

1 Article

2 

# Discovery of novel conotoxin candidates using 3 machine learning

4

5 **Qing Li**<sup>1,2</sup>, **Maren Watkins**<sup>3</sup>, **Samuel D. Robinson**<sup>3</sup>, **Helena Safavi-Hemami** <sup>3,4,\*#</sup> and **Mark Yandell**  
6 <sup>1,5,\*#</sup>7 <sup>1</sup> Eccles Institute of Human Genetics, University of Utah, USA; liqing850104@gmail.com8 <sup>1</sup> Eccles Institute of Human Genetics, University of Utah, USA; myandell@genetics.utah.edu9 <sup>2</sup> Huntsman Cancer Institute, University of Utah, USA; liqing850104@gmail.com10 <sup>3</sup> Department of Biology, University of Utah, USA; maren.watkins@hsc.utah.edu11 <sup>3</sup> Department of Biology, University of Utah, USA; helena.safavi@utah.edu12 <sup>4</sup> Department of Biochemistry, University of Utah, USA; helena.safavi@utah.edu13 <sup>5</sup> USTAR Center for Genetic Discovery, University of Utah; myandell@genetics.utah.edu

14 \* Correspondence: safavihelena@gmail.com; myandell@genetics.utah.edu

15 # Equal contribution

16

17 **Abstract:** Cone snails (genus *Conus*) are venomous marine snails that inject prey with a lethal  
18 cocktail of conotoxins, small, secreted, cysteine-rich peptides. Given the diversity and often high  
19 affinity for their molecular targets, consisting of ion channels, receptors or transporters, many  
20 conotoxins have become invaluable pharmacological probes, drug leads and therapeutics.  
21 Transcriptome sequencing of *Conus* venom glands followed by *de novo* assembly and homology-  
22 based toxin identification and annotation is currently the state-of-the-art for discovery of new  
23 conotoxins. However, homology-based search techniques, by definition, can only detect novel  
24 toxins that are homologous to previously reported conotoxins. To overcome these obstacles for  
25 discovery we have created *ConusPipe*, a machine learning tool that utilizes prominent chemical  
26 characters of conotoxins to predict whether a certain transcript in a *Conus* transcriptome, which has  
27 no otherwise detectable homologs in current reference databases, is a putative conotoxin. By using  
28 *ConusPipe* on RNASeq data of 10 species, we report 5,230 new putative conotoxin transcripts that  
29 have no homologues in current reference databases. 893 of these were identified by at least 3 out of  
30 4 models used. These data significantly expand current publicly available conotoxin datasets and  
31 our approach provides a new computational avenue for the discovery of novel toxin families.32 **Keywords:** machine learning; conotoxins; cone snails, venom, drug discovery33 **Key Contribution:** By using ensemble methods, we report 5,230 new candidate conotoxins that have  
34 no homologues in current reference databases and provide a unique dataset for future  
35 pharmacotherapeutic exploration.

36

37 

## 1. Introduction

38 Predatory marine cone snails (genus *Conus*) have attracted the attention of biologists and  
39 pharmacologists for the great neuropharmacological potential of their venom toxins [1-3]. It is  
40 estimated that each of the ~750 extant *Conus* species produces ~100-400 distinct venom toxins  
41 (conotoxins) with almost no overlap in the toxin repertoire between the ~750 species, not even  
42 between sister species [4]. Despite the tremendous diversity and drug discovery potential of *Conus*

43 venoms, only ~ 5,000 nucleotide sequences of conotoxin-encoding transcripts have been reported  
44 from 100 *Conus* species over the past decades, with most sequences having been discovered in recent  
45 years [5,6]. Traditional methods, such as isolation of conotoxins from venom and subsequent Edman-  
46 or *de novo* mass spectrometric (MS) sequencing are time-consuming and limited by sample  
47 availability. In contrast, high throughput transcriptome sequencing can achieve greater sequencing  
48 depth and only requires small amounts of biological sample [7]. Recent studies on the venom gland  
49 transcriptomes of several cone snail species, using next generation sequencing technologies (NGS),  
50 have discovered ~100-400 conotoxin genes per *Conus* species [4,8-12]. Other authors have reported  
51 larger diversities but these are likely to have resulted from inappropriate analyses of NGS datasets,  
52 as previously discussed [4,10].

53 Conotoxins can be classified into different gene superfamilies based on their conserved N-  
54 terminal signal sequence [13]. To date, more than 53 conotoxin gene superfamilies have been  
55 described for *Conus* [14]. After NGS sequencing and *de novo* transcriptome assembly, candidate  
56 conotoxin genes are usually assigned to different superfamilies using BlastX, regular expression-  
57 based techniques and profile hidden Markov model (HMMER) analysis against a local reference  
58 database of known conotoxins from the Uniprot and/or ConoServer databases. Available tools  
59 include ConoPrec, ConoDictor and Conosorter [5,15-17]. However, these approaches can only detect  
60 novel toxins that are similar to previously reported sequences. An approach that could overcome the  
61 limitations of homology based-searches would thus be highly desirable.

62 Most conotoxin transcripts can be readily divided into three distinct regions: (1) an N-terminal  
63 signal sequence for targeting to the endoplasmic reticulum; (2) an intermediate propeptide region  
64 that has been suggested to play a role in secretion, posttranslational modification and folding; and  
65 (3) a single copy of the mature toxin region, located at the C terminus [18-20]. We hypothesized that  
66 even though conotoxin sequences evolve very rapidly [14], conotoxin retain these three traits even  
67 when their sequence similarities become too low to allow detection by alignment-based methods  
68 such as Blast and HMMER. If this were true, even highly divergent conotoxins might be identifiable  
69 using machine learning methods trained to identify these three traits as features. With this in mind,  
70 we implemented three machine learning models for data mining of 12 *Conus* transcriptomes from 10  
71 different species: logistic regression (logit), semi-supervised learning (LabelSpreading) and an  
72 artificial neural network (perceptron) [21-25]. The resulting tool for conotoxin discovery is called  
73 *ConusPipe*.

74 Generalized Linear Models (GLMs) are versatile, powerful, commonly used statistical  
75 approaches to model relationship between scalar response variables given several predictor  
76 variables/features [21,26]. In particular the logistic regression model computes a weighted sum of the  
77 input features (plus a bias term), but instead of outputting the result directly like the linear regression  
78 model does, it outputs the logistic of this result [21,25]. This approach often outperforms simple linear  
79 regression for binary outcome prediction [26].

80 Unlike GLMs which completely employ labeled data for training, in semi-supervised learning  
81 only some of the training data is labeled. Graph-based methods are then used to make use of  
82 additional unlabeled data in order to better capture the shape of the underlying data distribution and  
83 generalize the method to apply to new samples [27]. The assumption is that unlabeled data with  
84 features that render them neighbors of labeled data are likely to have a common label. In keeping  
85 with general practice, we used the K-nearest neighbors method to connect each data point [28]. Semi-  
86 supervised learning approaches can perform well when only a small number of labeled data but large  
87 amounts of unlabeled data are available.

88 The Perceptron is one of the simplest Artificial Neural Network ANN architectures, which is  
89 composed of a single layer of linear threshold unit (LTU). The LTU computes a weighted sum of its  
90 inputs and then applies a step function to that sum and outputs the result [22]. Unlike regression-  
91 based approaches, ANNs can capture dependencies within the data, potentially resulting more  
92 accurate classification.

