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1 Abstract: In this paper we study the normal bases for Galois ring extension R/Z,r where R =
= GR(p",n). We present a criterion on normal basis for R/Z, and reduce this problem to one of finite
s field extension R/Z, = F;/F, (9 = p") by Theorem 1. We determine all optimal normal bases for
«  Galois ring extension.
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¢ 1. Introduction

7 The theory of finite fields is one of the fundamental mathematical tools in computer science and

s communication engineering since 1950’s when digit communications and computations were rapidly

o developed. For it to be useful in practice, a lot of study have focused for decades on the complexity
1 of operations, particularly the multiplicative operation, and with this respect, many useful bases for
u [y /IFy with low complexity have been found ([2]-[9],[13]-[15]).

12 In the past two decades, Galois rings have been used successfully in many aspects of combinatorics
1z to construct different kinds of combinatorial designs, and in communication theory to construct
1« error-correcting codes, sequences with good correlation properties, secret sharing schemes, hash
15 functions and so on ([17],[18],[10],[4],[11]). However, comparing to the case of finite field extensions,
1s the complexity problem of operations in Galois ring has not attracted much attention from scholars
17 except Abrahamsson who considered the complexity of bases and carefully discussed architectures for
1= multiplication in Galois rings (for p = 2) in his thesis [1], 2004. Therefore, the operations, particularly
1o for the multiplication, on the Galois rings become one of the interesting problems to be considered. So
20 many works remain to be done to extend various methods and results in finite fields on constructing
21 bases with low complexity to Galois rings.
22 In this paper we will study one aspect of the complexity problem of operations in Galois rings.
23 More precisely, we will focus on normal bases for Galois ring extensions in this paper. This paper is
2« organised as follows. In Section 2 we introduce some basic facts on Galois rings. We present some
2 results on normal bases and some basic properties on multiplicative complexity of normal bases for
2s  Galois ring extension GR(p",n)/Z,r in Section 3. Then we determine all optimal normal bases for
2z these Galois ring extensions in Section 4.

22 2. Basic Facts on Galois Rings

20 In this section we introduce several basic facts on Galois rings. For more informations, the reader
30 is referred to [19].
31 Let p be a prime number and r > 2, Z,r = Z/ p"’Z. We have the modulo p reduction mapping

¢:Zy —Fp, a (modp")—a=a (modp),
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which induces the following modulo p reduction mapping between polynomial rings:

¢ Zy[x] — Fplx], Zcx — f(x Ecl

22 f(x) is said to be a monic basic irreducible (primitive) polynomial over Z, if f(x) is a monic irreducible
53 (primitive) polynomial over Fp,.
34 Let f(x) be a basic primitive polynomial of degree 1 in Z,r [x]. The quotient ring

R = GR(¢,n) = =Zr
= {CO +ay+---+ Cn—l')’n_l 16 € Zpr}/ 1

where 7 is a root of f(x) in R with order p” — 1, R is called a Galois ring. And we note that 7 is a
primitive element of the finite field IF; where ¢ = p". From now on, we take f(x) to be a basic primitive
polynomial. The modulo p reduction can be naturally extended to the following homomorphism of

rings:
Z r[x] F [X] .
:R=GCGR(p,n) = L 27.,[y] — F, = =2 ~F,[7].
’ o) = G = A0 T R Gy ST
35 Some basic facts on Galois ring R = GR(p", n) are given as follows.

(Fact 1) Let T* = (1) be the cyclic multiplicative group of order ¢ — 1 generated by v, and
T=T*U{0}. Then T = F, and

R={xo+pn+pn+t +p na1:xeT), [Rl=[T"=q"=p" )
36 (Fact 2) R is a local commutative ring with the unique maximal ideal M = pR, | M| = ¢! and
sz the group of units is R* = R\M =T* x (1+ M), |[R*| =¢q" —¢" L.

(Fact 3) R/Z,r is a Galois extension of rings with Galois group Gal(R/Z,r) = (0},), where 0}, is
the automorphism of order n defined by

r—=1
Uﬁ(z plxz Z P (x; €T). 3)
i=0

More generally, for each positive integer [, R = GR(p", 1) is a subring of R;) = GR(p", nl) and R(;) /R
is a Galois extension of rings with Galois group Gal(R;)/R) = (0g), where ¢ is the automorphlsm of
R(;) defined by

r=1 r=1 .
o(Y_ p'x) =Y p'x] (xi €Ty, 4)
i=0 i=0
= and Ry = Zy[yg] = {55 plxi 6 € Ty}, Ty = Ty U{0}, Tjy = (vy), vy =
(Fact 4) We have the trace mapping
T Ry = GR(p",nl) — R =GR(p",n),
defined by

