

1 *Type of the Paper: Article*

2 **Reuse of electrocoagulated metal hydroxide sludge to** 3 **fluoride and arsenic removal by a fixed-bed column in** 4 **continuous operation**

5 **C. García-Gómez^{1,2}, M.L. Rivera-Huerta³, F. Almazán-García³, A. Martín-Domínguez³,**
6 **V.A. Burboa-Charis², I.C. Romero-Soto², R. G. Ulloa-Mercado², D. Serrano-Palacios²,**
7 **P. Gortáres-Moroyoqui²**

8 ¹Universidad Autónoma de Nuevo León (UANL), Facultad de Agronomía, Francisco Villa S/N, C. P. 66050
9 General Escobedo, Nuevo León, México.

10 ²Instituto Tecnológico de Sonora (ITSON), Departamento de Biotecnología y Ciencias Alimentarias, 5 de Febrero
11 818 Sur C.P. 85000 Ciudad Obregón, Sonora, México.

12 ³Instituto Mexicano de Tecnología del Agua (IMTA), Paseo Cuauhnahuac 8532 Progreso C.P. 62550, Jiutepec,
13 Morelos, México.

14 * Correspondence: pablo.gortares@itson.edu.mx; Tel.: +52 644 4109000 ext. 2110

15

16 **Featured Application:** The work provides a fundamental understanding on the removal of
17 fluoride and arsenic through the Reuse of electrocoagulated metal hydroxide sludge. Fixed-bed
18 column experiments using a response surface methodology were performed to investigate the
19 effect of column parameters. This kind of experimental design gives a depth understanding for
20 the design of fixed-bed adsorption processes to facilitate scaling up of the processes.

21 **Abstract:** In the present study, Electrocoagulated Metal Hydroxide Sludge (EMHS) was analyzed
22 as adsorbent material to remove both fluoride ion (F-) and arsenic V (As(V)) from aqueous effluents.
23 This material was generated during an electrocoagulation process using Aluminum anode. It was
24 characterized by using specific surface areas and the surface morphology was studied by scanning
25 electron microscopy (SEM). Adsorbent fixed-beds are generally studied to remove different class of
26 contaminants. EMHS was evaluated using a continuous flow rate column test with an experimental
27 design. The effect of initial concentration of F- (2.5-10 mg L⁻¹) and the Empty Bed Contact Time
28 (EBCT (0.4-0.8 min)) was studied following a central composite design methodology. The
29 experimented parameters had a significant influence on saturation time, breakthrough volume, and
30 breakthrough time. A response surface analysis was a tool for analyzing the adsorption study,
31 showing interactions that are complicated to identify by others methods. The results, here reported,
32 revealed that EMHS is an efficient and promising adsorbent material in order to remove F- and
33 As(V) from water contaminated by these pollutants.

34 **Keywords:** Fixed-bed column, fluoride, arsenic, removal, response surface methodology

35

36 **1. Introduction**

37 The expanded distribution of diverse ionic elements such as fluoride and arsenic in water as
38 result of diverse industry process or naturally occurring has generated interest from the scientific
39 researches since they are affecting human health in the world. In this context, the most substantial
40 inorganic pollutants in groundwater, established by the World Health Organization (WHO), are
41 fluoride (F-) and arsenic (As) [1].

42 F⁻ at small amount is favorable for bone and teeth development, but in concentrations elevated
43 are harmful to human health, provoking skeletal or dental fluorosis [2]. On the other hand, As is
44 distinguished for generate cancer in skin, lung, kidney, liver and bladder, besides gastrointestinal
45 problems and arsenicosis [3]. Therefore, the WHO recommends guideline values for F⁻ and As
46 concentrations with the upper permissible limit in water of 1.5 mg L⁻¹ and 10 µg L⁻¹, respectively [4].
47 In many places worldwide, F⁻ and As concentrations show a significant co-contamination in
48 groundwaters whit concentrations up of 29 mg L⁻¹ and 5300 µg L⁻¹ for F⁻ and As, respectively [5]. In
49 the actuality water contaminated with F⁻ and As is a concern, which requires an efficient treatment.
50 In the literature several strategies have been put in practice to perform the F⁻ and As removal from
51 water, for F⁻ strategies as chemical precipitation/coagulation [6], electrocoagulation and
52 electrocoagulation/floatation [7, 8], adsorption [9, 10] ion exchange [11, 12] reverse osmosis and
53 nanofiltration [13], and electrodialysis [14, 15]. The most technologies frequently used for As removal
54 can be used for F⁻ removal, to be specific, chemical methods [16], adsorption [17, 18] , Ion exchange
55 [19], membrane technology [20]. These strategies has its own advantages and disadvantages with
56 removal efficiencies ranging from 60% until 100%.

57 Adsorption technique has shown considerable potential due to its simplicity, chemicals addition
58 are not necessary, and its efficiency with high grade of total solids [21]. Different strategies has been
59 used employing diverse materials for individual and concurrent elimination of F⁻ and As. Several
60 adsorbents have been used to eliminate F⁻ and As in both, individual and a concurrent way such as
61 activated carbon [22], layered double hydroxides [23], aluminum hydroxide [24], ferric hydroxide
62 [25], goethite [26], Fe-Ce oxides [20], Fe-Al doped polymers [27], Haix-Fe-Zr and Haix-Zr resin beads
63 [28], inorganic ion exchange adsorbents [29], mesoporous aluminas [30], modified cellulose [31] and
64 volcanic ash [32] Researches are looking simple and cost effective processes, diverse low cost
65 materials from different sources have been applied for F⁻ and/or As removal [33].

66 A candidate strategy for providing low-cost adsorbent can be Electrocoagulated Metal
67 Hydroxide Sludge (EMHS) which is obtained from an electrocoagulation (EC) system, in this process
68 sacrificial aluminum or iron electrodes are oxidized releasing hydroxides of these metals. Metallic
69 hydroxides can separate some pollutants by electrostatic attraction or surface complexation [34]. The
70 disposal of these materials, which is considered as waste, are actually a critical subject because they
71 can cause environmental and public health impacts without an appropriate management [35]. The
72 EMHS can be utilized to remove F⁻ and As from the effluents which formed the motivation of this
73 study.

74 In this investigation, EMHS was reused before disposal for a modelling and experimental
75 research. No results of fluoride and arsenic removal in fixed bed coulum by EMHS have been
76 presented so far. Therefore, the overall motivation for investigating the effect of this molecules on
77 sorption is toward developing a mechanistic understanding of inorganic sorbate-EMHS interactions.
78 The characteristics of EMHS using specific surface areas and scanning electron microscopy
79 techniques were analyzed. The influence of column variables such as empty bed contact time (EBCT)
80 and fluoride ion (F⁻) concentration in a continuous flow fixed-bed column have been investigated
81 using a response surface methodology.

82

83 2. Materials and Methods

84 2.1. Chemicals and analytical method


85 All of the reagents used in this work were analytical grade and were used without any further
86 purification. Fluoride (F⁻) and arsenic (As(V)) stock solutions were made from sodium fluoride (NaF)
87 and sodium arsenate (NaAsO₃·12H₂O), respectively. Hydrochloric acid (HCl) and sodium hydroxide
88 (NaOH) were used to adjust required pH. Fluoride concentration was monitored using an ion-
89 selective electrode for fluoride ion (Thermo Scientific 9609 BNWP), while for As concentration a
90 digital arsenic Test Kit (Arsenator®) was used.

91

92 2.2 Adsorbent material preparation

93 EMHS applied to adsorption research and carried out in this investigation was by-produced
 94 from electrocoagulation (EC) pilot plant using aluminum anodes, at the say way as is reported in a
 95 previous work [36]. A flow diagram of the adsorbent by-production used in this study is shown on
 96 Fig 1.

