at 20°C and
 80 relative permeability of $\mu_r=1.05$. Windings are wound around and supported by a bobbin with a total
 81 number of turns per slot of 180.

82 Detailed specifications of the tubular machine are briefly summarized in Table 1.

83 **Table 1.** Design specifications of the tubular machine with classical Halbach array.

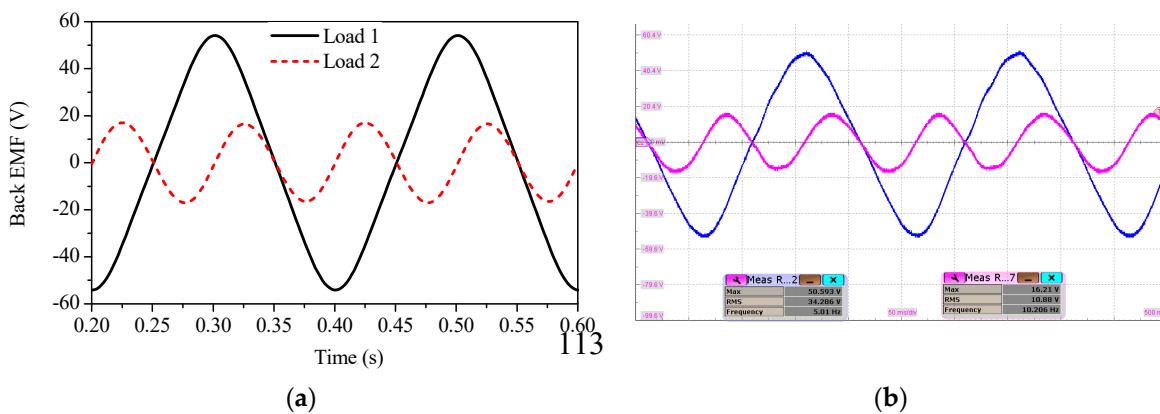
Item	Value
Length, L (mm)	243
Outer diameter, D (mm)	160
PM thickness, t_{pm} (mm)	26.0
Radial PM width, w_{rm} (mm)	13.5
Axial PM width, w_{am} (mm)	13.5
Pole pitch, τ_p (mm)	27.0
Coil window thickness, t_c (mm)	8.0
Coil window width, w_c (mm)	12.1
Mechanical air gap, g (mm)	4.3
Inner iron thickness, t_{ii} (mm)	1.6
Added iron thickness, t_{ia} (mm)	16.0
Back iron thickness, t_b (mm)	5.6
Wire diameter, w_r (mm)	0.6
Number of winding/ slot, turns	180
Number of poles, N_p	8
Number of slots, N_s	16
Back iron material	S20C
PMs material	NdFeB – N40SH; $B_r=1.26$ T (at 20°C); $\mu_r=1.05$

85 2.2. Experimental verification of analysis

86 According to [6], when a mid-size car is moving with 60 mph of speed on a road class C,
87 vibrating frequency on the shock absorber is estimated to be approximately 0.25 m/s. Under these
88 conditions, the peak to peak stroke length and vibrating frequency are about 11.25 mm and 10 Hz,
89 respectively. These conditions of the stroke length, vibrating speed, and linear frequency are
90 considered as a standard for the models studied in this paper. When applying the standard
91 conditions, the maximum and average power can be theoretically calculated at 76.09 W and 37.8 W,
92 respectively. To prepare for experimental verification, a prototype of a single layer coreless model
93 was fabricated and installed, as in the illustrations provided in Figures 3 and 4. Unfortunately, if the
94 linear frequency of the generator is 10 Hz, the required rotating speed of the sub-motor is 3000 rpm,
95 which exceeds the limitation of this motor; therefore, measurements were performed at lower
96 vibrating speeds.

