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Abstract: 1) Background:Pristimerin (PM) is a naturally occurring quinonemethide triterpenoid 
compound that isolated from the Celastraceae and Hippocrateaceae families. Its anticancer effects 
have attracted a great deal of attention, but the mechanisms of action remain obscure; 2) Methods:  
In this study, we screened for the active compounds of Pristimerin using a drug-likeness approach. 
Potential protein targets of Pristimerin were predicted by PharmMapper and Coremine database. 
Candidate protein targets were then uploaded to GeneMANIA and GO pathway analysis; 3) 
Results:Finally, compound-target, target-pathway, and compound-target-pathway networks were 
constructed using Cytoscape 3.3; and 4) Conclusions: The results showed that Pristimerin had good 
drug ability and identified 13 putative protein targets. Network analysis revealed that these targets 
are associated with cancer, inflammation and other physiological processes. In summary, 
Pristimerin is predicted to target a variety of proteins and pathways to form a network that exerts 
systemic pharmacological effects. 
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1. Introduction 

Pristimerin(20α-3-hydroxy-2-oxo-24-nor-friedela-1-10,3,5,7-tetraen-carboxylicacid-29-meth 
ylester, PM, Figure1A) is a naturally occurring quinonemethide triterpenoid compound, isolated 
from the family Celastraceae and Hippocrateaceae. Pristimerin is reported to have a variety of 
pharmacological effects such as anti-cancer, anti-angiogenic, anti-inflammatory and anti-protozoal, 
as well as insecticidal activities[1]. Its anti-tumor activities have already been confirmed on a series 
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of human cancer cell lines such as colon cancer, breast cancer, prostate cancer, and multiple 
myeloma tumors[2-6],  and the anti-tumor function was associated with various molecular targets 
[7]. A number of natural triterpenoid which are structurally related to pristimerin such as 
celastrol[8], ursolic acid[9] and betulinic acid[10]. Though the anticancer effects especially in cancer 
chemoprevention and treatment have attracted a great deal of attention[7], the mechanisms of action 
remained obscure. 

Despite the good permeability, Pristimerin has reported to have a lower oral bioavailability 
(~28.4%) in rats [11]. Poor bioavailability is due to the relatively high efflux from the Pgp mechanism. 
Therefore, in the presence of verapamil, the oral bioavailability of Pristimerin is almost twice as high 
(1728.1 μg h/mL when given with verapamil vs. AUC0–t of 949.2 μg h/mL when given alone) in 
rats[12]. For these naturally occurring compounds, knowledge of toxicity or medicinal properties is 
usually earlier than an accurate understanding of the target or mechanism, and there is still a lot of 
knowledge about Pristimerin. 

In this study, the TCMSP server was first used to evaluate the drug availability of Pristimerin. 
Potential targets were predicted by calculating reverse docking and chemical-protein interaction 
analysis, and overlapping targets identified using both methods were selected for further study 
based on gene ontology (GO) and pathway analysis. Finally, we constructed a drug target network 
to systematically outline the potential targets and mechanisms of action of Pristimerin. An overview 
of the experimental procedure for Pristimerin target prediction is shown in Figure 1B. 

 
Figure 1. Chemical structure and Pipeline for the identification of Pristimerin. (A) Chemical 
structure of Pristimerin downloaded from the PubChem database (CID: 159516); (B) Pipeline for the 
identification of putative Pristimerin targets that integrates ADME evaluation, reverse docking, 
chemical-protein interaction, GO, and pathway analyses, and network construction. 
 
2. Materials and Methods  

2.1 ． Evaluation of Drug-Likeness The TCMSP server (http://ibts.hkbu.edu.hk/LSP/ 
tcmsp.php) is a system-level Chinese medicine (TCM) pharmacology database that can calculate 
ADME (absorption, distribution, metabolism and excretion), related properties to interesting, 
naturally occurring compounds[13]. It provides an evaluation model, which integrated oral 
bioavailability (OB), drug-likeness (DL), Caco-2 permeability and so on. Drug-like (DL) is a method 
of qualitatively estimating a "drug-like" compound that helps optimize pharmacokinetics and drug 
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properties such as solubility and chemical stability. Building a database-dependent model based on 
molecular descriptors and Tanimoto coefficients (as displayed below) : 

T (A, B) = 
A × B 

| |A | |2 + | |B | |2 −A × B 

where A is the molecular descriptor of herbal ingredients, and B shows the average molecular 
properties of all molecules in Drug-Bank database. The Oral bioavailability (OB) plays an important 
role in the efficiency of the drug delivery to the systemic circulation, which is one of the most vital 
pharmacokinetic properties of orally administered drugs. The OB value of all herbal ingredients was 
calculated using the internal model OBioavail 1.1. The Caco-2 cell line has been widely used to 
predict the oral absorption properties of drugs in the intestinal epithelial cell barrier, which also 
applies to the TCMSP database. 