97

98
99 **Figure 1.** Process flow diagram of the EMHS production.
100

101 2.3. Material characterization

102 The characterization of EMHS was analyzed by N_2 adsorption–desorption isotherms at 76 K
 103 utilizing a Micromeritics ASAP 2020 surface area and porosity analyzer. N_2 isotherms with the
 104 Brunauer–Emmett–Teller method (BET) was used to determine the surface area BET. The volume of
 105 liquid nitrogen corresponding to the amount adsorbed at relative pressure of $P/P_0 = 0.99$ and was
 106 defined as the total pore volume, V_T . The Dubinin–Radushkevich method was used to determine the
 107 micropore volume, V_μ , and the mesopore volume, V_m , was obtained with the difference between V_T
 108 and V_μ . The average pore diameter, D_p , was calculated using the relation $4 V_T / \text{area BET}$ and the pore
 109 size distribution by Density–Functional–Theory method (DFT). The scanning electron microscopy
 110 (SEM) assay was carried out for the adsorbent material in order to analyze their morphology.
 111

112 2.4. Column studies

113 Adsorption processes design in a full scale involves a lot of time and expensive pilot plant
 114 evaluations. These experiments could take several years. For prevent these expensive studies quick
 115 laboratory experiments are employed. The small-scale fixed bed column test is, possibly the most
 116 useful tool to evaluate adsorbents capacity to remove pollutants. In a series of column test were
 117 studied the influence of the initial F^- concentration (mg L^{-1}) and empty bed contact time (EBCT, (min)).
 118 According to several investigations [37], a prediction of the variation of adsorption contaminants rate
 119 on adsorbents as adsorbate concentration is difficult. If intraparticle diffusion is the main mechanism,
 120 an equilibrium interfacial concentration should form rapidly that is followed by slow diffusion into
 121 the adsorbent particles. Then, a simple dependence on solution concentration is not expected.
 122 Moreover, the mathematical treatment of intraparticle diffusion does not lead a simple algebraic
 123 relationship between external solute concentration and time of reaction even when a constant

124 saturated external layer is maintained. In this case, concentration effect is used to define the rate-
 125 limiting reaction step. When intraparticle transport limits the kinetic of an adsorption reaction, the
 126 variation in reaction rate is not expected to be linear, whereas the rates of strictly adsorptive reactions
 127 and simple diffusion-controlled processes are expected to be proportional to the of adsorbate's
 128 concetration.

129 Arsenic concentration was fixed at 100 $\mu\text{g L}^{-1}$. The EBCT is represented by the flow rate through
 130 the column, this parameter influences the shape of breakthrough curve and the volume to
 131 breakthrough. The EBCT is resolved using equation (1):

$$\text{EBCT (min)} = \frac{\text{bed volume (cm}^3\text{)}}{\text{volumetric flow rate (cm}^3 \text{ min}^{-1}\text{)}} \quad (1)$$

132 An acrylic column of 2 cm internal diameter and 100 cm length was filled with metal hydroxide
 133 sludge as adsorbent. Before to start column tests, a flow rate of 26 ml min^{-1} of deionized water was
 134 introduced in the column for 5 min with the propose of remove air bubbles and to guarantee a closely
 135 packed disposal of particles without cracks, channels or voids. After that, the pollutant solution was
 136 passed through a fixed-bed of adsorbent in down-flow mode. A flow rate of 26 ml min^{-1} was
 137 controlled with a peristaltic pump. Periodically, samples were collected from the effluent and then
 138 analyzed for the remaining pollutant concentration. Temperature was maintained around $21 \pm 0.8^\circ\text{C}$,
 139 while pH of the medium was fixed at 7 in all experiments.

140 141 2.5. Experimental design

142 The one variable at a time or step-by-step variable strategy is the traditional way to analyzed the
 143 effect of several independent variables or factors over dependent variables or response variables, in
 144 which the variables remain constants and only one is changing. However, this strategy implicates
 145 several number of runs and interactions among factors are missed. These drawbacks can be solved
 146 by response surface methodology (RSM). This methodology is a mathematical and statistical method
 147 functional for studying and optimizing processes [37]. Therefore, for explore the impact of operating
 148 conditions on diverse process the RSM can be an alternative. The Central Composite Design (CCD)
 149 methodology is commonly used class of second-order designs. It implicates the use of a two-level
 150 factorial design with 2^k points combined with $2 * k$ axial points and n center runs, where k being
 151 the number of factors experimental. The total number of experiments N , with k factors experimental
 152 is (Eq. (2)):

$$N = 2^k + 2 * k + n \quad (2)$$

153 Figure 3 shows the coded presentation of the CCD for 2 factors.

154 Factorial designs with two levels (2^k) have advantage in the total of experimental runs compared
 155 with the 'one variable at a time' method. Here a mathematical model can be used to define the
 156 behavior of the response variable on the interest zone. In this investigation a RSM was developed
 157 based on the CCD methodology experiments.

158 The statistical software of Design-Expert (version 7.0, STAT-EASE Inc., Minneapolis, MN, USA)
 159 was applied for designing and analyzing the experimental results. The values of process variables
 160 and their variation limits were selected based on the preliminary experiments. For statistical
 161 purposes, the transformation of independent variables (X_i) into coded corresponding variables (x_i)
 162 was generated by (Eq. (3)):

$$x_i = \frac{(X_i - X_0)}{\Delta X} \quad (3)$$

163 Where X_0 is the value of X_i at the center point and ΔX represents the step change. The table 1 shows
 164 the codified levels. ANOVA was applied to RSM model to study the individual and combined effect
 165 of two variables X_1 and X_2 . The response variables studied were related with F- pollutant like
 166 saturation time (t_s), breakthrough volume (V_b), and breakthrough time (t_b). Also, arsenic removal
 167 efficiency (% of removal) is reported. The sequential model fitting test was implemented in order to
 168 select an appropriate model. For express the response variable in the investigated domain it is

169 appropriate an adjustment for a mathematical model equation. Generally, to describing a flat surface
 170 the first-order model can be used under to the following expression (Eq. (4)):

$$Y = b_0 + \sum b_i x_i \quad (4)$$

171 Where Y is the response variable, b_0 is the constant coefficient, b_i represents the coefficients of the
 172 linear parameters, x_i represents the variables studied. When interaction terms are incorporated (FI
 173 model or factor interactions), the next equation (Eq. (5)) can represent the first-order model:

$$Y = b_0 + \sum b_i x_i + \sum b_{ij} x_i x_j \quad (5)$$

174 Where b_{ij} represents the coefficients of the interaction parameters x_i and x_j and $i < j$.

175

176 **Table 1.** Experimental range and level of independent variables.

Independent variables	Factor	Experimental field				$+\alpha (\sqrt{2})$
		$-\alpha (-\sqrt{2})$	Low (-1)	Middle (0)	High (1)	
F ⁻ concentration (mg L ⁻¹)	X ₁	0.94	2.5	6.25	10	11.55
EBCT (min)	X ₂	0.31	0.4	0.6	0.8	0.88

177

178 Sometimes for an interpretation of relationships with independent variables the FI or first-order
 179 models are not convenient. For this reason, a more highly diversified, structured and flexible model
 180 like a second-order model can be applied and this way establish the optimum value. The second-
 181 order model can be predicted by the following equation (Eq. (6)):

$$Y = b_0 + \sum b_i x_i + \sum b_{ij} x_i x_j + b_{ii} x_i^2 \quad (6)$$

182 where b_{ii} expresses the coefficients of the quadratic parameter and $i < j$.

183 An experiment can be optimized for examining the analysis of variance (ANOVA) statistics (R^2),
 184 the adjusted R^2 , lack-of-fit, F -test and t -test), the residual analysis, normal plots, interaction effects
 185 and the contour plot, and this way decide the fit of the first-order or second-order model. The runs
 186 carried out are shown in Table 2.

187

188 **Table 2.** Central composite design analysis: experimental conditions and results.