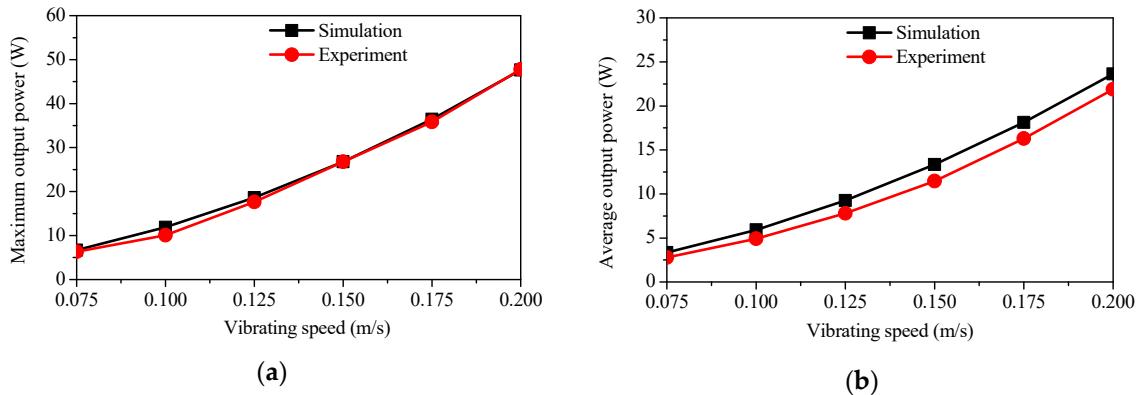
97

98


99 **Figure 3.** Prototype

100

101 **Figure 4.** Experimental installment


102 With the assumption that the peak to peak stroke length is fixed at 11.25 mm, Figure 5 presents
103 the back EMF waveforms achieved for the load resistance when vibrating speed is 0.125 m/s, which
104 equals 50% of the standard. It can be clearly seen in the Figure 5(b) that the frequency of load 2 is
105 double that of load 1, which phenomenon can be predicted by Equations (3) and (4). Figure 6
106 illustrates the power variation according to various vibrating speeds under the full load condition.
107 While the maximum output voltage is well-matched between the analyses and the experiments, with
108 an average deviation of only 4.8%, the results of the average output power are not much satisfactory,
109 at around 13.5 %. It should be noted that although the resistance in one phase under full load
110 condition is measured at nearly 39.3Ω , but in the experimental setup, only 39Ω of the load resistance
111 can be connected.

112

114
115

Figure 5. Back EMF of the load resistors under 0.125 m/s of vibrating speed obtained from: (a) FEM analysis; (b) Experiment

116

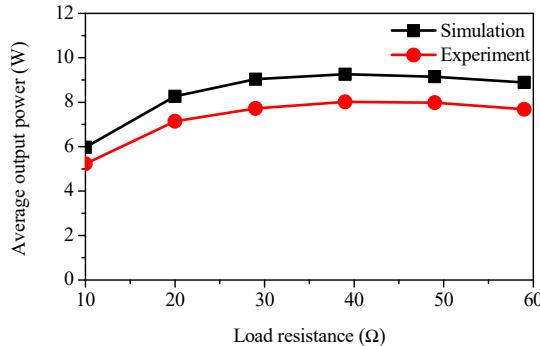
117
118

Figure 6. Power variation according to vibrating speeds under full load condition: (a) maximum output power; (b) average output power

119
120
121
122
123
124

Figure 6 illustrates the power variation according to various vibrating speeds under the full load condition. While the maximum output voltage is well-matched between the analyses and the experiments, with an average deviation of only 4.8%, the results of the average output power are not much satisfactory, at around 13.5 %. It should be noted that although the resistance in one phase under full load condition is measured at nearly $39.3\ \Omega$, but in the experimental setup, only $39\ \Omega$ of the load resistance can be connected.