2.2 Computational Target Fishing by PharmMapper and Coremine database PharmMapper 
can identify potential protein targets for small molecule compounds by pharmacophore mapping 
[14]. It can provide the first 300 to 3000 targets for a given compound, sorted in descending order of 
appropriate scores. Meanwhile, the Coremine database can identify potential target proteins by 
chemical-protein interaction analysis of small molecules[15]. Both of them are powerful tools for 
computational target fishing. We entered Pristimerin (PubChem CID: 159526) to the PubChem and 
Coremine database, then downloaded an SDF file and uploaded it to the PharmMapper. All 
parameters were set to default values, and we chose the overlapping ones for further investigation. 

2.3 Analysis by GeneMANIA GeneMANIA is a flexible, user-friendly web interface for 
generating hypotheses about gene function, analyzing gene lists and prioritizing genes for 
functional assays[16]. The results were exhibited after we input the target genes of interest in the 
previous step. 

GO and Pathway Analysis, and Network The PANTHER (http://pantherdb.org), a 
comprehensive, curated database of protein families, trees, subfamilies and functions, can be used to 
help understand relationships in gene expression data and provide systematic and visual 
information on the gene of interest[17]. After uploaded the interested target genes following the 
online instructions, GO and KEGG pathway information for Pristimerin was generated and 
collected. To further understand the complex relationships among compounds, targets, diseases and 
pathways, use Cytoscape 3.3 to build and analyze network. 

 
3.  Results 

3.1 ADME-Related Properties of Pristimerin TCMSP provides information on important 
ADME-related properties such as human oral bioavailability (OB), drug-likeness (DL), Caco-2 
permeability (Caco-2), blood-brain barrier (BBB) permeability and Lipinski’s rule of five (MW, 
AlogP, TPSA, Hdon, Hacc)[13]. In-depth study of ADME related characteristics of ASS by TCMSP 
(Table 1). Notably, the DL of Pristimerin was calculated to be 0.77 (Table 1). 

Table 1. Pharmacological and molecular properties of Pristimerin. 

NAME MW AlogP Hdon Hacc OB(%) Caco-2 BBB DL FASA- TPSA RBN 

PM 464.70 5.54 1 4 19.27 0.70 0.07 0.77 0.30 63.60 2 

 
3.2 Recognition of Potential Targets As showed in Figure 1B, the top 300 potential protein 

targets of Pristimerin were predicted from all 1961 pharmacophore models obtained using 
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PharmMapper, as well as the potential 93 targets identified using Coremine. Finally, to improve the 
specificity, 13 potentially overlapping proteins identified in both sets of results were selected for 
further study (Table 2). 

Table 2. Putative targets of Pristimerin identified by PharmMapper and Coremine 

Rank PDB ID Gene Name Target Name 

1 2PQF PARP1 poly(ADP-ribose) polymerase 1 

2 1T2R AGO2 argonaute 2 

3 2E19 ZEB1 zinc finger E-box binding homeobox 1 

4 1SP3 CYCS cytochrome c, somatic 

5 3F3P NUP62 nucleoporin 62 

6 1WWU EGFR epidermal growth factor receptor 

7 2PPH MAPK3 mitogen-activated protein kinase 3 

8 1MYP MPO myeloperoxidase 

9 2PFF FASN fatty acid synthase 

10 1MJT NOS2 nitric oxide synthase 2 

11 1GWI CYP3A4 cytochrome P450 family 3 subfamily A member 4 

12 2ILK IL10 interleukin 10 

13 3F4M TNF tumor necrosis factor 

 
3.3 Analysis by GeneMANIA It was found that among the 13 targets and their interacting 

proteins, 58.93% shared the same pathway, 20.78% displayed similar co-expression characteristics. 
Other results including pathways, physical interactions, and co-localization as shown in Figure 2. 
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Figure 2. Network of potential Pristimerin targets. Black protein nodes indicate target proteins, and 
different connecting colours represent different correlations. Functional association of targets was 
analysed using GeneMANIA.  