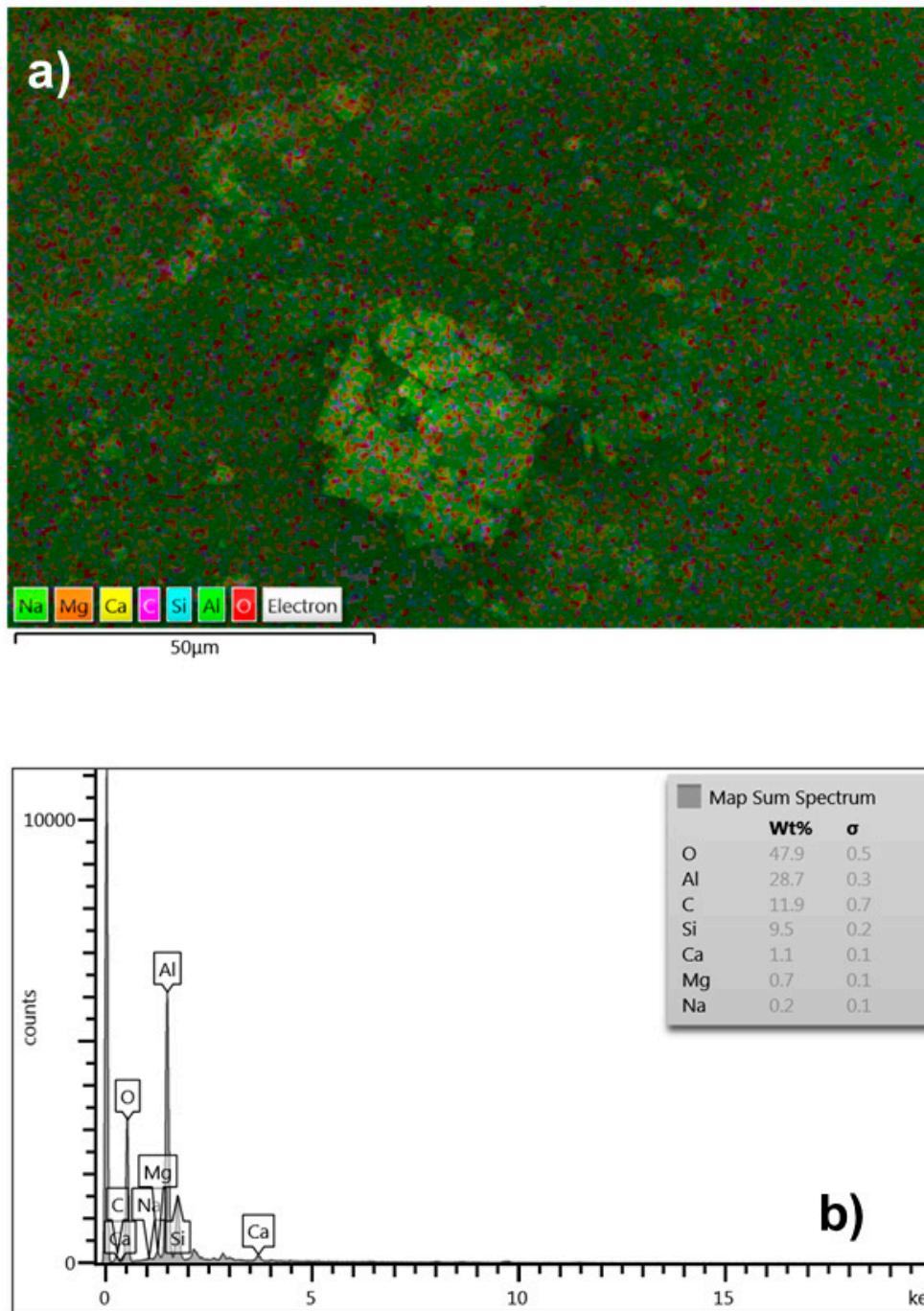
Experiment plan		Response variables		
X ₁ (mg L ⁻¹)	X ₂ (min)	t_b (min)	V_b (L g ⁻¹)	t_s (min)
0.4	2.5	65	0.330	817
0.4	10	36	0.178	600
0.8	2.5	233	0.585	1242
0.8	10	122	0.336	1116
0.317	6.25	22	0.152	540
0.6	0.946	184	0.543	1440
0.882	6.25	134	0.385	1080
0.6	11.556	33	0.121	600
0.6	6.25	122	0.348	1140
0.6	6.25	98	0.360	1240
0.6	6.25	85	0.312	1220

189

190

191

192


193 2.6. Optimization: Desirability function.

194 The desirability is a multiple response method, which is useful for the process optimization. This
195 method utilizes an objective function or desirability function (D), which change a calculated response
196 into a value from zero to one, in other words, from least to most desirable. The optimal parameter
197 conditions are considered with maximum desirability. The desirability function is maximized by the
198 numerical optimization. Regulating the importance may change the attribute of a goal. The
199 desirability function combines all goals of several responses. In the optimization, both the
200 independent and response variables have a low and high value for every goal.

201

202 **3. Results**203 **3.1. Characterization**204 **3.1.1. SEM analysis**

205 Micrograph obtained from EMHS is shown in Fig. 2, where the morphology of the sample
206 presents particle sizes between 5 and 350 micrometers. In general, the adsorbent studied showed a
207 brightness in the regions analyzed, which indicates chemical consistency related to C, Si, O, and Al.

208

209

Figure 2. SEM micrographs of EMHS: a) 3 mm reference scale, and b) 500 μ m reference scale.

210

211

3.1.2. N_2 adsorption–desorption and pore size distribution.

212

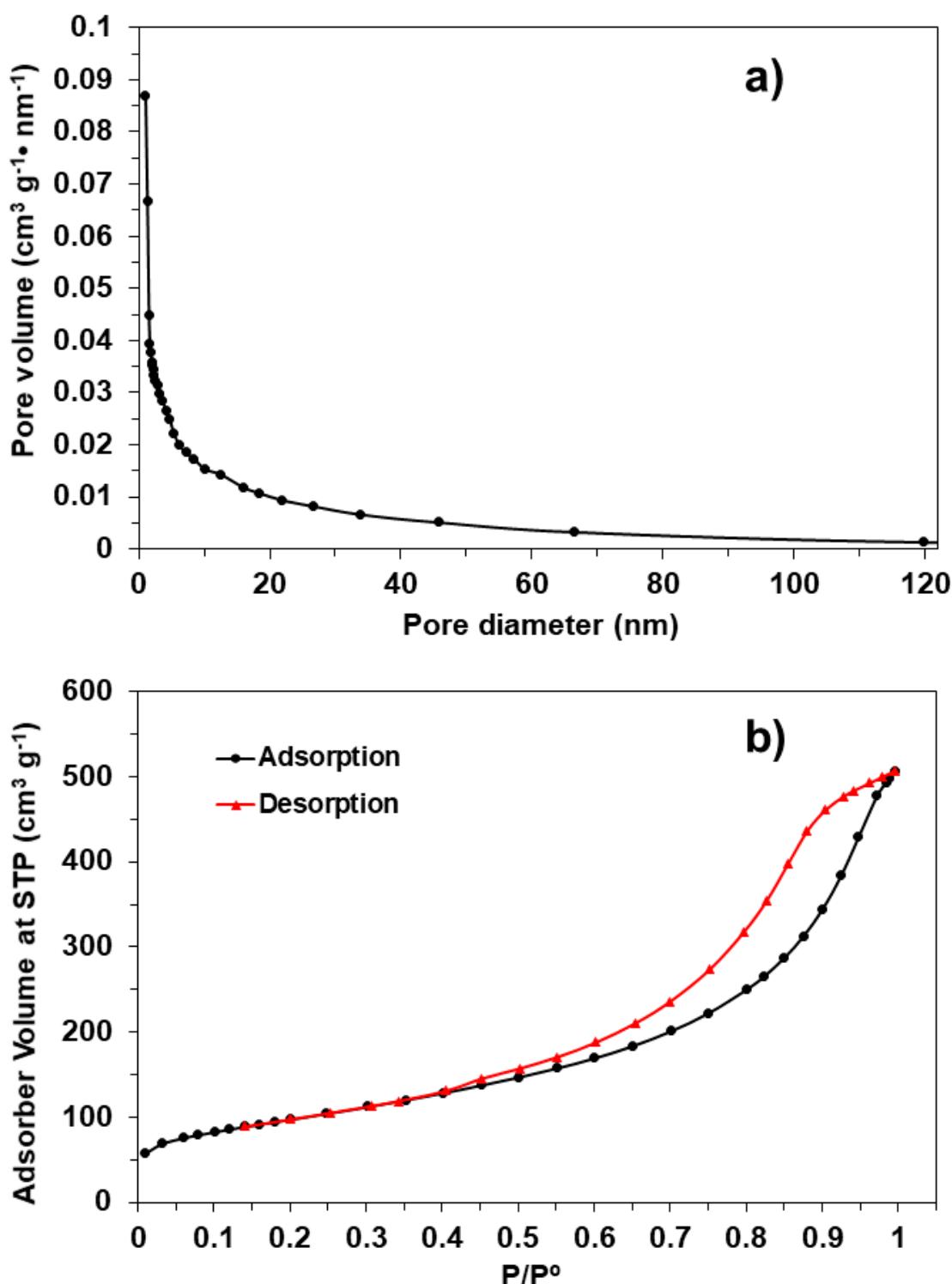
Nitrogen adsorption–desorption isotherm and the BJH pore size distribution of EMHS are shown in Fig. 3. Usually, pores are classified according on the diameter as macropores ($d > 50$ nm), mesoporous ($2 \text{ nm} < d < 50 \text{ nm}$) and microporous ($d < 2 \text{ nm}$). As can be seen in Fig. 3a, according the average pore diameter of EMHS comprised mesopores and macropore, given that diameter is within the range of 2–50 nm and partially more than 50 nm. The result can be confirmed by the nitrogen adsorption/desorption isotherms in Fig. 3b. It can be seen that EMHS exhibited an IV type N_2 adsorption isotherm with an evident hysteresis loop (according to the IUPAC classification), implying the existence of mesopores structures in the material [39]. Furthermore, the existence of macropores is evidenced given that the hysteresis loop shifts approach relative pressure (p/p_0)=1.

213

214

215

216


217

218

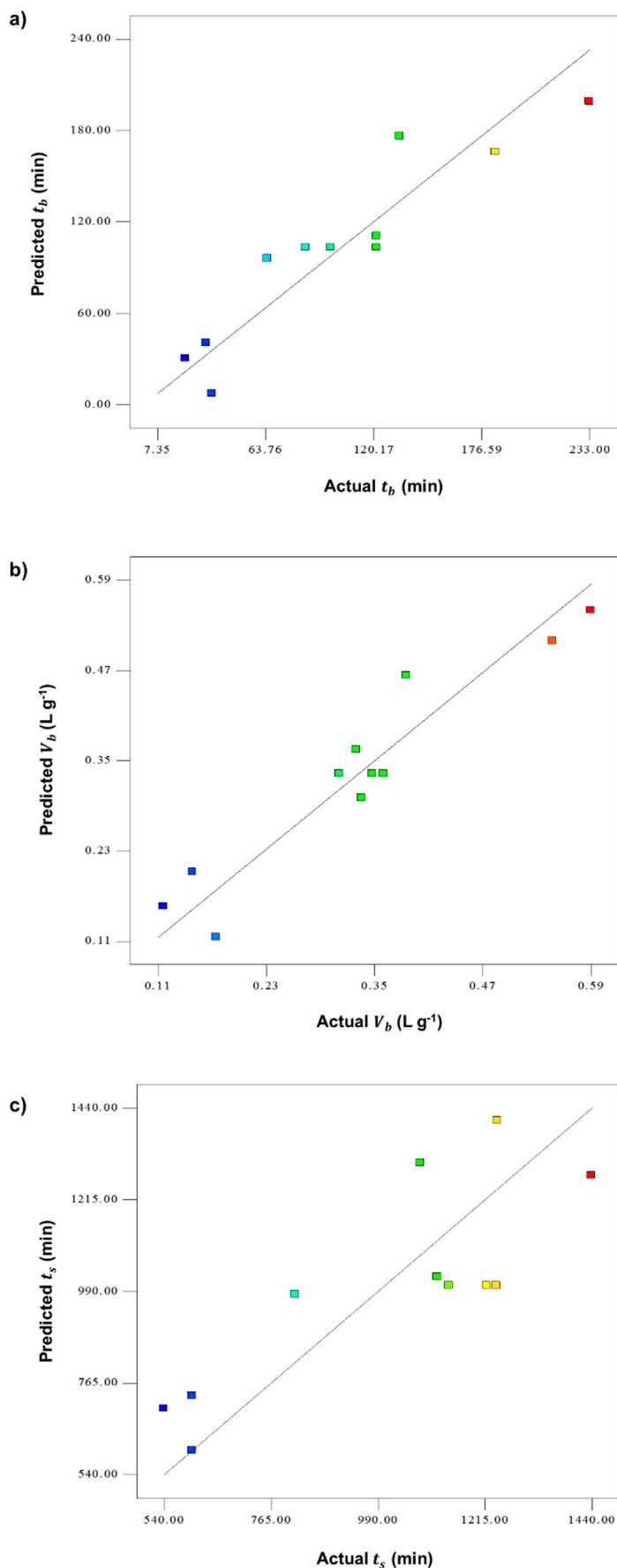
219

220

221 The adsorbent showed a total pore volume (TPV) of $0.76 \text{ cm}^3 \text{ g}^{-1}$ and a BET surface area of $350.19 \text{ m}^2 \text{ g}^{-1}$.
 222 From the TPV amount, only $0.007 \text{ cm}^3 \text{ g}^{-1}$ is due to the micropore volume, and $0.753 \text{ cm}^3 \text{ g}^{-1}$
 223 correspond to mesopore volume. In other words, the EMHS is composed mainly of mesopores and
 224 macropores (99%). According to the DFT and BET analysis, the average pore width was 8.43 nm. A
 225 large adsorption capacity of the EMHS is confirmed due to high porosity, small pore structures and
 226 large specific surface area, indicating its potential as adsorbent.