-1
= ZU’;(D&) (IX S R(l))'
i=0
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which is an epimorphism of R-modules and we have the following commutative diagram:
r Trﬁl r Tr{ r
Ry =GR(p",nl) —=R=GR(p',n) —=Zy = GR(p", 1) (5)
d ! !
— ! trl!
R(Z)Z]Fpnz—>R ]Fn%-Zp —Fp

s where tr’ and tr?' are the trace mappings for finite field extensions.
On the other hand, for r > 2, the modulo p"~! reduction gives the homomorphism of rings
GR(p",n) — GR(p"~1,n) and we get the following commutative diagram:

d p! d
GR(p,m) "L GR(p 1, 1) — > - - U GR (12, ) " GR (p, n) — F, )
0'(7) l 0'(7*1) \L (7(2) \L g'(l) l
mod p" 1 mod p> 5 mod p
GR(p',n) —=GR(p"},n) —--- —=GR(p* n) ———F,

where ¢() is the automorphism of GR(p*, 1) defined by

A-1
cdM (Y pix;) Z pixl (x; € T).
i=0

40 Next we need some basic properties on the polynomial ring R[x]. One of the most important
a1 properties on Rx] is the following Hensel’s Lemma.
a2 Two polynomials f(x) and g(x) in R[x] are called coprime if there exist A(x) and B(x) in R[x]

a3 such that f(x)A(x) + g(x)B(x) = 1.

s Lemma 1. ([19], Lemma 14.20) Let R = GR(p", n) and R = F, (q = p"). Let f(x) be a monic polynomial in
s Rlx|and gi(x) (1 < i <'s) be pairwise coprime monic polynomzals in R[ 1 I f(x) = g1(x)g2(x) - - - gs(x)
s in R[x|, then there exist pairwise coprime polynomials fi(x) (1 < i < s) in R[x ] such that f(x) =

o fi(x)fa(x) - fo(x) and fi(x) = gi(x) (1 <i <s).

a8 The polynomial f;(x) is called the Hensel lift of g;(x). A monic polynomial f(x) in R[x] is called
w primary if f(x) is a power of a monic irreducible polynomial in F,[x]. One can deduce the following
so result from the Hensel’s Lemma .

Lemma 2. ([19], Theorem 14.21) Let f(x) be a monic polynomial of deg f > 1 in R[x]. We have the following
decomposition

f(x) = filx) fa(x) - fr(x),
s where fi(x) (1 < i <) are pairwise coprime primary polynomials in R[x] and f;(x) (1 <i < r) are uniquely
s2 determined up to their order. Particularly, if f(x) = p1(x)p2(x) - pr(x) where p;(x) (1 < i < r) are
ss  distinct monic irreducible polynomials in R[x| = Fy[x], then fi(x) (1 < i < r) are distinct monic irreducible
s polynomials in R[x] and f;(x) = p;(x) (1 <i <r).

ss 3. Criteria on Normal bases for Galois Ring Extensions

s From (1) we know that R = GR(p', 1) is a free Z,r-module of rank 7 and {1,7, -+ ,7" '} isa
s7 basis for R/Z,r, where 7 is an element of order ¢ — 1 (g = p") in R.
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Definition 1. An element a € R is called a normal basis generator (NBG) for extension R/Zyr if B =
{o%(a) = a,0(a),- -, 0" («)} is a basis for R/ Z,r, where o is the automorphism o, of R defined by (3).
Such basis ‘B is called a normal basis for R/ Zr.

In this section we present several criteria on normal bases for Galois ring extension R/Z,r, these
criteria can be reduced to the ones of finite field extensions R/Z,r = F; /) according to the following
theorem. Recall that an element a € F, (7 = p") is a NBG for F,/F,, if B = {a,7(a),--- ," '(a)} isa
normal basis for I, /IF,, where ¢ is the Frobenius automorphism of [, defined by 7(b) = b” for b € F,.
From the definition of ¢ in (3), one has for « € R,o(a) = 7°().

Theorem 1. For an element a in R, a is a NBG for R/ Z,r if and only if @ is a NBG for finite field extension
R/Zy =F,/Fp.

Proof. Suppose that & is not a NBG for [, /IF,. Then there exist a; € F, (0 < i < n — 1) such that
n—1 .
Y ai() = 0 )
i=0

anda] # 0 for some j. Let A; GR Aj=a;(0<i <n—1) Theformula(7)1mphesthat2” 1Acrl( )=
Y ) aio' (&) = 0so that Z A;c'(a) € pR. Therefore Z p' 1t A;o'(«) = 0. From a; € F we know

that A; € R" and p"™ 1A ;é 0 Therefore « is not a NBG for R/Zyr.
On the other hand, suppose that a is not a NBG for R/Z,r. Then there exist A; € R (0 < i <n—1)
such that

n—1 )
Y Aot (x) =0 (8)
i=0
and A; # 0 for some j. Let A; € PR\ p4 IR (0<i<n—1)andd = min{d;|0 <i <n—1}. From
Aj #0,weget0 <d <r—1Then A; = pia; wherea; € R (0 <i<n—1)and a; € R* by assuming
n—1 . n—1 .
Aj € pR\p?*1R. The formula (8) implies that p? ¥ a;0?(a) = 0 so that ¥ a;0(a) € p" “R. Then
i=0 i=0
fromr —d > 1, we get Z 4,7 (%) = 0 where €F, (0 <i<n—1)anda; # 0. Therefore & is not a
NBG for F; /). This completes the proof of Theorem 1. [

By Theorem 1, a series of criteria on normal bases for finite field extensions can be shifted to ones
for Galois ring extensions.

Lemma 3. ([20]) Let n = p'l,(I,p) =1,Q = p" and q = p'. Let tré2 be the trace mapping for Fq/IF,. Then
fora € F,aisa NBG for Fo/IF} if and only iftrgg(a) is a NBG for F, /).

From the diagram (5) we know that for « € R, tr}' (&) = Trj' (a).

Corollary 1. Let n = p'l,(I,p) = 1. Let R = GR(p",n),R’ = GR(p',1), and Tr : R — R’ be the trace
mapping from R to R'. Then for « € R, a is a NBG for R/ Zr if and only if Tr(«) is a NBG for R'/Z,y.

By Corollary 1, we assume (1, p) = 1 without loss of generality. In this case, " — 1 has the
following decomposition in the polynomial ring Fp[x] :

X" —1=p1(x)pa(x) - - - pr(x), )

d0i:10.20944/preprints201809.0559.v1
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s where py(x), p2(x),- - -, pr(x) are distinct monic irreducible polynomials in I, [x].
Let F[x] be the set of all p-polynomials } cix?" (c; € Fp). Then F,[x] is a ring with respect to the

ordinary addition and the following rnultipliéation defined by composition & :
F(x) ® G(x) = F(G(x)), for F(x),G(x) € Fplx],

and the mapping _
peFplx] — Fplx], Zcixi — Zcixp’
i i

is an isomorphism of rings. Corresponding to the decomposition (9) in F[x], we have the following
decomposition of
xpn — X = P](X) & PZ(X) X Pr(-x)/
ss where P;(x) = p(pi(x)) (1 < i < r) are distinct monic irreducible p-polynomials in F,[x]. Let

v mi(x) = 2k and Mi(x) = p(mi()) = ® PA(x) € Fylal

/\7&1
ss Lemmad4. ([19]) Let q = p" and (n,p) = 1. Fora € Fy,aisa NBG for F; /I, if and only if M;(a) # 0 (1 <
s 1 S 1’).
% As a direct consequence of Theorem 1 and Lemma 4. We have the following criterion.

or  Corollary 2. Let R = GR(p",n), where (n,p) = 1. Then for & € R,a is a NBG for R/ Zyr if and only if
92 Ml‘(ﬁé) 7& 0 (1 S 1 S 1’).

By the decomposition (9) we have

Fp [x] d Fy [x]

(xn —1) :G? x)) glelePd"’

where d; = deg p;(x). Then we have the orthogonal idempotents ¢;(x) € Fp[x], dege;(x) <n—1(1 <
i < r) satisfying
ei(x) = djj(mod p;j(x)) (1 <i<j<r),

o3 where J;; is the Kronecker symbol. These idempotents ¢;(x) (1 < i < r) can be computed by using
oa  0p-class of the roots of x" — 1 (see [20]).

o5 In [20], we present a new criterion of NBG for F;/F,, (g = p", (n,p) = 1) by using idempotents

Fplx]
(X" 1)

s in the ring

o Lemma 5. ([20]) Let E;(x) = p(e;j(x )) € Fplx](1<i<r),acF,(q=p" (np)=1), aisa NBG for
oo [y/Fyifand only if E;(a) #0 (1 <i<r).

oo Corollary 3. Let R = GR(p",n), where (n,p) = 1. Then for a € R,a is a NBG for R/Zyr if and only if
100 Ei(ﬁé) # 0e ]Fq (1 <i< 7’).

In [20] we present more explicit criteria on normal bases for F,;/IF,, for several specific cases
where the decomposition (9) has a simpler form. By Corollary 3 we can give more explicit criteria on
normal bases of Galois ring extension for such cases. For example, let p and 7 be prime numbers and
(Z/nZ)* = (p). Then fora € F; (9 = p"),ais a NBG for F;/F, if and only if a ¢ F, and tr(a) # 0,
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where tr : F; — ), is the trace mapping. Let Tr : R = GR(p,n) — Z,r be the trace mapping. For
a €R,

tr(x) € Fp & tr(a)? —tr(a) =0 < Tr(a)” — Tr(x) € pR
and

tr(a) =0« Tr(a) € pR.

Corollary 4. Let R = GR(p", n), where p and n are distinct prime numbers and (Z/nZ)* = (p). Then for
« € R,ais a NBG for R/ Z,r if and only if both of Tr(«) and Tr(a)P — Tr(a) belong to R*.

We end this section by counting the number of NBG for R/Z,» where R = GR(p",n). It is
well known ([19], Corollary 8.25) that the number of NBG’s for F; /I, (g = p") is (let n = p°m and

(m,p) =1)

1,[)11(11) = p” H(l — p_ordd(P))‘P(d)/ordd(P),
d|lm

where ¢(d) is the Euler function and ord;(p) is the order of p in (Z/dZ)*. Since the mapping ¢ : R =
GR(p",n) = R =T, (g = p") is surjective and F-linear, we get that [Ker ¢| = [R|/|R| = p"" ™. Asa
direct consequence of Theorem 1, we can count the number of NBG's for R/Z,r.

Corollary 5. Let p be a prime number and n = p®m be a positive integer with (m, p) = 1. For R = GR(p", n),
the number of NBG's for R/ Z,r is

p=p" (1 — pordalp)yold)/orda(p)
d|lm

and the number of normal bases for R = GR(p", n) is ¢ /n.

4. Multiplicative Complexity on Normal Bases

It is well known that normal bases on finite fields with low multiplication are useful in various
applications including coding theory, cryptography, signal processing and so on. Similar to the case
of finite fields, Abrahamsson discussed the multiplicative complexity on normal bases over Galois
rings, and considered the architectures for multiplication in Galois rings (for p = 2) in his thesis. In
this section we discuss the complexity of normal bases for extension R/Z,r, where R = GR(p", n).

Definition 2. Let a be a NBG for R/Z,r, so that B = {a,0'(«),- -+ 0" (a)} is a normal basis for R/ Z,r,
where o is the automorphism of R defined by (3). Then

. n_l .
ao'(w) = ) il (a) (0<i<n—1,c5€Zy). (10)
=0

The multiplicative complexity M(2(«)) of the normal basis B is defined by the number of nonzero c;;. Namely,
M(B(a)) = #{(i,j) : 0 <i,j <n—1,¢; # O}
Foreach A (1 <A <7),a € R, leta®) denote the modulo p* reduction of &. The mapping
R = GR(p",n) — RWM =GR(p",n), a s a¥)

is a homomorphism of rings and a) =0 =& € GR(p,n) =R = Fp.

d0i:10.20944/preprints201809.0559.v1
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For & € R(= R"),a is a NBG for R/Z, if and only if & is a NBG for F; /I, by Theorem 1, then
this is also equivalent to that (") is a NBG for R / Zyr forany A > 1. Moreover by the diagram (6)
we get that for any A, the equality (10) implies that

) n—1 .
aMeWi(@®) = ¥ cMeWi®W) (0 <i<n-1,d" ez,
=0

If 0 # c ez po then 0 7 c ) e Zpu for all p > A. Therefore we get the following simple and basic
result.

Theorem 2. Let R = GR(p", n) and a be a NBG for R/ Z,r Thenfor each 1 < A <r—1,aW isa NBG for
(/\)/Zpr, where RM) = GR(p?, n). Moreover, let BN = B(aW) = {cWi(aM):0<i < n—1}. Then

M(%(’)) > M(sB(ffl)) >..> M(gg(l)),
where B is the normal basis B = {&"' : 0 < i <n— 1} for GR(p,n)/Zy = Fq/Fp.

It is well known that for any normal basis B for finite field extension Fgn /Fg, M(8) > 2n — 1.
Hence, by Theorem 2, for any normal basis B for Galois ring extension GR(p", 1) /Z,r, M(B) > 2n — 1.
The basis B is called optimal if M(B) = 2n — 1. If B is an optimal normal basis for R/Z,r, then by
Theorem 2,

21 —1=M(B) >MB)>...>MBY)>2m -1

Therefore M(B)) = 2 — 1. Namely, (V) is an optimal normal basis for R(* / Z forall1 <A <.
Particularly, (1) = %B is an optimal normal basis for the finite field extension R(! / Z,=F;/Fy(q=

p").

Definition 3. Two elements «, p € R* = GR(p", n)* equivalent to each other if x = €f for some € € Zyr,
and denoted by o ~ B.

If v is a NBG for R/Z,r and & ~ B, p = en for some ¢ € Z,. It is easy to see that f is also a NBG
for R/Z,r. Moreover, let

A 0(): ZC/\io'i<¢x) (C/\iEZpr,OS/\Sn_l).

Then 0} (B) = ec*(«) and
n—1 )
= 2 ecrio'(B) (ecy; € Zpr).
i=0
Since c); = 0 if and only if ec); = 0, two normal bases B(a) = {c}(x) : 0 < A < n—1} and
(

B(B) = {c*(B) : 0 < A < n — 1} have the same complexity: M(B(«x)) = M(B(B)).
All optimal normal bases for finite field extension have been determined in [9].

Lemma 6. (Gao and Lenstra, [9]) There are only two types of optimal normal bases B for finite field extension
Fyn /I as following.

Type (): n+ 1 and p are distinct prime numbers, Z%, ., = (p), and B is equivalent to the following
(optimal) normal bases for ¥ pn /),

BE) ={o} (@) =¢":0<A<n—1}={F:1<i<n},

where ¢ is an (n+1)-th primitive root of 1 in the algebraic closure of Fpy so that F, (&) = Fpn.

d0i:10.20944/preprints201809.0559.v1
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128 Type (ID): p = 2 and 2n + 1 is a prime number, Z;, | = (—1,2), and B is equivalent to the following
120 (optimal) normal bases for Fon /IFy

BE+e) = {GE+ih =+ 0<A<n-1}
= {T'+¢"1<i<ny,
130 where &is a (2n + 1)-th root of 1 in the algebraic closure of Fp, Fo(& + &) = Fon.

131 Abrahamsson [1] presented the following optimal normal bases for Galois ring extension as a
132 generalization of Type (I) optimal normal bases for finite field extension.

Lemma 7. ([1]) Let p and n + 1 be distinct prime numbers such that Z;, | = (p). Let { be an (n + 1)-th root
of 1in R = GR(p", n). Then

BQ) = {oMQ) =7 :0<A<n—1}={{:1<A<n)
13 is an optimal normal basis for R/ Z,r.

134 In this section we determine all optimal normal bases for Galois ring extensions. If « € R* and
135 B(a) is an optimal normal bases for R/Z,r (R = GR(p", 1)), then B(&) is an optimal normal basis for
e F;/IF, (9 = p"), and then B (&) is an optimal normal basis for Type (I) or Type (II) by Lemma 6. Now
137 we consider these two cases separably.

135 Theorem 3. Suppose that n + 1 and p be distinct primes and Z,  ; = (p), R = GR(p",n),n > 2. Then any
10 optimal normal basis for R/ Z,r is equivalent to one given by Lemma 6.

Proof. For »r = 1,R/ Zpr = Fq/ IF,, is the finite field extension case. For r = 2, we assume that
B(a) = {o*(a) : 0 < A < n— 1} is an optimal normal basis for R/Z,, R = GR(p?,n). Then& = ¢
where ¢ is an (1 4 1)-th primitive root of 1in F; (g = p"). Let { be an (n + 1)-th primitive root of 1 in
R such that { = ¢. Then { € T* by (n +1)|(g — 1), where T* is the cyclic multiplicative group of R, see
Fact 3 in Section II, and

n .
a=g+pa=C+p) cf (@ERCGEZy), (11)
i=1

since {¢/:1<i<n}= {O’A :0 <A < n—1}isa(normal) basis for R/Z,,. Therefore
oMa) =77 +p Y cil? sincec () =", 0<A<n—1 (12)
i=1

o andfor0 <A <n—1,A# % (we can assume that n + 1 is an odd prime number, so that n is even),
A 5 i A 4 iph
art(a) = (C+p) al )V +p) al?)
i=1 i=1

n X .
3 p Y (@ + T since p? = 0. (13)
i=1
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11 From A # % we know that p* # —1(mod n + 1) and 1 + p* = p#(mod n + 1) for some 1,0 < u <
12 1 — 1. Then by (13) we have

wM@) = 4 pY G+ O

i=1

—oH(w) 4 p Y (P + O — 1Y) by (12)
i=1

n—1
I
M) + p[lz gr (Cpl,pA + Clpl-1)pr — Cp1(1+pA)—1) + Cpr + C_p—)\]/

143 where we consider i € Z,, 1 for ¢; and assume ¢y = 0, so Equation (13) becomes to

n—-1 n—1
0&(7)‘(0() =ot(a) + p(l;) Ul(uc)(cp;_p;\ ey — Cpl(1+pA)—l) - (Cpr + Cip—};) 120 (Tl(lx)),

e since o (@) = 01(¢) = ¢¥' (mod p) and z )=y (@) ="x ¢ = ¥ = —1(mod p).
Therefore for0 <A <n—1,A # 7,

n—1
=) bud'(a) (bu €Zp),
1=0

by = P(Cpi—ph +C(pi—1)pr = Cpiaphyt —Eopa =€), Hf plE = (14 p)(mod 1 +1);
1+ pler —c_pa—c_pn), if p' =14 p*(mod n+1).
(14)
And then the complexity M(B(«)) = Eﬁ;é M,, where

M/\:jj{l|0§l§n—l,b;\l#OEsz}.

For the case of A = 7,
n p/2 1 n ; n-1 n—1 N
a2 (a) =P =00 =1==-) '=-) " =-) o¢*(a)(mod p).
i=1 A=0 A=0

We get M% =n. For0 <A <n—-1,A # 5, wehave M) > 1since by, = 1(mod p) for I satisfying
p' =1+ p*(mod n + 1). Then we have

2n —1=M(B(a)) ZMA—n+ZMA>n+ZI:2n—L
/\;éz /\;éz
which implies that M)y = 1forall0 <A <n—-1,A # %, which means thatby; = 0forall0 < Al <
n—1,A # %and p' # p* +1(mod n+1). Lets = p*,t = p/(mod n + 1). From (14), one gets B(«)

is an optimal normal basis for GR(pz,n)/ sz if and only if when1 <t < n,1 <s <n-—1and
t #1+s(mod n+1), wehave

—C_g-1—C—s + Ct—g + C(t—l)s’l — Ct(l-&-s)*l =0€ Zp. (15)
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Particularly, for s = 1 we get
—2c_14+2ci_1—¢ctyp =0, forl1 <t <m,t#2

ws If p=2thenc;p =0€Fyforalll <t <n,t# 2 Byassumption Z;_ ; = (2), this means that cj=0
us forall2 < j < msothata =+ pci{ = (14 pcq)C by (11) and the basis B(a) is equivalent to one
17 given by Lemma 6.

148 Now we assume that p > 3. For any fixed s,1 < s < n — 1, by (15), we get
n
0 = 2 <_C—s*1 —CstcC—st Clt—1)s—1 — Ct(l—&-s)*l)
s
n n n
= n—1)(—c_gr—cs)+ Y a+ Y a— Y ¢
s 5N don

n
= (Q—n)(c_gr+ecs)+Y ag—c1—cs—c_g
=1
= —n(c_gr1+c)+A

where A = }' , ¢;. Therefore
nc—s+c_g1)=A (16)

e foralls,1<s<n—-1If3<ptn wegetc_s+c_

1o wegetcy =c 1= % and

1 = % foralll1 <s <n —1. Particularly, fors =1

n—Zé_n—l

A.
2 n 2n

n—1 A
A: = —
Cn+z:ZzCl 2n+

Therefore (n+1)A = 0and A = 0 € [, since (p,n+1) = 1. Thenwe havec, = 0andc s+c_,1 =0
for2 < s < n—1.Taking t = s in (15) and remark ¢c) = 0, we get cs .1 = cs for2 <s<n-1.
Namely,

C1 =¢C

D=
wIN
I
I
o

=
L

Sincefor1 <a,b<n-—1,

a b
= — 1 = 1 =
P b+1(modn+ )=a=b(modn+1)=a=b,
11 we know that {71 (mod n+1):2 <s <n} =Z,1\{0,1}. Thereforec; =c3 =+ =c,_1 = ¢, =0,

12 and « = (1 + pcy)C. Therefore B () is equivalent to one given by Lemma 6. If 3 < p | n, from (16) we
1z have A = 0. In this case we fix t (2 <t < n — 1) and the condition (15) implies that

n—1
0 = Z (—C_Sfl —C—s+Ct—g+ C(t—l)s*1 — Ct(l—&-s)*l)
s=1
s#E—1
n n n n n
= - Z ) — ch+ Z g+ ZCI—ZCZ
1=2 1=2 1=2 1=2 1=2
1#£—(t—1)"1 1#£1—t I#t,t+1 1#1—t 1t
= C (-1t C1t =0 —Cp1 —C1p + 0 =C(p1)-1 — Cpl-

Ca=0Cyp,1 (2<a<nm). (17)
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Consider the fraction linear transformation

2x —1
X

fiZpU{o} = ZyqU{oo}, f(x)=2—x"1 =

with matrix M = 2 -1 .Forany m > 0, M" = m+1 - so that
1 0 m  —(m—1)

2(m+1) —m 1
5y Lt ——= <m<n-—2).
2m — (m = 1+ €Z,11\{0,1} (0<m <n—-2)

f1(2) = 1 m+1

Therefore {f™(2): 0 <m <n—2} =Z,.1\{0,1} = {2,3,--- ,n}. By (17) we get

1
c2:c3:~~~:cn:n_1A:O.

Thus & = (1 + pc1) ~ . This completes the proof of Theorem 3 for r = 2.

Now we assume that ¥ > 3 and this theorem is true for r — 1. Let « € R = GR(p",n) and
{o*(a) : 0 < A < n— 1} is an optimal normal basis for R/Z,. By assumption we have, up to
equivalence,

n .
a=0+p la(@eR) =C+p 'Y al (c; €Zy).
i=1

Then the same argument for r = 2 can be shifted to get ¢; = 0 for all 2 < i < n. Therefore & =
(1+ p"'e1)Z ~ {. This completes the proof of Theorem 3 [J

Remark 1. Gao and Lenstra determined all optimal normal bases by using the Galois theory on finite fields [9],
consequently confirmed a conjecture that was raised by Mullin et al. Here, we give a direct proof of the Theorem
3 by using the mathematical induction.

Theorem 4. Assume that 2n + 1is an odd prime number and 75, = (—1,2). Let R = GR(2',n) (r,n > 2).
Then

(1) If n > 3, there is no optimal normal basis for R/ Zyr.

(2)Ifn =2and « € R = GR(2',2),8W = {«,0(a)} is an optimal normal basis for R/ Zyr if and
only if o is equivalent to  + {1 + 2b(Z? + {~2) where { is a 5-th primitive root of 1 in GR(2',4) so that
¢+ € Rand b is the unique element in Zy,—1 satisfying 1 — b + 4b> = 0.

Proof. (1) First we consider r = 2. Suppose that « € R = GR(4,7) and B = {¢*(a) : 0 < A <
n — 1} is an optimal normal basis for R/Z,. Then BA) = {5(2A :0 <A <n—1}is an optimal normal
basis for Fp: /F». By Lemma 6, & is equivalent to & + ¢~ where ¢ is a (21 + 1)-th primitive root of 1 in
F 2. Let { be the (21 + 1)-th primitive root of 1 in GR(4, 1) such that { = & Then { +{~! € Rand, up
to equivalence

0=+ 1 +2a(aER).

Since {¢*' +772' :0<A<n—1} = {{+7 7 :1 < i < n}is a normal basis for R/Z, by the
n . .

assumption that Z5, | = (—1,2), also, tell me a = ‘21 c;({"+ 7). So we know that
1=

w=Cr g 2Y G ) (o € o), a8)
i=1

and

Moy = + 7 +2) (@ + Y (0<A<n—1). (19)

n
i=1

d0i:10.20944/preprints201809.0559.v1
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Let
Zb/\z bAz€Z4/0<)\<n_1)'

We defined
My =4{0<i<n—1:by #0}.

Then 2n — 1 = M(3W)) = Y171 M,. Since

wr(@) = @+ HEr v

242, for A =0
G a2 p a1 (1)) for1 < A < 1

WegetMg >1and M) >2for1 <A <n-1 Thenfrong;(l)M,\:Zn—lweknowthatMozl
and M) =2for1 <A <n-—1. But

awo(oc) = a2:§2—|—§*2+2
n

= (@) —2) (@ 4T — 23 407 (by (19))
i=1

i=1

= ol 123 (G )@ 472

i=1

= (1420 +1))o(@) + 23 (e + 1)t (a),
i=2

where ; is an integer determined by 0 < I; < n — 1 and 2/ = 2i or — 2i(mod 21 + 1) so that [; # 1.
From My =1wegetc; =1¢€ Zpforalli,2 <i < n.By (18) we have

a0 = (14+2c)(Z+TH+2(c1 €2y),
T+t = (a+2)(1+2c) = (142c1)a+2,
and
ar(w) = [(142e)(G+7 ) +2[(1+2e)( P+ +2]

= [+ P+ 20+ P+
= (B+2c))a+ (142c1)0™(a) + 20 (),

where A is determined by 2N = +3(mod 2n+1)and 0 < A <n —1.If n > 3, then A # 0, 1. Therefore
M; = 3 # 2. So we proved that there is no optimal normal basis in the case n > 3.

(2) Leta € R = GR(2',2) (r >2) and B = {a,o(a)} is an optimal normal basis for R/Z,. By
Lemma 6, we get

a=0+C" 420+ N+ (P+7))=14+20) G+ + 20237 +772),

where ( is a 5-th primitive root of 1 in GR(2',4), so that { + 7'eRandcy, 0 € Z,r1.Since 1+ 2¢; is
invertible in Zyr, we can assume, up to equivalence,

a=0+ 1 H26(P+ 772, forb € Zya. (20)

d0i:10.20944/preprints201809.0559.v1
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Theno(a) =72+ 2+2b(C+ 1) so that

x 2b 1 o
[4+71= o(a) 1 _ a—2bo(a) 2y 2b o(a) _ o(a) —2ba
oo 142 oo 14
2b 1 2b 1
17a  and by (20), we have
W = AT 244(CH+ TN AT AP+ +2)

= 2-4b+ 8 +4P((+ )+ P+

= (4T (2440 —40%) + (PP + T 2)(~1+4b—8b7)
. 2+4b—41° —1+4b—8b?
= Taomr @A)
= Aa+ Bo(a),

(o(a) — 2ba)

s where (1+2b)A = —2(1 —b+4b?), (1 +2b)B = —1 + 6b — 4b%. Therefore {«,c(x)} is an optimal
w7e  basis for R/Zy if and only if A = 0 € Zyr, and then if and only if b € Z,,1 satisfying 1 — b + 4b%> =
w77 0(mod 2771).

178 Let Z ;) be the ring of 2-adic integers. Consider f(x) =1 —x + 4x% € Z[x], f'(x) = =1+ 8x.
17e - We have vo(f(1)) = va(4) = 2and vo(f'(1)) = v2(7) = 0 where v, is the 2-adic exponential valuation.
180 From Hensel’s Lemma and v, (f(1)) > 2v2(f'(1)) we know that there exists unique b € Z,, 1 such
12 that1—b+4b% =0 for any v > 2. This completes the proof of Theorem 4. [

182 Putting Theorem 3 together with Theorem 4, we can derive the following results.

1es Theorem 5. Let R = GR(p",n),r,n > 2. Then

sa (1) There exists optimal normal basis B () = {o*(x) : 0 < A < n —1} for R/Zy if and only if (A) n + 1
s and p are distinct prime numbers and Z; ;= (p) or; (B) p = n = 2.