93 The nature of the *Conus* training sets and input data also needs to be considered. For example,  
94 the true-positive (labeled) training data is limited in scale and is incomplete, as many conotoxins

95 presumably remain uncatalogued [29]. Moreover, the input data is very large, with RNA-seq datasets  
96 typically exceeding five million reads and tens of thousands of assembled transcripts. Given these  
97 features, logistic regression provides a well-established base-line approach, whereas semi-supervised  
98 learning (LabelSpreading) provides a means to further leverage unlabeled true positives during  
99 training. Finally, the Perceptron model scales well to very large training sets and is widely used for  
100 pattern recognition with good results [30-33]. Additionally, since using these machine learning  
101 models are based on the hypothesis that conotoxins will retain all three traits in sequence evolution,  
102 we added cross-species Blastp to search for similar unknown sequences (if they contain a signal  
103 sequence) between different *Conus* species to rescue potential conotoxins that only have one trait  
104 (signal sequence) based on the knowledge that the signal peptide sequences of conotoxins from the  
105 same superfamilies are highly similar to each other even if they are from different *Conus* species [4].

106 By employing three different machine learning models plus Blastp, *ConusPipe* allows users to  
107 take an ensemble approach for discovery to maximize the prediction power. All four methods were  
108 applied to 12 RNAseq datasets from 10 different species of *Conus*. The pipeline discovered 5,230 new  
109 conotoxin candidates that provide a unique dataset for future pharmacotherapeutic exploration.

110

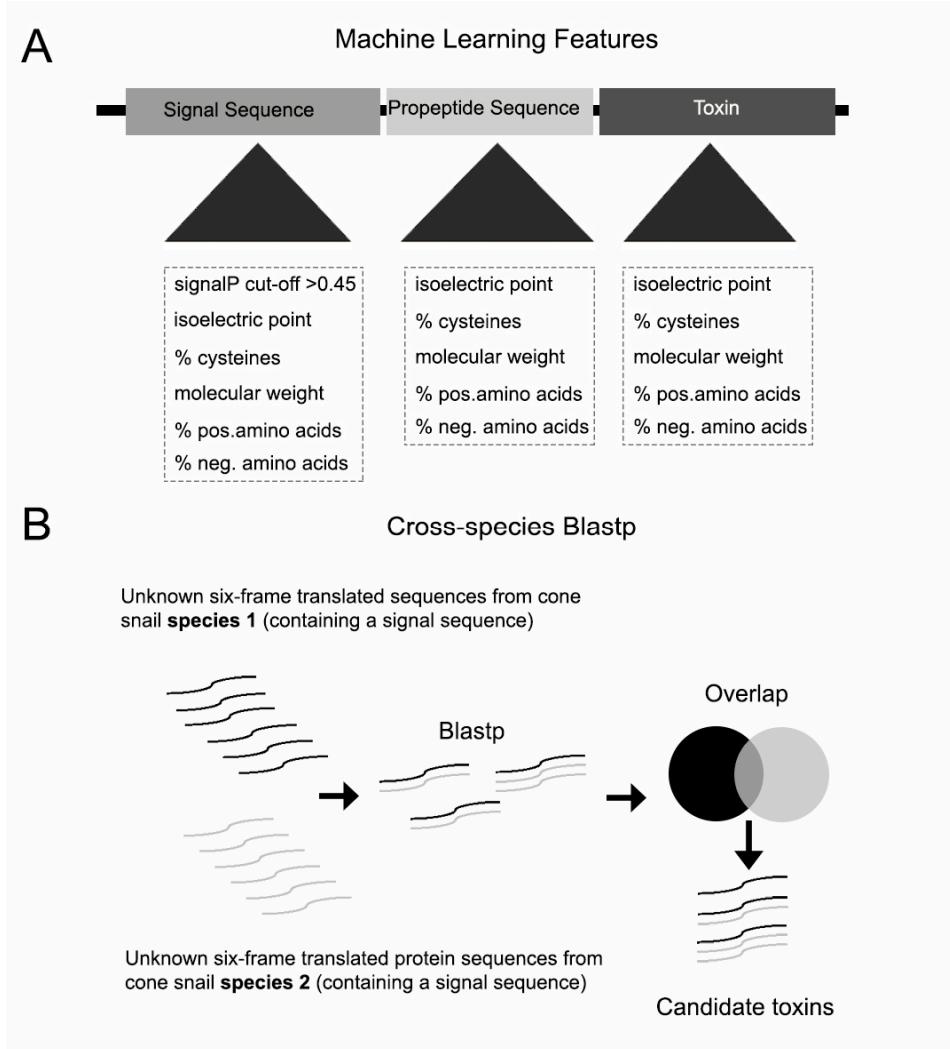
## 111 2. Results

### 112 2.1 The *ConusPipe* toolkit

113 *ConusPipe* is implemented in Perl and Python as a complete conotoxin discovery package. It is  
114 available at <https://github.com/Yandell-Lab/ConusPipe>. *ConusPipe* takes 6-frame-translated peptide  
115 sequences from nucleotide sequences which have no hit in current reference database and extracts  
116 conotoxin sequence features to train datasets (**Figure 1A**). In addition to 3 machine learning  
117 models, cross-species Blastp is used as the 4<sup>th</sup>method to retrieve putative toxin candidates that have  
118 a signal sequence but may not have all features used in machine learning (**Figure 1B**).

119 *ConusPipe* then generates different combinations (single method, union or overlap) of the four  
120 methods to predict candidate conotoxins (**Figure 2**). Users can change the settings in sample.config  
121 file to use different cut-off options for transcript per million (tpm) values, blast e-values, signalP D-  
122 values and provide paths to input and output fasta files and databases used.

123



124

125 **Figure 1.** A.Overview of feature selection for machine learning models (B) and cross-species Blastp methodology  
126 used in addition to the machine learning model.

127

128

129

### 2.1.1 Building and cross-validation of the machine learning models

130 4,950 known conotoxin sequences (from the ConoServer [5] and Uniprot databases [34] and  
131 52,613 randomly selected non-conotoxin *Conus* transcripts were used to build the machine learning  
132 models. In order to assess the performance of the models, 10-fold cross validation was applied to the  
133 same dataset [35]. The main measures of performance were sensitivity, specificity and accuracy under  
134 different regularization parameters. Sensitivity was defined as the fraction of known conotoxins  
135 predicted as conotoxin divided by the number of known conotoxins in the test dataset. Specificity  
136 was defined as the fraction of known non-conotoxins predicted as non-conotoxin divided by the  
137 number of known non-conotoxins in the test dataset. Accuracy was defined as the fraction of known  
138 sequences (conotoxin/non-conotoxin) predicted divided by the total number of sequences in the test  
139 dataset. The regularized parameter settings were chosen by plotting accuracy vs parameter settings  
140 for each model to make sure the trained model has the best accuracy with minimum overfitting/under  
141 fitting. Since the prevalence of conotoxins in the training dataset is only 9.97%, sensitivity is an  
142 important performance measure in consideration when choosing regularization parameter settings.  
143 The sensitivity, specificity and accuracy for the chosen regularization parameter settings for each

144 model is shown in **Table 1**. The highest overall testing accuracy and sensitivity were 98.2% and  
145 90.93%, respectively, achieved by the LabelSpreading model.

146

147 **Table 1.** Maximized sensitivity, specificity and accuracy for chosen regularization parameter  
148 settings for three machine learning models in 10-fold cross validation.

149

| Machine learning model | Performance measure |             |          |
|------------------------|---------------------|-------------|----------|
|                        | Sensitivity         | Specificity | Accuracy |
| Logit                  | 82.85%              | 99.30%      | 97.78%   |
| LabelSpreading         | 90.93%              | 99.07%      | 98.32%   |
| Perceptron             | 83.24%              | 97.65%      | 96.32%   |

150

151

152 *2.2. Benchmark by identifying known superfamilies*

153 To assess the sensitivity of *ConusPipe* in identifying conotoxin transcripts, we performed a  
154 benchmark analysis for sequences belonging to known conotoxin gene superfamilies [6]. For these  
155 analyses, we deleted an entire superfamily from the training set and then tried to re-discover this  
156 superfamily as a putative new superfamily using *ConusPipe*. The specificity of *ConusPipe* (i.e., the  
157 ability to distinguish between known conotoxins and non-conotoxin proteins from various  
158 organisms) was assessed by screening hits against the entire UniProtKB/Swiss-Prot database.

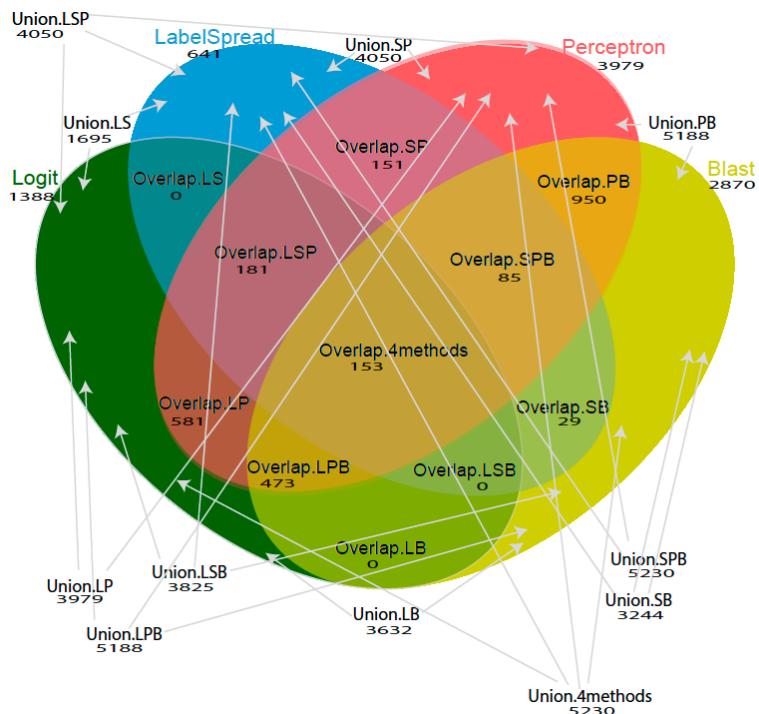
159 We found that the sensitivity varied among different superfamilies and combinations of models  
160 used. The highest sensitivity was achieved by the union of the 4 methods (logit, LabelSpreading,  
161 perceptron and Blastp, mean sensitivity = 95.7%, SD = 0.11) and the union of 3 methods (logit,  
162 perceptron and Blastp or LabelSpreading, perceptron and Blastp, mean sensitivity = 95.7%, SD = 0.11)  
163 across all superfamilies. A union of methods means that a conotoxin predicted by one or more  
164 methods is a putative positive. A graphical overview of the different groups is provided in **Figure 2**.  
165 Results are shown in **Supp. Figure 1** and **Tables 1** and **2**.

166 In addition to machine learning, using cross-species Blastp to search candidate sequences from  
167 different *Conus* species against each other provides better performance for conotoxin superfamilies  
168 that contain sequences which don't satisfy the hypothesis of having all 3 traits (signal sequence,  
169 propeptide and mature toxin at the C-terminus), such as the SF-mi2, I4, MEFRR, B4 and Prohormone  
170 gene families. However, this approach is less powerful for superfamilies that are limited to a small  
171 number of species, such as conorfamides, DivMTFLLLVS, MEVKM, MTSTL, Teretoxins and  
172 Conocaps. The sensitivity for recovering all known conotoxin superfamilies by different  
173 combinations of methods is provided in **Supp. Table 1**.

174 The ability of *ConusPipe* to distinguish between conotoxins and other proteins from various  
175 organisms was assessed by screening the entire UniProtKB/Swiss-Prot database. Using the version  
176 released on June 2013 we examined a total of 540,261 protein sequences isolated from diverse  
177 organisms. The overall highest specificity was achieved using an overlap of the 4 methods (logit,  
178 LabelSpreading, Perceptron and Blastp, specificity = 99.92%) and the overlap of 3 methods  
179 (LabelSpreading, Perceptron and Blastp, specificity = 99.92%). These results are shown in **Table 2**.

180

181



182

183 **Figure 2.** Venn diagram illustrates the different combinations of methodologies used (single method, overlap or  
 184 union of methods). A union of methods means that a conotoxin is predicted by one or more methods, for  
 185 example, Union.4methods = predicted by Perceptron or Logit or Label Spreading or Blast. An overlap of methods  
 186 means that the conotoxin is predicted by all the applied methods, for example, Overlap.4methods = predicted  
 187 by Perceptron and Logit and Label Spreading and Blast. Abbreviations used: Blast – B, Logit – L, Label Spreading  
 188 – S, Perceptron - P. Numbers indicate putative novel toxins identified by *ConusPipe*.

189

190  
191  
192**Table 2.** The specificity of the individual machine learning methods and their unions/combinations when searching results against the Uniprot/Swissprot non-conotoxin database and mean sensitivity for recovering all known conotoxin superfamilies.

| Method                    | Mean sensitivity | Specificity |
|---------------------------|------------------|-------------|
| Overlap.4methods          | 34.19%±0.32      | 99.92%      |
| Overlap.LSP               | 41.53%±0.35      | 99.90%      |
| Overlap.LSB               | 35.15%±0.32      | 99.87%      |
| Overlap.LPB               | 76.25%±0.37      | 99.57%      |
| Overlap.SPB               | 34.22%±0.32      | 99.92%      |
| Overlap.LS                | 43.18%±0.34      | 99.85%      |
| Overlap.LP                | 83.61%±0.32      | 99.53%      |
| Overlap.SP                | 41.68%±0.35      | 99.90%      |
| Overlap.LB                | 79.57%±0.35      | 98.32%      |
| Overlap.SB                | 35.52%±0.32      | 99.86%      |
| Overlap.PB                | 78.02%±0.36      | 99.57%      |
| Logit                     | 87.61%±0.26      | 99.83%      |
| LabelSpreading (SemiS)    | 43.67%±0.34      | 99.49%      |
| Perceptron (NeuroNetWork) | 85.96%±0.29      | 94.02%      |
| Blastp                    | 87.10%±0.28      | 98.19%      |
| Union.4methods            | 95.73%±0.11      | 93.89%      |
| Union.LSP                 | 90.31%±0.22      | 98.15%      |
| Union.LSB                 | 95.25%±0.12      | 93.89%      |
| Union.LPB                 | 95.73%±0.11      | 93.90%      |
| Union.SPB                 | 95.73%±0.11      | 93.97%      |
| Union.LS                  | 88.10%±0.26      | 98.17%      |
| Union.LP                  | 89.96%±0.23      | 98.17%      |
| Union.SP                  | 87.95%±0.25      | 99.41%      |
| Union.LB                  | 95.14%±0.12      | 93.90%      |
| Union.SB                  | 95.24%±0.12      | 93.99%      |
| Union.PB                  | 95.05%±0.15      | 93.98%      |

193

## 194 2.3. Identification of new conotoxin candidates

195 To identify new conotoxin candidates, we assembled *Conus* transcripts from RNA-seq datasets  
196 derived from venom glands of 10 different *Conus* species using our previously published methods [4]

197 (see Table 3 for species used in this study). The resulting transcripts were prescreened for conotoxin  
198 homology against the Uniprot and Conoserver databases as previously published [4] and described  
199 under the methods section. The remaining transcripts were then used as inputs to *ConusPipe*. New  
200 conotoxin candidates were defined as those which were predicted as conotoxins by at least one of the  
201 4 models in *ConusPipe*, but lacked significant homology to known conotoxins using Blast against the  
202 Uniprot database [17].