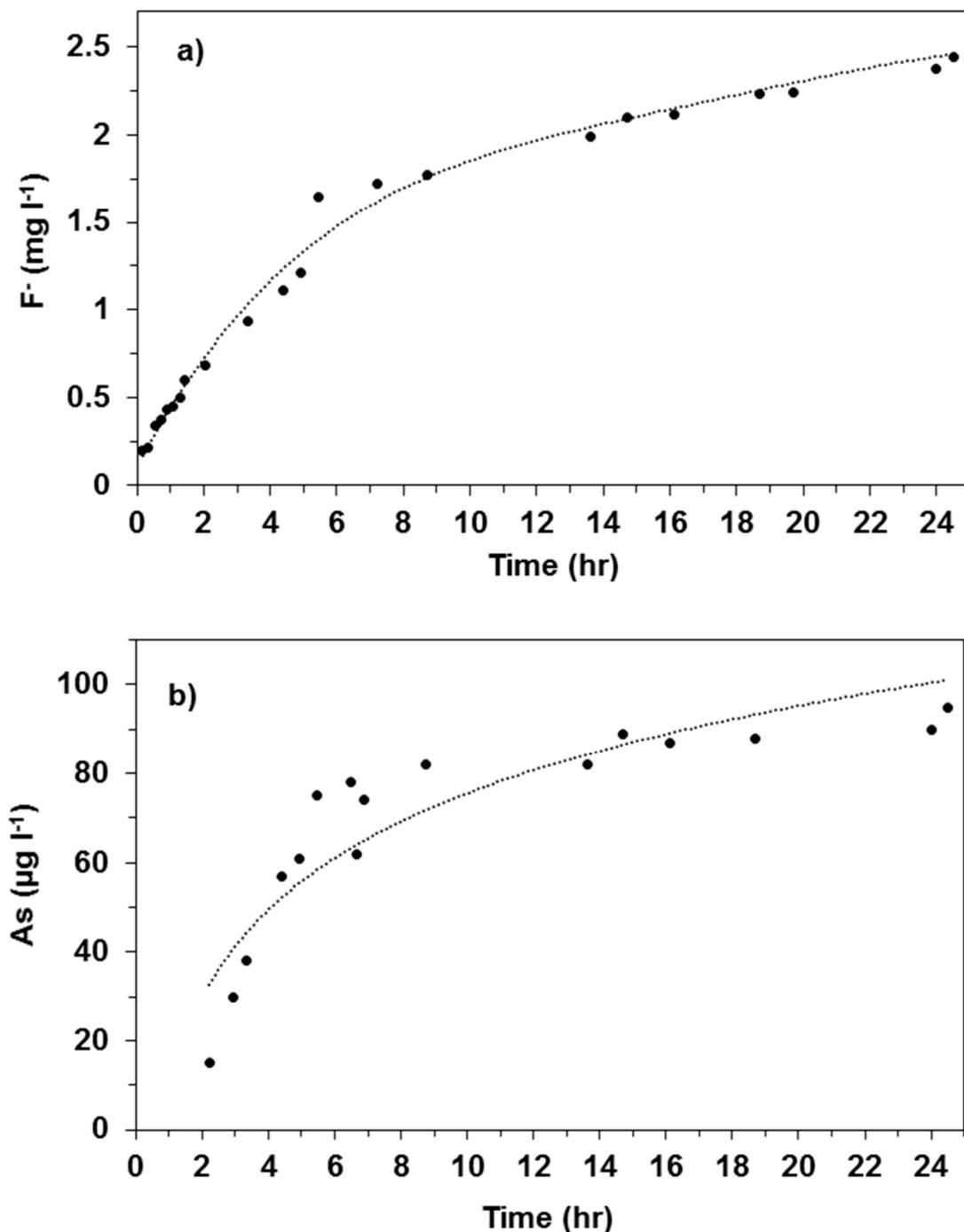
227
 228 **Figure 3.** Nitrogen adsorption-desorption isotherm (a) and the BJH pore-size distribution curve (b) of the
 229 obtained EMHS.

230


231 3.1.3. Column studies

232 The most significant conditions, which impact in the performance of pollutant removal in a
233 column adsorption method, are initial pollutant concentration and EBCT. Experiments were carry
234 out for varied interactions of the operational parameters using a design of experiments and this way
235 explore the effects of factors mentioned above. For obtain the regression equations were fitted to the
236 experimental data a linear, interactive, quadratic and cubic models. Two different tests were carried
237 out to represent by models the F- performance in function of the response variables (t_b , V_b , t_s) by
238 EMHS, from the sequential model sum of squares and model summary statistics, cubic model was
239 aliased. The linear model showed a p -value was less of 0.01 on all response variables (data not shown),
240 according to sequential model sum of squares. Model summary statistics showed that the excluding
241 cubic model which was aliased, lineal model was found to have maximum "adjusted R-Squared"
242 and the "Predicted R-squared" values on all response variables. For that reason, lineal model was
243 selected for statistical analysis.

244 ANOVA method was utilized to verify the fitness as well as the significance of the models. In
245 our ANOVA results (data not shown), the model F -values of 24.57, 38.62 and 8.57 implied that the
246 model is significant for t_b , V_b and t_s , respectively also there was only a 0.04%, 0.01% and 1% chance
247 that a model F -value could occur due to noise. A Prob F under 0.05 suggested that model terms are
248 significant. A lack of fit F -value of 2.51, 5.05 and 17.90 implied the lack of fit is not significant relative
249 to the pure error and there is a 31.24%, 17.42% and 5.48% chance that a lack of fit F -value this large
250 could occur due to noise for t_b , V_b and t_s , respectively. Given that we want the model to fit, non-
251 significant lack of fit is necessary.


252 Predicted R^2 is an indicator of how the model forecast a response variable. Both, predicted R^2
253 and adjusted R^2 should be near (no more of 0.20) to be a permissible adjustment, if not the
254 experimentation has a problem with the data. In our case, for all response variables the predicted R^2
255 is near with the adjusted R^2 . A signal to noise ratio or in other words a range in estimated response
256 in relation to its error is called adequate precision, where must be at least 4 its desired value. A value
257 of 16.647 indicated an acceptable signal in our experiments. In this model, the coefficient of variation
258 can represent the error, declared as a percentage of the mean. In addition, for verify the significance
259 over the coefficients the P -values were utilized, which also indicate the way of the interactions
260 between the variables. With small values of P , the coefficient is more significant. From our results the
261 coefficients A and B (for F concentration and EBCT, respectively) were significant, with small P -
262 values ($P < 0.05$) (data not shown).

263 The results were also examined to verify the normality of the residuals. The normality of the
264 data can be identifying with a normal probability plot, this is a strategy for calculate if a data group
265 is normally distributed [40]. The difference between the predicted and the real value is called residual.
266 If the data are normally distributed, the values should be located on the plot close to the straight line.
267 In our results the data points were reasonably aligned with a straight line (data not shown),
268 suggesting normal distribution for the three variables of response. Fig. 4 represents the predicted and
269 actual values of the response variables for the removal of fluoride onto EMH. The developed model
270 is adequate for all response variables in view the prediction residuals from the responses are
271 distributed in a diagonal line.

Figure 4. Predicted response versus actual response for response variables: a) t_b , b) V_b and c) t_s .

274 During the experiments the pH in the effluent was increasing from pH of 7 to 7.8 in all
 275 experiments. This results implies that the OH⁻ ions were released in the effluent during the
 276 experimentation. A breakthrough curve obtained in this work is shown in Fig. 5. In overall view, all
 277 samples exhibited the adsorption type I isotherm, which is a characteristic of materials
 278 predominantly having micropores.

279

280 **Figure 5.** Example of the breakthrough curve by (a) F⁻ and (b) As using F⁻ concentration=2.5 mg L⁻¹, EBCT=0.8
 281 min and As concentration= 100 μg L⁻¹.
 282

283 Table 2 shows the independent and dependent variables used and the results obtained in this
 284 study. Breakthrough time was the primary parameter estimated (t_b), which is the time required for
 285 50% of adsorbent saturation. The application of the model in terms of coded factors to the results
 286 generated the following equation (Eq. (7)):

$$t_b = 103.09 - 44.19X_1 + 55.51X_2 \quad (7)$$

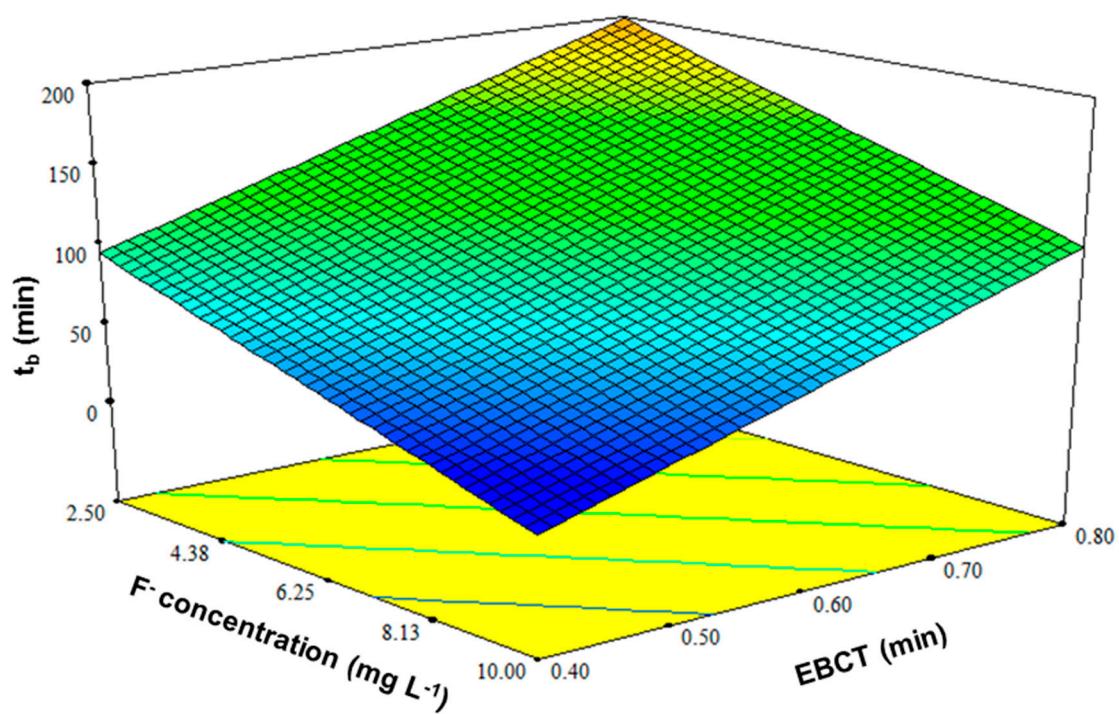
287 The r^2 value shows high correlation between the model (Eq 7) and the experimental data. In other
 288 words, the experimental data fit the model very well. Figure 6 plots the corresponding response
 289 surface. Both F⁻ concentration and EBCT have a significant effect on t_b , which increases with high
 290 values of EBCT and when F⁻ concentration decrease.

291 For estimate the volume of influent treated by gram of adsorbent (V_b), the equation 8 can be
 292 used:

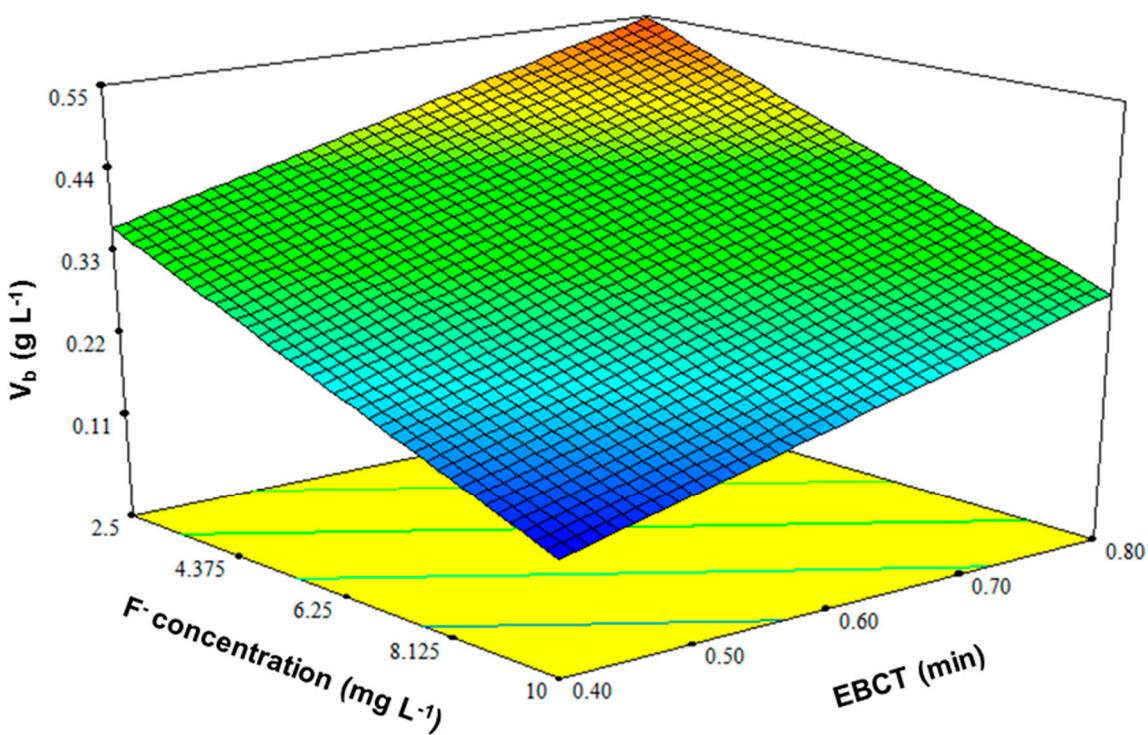
$$V_b = \frac{v_t}{m_a} \quad (8)$$

293 Where v_t is the volume of treated influent and m_a is the mass of dry adsorbent used. The resulting
 294 quadratic model is (Eq. (9)):

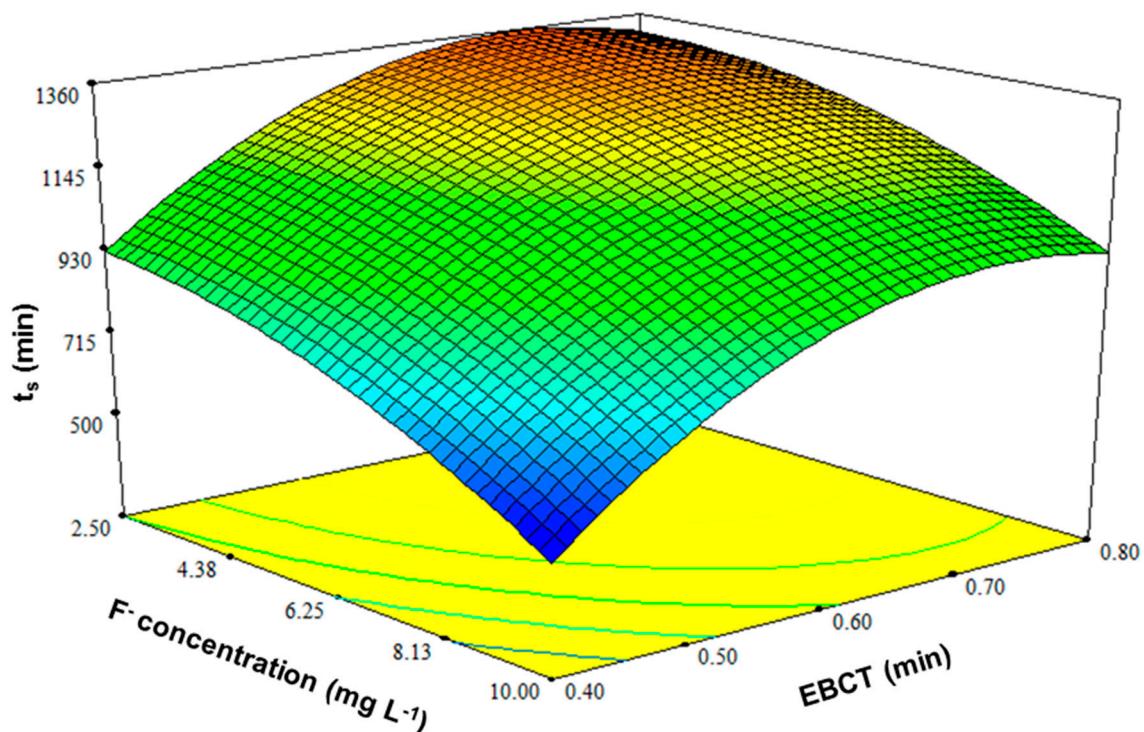
$$V_b = 0.33 - 0.12X_1 + 0.093X_2 \quad (9)$$


295 Figure 7 shows that V_b is in function of F⁻ concentration and EBCT. V_b increase at the maximum
 296 in the region between 2.5 and 4 mg L⁻¹ of F⁻ and between 0.7 and 0.8 min for EBCT.

297 The time required to saturate (saturation time, t_s) the adsorbent is one of the most important
 298 variable used to describe the performance of an adsorption process. This time is when outlet
 299 concentration is equal to C_0 . The selected breakthrough concentration was fixed at 10% of the inlet
 300 feed concentration. The quadratic model found for t_b is (Eq. (10)):


$$t_s = 1003.18 - 191.37X_1 + 213.08X_2 \quad (10)$$

301 In contrast to the other response variables, the effect of both independent variables, F⁻
 302 concentration and EBCT on saturation time (t_s) is not independent of each other, but there is a
 303 synergistic effect among independent variables. The zone where F⁻ concentration and EBCT variables
 304 are highest represent the highest t_s values (Fig. 8). According to the results obtained in this
 305 investigation, the Surface Response Methodology can be applied in to study adsorption
 306 investigations, because of interactions or synergistic effects among independent variables not can be
 307 examined by the traditional step-by step methods.