125
126
127
128

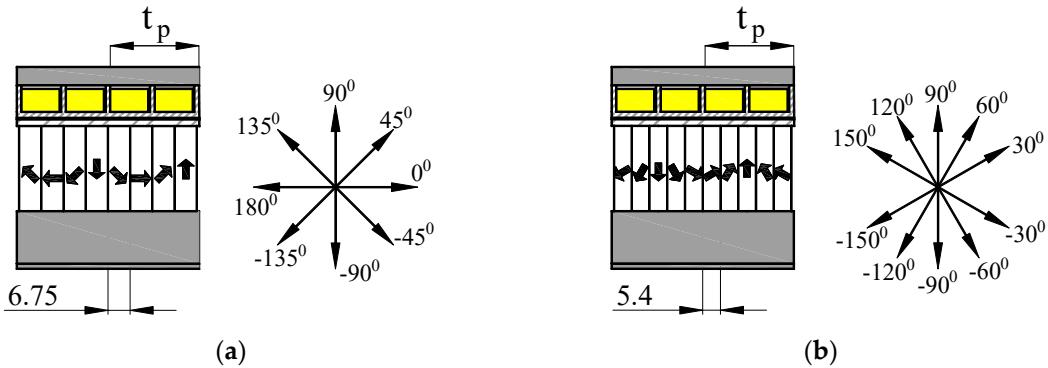

Another noticeable phenomenon is the linear relationship between the output power and the square of the vibrating speed, according to Equation (1). For instance, when the generator is operating at 0.075 m/s, about 2.78 W of average power can be obtained. The average power under 0.15 m/s of vibrating speed can be predicted according to the following:

129

$$P_{0.15\text{m/s}} = P_{0.075\text{m/s}} \times \left(\frac{0.15}{0.075} \right)^2 = 2.78 \times \left(\frac{0.15}{0.075} \right)^2 \approx 11.12(\text{W}) \quad (4)$$

130
131

The measured result at 0.15 m/s of vibrating speed for average power is approximately 11.46 W, which is nearly the same as the expectation.