 
3.4 GO and Pathway Analysis, and Network Construction To further investigate the 13 

identified targets, analysis of interaction network regulation was performed using PANTHER 
(http://pantherdb.org). As shown in Figure 3, 95% focus on the biological process. In particular, the 
top six enriched in negative regulation of growth of symbiont in host (GO:0044130), regulation of 
chronic inflammatory response to antigenic stimulus (GO:0002874), receptor biosynthetic process 
(GO:0032800), negative regulation of cytokine secretion involved in immune response (GO:0002740), 
cellular response to amino acid stimulus (GO:0071230), and endothelial cell apoptotic process 
(GO:0072577).  
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Figure 3. Gene Ontology (GO) analysis of targets. The y-axis shows significantly enriched 
Biological Process categories of the targets, and the x-axis shows the enrichment scores of these 
terms (p value < 0.05). 
 

Based on target fishing and pathway analysis, an entire network was built by using Cytoscape3.0. 
As shown in Figure 4, the interaction network has 47 nodes and 113 edges. The red octagons, green 
triangles, blue ellips and yellow diamonds correspond to pristimerin, target proteins, diseases, and 
pathways, respectively. 
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Figure 4. Pristimerin-target-pathway network. Red octagon = pristimerin, green triangle = target 
proteins, blue ellips= disease, yellow diamond = pathway. 
 
4. Discussion 

The late-stage failures in drug development often contributed to poor pharmacokinetics and 
toxicity. In silico approaches can improve our ability to predict and model pharmacokinetic, 
metabolic and toxicity endpoints, thereby streamlining and accelerating the drug discovery 
process[18]. In recent years, natural anticancer drugs have received much attention, including 
Yondelis (trabectedin), a natural compound from the tunicate, Ecteinascidia turbinata, which has 
been used to treat soft-tissue sarcoma[19, 20]. Pristimerin is extracted as an active ingredient of 
traditional medicinal plants. Some studies have shown that Pristimerin can inhibit tumor 
angiogenesis and the development of drug resistance[21, 22]. 

The molecular weight (MW) < 500 daltons (Da), the calculated LogP (CLogP) < 5 (or MlogP > 4.15), 
number of hydrogen-bond donors < 5 and number of hydrogen-bond acceptors < 10, should be 
considered for compounds and can identify several critical properties with oral delivery, which were 
proposed by Lipinski as “rule of five” [23] . Now, the “rule of five” is commonly referred to as a 
“druglike” measure and guideline in drug. As listed in Table 1, Pristimerin’s properties meet the 
requirements, which means Pristimerin is a good candidate for drug discovery. The concept of DL, 
established from analysis of physiochemical properties or/and structural characteristics of existing 
small molecule drugs and/or drug candidates, has been widely used to filter out compounds with 
undesirable properties, especially those with poor ADMET-related profiles[24]. There are more and 
more concerns to Natural products with inherently good biological properties. According to reports, 
in the pharmacological analysis of traditional Chinese medicine systems, the average DL value of 
drug library compounds ≥ 0.18 is the standard for screening biologically active compounds[13]. As 
shown in Table 1, the DL value of Pristinrin was calculated by TCMSP to be 0.77, which is higher 
than the average value, thus indicating that Prisminrin may be a promising drug.  

Target identification is the first step in drug discovery, and an increasing number of drugs or 
active compounds have been shown to target multiple proteins. Various in silico target fishing 
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methods have been designed and are now widely used for this purpose[25]. As shown in Table 2, 13 
putative targets of Pristimerin were screened using computational tools. 

Tumor growth has been shown to be a loss of epithelial features and an increase in mesenchymal 
phenotype procession, known as epithelial-to-mesenchymal transition (EMT)[26], which can be 
activated by hypoxia-induced HIF-1 signaling[27], and plays a key role in tumor cell metastasis[28]. . 
Hypoxia also provides clues for tumor cells to maintain stem cell status and may help drive the link 
between EMT and CSC (cancer stem cells)[29]. Pristimerin is a quinonemethide triterpenoid with the 
potential of a promising anticancer agent and induces apoptosis[3]. Recent studies reported that 
Pristimerin not only can suppress HIF-1α and hypoxia-induced metastasis[30], but also can suppress 
the hypoxia-induced HIF-1α accumulation[31] in prostate cancer PC-3 cells. In another word, 
Pristimerin can inhibit the stimulating effect of hypoxia on cancer cell proliferation and invasion, , 
suppress stem cell characteristics, and even reduced levels of the predominant mesenchymal 
phenotype, which is over-expressed in a variety of tumor types and associated with increased 
metastases and poor prognosis. It has also be confirmed that Pristimerin had the potential value of 
suppressing colon tumorigenesis. Pristimerin administration can decrease inflammation and 
proliferation induced by AOM/DSS in colon tissue and induced apoptosis and regulated the 
AKT/FOXO3a signaling pathway[32].  