308

309
310
311
312 **Figure 6.** Variation of t_b with F^- concentration and EBCT.

313
314 **Figure 7.** Variation of V_b with F^- concentration and EBCT.
315
316
317

3.1.4. Optimization using the desirability functions

323 The optimization of five objectives (F⁻ concentration, EBCT, t_b , V_b and t_s) was done using a multiple
 324 response method. A value that maximizes the desirability function was found through the numerical
 325 optimization. A maximum level of initial F⁻ concentration, minimum level of EBCT and maximum
 326 levels of response variables were established for maximum desirability. The optimized values were
 327 established to be at initial fluoride ion concentration of 4.61 mg L⁻¹, EBCT of 0.69 min, t_b of 114.75 min,
 328 V_b of 0.42 L g⁻¹, t_s of 1179.22 min and desirability of 0.511. The desirability functions were used as
 329 optimization analysis, which could be adequately applied for an adsorption process and the removal
 330 of pollutant of interest.

4. Conclusions

333 Material used at the present study (EMHS) is an efficient adsorbent, which can be applied to eliminate
 334 F⁻ and As from aqueous effluents. In column studies both fluoride ion concentration and EBCT have
 335 a significant effect on the three response variables investigated (t_b , V_b , and t_s); experimental data fits
 336 the lineal model very well. The effects of F⁻ concentration and EBCT on t_s is synergistic, which not can
 337 be shown by others ways, like the classical step-by-step way. The results presented demonstrate that
 338 use of surface response methodology is a potential strategy for analyzing adsorption process in
 339 adsorbent-fixed beds. A better comprehension of adsorption process will help the selection of the
 340 optimal conditions of studied variables for a given application.

Author Contributions:

343 C. García-Gómez and F. Almazán-García; methodology, M.L. Rivera-Huerta; software, A. Martín-
 344 Domínguez; validation, V.A. Burboa-Charis, I.C. Romero-Soto and P. Gortáres-Moroyoqui.; formal
 345 analysis, R. G. Ulloa-Mercado; writing—original draft preparation, D. Serrano-Palacios; writing—review
 346 and editing.

348 **Conflicts of Interest:** The authors declare that this article has not any financial or ethical conflict of
349 interests.

350 **References**

- 351 1. Jadhav, S. V.; Bringas, E.; Yadav, G. D.; Rathod, V. K.; Ortiz, I.; Marathe, K. V. Arsenic and fluoride
352 contaminated groundwaters: A review of current technologies for contaminants removal. *J. Environ.*
353 *Manage.* **2015**, *162*, 306–325, doi:10.1016/j.jenvman.2015.07.020.
- 354 2. Miretzky, P.; Cirelli, A. F. Fluoride removal from water by chitosan derivatives and composites: A
355 review. *J. Fluor. Chem.* **2011**, *132*, 231–240, doi:10.1016/j.jfluchem.2011.02.001.
- 356 3. Singh, R.; Singh, S.; Parihar, P.; Singh, V. P.; Prasad, S. M. Arsenic contamination, consequences and
357 remediation techniques: A review. *Ecotoxicol. Environ. Saf.* **2015**, *112*, 247–270,
358 doi:10.1016/j.ecoenv.2014.10.009.
- 359 4. Ahn, J. S. Geochemical occurrences of arsenic and fluoride in bedrock groundwater: A case study in
360 Geumsan County, Korea. *Environ. Geochem. Health* **2012**, *34*, 43–54, doi:10.1007/s10653-011-9411-5.
- 361 5. Jadhav, S. V.; Gadipelly, C. R.; Marathe, K. V.; Rathod, V. K. Treatment of fluoride concentrates from
362 membrane unit using salt solutions. *J. Water Process Eng.* **2014**, *2*, 31–36, doi:10.1016/j.jwpe.2014.04.004.
- 363 6. Oulebsir, A.; Chaabane, T.; Zaidi, S.; Omine, K.; Alonzo, V.; Darchen, A.; Msagati, T. A. M.; Sivasankar,
364 V. Preparation of mesoporous alumina electro-generated by electrocoagulation in NaCl electrolyte and
365 application in fluoride removal with consistent regenerations. *Arab. J. Chem.* **2017**,
366 doi:10.1016/j.arabjc.2017.04.007.
- 367 7. Aoudj, S.; Drouiche, N.; Hecini, M.; Ouslimane, T.; Palaouane, B. Coagulation as a post-treatment
368 method for the defluoridation of photovoltaic cell manufacturing wastewater. *Procedia Eng.* **2012**, *33*,
369 111–120, doi:10.1016/j.proeng.2012.01.1183.
- 370 8. Bansiwal, A.; Pillewan, P.; Biniwale, R. B.; Rayalu, S. S. Copper oxide incorporated mesoporous alumina
371 for defluoridation of drinking water. *Microporous Mesoporous Mater.* **2010**, *129*, 54–61,
372 doi:10.1016/j.micromeso.2009.08.032.
- 373 9. Yu, Z.; Xu, C.; Yuan, K.; Gan, X.; Feng, C.; Wang, X.; Zhu, L.; Zhang, G.; Xu, D. Characterization and
374 adsorption mechanism of ZrO₂mesoporous fibers for health-hazardous fluoride removal. *J. Hazard.*
375 *Mater.* **2018**, *346*, 82–92, doi:10.1016/j.jhazmat.2017.12.024.
- 376 10. Solangi, I. B.; Memon, S.; Bhanger, M. I. An excellent fluoride sorption behavior of modified amberlite
377 resin. *J. Hazard. Mater.* **2010**, *176*, 186–192, doi:10.1016/j.jhazmat.2009.11.011.
- 378 11. Zhang, Y. X.; Jia, Y. Fluoride adsorption on manganese carbonate: Ion-exchange based on the surface
379 carbonate-like groups and hydroxyl groups. *J. Colloid Interface Sci.* **2018**, *510*, 407–417,
380 doi:10.1016/j.jcis.2017.09.090.
- 381 12. Grzegorzek, M.; Majewska-Nowak, K. The use of micellar-enhanced ultrafiltration (MEUF) for fluoride
382 removal from aqueous solutions. *Sep. Purif. Technol.* **2018**, *195*, 1–11, doi:10.1016/j.seppur.2017.11.022.
- 383 13. Ergun, E.; Tor, A.; Cengeloglu, Y.; Kocak, I. Electrodialytic removal of fluoride from water: Effects of
384 process parameters and accompanying anions. *Sep. Purif. Technol.* **2008**, *64*, 147–153,
385 doi:10.1016/j.seppur.2008.09.009.
- 386 14. Bagastyo, A. Y.; Anggrainy, A. D.; Nindita, C. S.; Warmadewanthi Electrodialytic removal of fluoride
387 and calcium ions to recover phosphate from fertilizer industry wastewater. *Sustain. Environ. Res.* **2017**,
388 *27*, 230–237, doi:10.1016/j.serj.2017.06.002.
- 389 15. Akter, A.; Ali, M. H. Arsenic contamination in groundwater and its proposed remedial measures. *Int. J.*
390 *Environ. Sci. Technol.* **2011**, *8*, 433–443, doi:10.1007/BF03326230.

391 16. Reddy, K. J.; McDonald, K. J.; King, H. A novel arsenic removal process for water using cupric oxide
392 nanoparticles. *J. Colloid Interface Sci.* **2013**, *397*, 96–102, doi:10.1016/j.jcis.2013.01.041.

393 17. Ghosal, P. S.; Kattil, K. V.; Yadav, M. K.; Gupta, A. K. Adsorptive removal of arsenic by novel iron/olivine
394 composite: Insights into preparation and adsorption process by response surface methodology and
395 artificial neural network. *J. Environ. Manage.* **2018**, *209*, 176–187, doi:10.1016/j.jenvman.2017.12.040.