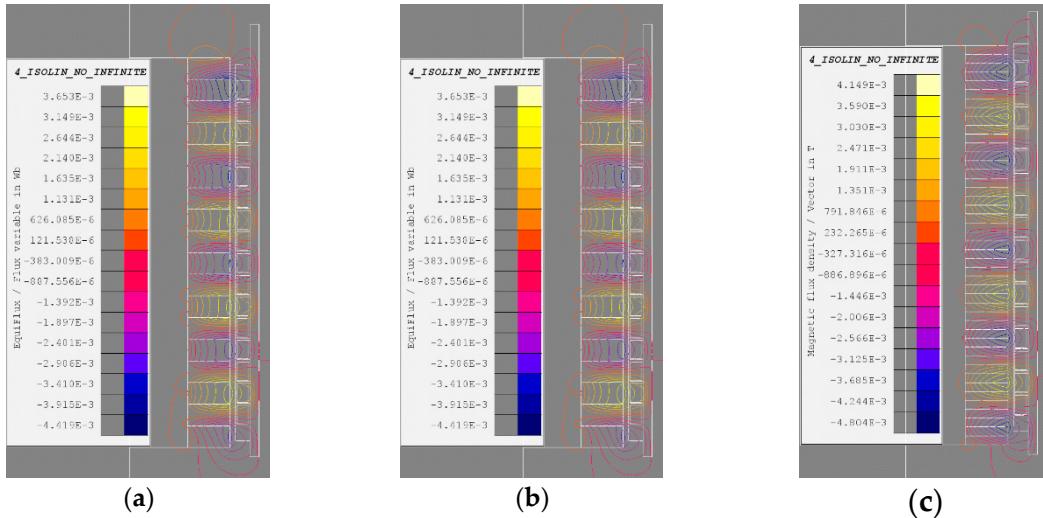

132

133 **Figure 7.** Average power according to various load resistances

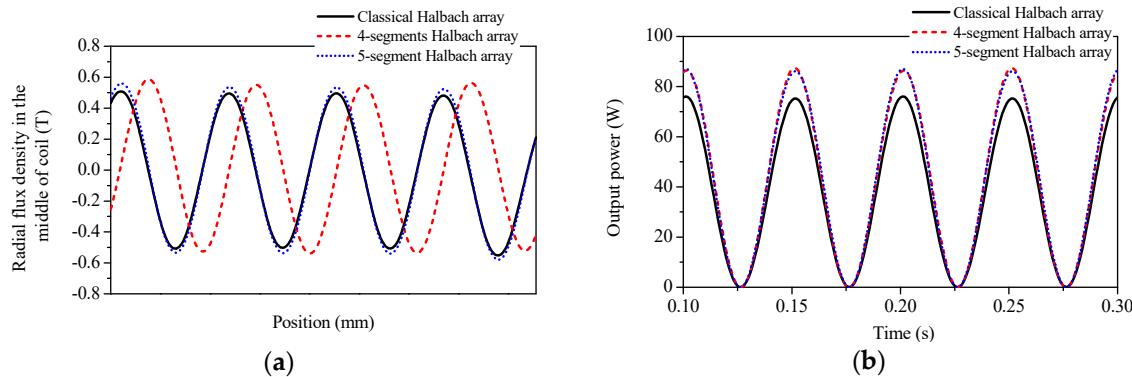
134 Figure 7 illustrates the power variation according to various load resistances when the vibrating
 135 speed is 0.125 m/s and the peak to peak stroke length is 11.25 mm. Both the analysis and the
 136 experiment results present similar trends, with an average deviation of about 13.4%. When the load
 137 resistance equals the sum of the coil resistance, the average output power is at its maximum.

138 **3. Tubular machine with novel Halbach array**

139 In this section, a novel Halbach array is applied to the same tubular generator with the desire to improve
 140 the output power. Design specifications with the number of magnets, the sizes, and the magnetized direction
 141 are shown in Figure 8 and Table 2.


142 **Figure 8.** (a) 4-segment Halbach array; (b) 5-segment Halbach array143 **Table 2.** Specifications of the magnet segments over one pole pitch

Item	Classical Halbach array	4-segment	5-segment
Pole pitch, t_p (mm)		27	
Number of segments/ pole pitch	2	4	5
Width of each segment (mm)	13.5	6.75	5.4
Magnetized angle of mid-magnet	---	45°	30°


144

145 Based on the results in [8], instead of applying only axial and radial PMs over one pole pitch in
 146 a classical Halbach array, a number of mid-magnets with different magnetized angles are inserted.
 147 There are two applicable approaches, including even-segment, with an even number of magnets over
 148 one pole pitch, and odd-segment, with an odd number of magnets over one pole pitch. From the pole

149 pitch value, there are 4 magnet segments in the even-segment case and 5 magnet segments in the
 150 odd-segment case. For a fair comparison, the other dimensions such as length and diameter of the
 151 generator, the number of turns per slot, and the materials are the same for the 3 models.
 152

153 **Figure 9.** Flux distribution on the three different models under no-load condition: (a) classical Halbach
 154 array; (b) 4-segment; (c) 5-segment

155 **Figure 10.** Comparison of the: (a) 4-segment Halbach array; (b) 5-segment Halbach array

156 **Table 3.** Comparison of three models

Items	Classical Halbach array	4 segment	5 segment
Vibrational speed, v (m/s)		0.25	
Stroke length (mm)		11.25	
Liner frequency f , (HZ)		10	
Radial flux density (T)	Max	0.55	0.59
	RMS	0.36	0.39
Maximum induced voltages (V)	Phase 1	54.10	57.98
	Phase 2	17.05	18.53
Output Power (W)	Max	76.09	87.10
	RMS	37.78	43.53

157 Figure 9 shows the flux distribution on the 3 different models under a no-load condition, 0.25
158 m/s of vibrating speed, 11.25 mm of peak to peak stroke length and 10 Hz of linear speed. According
159 to Equation (1), the output power is proportional to the radial flux density in the middle of the coil.
160 In the cases of 4-segment and 5-segment magnet, the radial flux density increased by 6.8% and 5.2%,
161 respectively; therefore, the output power can be expected to increase by around 15%. Figure 10
162 presents a comparison of the three models in terms of the radial flux density in the middle of the coil
163 and the output power. The other characteristics are summarized in Table 3.