Cell survival and death are regulated by cell growth and apoptosis signals, and deregulation of 
either process can lead to cancer[33]. Thus, the induction of apoptosis is one mechanism by which 
antitumor drugs can kill cancer cells[34]. Pristimerin induces cell death via various mechanisms such 
as caspase activation, changes in mitochondrial membrane potential, and inhibition of anti-apoptotic 
factors, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and 
Akt[35]. 

Apoptosis is induced as a result of caspase activation[36]. There are two major caspase cascades: 
the intrinsic (mitochondrial) pathway that activates caspases 9 and 3 via cytochrome C release from 
mitochondria, and the extrinsic (death receptor) pathway that activates caspases 8 and 10 through 
receptors (so-called “death receptor”) present on the cell membrane surface[37]. In a recently study, 
Pristimerin induced elevation of caspase 3 and activation of upstream caspases 8 and 9[38]. When 
Pristimerin induced apoptosis, it was in a dose-dependent manner. 

NF-κB is the most important transcription factor involved in inflammation induction, and 
Pristimerin decreased its expression[39, 40].  It was revealed that Pristimerin, which has long been 
used as an anti-inflammatory drug, had anti-inflammatory effects by inhibiting NF-κB, which is not 
only associated with inflammation but also inhibits apoptosis[41]. Firstly, pristimerin inhibited 
activation of IKK that could be mediated through suppression of upstream kinases such as Akt and 
MAPK[42, 43]. Secondly, pristimerin inhibited IкBα phosphorylation and degradation in a dose and 
time dependent manners, which eventually leads to the inhibition of phosphorylation and nuclear 
translocation and DNA binding activities of NF-кB p65 subunit. These inhibitory effects of 
pristimerin on NF-кB activity also reflected by the suppression of NF-кB-dependent genes 
expression, including Bcl-2, Bcl-xL and cyclin D1[43, 44]. Furthermore, pristimerin-induced 
inhibition of NF-кB activation was detected a lot of cancer cell lines, including multiple myeloma 
tumors [5], and pancreatic cancer cells[45]. 

 Activation of the PI3K/Akt/mTOR pathway is one of the drivers of cancer cell growth, and is 
closely involved in cancer initiation, progression, and treatment resistance. Thus, it is considered an 
important target in cancer treatment[46]. A currently study showed that Pristimerin aimed at 
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suppressing PI3K/Akt pathway, and inhibitors of mTOR are already used in clinical practice[47]. 
Using Pristimerin can reduce the expression of phosphorylated Akt and mTOR in tumor, which 
indicative of activation, suggesting that Pristimerin inhibits the growth of cancer cells by inhibiting 
the Akt/mTOR pathway. The Akt/mTOR pathway and NF-κB cross-talk and induce apoptosis[47]. A 
comprehensive evaluation of Pristimerin toxicity is yet to reported that no significant be undertaken. 
Yousef et al[48] change in body weight was observed after treatment of mice with 1 mg/kg 
Pristimerin every other day, and minimal toxicity has reported in another study[49]. 
Pristimerin-associated bone marrow suppression has been reported[50]. Though there were already 
some investigation of Pristimerin, how and which miRNA can it reactive with is still not clear, and 
the mechanism of the Pristimerin do with autoimmune diseases is unknown.    

 
5. Conclusions 
 In this study, the DL of Pristimerin was evaluated by TCMSP, and potential targets were chosen for 
further investigation identified by both PharmMapper and Coremine. The results suggested that 
Pristimerin may be a good drug candidate, the 13 potential target proteins were identified that are 
associated with various pharmacological activities. In addition, GO and pathway analysis were 
performed to construct a drug-target-disease association network. These results indicated that 
Pristimerin has variety of functions, including anticancer and inflammation activity, even in the 
autoimmune diseases is still not sure. Although further research is needed to determine the precise 
interactions, this study provides a systematic and visual overview of possible Pristimerin molecular 
mechanisms and signaling pathways. 
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