203 Since conotoxin gene superfamilies are generally found across multiple *Conus* species (hence,  
204 the term superfamily) we considered those sequences that lacked significant homology to known  
205 conotoxins but had high homology (Blastp e-value <1e-10) to sequences from at least two other *Conus*  
206 species examined here, as members of a new putative superfamily. 5,455 transcripts passed these  
207 criteria. In order to validate our predictions, we used NCBI-Blastp to search the 5,455 transcripts  
208 against the NCBI non-redundant (NR) protein database (August 2018 version), which includes  
209 recently published conotoxin sequences that were not yet available in Uniprot/conoserver at the time  
210 of original analysis (and even now) and also includes large numbers of uncharacterized molluscan  
211 sequences not available in Uniprot. Out of 5,455 transcripts, 225 had significant Blastp hits (e-values  
212 < 1e-4) against the NCBI-NR database. 92 transcripts had hits against other molluscan transcripts. As  
213 the majority of conotoxins are not found outside of the genus *Conus* and these transcripts could  
214 encode endogenous signaling/housekeeping polypeptides rather than polypeptides used for  
215 envenomation, these were removed from our final datasets. 109 sequences were identified as  
216 conotoxins. These were also removed from the final machine learning dataset and are provided in  
217 **Supp. File 1** ("sequences.with.Blastp.hits.to.ncbi.nr.conotoxins"). Finally, 24 sequences had Blastp  
218 hits against non-molluscan species such as fish, tardigrade, sea anemone, worm, plant, bird. These  
219 were removed from the final dataset.

220 A total of 5,230 sequences were left in our final dataset as new conotoxin candidates, 153 of these  
221 were identified by all 4 models, 739 of these were identified by 3 models, 1,711 of these were identified  
222 by 2 models, 2,627 of these were identified by 1 model (**Figure 1**). All of the 5,230 transcripts are  
223 provided in **Supp. File 2** ("total.predicted.MLLabel.rnNrHit.rnImpCo.label.pep"). Using single  
224 linkage cluster analysis with a Jaccard Index [36,37] of 0.5 grouped 301 of sequences identified by at  
225 least 3 models into 107 clusters that are likely to represent novel conotoxin gene superfamilies (**Supp.**  
226 **File 3**, "Superfamily.cluster.0.5.seq").

227 The highest number of putative new sequences were identified in *C. striatus*. Blastp against  
228 Uniprot/Conoserver identified 99 toxin transcripts in *C. striatus* and 68 of these were also retrieved  
229 using the machine learning method (*i.e.*, 21 of these were missed by machine learning, see discussion  
230 section below). 1,097 additional putative toxins were subsequently identified by machine learning, 7  
231 of these were confirmed as toxins by Blastp against the NCBI-NR database (**Table 3**).  
232  
233  
234  
235  
236  
237  
238  
239

240 **Table 3.** Conotoxin candidates expressed in 12 samples from 10 *Conus* species identified by Blastp  
 241 and machine learning (ML).  
 242

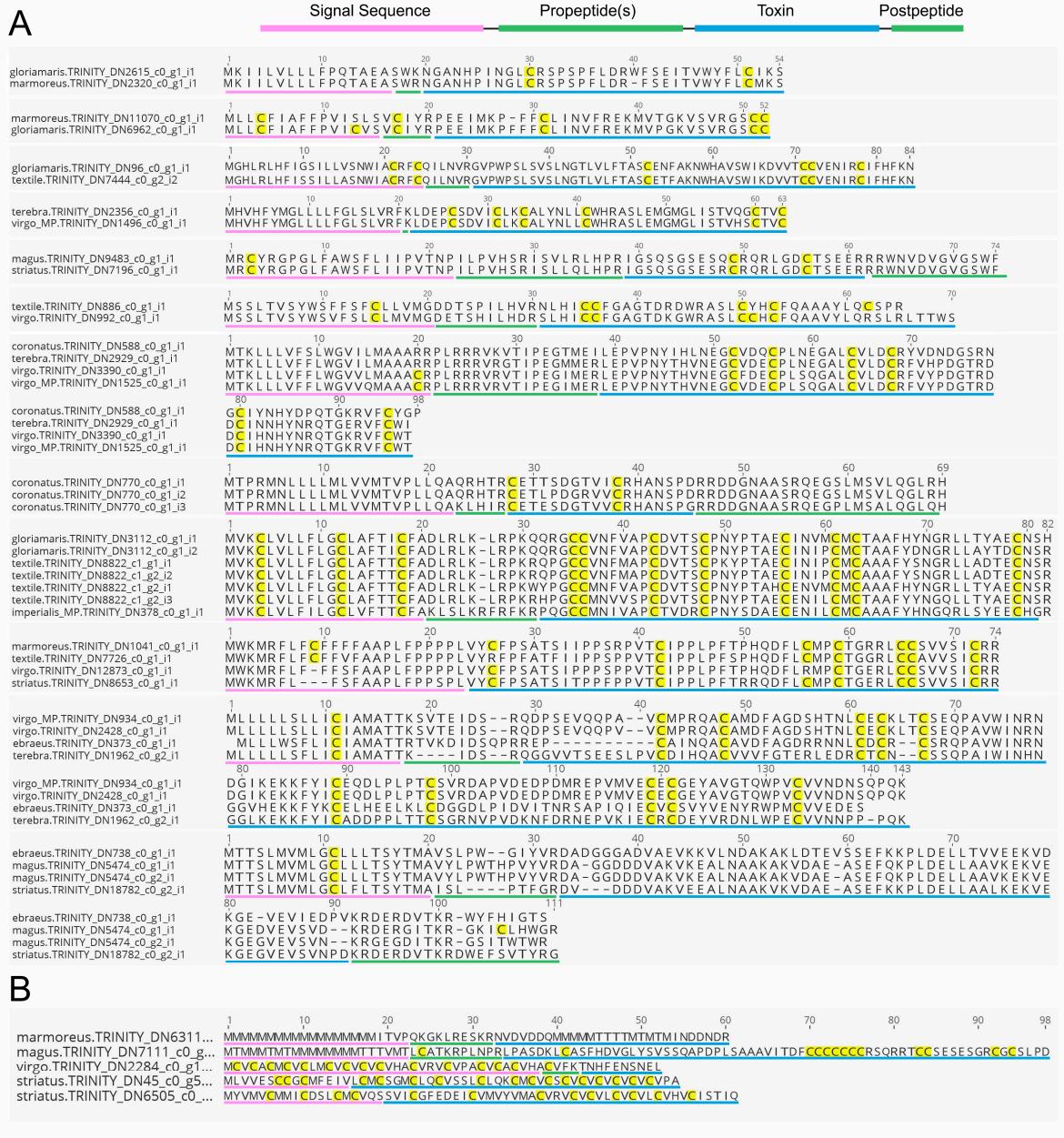
| <i>Conus</i> species      | No. of conotoxins identified by Blastp against Uniprot/Conoserver database | No. of conotoxins identified by Blastp against Uniprot/Conoserver database also retrieved using ML | No. of conotoxins identified by ML and subsequently identified as conotoxins by Blastp against NCBI | No. of conotoxin candidates identified by ML only |
|---------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|
| <i>C. magus</i>           | 119                                                                        | 78                                                                                                 | 24                                                                                                  | 980                                               |
| <i>C. striatus</i>        | 99                                                                         | 72                                                                                                 | 32                                                                                                  | 1065                                              |
| <i>C. marmoreus</i>       | 108                                                                        | 75                                                                                                 | 13                                                                                                  | 495                                               |
| <i>C. marmoreus2</i> [10] | 80                                                                         | 55                                                                                                 | 6                                                                                                   | 83                                                |
| <i>C. textile</i>         | 224                                                                        | 126                                                                                                | 34                                                                                                  | 505                                               |
| <i>C. gloriamaris</i>     | 145                                                                        | 82                                                                                                 | 26                                                                                                  | 518                                               |
| <i>C. imperialis</i>      | 90                                                                         | 67                                                                                                 | 9                                                                                                   | 50                                                |
| <i>C. virgo</i>           | 159                                                                        | 104                                                                                                | 36                                                                                                  | 701                                               |
| <i>C. virgo2</i> [10]     | 96                                                                         | 65                                                                                                 | 3                                                                                                   | 60                                                |
| <i>C. terebra</i>         | 154                                                                        | 116                                                                                                | 15                                                                                                  | 374                                               |
| <i>C. coronatus</i> [10]  | 286                                                                        | 206                                                                                                | 15                                                                                                  | 72                                                |
| <i>C. ebraeus</i> [10]    | 100                                                                        | 77                                                                                                 | 12                                                                                                  | 102                                               |

243

244 *2.3. Transcripts identified using 3 or 4 out of 4 methods*

245 In this study, we provide a list of all new conotoxin candidates from the venom gland  
 246 transcriptomes of several cone snail species. We emphasise that these sequences require further  
 247 experimental validation to confirm their designation as genuine conotoxins. This is discussed in more  
 248 detail below. However, we propose that many of the transcripts identified by 3 out of 4 methods (739  
 249 sequences) or by a combination of all 4 methods (153 sequences) are likely to represent genuine  
 250 conotoxin sequences since they were independently identified using different approaches. Several of  
 251 these sequences exhibit clear hallmarks of conotoxins (presence of propeptides, found in multiple  
 252 species, similar but distinct sequences found in different species, multiple cysteines in mature toxin  
 253 region). An alignment of some of these is shown in Figure 3. Several sequences that were identified  
 254 by 3 or more models but seem unlikely to represent genuine conotoxins are also shown. These  
 255 typically exhibit a long series of cysteine repeats, several vicinal cysteines and/or series of  
 256 methionines (M) in the signal sequence. In future our model could be further refined to exclude such  
 257 sequences as candidates.

258



259

260 **Figure 3.** Comparative alignments of selected sequences identified by at least 3 out of 4 methods that are (A)  
261 likely or (B) not likely to represent genuine novel conotoxins. Cysteines are highlighted in yellow, signal  
262 sequences, pro- and postpeptides and predicted mature toxins are underlined in purple, green and blue,  
263 respectively, as shown on top of panel A. Sequence labels (contigs) correspond to those provided in **Supp. File**  
264 2.

265

### 266 3. Discussion

267 Previous approaches for toxin discovery have been alignment based, using regular expressions,  
268 Blast and/or HMMER to identify new members of known conotoxin superfamilies [5,15-17]. Because  
269 conotoxins are hyperdiverse, these approaches are intrinsically limited. In an attempt to cast a wider  
270 net for discovery, we have created a machine learning based pipeline, *ConusPipe*, that utilizes  
271 functional characteristics of conotoxins to identify new conotoxin candidates that have no significant  
272 sequence homology to conotoxin sequences currently available in reference databases.

273 By using more than one machine learning model, we expected to see that an ensemble of  
274 different models can maximize the prediction power. Indeed, as determined by benchmark analyses,  
275 the highest sensitivity is achieved by the union of 3 or more methods and the highest specificity is  
276 achieved in the overlap of 3 or more methods.

277 *ConusPipe* allows users to choose different combinations of methods according to their  
278 requirement on discovery specificity and sensitivity (**Table 1**). In addition to developing machine  
279 learning, we demonstrate that using Blast to search candidate sequences from different *Conus* species  
280 against each other provides better performance for conotoxin superfamilies that contain sequences  
281 that don't satisfy the hypothesis of having all 3 traits. However, this approach is less powerful for  
282 superfamilies that are limited to a small number of species and only works if more than one  
283 transcriptome is to be analyzed.

284 We would like to note that, for best performance, *ConusPipe* should be used in combination with  
285 standard Blast-based annotation methodologies as *ConusPipe* relies on the presence of full-length  
286 sequences (containing N-terminal signal sequences) and will not work for truncated contigs.  
287 Furthermore, several conotoxin gene superfamilies reported in Uniprot/Conoserver have low SignalP  
288 values (D value of < 0.45). These would also be missed by our pipeline. Table 1 provides information  
289 on how many conotoxins which have significant homology to sequences in Uniprot/Conoserver  
290 database could also be retrieved by *ConusPipe* (average value for recovery: 68 %, ranging from 56 %  
291 for *C. textile* – 77 % for *C. ebraeus*).

292 We provide a large set of new conotoxin candidates and a bioinformatic pipeline that is freely  
293 available and can be applied to any newly sequenced venom gland. No doubt our approach also  
294 identifies false positives, particularly when only a single or a combination of two methods is  
295 employed. Thus, using our method without further validation is not suitable for defining the venom  
296 composition of a species. What it provides is a new tool to identify candidate toxin transcripts that  
297 are not able to be detected by homology-based methods. Generating comprehensive databases of all  
298 putative toxin candidates expressed in a venom gland will empower current mass spectrometric toxin  
299 sequencing approaches [7]. Using mass spectrometry, candidate transcripts can then be verified and  
300 subjected to functional characterizations.

#### 301 4. Conclusions

302 Using *ConusPipe*, we identified 5,230 new conotoxin candidates from 1,359,647 transcripts  
303 derived from venom gland transcriptomes of 10 *Conus* species. None of these candidate conotoxins  
304 has significant homology to any known conotoxin in the Uniprot database, although like known  
305 conotoxins, most candidates have an N-terminal signal sequence, a characteristic propeptide spacer  
306 region and a single copy of a mature peptide at the C-terminus. Moreover, we have shown that  
307 several of these candidates share high homology to newly published conotoxins in the NCBI-NR  
308 molluscan database. In conclusion, our approach opens new avenues for the discovery of novel  
309 conotoxin transcripts from cone snails and other venomous animals with similar venom repertoires.  
310

#### 311 5. Materials and Methods

##### 312 5.1. Transcriptome sequencing

313 Total RNA was isolated from venom glands using *TRIzol® Reagent* (Life Technologies) or the  
314 RNeasy kit (Qiagen) following the manufacturers' instructions. RNA integrity, quantity and purity  
315 were determined on a 2100 Bioanalyzer (Agilent Technologies). cDNA libraries were prepared and  
316 sequenced on an Illumina HiSeq 2000 instrument (Sanger/Illumina 1.9 reads, 101 bp or 125 bp paired-  
317 end). Publicly available Illumina datasets were used for the venom gland transcriptomes of *C. marmoreus* (specimen 2), *C. virgo* (specimen 2), *C. coronatus* and *C. ebraeus* [10].

318 Adapter clipping and quality trimming of raw reads were performed using *fqtrim* software  
319 (version 0.9.4, <http://ccb.jhu.edu/software/fqtrim/>) and *PRINSEQ* (version 0.20.4 [38]). After  
320 processing, sequences shorter than 70 bps and those containing more than 5% ambiguous bases (Ns)  
321 were discarded. *De novo* transcriptome assembly was performed using *Trinity* version 2.0.5 [39] with  
322

323 a kmer size for building De Bruijn Graphs of 31, a minimum kmer coverage of 10 and a minimum  
324 glue of 10. Assembled transcripts were annotated using Blastx ((NCBI-Blast-2.2.28+, [40]) against  
325 conotoxin sequences extracted from the Conoserver [5] and UniProt databases [34].  
326

### 327 5.2. Development of ConusPipe

328 ConusPipe proceeds by first extracting 16 features (see feature explanation below) from known  
329 conotoxin sequences (from the ConoServer [6] and Uniprot databases) and non-conotoxin *Conus*  
330 transcripts to make the training dataset. Sequences are required to contain a signal sequence as  
331 determined by SignalP [41]. Next, the 16 features extracted from *Conus* transcripts of 10 species, which  
332 have no homologues in current reference database (the combined ConoServer and UniProtKB  
333 database) are used as real test data to run the machine learning methods to predict whether a certain  
334 input transcript is conotoxin. All the transcripts predicted by any of the 4 method are output by the  
335 pipeline as putative new conotoxins.  
336

#### 337 5.2.1 Feature Selection and Classifiers

338 We employed 16 features for the machine learning models: signalP D value for signal sequence;  
339 cysteine percentage; molecular weight; percentage of positively/negatively charged amino acids; and  
340 isoelectric point for all three regions of the precursor sequence (signal sequence, propeptide and  
341 mature toxin). All features are continuous re-normalized to lie between 0 and 1 (Figure 1A). The  
342 features are mainly chemical characters of amino acids in the three different parts of conotoxin  
343 sequence. The motivating hypothesis is that even though conotoxins evolve very rapidly they must  
344 still share similar chemical characters in amino acid composition, since they carry out similar  
345 functions, e.g. bind transporters and receptors. For example, the three parts of conotoxin sequence -  
346 signal sequence, propeptide and mature toxin carry out different functions in conotoxin secretion  
347 process in the cell, so their charge distributions are stereotypical and different. The signal sequence  
348 is mainly hydrophobic, while the amino acids in propeptide are mainly charged, and the mature toxin  
349 is somewhat intermediate as regards charge distribution. To train the models we first ran signalP on  
350 a training dataset consisting of known conotoxin/nonconotoxin sequences to get the signalP D value  
351 for each known sequence (Petersen et al. 2011). Next, we calculated the cysteine percentage,  
352 molecular weight, percentage of positively/negatively charged amino acids and isoelectric point for  
353 signal sequence, propeptide and mature toxin, respectively. The pipeline uses the 16 extracted  
354 features in training dataset to train the logistic regression model, LabelSpreading model and  
355 Perceptron model using the Python scikit learn package (Pedregosa et al. 2011). The accuracy under  
356 different regularization parameters of the three models were tested by cross validation with training  
357 dataset from known conotoxin and nonconotoxin sequences.  
358

#### 359 5.2.2. Cross validation

360 4,950 known conotoxin sequences (from ConoServer and Uniprot/Swissprot) and 5,2613 non-  
361 conotoxin *Conus* transcripts with matched sequence length were first split into 10 equal bins, and  
362 then sequentially 1 tenth of the data was taken as the test set and the remaining other 9 tenths were  
363 used for the training set. The three models were trained under different regularization parameters  
364 and evaluated with the test set in 10 iterations. For the logistic regression model, the regularization  
365 parameter we tested is slack number C, which is the inverse of regularization strength. . We tested  
366 this parameter from 0.001 to  $10^{**10}$ . For the LabelSpreading model, we chose knn as the kernel  
367 function, so the regularization parameter we tested is n\_neighbors, which was tested from 1 to 15.  
368 For the Perceptron model, the regularization parameter we tested is n\_iter, the number of passes over  
369 the training data, which we tested from 5 to 70. The plots of accuracy versus regularization parameter  
370 of different models are shown in Supp. Figure 2.  
371

#### 372 5.2.3. Discovering new putative conotoxins and conotoxin gene families

373 Paired-end RNAseq data from 10 *Conus* species were generated by Illumina HiSeq 2000  
 374 platform (Table 4). RNAseq reads were assembled using best practice Trinity settings, annotated with  
 375 Blastx against our reference dataset, and all the *Conus* transcripts which do not have homologous  
 376 sequences in the current reference databases were selected and 6-frame translated into peptide  
 377 sequences. These peptide sequences were then used as the input dataset for *ConusPipe* to drive  
 378 machine learning models built in previous steps to predict whether they are conotoxins. Cross-  
 379 species Blastp is also used on all putative peptide sequences that have a signal sequence as an  
 380 independent method to predict putative conotoxin candidates. The pipeline output all input  
 381 transcripts which were predicted as conotoxins.

382 We then used NCBI- Blastp to search all putative toxin transcripts against the NCBI non-  
 383 redundant (NR) protein database (August 2018 version), which includes recently published  
 384 conotoxin sequences that were not yet available in Uniprot/conoserver at the time of original analysis.  
 385 Sequences with significant Blastp hits were excluded from final datasets (e-values < 1e-4).

386 Then all by all Blastp and single linkage cluster analysis were conducted among the new  
 387 conotoxins, and the new conotoxins that shared at least 50% hit connections with one another were  
 388 designated as to be in the same superfamily.

389

390

391 **Table 4.** RNAseq Data sets from 12 samples in 10 *Conus* species used in the discovery pipeline.

392

| Conus Species             | Illumina HiSeq 2000<br>Number of reads | Read length (nt) | 393 |
|---------------------------|----------------------------------------|------------------|-----|
|                           |                                        |                  | 394 |
| <i>C. magus</i>           | 85,877,500                             | 101              | 396 |
| <i>C. striatus</i>        | 101,170,402                            | 101              | 397 |
| <i>C. marmoreus</i>       | 53,901,510                             | 125              | 398 |
| <i>C. marmoreus2</i> [10] | 50,652,396                             | 101              | 399 |
| <i>C. textile</i>         | 63,365,620                             | 125              | 400 |
| <i>C. gloriamaris</i>     | 28,783,428                             | 125              | 401 |
| <i>C. imperialis</i>      | 30,784,548                             | 125              | 402 |
| <i>C. virgo</i>           | 30,038,902                             | 125              | 403 |
| <i>C. virgo2</i> [10]     | 31,056,732                             | 125              | 404 |
| <i>C. terebra</i>         | 31,180,460                             | 125              | 405 |
| <i>C. coronatus</i> [10]  | 27,927,952                             | 125              | 406 |
| <i>C. ebraeus</i> [10]    | 19,556,244                             | 125              | 407 |

408

409 **Author Contributions:** “Conceptualization, Q.L.; Methodology, Q.L. and H.S.; Software, Q.L.; Validation, Q.L.,  
 410 M.W., H.S.; Formal Analysis, Q.L.; M.Y., and H.S.; Writing-Original Draft Preparation, Q.L. and H.S.; Writing-  
 411 Review & Editing, M.Y. and H.S.; Visualization, Q.L. and H.S.; Supervision, H.S. and M.Y.; Funding Acquisition,  
 412 M.Y and H.S.”

413 **Funding:** This work was supported in part by a National Institutes of Health Grants 1RO1GM122869 (to H.S.-  
 414 H.).

415 **Acknowledgments:** The authors like to thank the High Throughput Genomics Facility at the Huntsman Cancer  
 416 Institute in Salt Lake City, Utah.

417 **Conflicts of Interest:** The authors declare no conflict of interest.

418 **Appendix**419 **Supporting Table 1.** The sensitivity for recovering all known conotoxin superfamilies by different combinations  
420 of methods.421 **Supporting File 2.** *ConusPipe* discovered 109 putative novel conotoxins confirmed by Blastp against the  
422 NCBI NR database.423 **Supporting File 1.** *ConusPipe* discovered 5,230 putative novel conotoxins with no significant sequence  
424 homology in any current reference database (Unipro/Conoserver/NCBI NR).425 **Supporting File 3.** Cluster analysis of putative new gene superfamilies.

426



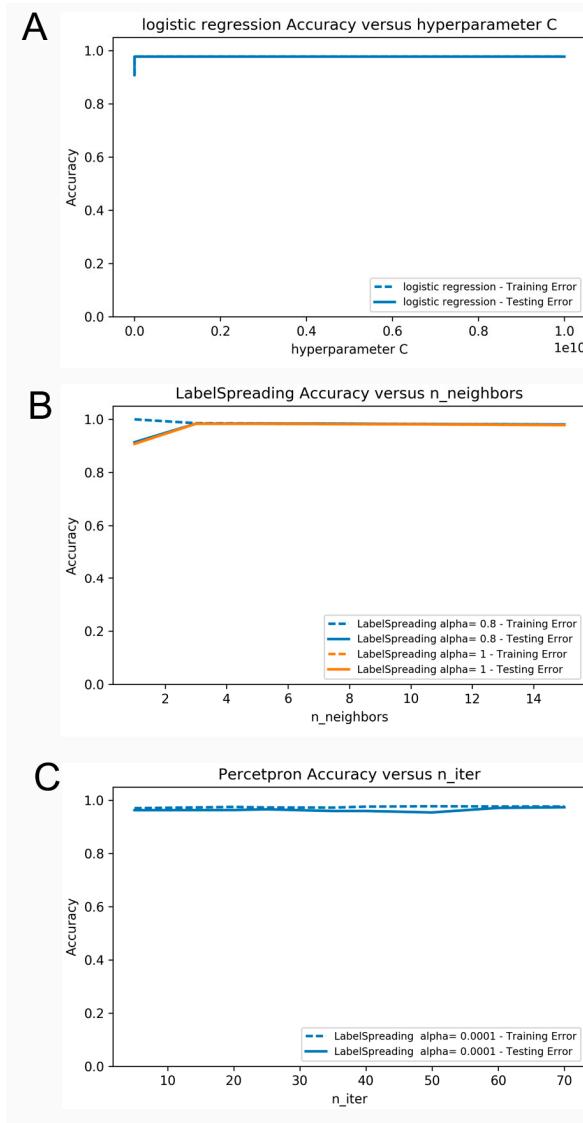
427

428  
429  
430  
431

**Supporting Figure 1.** Box plot shows that the sensitivity varied among different combinations (single method, overlap or union of methods) of methods used. The union of different methods can achieve higher sensitivity. Union of methods means that the conotoxin is predicted by one method or another, as described in the caption for **Figure 1**.

432

433



434

435

**Supporting Figure 2.** Plot of accuracy vs regularization parameter settings in each machine learning model. (A) Accuracy vs hyper-parameter C in logistic regression model. No overfitting/under fitting was observed. When choosing  $C=10^{**}10$ , the logit model achieved the best accuracy and sensitivity. (B) Accuracy vs hyper-parameter n\_neighbors in LabelSpreading model. No overfitting/under fitting was observed. When choosing  $n_{neighbors}=3$  and  $\alpha=1$ , the LabelSpreading model achieved the best accuracy and sensitivity. (C) Accuracy vs hyper-parameter n\_iter in Perceptron model. Overfitting was observed between  $n_{iter}=12$  and  $n_{iter}=25$ , between  $n_{iter}=30$  and  $n_{iter}=50$ . When choosing  $n_{iter}=5$ , the Perceptron model achieved the best accuracy and sensitivity.

436

444

445

446 **References**

447 1. Shen, G.S.; Layer, R.T.; McCabe, R.T. Conopeptides: From deadly venoms to novel therapeutics. *Drug*  
448 *Discov Today* **2000**, *5*, 98-106.

449 2. McIntosh, J.M.; Jones, R.M. Cone venom--from accidental stings to deliberate injection. *Toxicon* **2001**,  
450 *39*, 1447-1451.

451 3. Livett, B.G.; Gayler, K.R.; Khalil, Z. Drugs from the sea: Conopeptides as potential therapeutics. *Curr*  
452 *Med Chem* **2004**, *11*, 1715-1723, doi:10.2174/0929867043364928.

453 4. Li, Q.; Barghi, N.; Lu, A.P.; Fedosov, A.E.; Bandyopadhyay, P.K.; Lluisma, A.O.; Concepcion, G.P.;  
454 Yandell, M.; Olivera, B.M.; Safavi-Hemami, H. Divergence of the Venom Exogene Repertoire in Two  
455 Sister Species of *Turritconus*. *Genome Biol Evol* **2017**, *9*, 2211-2225, doi:10.1093/gbe/evx157.

456 5. Kaas, Q.; Westermann, J.C.; Halai, R.; Wang, C.K.; Craik, D.J. ConoServer, a database for conopeptide  
457 sequences and structures. *Bioinformatics* **2008**, *24*, 445-446, doi:10.1093/bioinformatics/btm596.

458 6. Kaas, Q.; Westermann, J.C.; Craik, D.J. Conopeptide characterization and classifications: An analysis  
459 using ConoServer. *Toxicon* **2010**, *55*, 1491-1509, doi:10.1016/j.toxicon.2010.03.002.

460 7. Robinson, S.D.; Undheim, E.A.B.; Ueberheide, B.; King, G.F. Venom peptides as therapeutics: advances,  
461 challenges and the future of venom-peptide discovery. *Expert review of proteomics* **2017**, *14*, 931-939,  
462 doi:10.1080/14789450.2017.1377613.

463 8. Robinson, S.D.; Safavi-Hemami, H.; McIntosh, L.D.; Purcell, A.W.; Norton, R.S.; Papenfuss, A.T.  
464 Diversity of conotoxin gene superfamilies in the venomous snail, *Conus victoriae*. *PLoS one* **2014**, *9*,  
465 e87648, doi:10.1371/journal.pone.0087648.

466 9. Robinson, S.D.; Li, Q.; Lu, A.; Bandyopadhyay, P.K.; Yandell, M.; Olivera, B.M.; Safavi-Hemami, H. The  
467 Venom Repertoire of *Conus gloriamaris* (Chemnitz, 1777), the Glory of the Sea. *Mar Drugs* **2017**, *15*,  
468 doi:10.3390/md15050145.

469 10. Phuong, M.A.; Mahardika, G.N.; Alfaro, M.E. Dietary breadth is positively correlated with venom  
470 complexity in cone snails. *BMC Genomics* **2016**, *17*, 401, doi:10.1186/s12864-016-2755-6.

471 11. Hu, H.; Bandyopadhyay, P.K.; Olivera, B.M.; Yandell, M. Elucidation of the molecular envenomation  
472 strategy of the cone snail *Conus geographus* through transcriptome sequencing of its venom duct. *Bmc*  
473 *Genomics* **2012**, *13*, doi:Artn 284 10.1186/1471-2164-13-284.

474 12. Barghi, N.; Concepcion, G.P.; Olivera, B.M.; Lluisma, A.O. Comparison of the Venom Peptides and  
475 Their Expression in Closely Related *Conus* Species: Insights into Adaptive Post-speciation Evolution of  
476 *Conus* Exogenomes. *Genome Biol Evol* **2015**, *7*, 1797-1814, doi:10.1093/gbe/evv109.

477 13. Buczek, O.; Bulaj, G.; Olivera, B.M. Conotoxins and the posttranslational modification of secreted gene  
478 products. *Cell Mol Life Sci* **2005**, *62*, 3067-3079, doi:10.1007/s00018-005-5283-0.

479 14. Olivera, B.M.; Safavi-Hemami, H.; Horvarth, M.P.; Teichert, R.W. Conopeptides, Marine Natural  
480 Products from Venoms: Biomedical Applications and Future Research Applications. In *Marine*  
481 *Biomedicine: From Beach to Bedside*, Baker, B.J., Ed. CRC Press 2015.

482 15. Koua, D.; Brauer, A.; Laht, S.; Kaplinski, L.; Favreau, P.; Remm, M.; Lisacek, F.; Stocklin, R. ConoDictor:  
483 a tool for prediction of conopeptide superfamilies. *Nucleic Acids Res* **2012**, *40*, W238-241,  
484 doi:10.1093/nar/gks337.

485 16. Lavergne, V.; Dutertre, S.; Jin, A.H.; Lewis, R.J.; Taft, R.J.; Alewood, P.F. Systematic interrogation of the  
486 *Conus marmoreus* venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13  
487 new gene superfamilies. *BMC Genomics* **2013**, *14*, 708, doi:10.1186/1471-2164-14-708.

488 17. Wheeler, T.J.; Eddy, S.R. nhmmer: DNA homology search with profile HMMs. *Bioinformatics* **2013**, *29*,  
489 2487-2489, doi:10.1093/bioinformatics/btt403.

490 18. Bandyopadhyay, P.K.; Colledge, C.J.; Walker, C.S.; Zhou, L.M.; Hillyard, D.R.; Olivera, B.M.  
491 Conantokin-G precursor and its role in gamma-carboxylation by a vitamin K-dependent carboxylase  
492 from a Conus snail. *J Biol Chem* **1998**, *273*, 5447-5450.

493 19. Conticello, S.G.; Kowalsman, N.D.; Jacobsen, C.; Yudkovsky, G.; Sato, K.; Elazar, Z.; Petersen, C.M.;  
494 Aronheim, A.; Fainzilber, M. The prodomain of a secreted hydrophobic mini-protein facilitates its  
495 export from the endoplasmic reticulum by hitchhiking on sorting receptors. *J Biol Chem* **2003**, *278*, 26311-  
496 26314, doi:10.1074/jbc.C300141200.

497 20. Buczek, O.; Olivera, B.M.; Bulaj, G. Propeptide does not act as an intramolecular chaperone but  
498 facilitates protein disulfide isomerase-assisted folding of a conotoxin precursor. *Biochemistry-U* **2004**,  
499 *43*, 1093-1101, doi:10.1021/bi0354233.

500 21. Cox, D.R. The Regression-Analysis of Binary Sequences. *J Roy Stat Soc B* **1958**, *20*, 215-242.

501 22. Pollack, J.B. Perceptrons - an Introduction to Computational Geometry, Expanded Edition - Minsky, Ml,  
502 Papert, Sa. *J Math Psychol* **1989**, *33*, 358-365, doi:Doi 10.1016/0022-2496(89)90015-1.

503 23. Widrow, B.; Lehr, M.A. 30 Years of Adaptive Neural Networks - Perceptron, Madaline, and  
504 Backpropagation. *P Ieee* **1990**, *78*, 1415-1442, doi:Doi 10.1109/5.58323.

505 24. Delalleau, O.; Bengio, Y.; Le Roux, N. Efficient Non-Parametric Function Induction in Semi-Supervised  
506 Learning. In Proceedings of AISTATS; p. 100.

507 25. Yu, H.F.; Huang, F.L.; Lin, C.J. Dual coordinate descent methods for logistic regression and maximum  
508 entropy models. *Mach Learn* **2011**, *85*, 41-75, doi:10.1007/s10994-010-5221-8.

509 26. Zhao, L.; Chen, Y.; Schaffner, D.W. Comparison of logistic regression and linear regression in modeling  
510 percentage data. *Appl Environ Microbiol* **2001**, *67*, 2129-2135, doi:10.1128/AEM.67.5.2129-2135.2001.

511 27. Belkin, M.; Niyogi, P. Semi-supervised learning on Riemannian manifolds. *Mach Learn* **2004**, *56*, 209-  
512 239, doi:DOI 10.1023/B:MACH.0000033120.25363.1e.

513 28. Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. *Am Stat*  
514 **1992**, *46*, 175-185, doi:Doi 10.2307/2685209.

515 29. Robinson, S.D.; Norton, R.S. Conotoxin gene superfamilies. *Mar Drugs* **2014**, *12*, 6058-6101,  
516 doi:10.3390/md12126058.

517 30. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D.  
518 Backpropagation Applied to Handwritten Zip Code Recognition. *Neural Comput* **1989**, *1*, 541-551,  
519 doi:DOI 10.1162/neco.1989.1.4.541.

520 31. Hyvarinen, A.; Koster, U. Complex cell pooling and the statistics of natural images. *Network-Comp  
521 Neural* **2007**, *18*, 81-100, doi:10.1080/09548980701418942.

522 32. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for  
523 Visual Recognition. *Ieee T Pattern Anal* **2015**, *37*, 1904-1916, doi:10.1109/TPAMI.2015.2389824.

524 33. Zhou, L.J.; Li, Q.W.; Huo, G.Y.; Zhou, Y. Image Classification Using Biomimetic Pattern Recognition  
525 with Convolutional Neural Networks Features. *Comput Intel Neurosc* **2017**, *10.1155/2017/3792805*,  
526 doi:10.1155/2017/3792805.

527 34. Consortium, U. UniProt: a hub for protein information. *Nucleic Acids Res* **2015**, *43*, D204-212,  
528 doi:10.1093/nar/gku989.

529 35. Picard, R.R.; Cook, R.D. Cross-Validation of Regression-Models. *J Am Stat Assoc* **1984**, *79*, 575-583,  
530 doi:Doi 10.2307/2288403.

531 36. Tan, P.N.; Steinbach, M.; Kumar, V. *Introduction to data mining*; Pearson Addison Wesley: Boston, 2005;

532 Vol. 1.

533 37. Jaccard, P. Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines.

534 *Bulletin de la Société Vaudoise des Sciences Naturelles* **1901**, 37, 241-272.

535 38. Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. *Bioinformatics*

536 **2011**, 27, 863-864, doi:10.1093/bioinformatics/btr026.

537 39. Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.;

538 Raychowdhury, R.; Zeng, Q., et al. Full-length transcriptome assembly from RNA-Seq data without a

539 reference genome. *Nature biotechnology* **2011**, 29, 644-652, doi:10.1038/nbt.1883.

540 40. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. *Journal*

541 *of molecular biology* **1990**, 215, 403-410, doi:10.1016/s0022-2836(05)80360-2.

542 41. Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: discriminating signal peptides from

543 transmembrane regions. *Nat Methods* **2011**, 8, 785-786, doi:10.1038/nmeth.1701.