Preprint
Article

miR-3687 Overexpression Promotes Bladder Cancer Cell Growth Through Inhibiting the Negative Effect of FOXP1 on Cyclin E2 Transcription

Altmetrics

Downloads

417

Views

223

Comments

0

Submitted:

25 September 2018

Posted:

27 September 2018

You are already at the latest version

Alerts
Abstract
Cyclin E2, a member of the cyclin family, is a key cell cycle-related protein. This protein plays essential roles in cancer progression, and as such, an inhibitor of cyclin E2 has been approved to treat several types of cancers. Even so, mechanisms underlying how to regulate cyclin E2 expression in cancer remain largely unknown. The current study found that miR-3687 is up-regulated in clinical bladder cancer (BC) tumor tissues, TCGA database and human BC cell lines. Inhibition of miR-3687 expression significantly reduces human BC cell proliferation in vitro and tumor growth in vivo, which are concurrently with the induction of G0/G1 cell cycle arrest and downregulation of cyclin E2 protein expression. Interestingly, overexpression of cyclin E2 reversed the inhibition of BC proliferation induced by miR-3687. Mechanistic studies suggest that miR-3687 could bind to the 3'-UTR of foxp1 mRNA, downregulates FOXP1 protein expression, and in turn promotes the transcription of cyclin E2, thereby promoting the growth of BC cells. Collectively, the current study not only establishes a novel regulatory axis of miR-3687/FOXP1 in regard to regulation of cyclin E2 expression in BC cells, but also provides strong suggestive evidence that miR-3687 and FOXP1 may be potentially promising targets in therapeutic strategies of human BC.
Keywords: 
Subject: Medicine and Pharmacology  -   Oncology and Oncogenics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated