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Abstract: In this paper we study the normal bases for Galois ring extension R/Zpr where R =1

GR(pr, n). We present a criterion on normal basis for R/Zpr and reduce this problem to one of finite2

field extension R/Zpr = Fq/Fp (q = pn) by Theorem 1. We determine all optimal normal bases for3

Galois ring extension.4
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1. Introduction6

The theory of finite fields is one of the fundamental mathematical tools in computer science and7

communication engineering since 1950’s when digit communications and computations were rapidly8

developed. For it to be useful in practice, a lot of study have focused for decades on the complexity9

of operations, particularly the multiplicative operation, and with this respect, many useful bases for10

Fqn /Fq with low complexity have been found ([2]-[9],[13]-[15]).11

In the past two decades, Galois rings have been used successfully in many aspects of combinatorics12

to construct different kinds of combinatorial designs, and in communication theory to construct13

error-correcting codes, sequences with good correlation properties, secret sharing schemes, hash14

functions and so on ([17],[18],[10],[4],[11]). However, comparing to the case of finite field extensions,15

the complexity problem of operations in Galois ring has not attracted much attention from scholars16

except Abrahamsson who considered the complexity of bases and carefully discussed architectures for17

multiplication in Galois rings (for p = 2) in his thesis [1], 2004. Therefore, the operations, particularly18

for the multiplication, on the Galois rings become one of the interesting problems to be considered. So19

many works remain to be done to extend various methods and results in finite fields on constructing20

bases with low complexity to Galois rings.21

In this paper we will study one aspect of the complexity problem of operations in Galois rings.22

More precisely, we will focus on normal bases for Galois ring extensions in this paper. This paper is23

organised as follows. In Section 2 we introduce some basic facts on Galois rings. We present some24

results on normal bases and some basic properties on multiplicative complexity of normal bases for25

Galois ring extension GR(pr, n)/Zpr in Section 3. Then we determine all optimal normal bases for26

these Galois ring extensions in Section 4.27

2. Basic Facts on Galois Rings28

In this section we introduce several basic facts on Galois rings. For more informations, the reader29

is referred to [19].30

Let p be a prime number and r ≥ 2, Zpr = Z/prZ. We have the modulo p reduction mapping31

ϕ : Zpr −→ Fp, a (mod pr) 7−→ ā = a (mod p),
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which induces the following modulo p reduction mapping between polynomial rings:

ϕ : Zpr [x] −→ Fp[x], f (x) = ∑ cixi 7−→ f (x) = ∑ c̄ixi.

f (x) is said to be a monic basic irreducible (primitive) polynomial over Zpr if f (x) is a monic irreducible32

(primitive) polynomial over Fp.33

Let f (x) be a basic primitive polynomial of degree n in Zpr [x]. The quotient ring34

R = GR(pr, n) =
Zpr [x]
( f (x))

∼= Zpr [γ]

= {c0 + c1γ + · · ·+ cn−1γn−1 : ci ∈ Zpr}, (1)

where γ is a root of f (x) in R with order pn − 1, R is called a Galois ring. And we note that γ is a
primitive element of the finite field Fq where q = pn. From now on, we take f (x) to be a basic primitive
polynomial. The modulo p reduction can be naturally extended to the following homomorphism of
rings:

ϕ : R = GR(pr, n) =
Zpr [x]
( f (x))

∼= Zpr [γ] −→ Fq =
Fp[x]

( f (x))
∼= Fp[γ].

Some basic facts on Galois ring R = GR(pr, n) are given as follows.35

(Fact 1) Let T∗ = 〈γ〉 be the cyclic multiplicative group of order q − 1 generated by γ, and
T = T∗ ∪ {0}. Then T = Fq and

R = {x0 + px1 + p2x2 + · · ·+ pr−1xr−1 : xi ∈ T}, |R| = |T|r = qr = pnr. (2)

(Fact 2) R is a local commutative ring with the unique maximal idealM = pR, |M| = qr−1 and36

the group of units is R∗ = R\M = T∗ × (1 +M), |R∗| = qr − qr−1.37

(Fact 3) R/Zpr is a Galois extension of rings with Galois group Gal(R/Zpr ) = 〈σp〉, where σp is
the automorphism of order n defined by

σp(
r−1

∑
i=0

pixi) =
r−1

∑
i=0

pixp
i (xi ∈ T). (3)

More generally, for each positive integer l, R = GR(pr, n) is a subring of R(l) = GR(pr, nl) and R(l)/R
is a Galois extension of rings with Galois group Gal(R(l)/R) = 〈σq〉, where σq is the automorphism of
R(l) defined by

σq(
r−1

∑
i=0

pixi) =
r−1

∑
i=0

pixq
i (xi ∈ T(l)), (4)

and R(l) = Zpr [γ(l)] = {∑r−1
i=0 pixi : xi ∈ T(l)}, T(l) = T∗(l) ∪ {0}, T∗(l) = 〈γ(l)〉, γ

ql−1
q−1

(l) = γ.38

(Fact 4) We have the trace mapping

Trnl
n : R(l) = GR(pr, nl) −→ R = GR(pr, n),

defined by

Trnl
n (α) =

l−1

∑
i=0

σi
q(α) (α ∈ R(l)),
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which is an epimorphism of R-modules and we have the following commutative diagram:

R(l) = GR(pr, nl)

ϕ

��

Trnl
n // R = GR(pr, n)

ϕ

��

Trn
1 // Zpr = GR(pr, 1)

ϕ

��
R(l) = Fpnl

trnl
n // R = Fpn

trn
1 // Zpr = Fp

(5)

where trnl
n and trn

1 are the trace mappings for finite field extensions.39

On the other hand, for r ≥ 2, the modulo pr−1 reduction gives the homomorphism of rings
GR(pr, n) −→ GR(pr−1, n) and we get the following commutative diagram:

GR(pr, n)

σ(r)

��

mod pr−1
// GR(pr−1, n)

σ(r−1)

��

// · · ·
mod p2
// GR(p2, n)

σ(2)

��

mod p// GR(p, n) = Fq

σ(1)

��
GR(pr, n)

mod pr−1
// GR(pr−1, n) // · · ·

mod p2
// GR(p2, n)

mod p // Fq

(6)

where σ(λ) is the automorphism of GR(pλ, n) defined by

σ(λ)(
λ−1

∑
i=0

pixi) =
λ−1

∑
i=0

pixp
i (xi ∈ T).

Next we need some basic properties on the polynomial ring R[x]. One of the most important40

properties on R[x] is the following Hensel’s Lemma.41

Two polynomials f (x) and g(x) in R[x] are called coprime if there exist A(x) and B(x) in R[x]42

such that f (x)A(x) + g(x)B(x) = 1.43

Lemma 1. ([19], Lemma 14.20) Let R = GR(pr, n) and R = Fq (q = pn). Let f (x) be a monic polynomial in44

R[x] and gi(x) (1 ≤ i ≤ s) be pairwise coprime monic polynomials in R[x]. If f (x) = g1(x)g2(x) · · · gs(x)45

in R[x], then there exist pairwise coprime polynomials fi(x) (1 ≤ i ≤ s) in R[x] such that f (x) =46

f1(x) f2(x) · · · fs(x) and f i(x) = gi(x) (1 ≤ i ≤ s).47

The polynomial fi(x) is called the Hensel lift of gi(x). A monic polynomial f (x) in R[x] is called48

primary if f (x) is a power of a monic irreducible polynomial in Fq[x]. One can deduce the following49

result from the Hensel’s Lemma .50

Lemma 2. ([19], Theorem 14.21) Let f (x) be a monic polynomial of deg f ≥ 1 in R[x]. We have the following
decomposition

f (x) = f1(x) f2(x) · · · fr(x),

where fi(x) (1 ≤ i ≤ r) are pairwise coprime primary polynomials in R[x] and fi(x) (1 ≤ i ≤ r) are uniquely51

determined up to their order. Particularly, if f (x) = p1(x)p2(x) · · · pr(x) where pi(x) (1 ≤ i ≤ r) are52

distinct monic irreducible polynomials in R[x] = Fq[x], then fi(x) (1 ≤ i ≤ r) are distinct monic irreducible53

polynomials in R[x] and f i(x) = pi(x) (1 ≤ i ≤ r).54

3. Criteria on Normal bases for Galois Ring Extensions55

From (1) we know that R = GR(pr, n) is a free Zpr -module of rank n and {1, γ, · · · , γn−1} is a56

basis for R/Zpr , where γ is an element of order q− 1 (q = pn) in R.57
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Definition 1. An element α ∈ R is called a normal basis generator (NBG) for extension R/Zpr if B =58

{σ0(α) = α, σ(α), · · · , σn−1(α)} is a basis for R/Zpr , where σ is the automorphism σp of R defined by (3).59

Such basis B is called a normal basis for R/Zpr .60

In this section we present several criteria on normal bases for Galois ring extension R/Zpr , these61

criteria can be reduced to the ones of finite field extensions R/Zpr = Fq/Fp according to the following62

theorem. Recall that an element a ∈ Fq (q = pn) is a NBG for Fq/Fp if B = {a, σ(a), · · · , σn−1(a)} is a63

normal basis for Fq/Fp, where σ is the Frobenius automorphism of Fq defined by σ(b) = bp for b ∈ Fq.64

From the definition of σ in (3), one has for α ∈ R, σ(α) = σ(α).65

Theorem 1. For an element α in R, α is a NBG for R/Zpr if and only if α is a NBG for finite field extension66

R/Zpr = Fq/Fp.67

Proof. Suppose that ᾱ is not a NBG for Fq/Fp. Then there exist ai ∈ Fp (0 ≤ i ≤ n− 1) such that

n−1

∑
i=0

aiσ
i(ᾱ) = 0 (7)

and aj 6= 0 for some j. Let Ai ∈ R, Ai = ai (0 ≤ i ≤ n− 1). The formula (7) implies that ∑n−1
i=0 Aiσi(α) =68

∑n−1
i=0 aiσ

i(ᾱ) = 0 so that
n−1
∑

i=0
Aiσ

i(α) ∈ pR. Therefore
n−1
∑

i=0
pr−1 Aiσ

i(α) = 0. From aj ∈ F×p we know69

that Aj ∈ R∗ and pr−1 Aj 6= 0. Therefore α is not a NBG for R/Zpr .70

On the other hand, suppose that α is not a NBG for R/Zpr . Then there exist Ai ∈ R (0 ≤ i ≤ n− 1)71

such that72

n−1

∑
i=0

Aiσ
i(α) = 0 (8)

and Aj 6= 0 for some j. Let Ai ∈ pdi R \ pdi+1R (0 ≤ i ≤ n− 1) and d = min{di|0 ≤ i ≤ n− 1}. From73

Aj 6= 0, we get 0 ≤ d ≤ r− 1. Then Ai = pdai where ai ∈ R (0 ≤ i ≤ n− 1) and aj ∈ R∗ by assuming74

Aj ∈ pdR\pd+1R. The formula (8) implies that pd
n−1
∑

i=0
aiσ

i(α) = 0 so that
n−1
∑

i=0
aiσ

i(α) ∈ pr−dR. Then75

from r− d ≥ 1, we get
n−1
∑

i=0
aiσ

i(α) = 0 where āi ∈ Fp (0 ≤ i ≤ n− 1) and aj 6= 0. Therefore ᾱ is not a76

NBG for Fq/Fp. This completes the proof of Theorem 1.77

By Theorem 1, a series of criteria on normal bases for finite field extensions can be shifted to ones78

for Galois ring extensions.79

Lemma 3. ([20]) Let n = ptl, (l, p) = 1, Q = pn and q = pl . Let trQ
q be the trace mapping for FQ/Fq. Then80

for a ∈ FQ, a is a NBG for FQ/Fp if and only if trQ
q (a) is a NBG for Fq/Fp.81

From the diagram (5) we know that for α ∈ R, trn
l (ᾱ) = Trn

l (α).82

Corollary 1. Let n = ptl, (l, p) = 1. Let R = GR(pr, n), R′ = GR(pr, l), and Tr : R → R′ be the trace83

mapping from R to R′. Then for α ∈ R, α is a NBG for R/Zpr if and only if Tr(α) is a NBG for R′/Zpr .84

By Corollary 1, we assume (n, p) = 1 without loss of generality. In this case, xn − 1 has the
following decomposition in the polynomial ring Fp[x] :

xn − 1 = p1(x)p2(x) · · · pr(x), (9)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2018                   doi:10.20944/preprints201809.0559.v1

Peer-reviewed version available at Symmetry 2018, 10, 702; doi:10.3390/sym10120702

http://dx.doi.org/10.20944/preprints201809.0559.v1
http://dx.doi.org/10.3390/sym10120702


5 of 14

where p1(x), p2(x), · · · , pr(x) are distinct monic irreducible polynomials in Fp[x].85

Let Fp[x] be the set of all p-polynomials ∑
i

cixpi
(ci ∈ Fp). Then Fp[x] is a ring with respect to the

ordinary addition and the following multiplication defined by composition ⊗ :

F(x)⊗ G(x) = F(G(x)), for F(x), G(x) ∈ Fp[x],

and the mapping
µ : Fp[x] −→ Fp[x], ∑

i
cixi −→∑

i
cixpi

is an isomorphism of rings. Corresponding to the decomposition (9) in Fp[x], we have the following
decomposition of

xpn − x = P1(x)⊗ P2(x)⊗ · · · ⊗ Pr(x),

where Pi(x) = µ(pi(x)) (1 ≤ i ≤ r) are distinct monic irreducible p-polynomials in Fp[x]. Let86

mi(x) = xn−1
pi(x) and Mi(x) = µ(mi(x)) =

r⊗
λ=1
λ 6=i

Pλ(x) ∈ Fp[x].87

Lemma 4. ([19]) Let q = pn and (n, p) = 1. For a ∈ Fq, a is a NBG for Fq/Fp if and only if Mi(a) 6= 0 (1 ≤88

i ≤ r).89

As a direct consequence of Theorem 1 and Lemma 4. We have the following criterion.90

Corollary 2. Let R = GR(pr, n), where (n, p) = 1. Then for α ∈ R, α is a NBG for R/Zpr if and only if91

Mi(ᾱ) 6= 0 (1 ≤ i ≤ r).92

By the decomposition (9) we have

Fp[x]
(xn − 1)

=
r⊕

i=1

Fp[x]
(pi(x))

∼=
r⊕

i=1

Fpdi ,

where di = deg pi(x). Then we have the orthogonal idempotents ei(x) ∈ Fp[x], deg ei(x) ≤ n− 1 (1 ≤
i ≤ r) satisfying

ei(x) ≡ δij(mod pj(x)) (1 ≤ i ≤ j ≤ r),

where δij is the Kronecker symbol. These idempotents ei(x) (1 ≤ i ≤ r) can be computed by using93

σp-class of the roots of xn − 1 (see [20]).94

In [20], we present a new criterion of NBG for Fq/Fp (q = pn, (n, p) = 1) by using idempotents95

in the ring Fp [x]
(xn−1) .96

Lemma 5. ([20]) Let Ei(x) = µ(ei(x)) ∈ Fp[x] (1 ≤ i ≤ r), a ∈ Fq (q = pn, (n, p) = 1), a is a NBG for97

Fq/Fp if and only if Ei(a) 6= 0 (1 ≤ i ≤ r).98

Corollary 3. Let R = GR(pr, n), where (n, p) = 1. Then for α ∈ R, α is a NBG for R/Zpr if and only if99

Ei(ᾱ) 6= 0 ∈ Fq (1 ≤ i ≤ r).100

In [20] we present more explicit criteria on normal bases for Fq/Fp for several specific cases
where the decomposition (9) has a simpler form. By Corollary 3 we can give more explicit criteria on
normal bases of Galois ring extension for such cases. For example, let p and n be prime numbers and
(Z/nZ)∗ = 〈p〉. Then for a ∈ Fq (q = pn), a is a NBG for Fq/Fp if and only if a /∈ Fp and tr(a) 6= 0,
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where tr : Fq → Fp is the trace mapping. Let Tr : R = GR(pr, n) → Zpr be the trace mapping. For
α ∈ R,

tr(α) ∈ Fp ⇔ tr(α)p − tr(α) = 0⇔ Tr(α)p − Tr(α) ∈ pR

and
tr(ᾱ) = 0⇔ Tr(α) ∈ pR.

Corollary 4. Let R = GR(pr, n), where p and n are distinct prime numbers and (Z/nZ)∗ = 〈p〉. Then for101

α ∈ R, α is a NBG for R/Zpr if and only if both of Tr(α) and Tr(α)p − Tr(α) belong to R∗.102

We end this section by counting the number of NBG for R/Zpr where R = GR(pr, n). It is
well known ([19], Corollary 8.25) that the number of NBG’s for Fq/Fp (q = pn) is (let n = pem and
(m, p) = 1)

ψq(n) = pn ∏
d|m

(1− p−ordd(p))φ(d)/ordd(p),

where φ(d) is the Euler function and ordd(p) is the order of p in (Z/dZ)∗. Since the mapping ϕ : R =103

GR(pr, n)→ R = Fq (q = pn) is surjective and Fp-linear, we get that |Ker ϕ| = |R|/|R| = prn−n. As a104

direct consequence of Theorem 1, we can count the number of NBG’s for R/Zpr .105

Corollary 5. Let p be a prime number and n = pem be a positive integer with (m, p) = 1. For R = GR(pr, n),
the number of NBG’s for R/Zpr is

ψ = prn ∏
d|m

(1− p−ordd(p))φ(d)/ordd(p)

and the number of normal bases for R = GR(pr, n) is ψ/n.106

4. Multiplicative Complexity on Normal Bases107

It is well known that normal bases on finite fields with low multiplication are useful in various108

applications including coding theory, cryptography, signal processing and so on. Similar to the case109

of finite fields, Abrahamsson discussed the multiplicative complexity on normal bases over Galois110

rings, and considered the architectures for multiplication in Galois rings (for p = 2) in his thesis. In111

this section we discuss the complexity of normal bases for extension R/Zpr , where R = GR(pr, n).112

Definition 2. Let α be a NBG for R/Zpr , so that B = {α, σ(α), · · · , σn−1(α)} is a normal basis for R/Zpr ,
where σ is the automorphism of R defined by (3). Then

ασi(α) =
n−1

∑
j=0

cijσ
j(α) (0 ≤ i ≤ n− 1, cij ∈ Zpr ). (10)

The multiplicative complexity M(B(α)) of the normal basis B is defined by the number of nonzero cij. Namely,

M(B(α)) = ]{(i, j) : 0 ≤ i, j ≤ n− 1, cij 6= 0}.

For each λ (1 ≤ λ ≤ r), α ∈ R, let α(λ) denote the modulo pλ reduction of α. The mapping

R = GR(pr, n) −→ R(λ) = GR(pλ, n), α 7→ α(λ)

is a homomorphism of rings and α(r) = α, α(1) = ᾱ ∈ GR(p, n) = R(1) = Fp.113
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For α ∈ R(= R(r)), α is a NBG for R/Zpr if and only if ᾱ is a NBG for Fq/Fp by Theorem 1, then
this is also equivalent to that α(λ) is a NBG for R(λ)/Zpr for any λ ≥ 1. Moreover, by the diagram (6)
we get that for any λ, the equality (10) implies that

α(λ)σ(λ)i(α(λ)) =
n−1

∑
j=0

c(λ)ij σ(λ)j(α(λ)) (0 ≤ i ≤ n− 1, c(λ)ij ∈ Zpλ).

If 0 6= c(λ)ij ∈ Zpλ , then 0 6= c(µ)ij ∈ Zpµ for all µ ≥ λ. Therefore we get the following simple and basic114

result.115

Theorem 2. Let R = GR(pr, n) and α be a NBG for R/Zpr . Then for each 1 ≤ λ ≤ r− 1, α(λ) is a NBG for
R(λ)/Zpr , where R(λ) = GR(pλ, n). Moreover, let B(λ) = B(α(λ)) = {σ(λ)i(α(λ)) : 0 ≤ i ≤ n− 1}. Then

M(B(r)) ≥ M(B(r−1)) ≥ · · · ≥ M(B(1)),

where B(1) is the normal basis B = {ᾱpi
: 0 ≤ i ≤ n− 1} for GR(p, n)/Zp = Fq/Fp.116

It is well known that for any normal basis B for finite field extension Fqn /Fq, M(B) ≥ 2n− 1.
Hence, by Theorem 2, for any normal basis B for Galois ring extension GR(pr, n)/Zpr , M(B) ≥ 2n− 1.
The basis B is called optimal if M(B) = 2n− 1. If B is an optimal normal basis for R/Zpr , then by
Theorem 2,

2n− 1 = M(B) ≥ M(B(r−1)) ≥ · · · ≥ M(B(1)) ≥ 2n− 1.

Therefore M(B(λ)) = 2n− 1. Namely, B(λ) is an optimal normal basis for R(λ)/Zpr for all 1 ≤ λ ≤ r.117

Particularly, B(1) = B is an optimal normal basis for the finite field extension R(1)/Zp = Fq/Fp (q =118

pn).119

Definition 3. Two elements α, β ∈ R∗ = GR(pr, n)∗ equivalent to each other if α = εβ for some ε ∈ Z∗pr ,120

and denoted by α ∼ β.121

If α is a NBG for R/Zpr and α ∼ β, β = εα for some ε ∈ Z∗pr . It is easy to see that β is also a NBG
for R/Zpr . Moreover, let

ασλ(α) =
n−1

∑
i=0

cλiσ
i(α) (cλi ∈ Zpr , 0 ≤ λ ≤ n− 1).

Then σλ(β) = εσλ(α) and

βσλ(β) =
n−1

∑
i=0

εcλiσ
i(β) (εcλi ∈ Zpr ).

Since cλi = 0 if and only if εcλi = 0, two normal bases B(α) = {σλ(α) : 0 ≤ λ ≤ n − 1} and122

B(β) = {σλ(β) : 0 ≤ λ ≤ n− 1} have the same complexity: M(B(α)) = M(B(β)).123

All optimal normal bases for finite field extension have been determined in [9].124

Lemma 6. (Gao and Lenstra, [9]) There are only two types of optimal normal bases B for finite field extension125

Fpn /Fp as following.126

Type (I): n + 1 and p are distinct prime numbers, Z∗n+1 = 〈p〉, and B is equivalent to the following
(optimal) normal bases for Fpn /Fp,

B(ξ) = {σλ
p (ξ) = ξ pλ

: 0 ≤ λ ≤ n− 1} = {ξ i : 1 ≤ i ≤ n},

where ξ is an (n+1)-th primitive root of 1 in the algebraic closure of Fp so that Fp(ξ) = Fpn .127
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Type (II): p = 2 and 2n + 1 is a prime number, Z∗2n+1 = 〈−1, 2〉, and B is equivalent to the following128

(optimal) normal bases for F2n /F2129

B(ξ + ξ−1) = {σλ
2 (ξ + ξ−1) = ξ2λ

+ ξ−2λ
: 0 ≤ λ ≤ n− 1}

= {ξ i + ξ−i : 1 ≤ i ≤ n},

where ξ is a (2n + 1)-th root of 1 in the algebraic closure of F2, F2(ξ + ξ−1) = F2n .130

Abrahamsson [1] presented the following optimal normal bases for Galois ring extension as a131

generalization of Type (I) optimal normal bases for finite field extension.132

Lemma 7. ([1]) Let p and n + 1 be distinct prime numbers such that Z∗n+1 = 〈p〉. Let ζ be an (n + 1)-th root
of 1 in R = GR(pr, n). Then

B(ζ) = {σλ(ζ) = ζ pλ
: 0 ≤ λ ≤ n− 1} = {ζ i : 1 ≤ λ ≤ n}

is an optimal normal basis for R/Zpr .133

In this section we determine all optimal normal bases for Galois ring extensions. If α ∈ R∗ and134

B(α) is an optimal normal bases for R/Zpr (R = GR(pr, n)), then B(ᾱ) is an optimal normal basis for135

Fq/Fp (q = pn), and then B(ᾱ) is an optimal normal basis for Type (I) or Type (II) by Lemma 6. Now136

we consider these two cases separably.137

Theorem 3. Suppose that n + 1 and p be distinct primes and Z∗n+1 = 〈p〉, R = GR(pr, n), n ≥ 2. Then any138

optimal normal basis for R/Zpr is equivalent to one given by Lemma 6.139

Proof. For r = 1, R/Zpr = Fq/Fp is the finite field extension case. For r = 2, we assume that
B(α) = {σλ(α) : 0 ≤ λ ≤ n− 1} is an optimal normal basis for R/Zp2 , R = GR(p2, n). Then ᾱ = ξ

where ξ is an (n + 1)-th primitive root of 1 in Fq (q = pn). Let ζ be an (n + 1)-th primitive root of 1 in
R such that ζ̄ = ξ. Then ζ ∈ T∗ by (n + 1)|(q− 1), where T∗ is the cyclic multiplicative group of R, see
Fact 3 in Section II, and

α = ζ + pa = ζ + p
n

∑
i=1

ciζ
i (a ∈ R, ci ∈ Zp2), (11)

since {ζ i : 1 ≤ i ≤ n} = {ζ pλ
: 0 ≤ λ ≤ n− 1} is a (normal) basis for R/Zp2 . Therefore

σλ(α) = ζ pλ
+ p

n

∑
i=1

ciζ
ipλ

since σλ(ζ i) = ζ ipλ
, 0 ≤ λ ≤ n− 1 (12)

and for 0 ≤ λ ≤ n− 1, λ 6= n
2 (we can assume that n + 1 is an odd prime number, so that n is even),140

ασλ(α) = (ζ + p
n

∑
i=1

ciζ
i)(ζ pλ

+ p
n

∑
i=1

ciζ
ipλ

)

= ζ1+pλ
+ p

n

∑
i=1

ci(ζ
i+pλ

+ ζ1+ipλ
) since p2 = 0. (13)
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From λ 6= n
2 we know that pλ 6≡ −1(mod n + 1) and 1 + pλ ≡ pµ(mod n + 1) for some µ, 0 ≤ µ ≤141

n− 1. Then by (13) we have142

ασλ(α) = ζ pµ
+ p

n

∑
i=1

ci(ζ
i+pλ

+ ζ1+ipλ
)

= σµ(α) + p
n

∑
i=1

ci(ζ
i+pλ

+ ζ1+ipλ − ζ i(1+pλ
)) by (12)

= σµ(α) + p[
n−1

∑
l=0

ζ pl
(cpl−pλ + c(pl−1)p−λ − cpl(1+pλ)−1) + c−pλ + c−p−λ ],

where we consider i ∈ Zn+1 for ci and assume c0 = 0, so Equation (13) becomes to143

ασλ(α) = σµ(α) + p(
n−1

∑
l=0

σl(α)(cpl−pλ + c(pl−1)p−λ − cpl(1+pλ)−1)− (c−pλ + c−p−λ)
n−1

∑
l=0

σl(α)),

since σl(α) ≡ σl(ζ) ≡ ζ pl
(mod p) and

n−1
∑

l=0
σl(α) ≡

n−1
∑

l=0
σl(ζ) =

n−1
∑

l=0
ζ pl

=
n
∑

j=1
ζ j = −1(mod p).144

Therefore for 0 ≤ λ ≤ n− 1, λ 6= n
2 ,

ασλ(α) =
n−1

∑
l=0

bλlσ
l(α) (bλl ∈ Zp2),

where

bλl =

{
p(cpl−pλ + c(pl−1)p−λ − cpl(1+pλ)−1 − c−p−λ − c−pλ), if pl 6≡ pµ ≡ (1 + pλ)(mod n + 1);
1 + p(c1 − c−p−λ − c−pλ), if pl ≡ 1 + pλ(mod n + 1).

(14)
And then the complexity M(B(α)) = ∑n−1

λ=0 Mλ, where

Mλ = ]{l | 0 ≤ l ≤ n− 1, bλl 6= 0 ∈ Zp2}.

For the case of λ = n
2 ,

ασ
n
2 (α) ≡ ζ pn/2

ζ = ζ−1ζ = 1 = −
n

∑
i=1

ζ i = −
n−1

∑
λ=0

ζ pλ ≡ −
n−1

∑
λ=0

σλ(α)(mod p).

We get M n
2
= n. For 0 ≤ λ ≤ n− 1, λ 6= n

2 , we have Mλ ≥ 1 since bλl ≡ 1(mod p) for l satisfying
pl ≡ 1 + pλ(mod n + 1). Then we have

2n− 1 = M(B(α)) =
n−1

∑
λ=0

Mλ = n +
n−1

∑
λ=0
λ 6= n

2

Mλ ≥ n +
n−1

∑
λ=0
λ 6= n

2

1 = 2n− 1,

which implies that Mλ = 1 for all 0 ≤ λ ≤ n− 1, λ 6= n
2 , which means that bλl = 0 for all 0 ≤ λ, l ≤

n− 1, λ 6= n
2 and pl 6≡ pλ + 1(mod n + 1). Let s ≡ pλ, t ≡ pl(mod n + 1). From (14), one gets B(α)

is an optimal normal basis for GR(p2, n)/Zp2 if and only if when 1 ≤ t ≤ n, 1 ≤ s ≤ n − 1 and
t 6≡ 1 + s(mod n + 1) , we have

− c−s−1 − c−s + ct−s + c(t−1)s−1 − ct(1+s)−1 = 0 ∈ Zp. (15)
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Particularly, for s = 1 we get

−2c−1 + 2ct−1 − ct/2 = 0, for 1 ≤ t ≤ n, t 6= 2.

If p = 2, then ct/2 = 0 ∈ F2 for all 1 ≤ t ≤ n, t 6= 2. By assumption Z∗n+1 = 〈2〉, this means that cj = 0145

for all 2 ≤ j ≤ n so that α = ζ + pc1ζ = (1 + pc1)ζ by (11) and the basis B(α) is equivalent to one146

given by Lemma 6.147

Now we assume that p ≥ 3. For any fixed s, 1 ≤ s ≤ n− 1, by (15), we get148

0 =
n

∑
t=1

t 6≡1+s

(−c−s−1 − c−s + ct−s + c(t−1)s−1 − ct(1+s)−1)

= (n− 1)(−c−s−1 − c−s) +
n

∑
l=0

l 6=1,−s

cl +
n

∑
l=0

l 6=−s−1,1

cl −
n

∑
l=0

l 6=0,1

cl

= (1− n)(c−s−1 + c−s) +
n

∑
l=1

cl − c1 − c−s − c−s−1

= −n(c−s−1 + c−s) + A

where A = ∑n
l=2 cl . Therefore

n(c−s + c−s−1) = A (16)

for all s, 1 ≤ s ≤ n− 1. If 3 ≤ p - n, we get c−s + c−s−1 = A
n for all 1 ≤ s ≤ n− 1. Particularly, for s = 1149

we get cn = c−1 = A
2n and150

A = cn +
n−1

∑
l=2

cl =
A
2n

+
n− 2

2
A
n

=
n− 1

2n
A.

Therefore (n+ 1)A = 0 and A = 0 ∈ Fp, since (p, n+ 1) = 1. Then we have cn = 0 and c−s + c−s−1 = 0
for 2 ≤ s ≤ n − 1. Taking t = s in (15) and remark c0 = 0, we get c s−1

s
= c s

s+1
for 2 ≤ s ≤ n − 1.

Namely,
c 1

2
= c 2

3
= · · · = c n−1

n
.

Since for 1 ≤ a, b ≤ n− 1,

a
a + 1

≡ b
b + 1

(mod n + 1) =⇒ a ≡ b(mod n + 1) =⇒ a = b,

we know that { s−1
s (mod n + 1) : 2 ≤ s ≤ n} = Zn+1\{0, 1}. Therefore c2 = c3 = · · · = cn−1 = cn = 0,151

and α = (1 + pc1)ζ. Therefore B(α) is equivalent to one given by Lemma 6. If 3 ≤ p | n, from (16) we152

have A = 0. In this case we fix t (2 ≤ t ≤ n− 1) and the condition (15) implies that153

0 =
n−1

∑
s=1

s 6=t−1

(−c−s−1 − c−s + ct−s + c(t−1)s−1 − ct(1+s)−1)

= −
n

∑
l=2

l 6=−(t−1)−1

cl −
n

∑
l=2

l 6=1−t

cl +
n

∑
l=2

l 6=t,t+1

cl +
n

∑
l=2

l 6=1−t

cl −
n

∑
l=2
l 6=t

cl

= c−(t−1)−1 + c1−t − ct − ct+1 − c1−t + ct = c−(t−1)−1 − ct+1.

Let a = −(t− 1)−1, we get
ca = c2−a−1 (2 ≤ a ≤ n). (17)
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Consider the fraction linear transformation

f : Zn+1 ∪ {∞} → Zn+1 ∪ {∞}, f (x) = 2− x−1 =
2x− 1

x

with matrix M =

(
2 −1
1 0

)
. For any m ≥ 0, Mm =

(
m + 1 −m

m −(m− 1)

)
so that

f m(2) =
2(m + 1)−m
2m− (m− 1)

= 1 +
1

m + 1
∈ Zn+1\{0, 1} (0 ≤ m ≤ n− 2).

Therefore { f m(2) : 0 ≤ m ≤ n− 2} = Zn+1\{0, 1} = {2, 3, · · · , n}. By (17) we get

c2 = c3 = · · · = cn =
1

n− 1
A = 0.

Thus α = (1 + pc1)ζ ∼ ζ. This completes the proof of Theorem 3 for r = 2.154

Now we assume that r ≥ 3 and this theorem is true for r − 1. Let α ∈ R = GR(pr, n) and
{σλ(α) : 0 ≤ λ ≤ n − 1} is an optimal normal basis for R/Zpr . By assumption we have, up to
equivalence,

α = ζ + pr−1a (a ∈ R) = ζ + pr−1
n

∑
i=1

ciζ
i (ci ∈ Zpr ).

Then the same argument for r = 2 can be shifted to get ci = 0 for all 2 ≤ i ≤ n. Therefore α =155

(1 + pr−1c1)ζ ∼ ζ. This completes the proof of Theorem 3156

Remark 1. Gao and Lenstra determined all optimal normal bases by using the Galois theory on finite fields [9],157

consequently confirmed a conjecture that was raised by Mullin et al. Here, we give a direct proof of the Theorem158

3 by using the mathematical induction.159

Theorem 4. Assume that 2n+ 1 is an odd prime number and Z∗2n+1 = 〈−1, 2〉. Let R = GR(2r, n) (r, n ≥ 2).160

Then161

(1) If n ≥ 3, there is no optimal normal basis for R/Z2r .162

(2) If n = 2 and α ∈ R = GR(2r, 2),B(λ) = {α, σ(α)} is an optimal normal basis for R/Z2r if and163

only if α is equivalent to ζ + ζ−1 + 2b(ζ2 + ζ−2) where ζ is a 5-th primitive root of 1 in GR(2r, 4) so that164

ζ + ζ−1 ∈ R and b is the unique element in Z2r−1 satisfying 1− b + 4b2 = 0.165

Proof. (1) First we consider r = 2. Suppose that α ∈ R = GR(4, n) and B(λ) = {σλ(α) : 0 ≤ λ ≤
n− 1} is an optimal normal basis for R/Z4. Then B(λ) = {ᾱ2λ

: 0 ≤ λ ≤ n− 1} is an optimal normal
basis for F2n /F2. By Lemma 6, ᾱ is equivalent to ξ + ξ−1 where ξ is a (2n + 1)-th primitive root of 1 in
Fq2 . Let ζ be the (2n + 1)-th primitive root of 1 in GR(4, n) such that ζ̄ = ξ. Then ζ + ζ−1 ∈ R and, up
to equivalence

α = ζ + ζ−1 + 2a (a ∈ R).

Since {ζ2λ
+ ζ−2λ

: 0 ≤ λ ≤ n − 1} = {ζ i + ζ−i : 1 ≤ i ≤ n} is a normal basis for R/Z4 by the

assumption that Z∗2n+1 = 〈−1, 2〉, also, tell me a =
n
∑

i=1
ci(ζ

i + ζ−i). So we know that

α = ζ + ζ−1 + 2
n

∑
i=1

ci(ζ
i + ζ−i) (ci ∈ Z2), (18)

and

σλ(α) = ζ2λ
+ ζ−2λ

+ 2
n

∑
i=1

ci(ζ
i2λ

+ ζ−i2λ
) (0 ≤ λ ≤ n− 1). (19)
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Let

ασλ(α) =
n−1

∑
i=0

bλiσ
i(α) (bλi ∈ Z4, 0 ≤ λ ≤ n− 1).

We defined
Mλ = ]{0 ≤ i ≤ n− 1 : bλi 6= 0}.

Then 2n− 1 = M(B(λ)) = ∑n−1
λ=0 Mλ. Since166

ασλ(α) = (ξ + ξ−1)(ξ2λ
+ ξ−2λ

)

=

{
ξ2 + ξ−2, for λ = 0
ξ2λ+1 + ξ−(2

λ+1) + ξ2λ−1 + ξ−(2
λ−1), for 1 ≤ λ ≤ n− 1.