16 (2) For case (A), B(w) is an optimal normal basis for R/ Z,yr if and only if « is equivalent to an (n + 1)-th
17 primitive root { of 1. Namely, « = a( (a € Z;,).

1s  (3) For case (B), B(«) is an optimal normal basis for GR(2",2) / Zyr if and only if a is equivalent to { + {1 +
w0 2b(0% + {72) where { is a 5-th primitive root of 1 in GR(2",4) so that { + {1, ? + {2 € GR(2",2) and
wo b € Zy1 is the unique element satisfying 1 — b + 4b* = 0.

101 Author Contributions: Feng Keqin obtained the idea from Abrahamsson’s thesis to research the normal bases on
102 Galois ring extension, and then we wrote and revised the paper together.

103 Funding: This research was funded by the National Natural Science Foundation of China under Grants 11471178
10s  and 11571107

10s  Conflicts of Interest: The authors declare no conflict of interest..

106 References

107 1. Abrahamsson, B. Architectures for Multiplication in Galois Rings, thesis, Linkdping, Sweden, http:// www.
108 ep.liu.se/exjobb/isy/ex/3549/, 2004.

100 2. Ash, D.W,; Blake, LF; Vanstone,S.A. Low complexity normal bases, Disc. Appl. Math. 1989, 25, 191-210.

200 3. Ballet, S.; Chaumine,].; Pieltant, J.; Rolland, R. On the tensor rank of multiplication in finite extensions of
201 finite fields. Jour. Number Theory 2011, 128(6), 1795-1806.

202 4.  Boztas,S.; Hammons, R.; Kumar, P.Y. 4-phase sequences with near-optimum correlation properties. IEEE
203 Trans. Inf. Theory 1992, 38(3), 1101-1113.


http://dx.doi.org/10.20944/preprints201809.0559.v1
http://dx.doi.org/10.3390/sym10120702

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 September 2018 d0i:10.20944/preprints201809.0559.v1

14 of 14

20 5. Cascudo, I; Cramer,R.; Xing,C.; Yang,A. Asymptotic bound for multiplication complexity in the extensio s of

205 small finite fields. IEEE Trans. Inf. Theory 2012, 58(7), 4930-4935.
200 6.  Christopolou,M.; Garefalakis,T.; Panario,D.; Thomson,D. Gauss periods as constructions of low complexity
207 normal bases. Des. Codes and Cryptogr., 2012, 62 , 43-62.

208 7. Gao,S. Normal Bases over Finite Fields, thesis, the university of Waterloo, Ontario, Canada, 1993.

200 8.  Gao,S. Abelian groups, Gauss periods and normal bases. Finite Fields Appl. 2001, 7, 149-164.

220 9. Gao,S.; Lenstra,H.W. Optimal normal bases. Des. Codes and Cryptogr. 1992,2, 315-323.

2z 10. Hammons, A.R;; Kumar, Jr.P.V.; Calderbank, A.R. The Z,-linearity of Kerdock, Preparata, Goethals, and

212 related codes. IEEE Trans. Inf. Theory 1994, 40(2), 301-319.

213 11.  Helleseth,T.; Johansson,T. Universal hash functions from exponential sums over finite fields and Galois rings
214 Advances in Cryptology-CRYPTO’ 96, Springer Berlin Heidelberg, 1996, 31-44.

215 12.  Irwansyal, LM.A,; Barra,A.; Muchlis,A. Self-dual normal basis of a Galios ring. Journal of Mathematics 2014
216 ID:258187, (2014) Hindawi Publishing.

21z 13. Liao,Q. The Gaussian normal basis and its trace basis over finite field. Jour. Number Theory 2012, 132,
218 1507-1518.

210 14. Liao,Q.; Feng, K. On the complexity of the normal bases via prime Gauss period over finite fields. Jour. Syst.
220 Sci. and Complexity 2009,22, 395-406.

221 15. Liao,Q.; You,L. Low complexity of a class of normal bases over finite fields. Finite Fields Appl. 2011,17, 1-14.
222 16. Séguin, G. Low complexity normal bases for Fom:, Disc. Appl. Math. 1990,28, 309-312.

223 17. Yamada,M. Gifference sets over Galois rings with odd extension degrees and characteristic an even power of
224 2. Des. Codes and Cryptogr. 2013, 67, 37-57.

225 18. Yildiz, B. A combinatorial construction of the Gray map over Galois rings. Disc. Math. 2009, 309, 3408-3412.
226 19. Wan,Z.X. Lecture Notes on Finite Fields and Galois Rings, World Scientific, Singapore, 2003.

227 20. Zhang,A.; Feng K. A new criterion on normal bases for finite field extensions. Finite Fields Appl. 2015, 31,
228 25-41.


http://dx.doi.org/10.20944/preprints201809.0559.v1
http://dx.doi.org/10.3390/sym10120702

	Introduction
	Basic Facts on Galois Rings
	Criteria on Normal bases for Galois Ring Extensions
	Multiplicative Complexity on Normal Bases
	References