164 **4. Conclusions**

165 In this paper, a tubular permanent magnet machine composed of a novel magnet arrangement
166 is proposed and compared with the conventional model in terms of radial flux density in the middle
167 of coil and output power. A prototype of the tubular machine composed of the classical Halbach
168 array was fabricated and validated with the FEM analyzed results, which show an average deviation
169 of 13.5% in term of the output power.

170 Different from device using the classical Halbach array, the proposed model involves the
171 insertion of mid-magnets, that have a magnetized direction that is shifted from that of the original
172 axial and radial PMs. Based on FEM analyses, in the cases of 4-segment and 5-segment Halbach
173 arrays, RMS values of the radial flux density increased by nearly 6.8%, which led to an increase of the
174 average output power of 13.2%.

175 In further study, optimization of the relative dimensions and of the magnetized angle between
176 the magnet segments will be performed.

177 **Acknowledgments:** This work was made possible by a grant from Civil-Military Technology Cooperation
178 Program (No.: 16-CM-EN-17) funded by the Defense Acquisition Program Administration and the Ministry of
179 Trade, Industry & Energy in Korea.

180 **References**

1. Li, K.; Zhang, X.; Chen, H. Design Optimization of a Tubular Permanent Magnet Machine for Cryocoolers. *IEEE Transactions on Magnetics* **2015**, *51*, 1–8, doi:10.1109/TMAG.2014.2373337.
2. Wang, J.; Lin, Z.; Howe, D. Analysis of a short-stroke, single-phase, quasi-Halbach magnetised tubular permanent magnet motor for linear compressor applications. *IET Electric Power Applications* **2008**, *2*, 193–200, doi:10.1049/iet-epa:20070281.
3. Wang, J.; Howe, D.; Lin, Z. Design Optimization of Short-Stroke Single-Phase Tubular Permanent-Magnet Motor for Refrigeration Applications. *IEEE Transactions on Industrial Electronics* **2010**, *57*, 327–334, doi:10.1109/TIE.2009.2025710.
4. Shen, Y.; Lu, Q.; Ye, Y. Double-Stator Air-Core Tubular Permanent Magnet Linear Motor for Vehicle Active Suspension Systems. In *2016 IEEE Vehicle Power and Propulsion Conference (VPPC)*; 2016; pp. 1–6.
5. Cappelli, L.; Marignetti, F.; Mattiazzo, G.; Giorcelli, E.; Bracco, G.; Carbone, S.; Attaianese, C. Linear Tubular Permanent-Magnet Generators for the Inertial Sea Wave Energy Converter. *IEEE Transactions on Industry Applications* **2014**, *50*, 1817–1828, doi:10.1109/TIA.2013.2291939.

195 6. Design and characterization of an electromagnetic energy harvester for vehicle suspensions -
196 IOPscience Available online: <http://iopscience.iop.org/article/10.1088/0964-1726/19/4/045003/meta>
197 (accessed on Jun 4, 2018).

198 7. Tang, X.; Lin, T.; Zuo, L. Design and Optimization of a Tubular Linear Electromagnetic Vibration
199 Energy Harvester. *IEEE/ASME Transactions on Mechatronics* **2014**, *19*, 615–622,
200 doi:10.1109/TMECH.2013.2249666.

201 8. Shen, Y. Novel permanent magnet brushless machines having segmented Halbach array. phd,
202 University of Sheffield, 2013.

203 9. Ma, C.; Zhao, W.; Qu, L. Design optimization of a linear generator with dual Halbach array for
204 human motion energy harvesting. In *2015 IEEE International Electric Machines Drives Conference*
205 (IEMDC); 2015; pp. 703–708.

206 10. Duong, M.-T.; Chun, Y.-D.; Han, P.-W.; Park, B.-G.; Bang, D.-J.; Lee, J.-K. Design of An
207 Electromagnetic Energy Harvesting System Applied to The Shock Absorber of A Sport Utility Vehicle
208 Available online: <http://www.dbpia.co.kr> (accessed on Jun 4, 2018).

209 11. Goldner, R. B.; Zerigian, P. Electromagnetic linear generator and shock absorber 2005.