We get M0 ≥ 1 and Mλ ≥ 2 for 1 ≤ λ ≤ n− 1. Then from ∑n−1
λ=0 Mλ = 2n− 1 we know that M0 = 1167

and Mλ = 2 for 1 ≤ λ ≤ n− 1. But168

ασ0(α) = α2 = ζ2 + ζ−2 + 2

= σ(α)− 2
n

∑
i=1

ci(ζ
2i + ζ−2i)− 2(

n

∑
i=1

(ζ2i + ζ−2i)) (by (19))

= σ(α) + 2
n

∑
i=1

(ci + 1)(ζ2i + ζ−2i)

= (1 + 2(c1 + 1))σ(α) + 2
n

∑
i=2

(ci + 1)σli (α),

where li is an integer determined by 0 ≤ li ≤ n− 1 and 2li ≡ 2i or − 2i(mod 2n + 1) so that li 6= 1.169

From M0 = 1 we get ci = 1 ∈ Z2 for all i, 2 ≤ i ≤ n. By (18) we have170

α = (1 + 2c1)(ζ + ζ−1) + 2 (c1 ∈ Z2),

ζ + ζ−1 = (α + 2)(1 + 2c1) = (1 + 2c1)α + 2,

and171

ασ(α) = [(1 + 2c1)(ζ + ζ−1) + 2][(1 + 2c1)(ζ
2 + ζ−2) + 2]

= ζ + ζ−1 + ζ3 + ζ−3 + 2(ζ + ζ−1 + ζ2 + ζ−2)

= (3 + 2c1)α + (1 + 2c1)σ
λ(α) + 2σ(α),

where λ is determined by 2λ ≡ ±3(mod 2n + 1) and 0 ≤ λ ≤ n− 1. If n ≥ 3, then λ 6= 0, 1. Therefore172

M1 = 3 6= 2. So we proved that there is no optimal normal basis in the case n ≥ 3.173

(2) Let α ∈ R = GR(2r, 2) (r ≥ 2) and B(λ) = {α, σ(α)} is an optimal normal basis for R/Zpr . By
Lemma 6, we get

α = ζ + ζ−1 + 2(c1(ζ + ζ−1) + c2(ζ
2 + ζ−2)) = (1 + 2c1)(ζ + ζ−1) + 2c2(ζ

2 + ζ−2),

where ζ is a 5-th primitive root of 1 in GR(2r, 4), so that ζ + ζ−1 ∈ R and c1, c2 ∈ Z2r−1 . Since 1 + 2c1 is
invertible in Z2r , we can assume, up to equivalence,

α = ζ + ζ−1 + 2b(ζ2 + ζ−2), for b ∈ Z2r−1 . (20)
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Then σ(α) = ζ2 + ζ−2 + 2b(ζ + ζ−1) so that

ζ + ζ−1 =

∣∣∣∣∣ α 2b
σ(α) 1

∣∣∣∣∣∣∣∣∣∣ 1 2b
2b 1

∣∣∣∣∣
=

α− 2bσ(α)

1− 4b2 , ζ2 + ζ−2 =

∣∣∣∣∣ 1 α

2b σ(α)

∣∣∣∣∣∣∣∣∣∣ 1 2b
2b 1

∣∣∣∣∣
=

σ(α)− 2bα

1− 4b2

and by (20), we have174

α2 = ζ2 + ζ−2 + 2 + 4b(ζ + ζ−1)(ζ2 + ζ−2) + 4b2(ζ + ζ−1 + 2)

= 2− 4b + 8b2 + 4b2(ζ + ζ−1) + ζ2 + ζ−2

= (ζ + ζ−1)(−2 + 4b− 4b2) + (ζ2 + ζ−2)(−1 + 4b− 8b2)

=
−2 + 4b− 4b2

1− 4b2 (α− 2bσ(α)) +
−1 + 4b− 8b2

1− 4b2 (σ(α)− 2bα)

= Aα + Bσ(α),

where (1 + 2b)A = −2(1− b + 4b2), (1 + 2b)B = −1 + 6b− 4b2. Therefore {α, σ(α)} is an optimal175

basis for R/Z2r if and only if A = 0 ∈ Z2r , and then if and only if b ∈ Z2r−1 satisfying 1− b + 4b2 ≡176

0(mod 2r−1).177

Let Z(2) be the ring of 2-adic integers. Consider f (x) = 1− x + 4x2 ∈ Z(2)[x], f ′(x) = −1 + 8x.178

We have v2( f (1)) = v2(4) = 2 and v2( f ′(1)) = v2(7) = 0 where v2 is the 2-adic exponential valuation.179

From Hensel’s Lemma and v2( f (1)) > 2v2( f ′(1)) we know that there exists unique b ∈ Z2r−1 such180

that 1− b + 4b2 = 0 for any r ≥ 2. This completes the proof of Theorem 4.181

Putting Theorem 3 together with Theorem 4, we can derive the following results.182

Theorem 5. Let R = GR(pr, n), r, n ≥ 2. Then183

(1) There exists optimal normal basis B(α) = {σλ(α) : 0 ≤ λ ≤ n− 1} for R/Zpr if and only if (A) n + 1184

and p are distinct prime numbers and Z∗n+1 = 〈p〉 or; (B) p = n = 2.185

(2) For case (A), B(α) is an optimal normal basis for R/Zpr if and only if α is equivalent to an (n + 1)-th186

primitive root ζ of 1. Namely, α = aζ (a ∈ Z∗pr ).187

(3) For case (B), B(α) is an optimal normal basis for GR(2r, 2)/Z2r if and only if α is equivalent to ζ + ζ−1 +188

2b(ζ2 + ζ−2) where ζ is a 5-th primitive root of 1 in GR(2r, 4) so that ζ + ζ−1, ζ2 + ζ−2 ∈ GR(2r, 2) and189

b ∈ Z2r−1 is the unique element satisfying 1− b + 4b2 = 0.190
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