396 18. Lee, C. G.; Alvarez, P. J. J.; Nam, A.; Park, S. J.; Do, T.; Choi, U. S.; Lee, S. H. Arsenic(V) removal using
397 an amine-doped acrylic ion exchange fiber: Kinetic, equilibrium, and regeneration studies. *J. Hazard.
398 Mater.* **2017**, *325*, 223–229, doi:10.1016/j.jhazmat.2016.12.003.

399 19. Zhang, X.; Fang, X.; Li, J.; Pan, S.; Sun, X.; Shen, J.; Han, W.; Wang, L.; Zhao, S. Developing new
400 adsorptive membrane by modification of support layer with iron oxide microspheres for arsenic
401 removal. *J. Colloid Interface Sci.* **2018**, *514*, 760–768, doi:10.1016/j.jcis.2018.01.002.

402 20. Jia, Y.; Shi, S.; Liu, J.; Su, S.; Liang, Q.; Zeng, X.; Sciences, T. L.-A.; 2018, undefined Study of the Effect
403 of Pyrolysis Temperature on the Cd²⁺ Adsorption Characteristics of Biochar. *Mdpi.Com*,
404 doi:10.3390/app8071019.

405 21. Saikia, J.; Sarmah, S.; Ahmed, T. H.; Kalita, P. J.; Goswamee, R. L. Removal of toxic fluoride ion from
406 water using low cost ceramic nodules prepared from some locally available raw materials of Assam,
407 India. *J. Environ. Chem. Eng.* **2017**, *5*, 2488–2497, doi:10.1016/j.jece.2017.04.046.

408 22. Dadwhal, M.; Sahimi, M.; Tsotsis, T. T. Adsorption isotherms of arsenic on conditioned layered double
409 hydroxides in the Presence of various competing ions. *Ind. Eng. Chem. Res.* **2011**, *50*, 2220–2226,
410 doi:10.1021/ie101220a.

411 23. Liu, R.; Zhu, L.; Gong, W.; Lan, H.; Liu, H.; Qu, J. Effects of fluoride on coagulation performance of
412 aluminum chloride towards Kaolin suspension. *Colloids Surfaces A Physicochem. Eng. Asp.* **2013**, *421*, 84–
413 90, doi:10.1016/j.colsurfa.2012.12.047.

414 24. Streat, M.; Hellgardt, K.; Newton, N. L. R. Hydrous ferric oxide as an adsorbent in water treatment. Part
415 3: Batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions. *Process Saf.
416 Environ. Prot.* **2008**, *86*, 21–30, doi:10.1016/j.psep.2007.10.009.

417 25. Tang, Y.; Wang, J.; Gao, N. Characteristics and model studies for fluoride and arsenic adsorption on
418 goethite. *J. Environ. Sci.* **2010**, *22*, 1689–1694, doi:10.1016/S1001-0742(09)60307-7.

419 26. Kumar, N. S.; Goel, S. Factors influencing arsenic and nitrate removal from drinking water in a
420 continuous flow electrocoagulation (EC) process. *J. Hazard. Mater.* **2010**, *173*, 528–33,
421 doi:10.1016/j.jhazmat.2009.08.117.

422 27. Phillips, D. H.; Sen Gupta, B.; Mukhopadhyay, S.; Sen Gupta, A. K. Arsenic and fluoride removal from
423 contaminated drinking water with Haix-Fe-Zr and Haix-Zr resin beads. *J. Environ. Manage.* **2018**, *215*,
424 132–142, doi:10.1016/j.jenvman.2018.03.018.

425 28. Chubar, N. New inorganic (an)ion exchangers based on Mg-Al hydrous oxides: (Alkoxide-free) sol-gel
426 synthesis and characterisation. *J. Colloid Interface Sci.* **2011**, *357*, 198–209, doi:10.1016/j.jcis.2011.01.098.

427 29. Li, W.; Cao, C.-Y.; Wu, L.-Y.; Ge, M.-F.; Song, W.-G. Superb fluoride and arsenic removal performance
428 of highly ordered mesoporous aluminas. *J. Hazard. Mater.* **2011**, *198*, 143–50,
429 doi:10.1016/j.jhazmat.2011.10.025.

430 30. Tian, Y.; Wu, M.; Liu, R.; Wang, D.; Lin, X.; Liu, W.; Ma, L.; Li, Y.; Huang, Y. Modified native cellulose
431 fibers-A novel efficient adsorbent for both fluoride and arsenic. *J. Hazard. Mater.* **2011**, *185*, 93–100,
432 doi:10.1016/j.jhazmat.2010.09.001.

433 31. Chen, R.; Zhang, Z.; Yang, Y.; Lei, Z.; Chen, N.; Guo, X.; Zhao, C.; Sugiura, N. Use of ferric-impregnated

434 volcanic ash for arsenate (V) adsorption from contaminated water with various mineralization degrees.
435 *J. Colloid Interface Sci.* **2011**, *353*, 542–548, doi:10.1016/j.jcis.2010.09.066.

436 32. Saikia, R.; Goswami, R.; Bordoloi, N.; Senapati, K. K.; Pant, K. K.; Kumar, M.; Kataki, R. Removal of
437 arsenic and fluoride from aqueous solution by biomass based activated biochar: Optimization through
438 response surface methodology. *J. Environ. Chem. Eng.* **2017**, *5*, 5528–5539, doi:10.1016/j.jece.2017.10.027.

439 33. Mollah, M. Y. a; Morkovsky, P.; Gomes, J. a G.; Kesmez, M.; Parga, J.; Cocke, D. L. Fundamentals, present
440 and future perspectives of electrocoagulation. *J. Hazard. Mater.* **2004**, *114*, 199–210,
441 doi:10.1016/j.jhazmat.2004.08.009.

442 34. Hai, F.; Yamamoto, K.; Jegatheesan, J. Special Issue on Wastewater Treatment and Reuse Technologies.
443 *Appl. Sci.* **2018**, *8*, 695, doi:10.3390/app8050695.

444 35. Garcia-Gomez, C.; Rivera-Huerta, M. L.; Almazan-Garcia, F.; Martin-Dominguez, A.; Romero-Soto, I. C.;
445 Burboa-Charis, V. A.; Gortares-Moroyoqui, P. Electrocoagulated Metal Hydroxide Sludge for Fluoride
446 and Arsenic Removal in Aqueous Solution: Characterization, Kinetic, and Equilibrium Studies. *Water
447 Air Soil Pollut.* **2016**, doi:10.1007/s11270-016-2783-5.

448 36. Li, K.; Wu, G.; Wang, M.; Zhou, X.; Wang, Z. Efficient Removal of Lead Ions from Water by a Low-Cost
449 Alginate-Melamine Hybrid Sorbent. *Appl. Sci.* **2018**, *8*, 1518, doi:10.3390/app8091518.

450 37. Vijayakumar, R.; Abd Gani, S.; Zaidan, U.; Halmi, M. Optimization of the Antioxidant Potentials of Red
451 Pitaya Peels and Its In Vitro Skin Whitening Properties. *Appl. Sci.* **2018**, *8*, 1516, doi:10.3390/app8091516.

452 38. Pereira, P. M.; Ferreira, B. F.; Oliveira, N. P.; Nassar, E. J.; Ciuffi, K. J.; Vicente, M. A.; Trujillano, R.; Rives,
453 V.; Gil, A.; Korili, S.; de Faria, E. H. Synthesis of zeolite A from metakaolin and its application in the
454 adsorption of cationic dyes. *Appl. Sci.* **2018**, *8*, doi:10.3390/app8040608.

455 39. Ruan, W.; Shi, X.; Hu, J.; Hou, Y.; Fan, M.; Cao, R.; Wei, X. Modeling of Malachite Green Removal from
456 Aqueous Solutions by Nanoscale Zerovalent Zinc Using Artificial Neural Network. *Appl. Sci.* **2017**, *8*, 3,
457 doi:10.3390/app8010003.