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17 Abstract: Cone snails (genus Conus) are venomous marine snails that inject prey with a lethal
18 cocktail of conotoxins, small, secreted, cysteine-rich peptides. Given the diversity and often high
19 affinity for their molecular targets, consisting of ion channels, receptors or transporters, many
20 conotoxins have become invaluable pharmacological probes, drug leads and therapeutics.
21 Transcriptome sequencing of Conus venom glands followed by de novo assembly and homology-
22 based toxin identification and annotation is currently the state-of-the-art for discovery of new
23 conotoxins. However, homology-based search techniques, by definition, can only detect novel
24 toxins that are homologous to previously reported conotoxins. To overcome these obstacles for
25 discovery we have created ConusPipe, a machine learning tool that utilizes prominent chemical
26 characters of conotoxins to predict whether a certain transcript in a Conus transcriptome, which has
27 no otherwise detectable homologs in current reference databases, is a putative conotoxin. By using
28 ConusPipe on RNASeq data of 10 species, we report 5,230 new putative conotoxin transcripts that
29 have no homologues in current reference databases. 893 of these were identified by at least 3 out of
30 4 models used. These data significantly expand current publicly available conotoxin datasets and
31 our approach provides a new computational avenue for the discovery of novel toxin families.
32 Keywords: machine learning; conotoxins; cone snails, venom, drug discovery
33 Key Contribution: By using ensemble methods, we report 5,230 new candidate conotoxins that have
34 no homologues in current reference databases and provide a unique dataset for future
35 pharmacotherapeutic exploration.
36

37 1. Introduction

38 Predatory marine cone snails (genus Conus) have attracted the attention of biologists and
39  pharmacologists for the great neuropharmacological potential of their venom toxins [1-3]. It is
40  estimated that each of the ~750 extant Conus species produces ~100-400 distinct venom toxins
41  (conotoxins) with almost no overlap in the toxin repertoire between the ~750 species, not even
42  between sister species [4]. Despite the tremendous diversity and drug discovery potential of Conus
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43 venoms, only ~ ~5,000 nucleotide sequences of conotoxin-encoding transcripts have been reported
44 from 100 Conus species over the past decades, with most sequences having been discovered in recent
45  years[5,6]. Traditional methods, such as isolation of conotoxins from venom and subsequent Edman-
46  or de novo mass spectrometric (MS) sequencing are time-consuming and limited by sample
47  availability. In contrast, high throughput transcriptome sequencing can achieve greater sequencing
48  depth and only requires small amounts of biological sample [7 ]. Recent studies on the venom gland
49  transcriptomes of several cone snail species, using next generation sequencing technologies (NGS),
50  have discovered ~100-400 conotoxin genes per Conus species [4,8-12]. Other authors have reported
51  larger diversities but these are likely to have resulted from inappropriate analyses of NGS datasets,
52 as previously discussed [4,10].

53 Conotoxins can be classified into different gene superfamilies based on their conserved N-
54  terminal signal sequence [13]. To date, more than 53 conotoxin gene superfamilies have been
55  described for Conus [14]. After NGS sequencing and de novo transcriptome assembly, candidate
56  conotoxin genes are usually assigned to different superfamilies using BlastX, regular expression-
57  based techniques and profile hidden Markov model (HMMER) analysis against a local reference
58 database of known conotoxins from the Uniprot and/or ConoServer databases. Available tools
59  include ConoPrec, ConoDictor and Conosorter [5,15-17]. However, these approaches can only detect
60  novel toxins that are similar to previously reported sequences. An approach that could overcome the
61  limitations of homology based-searches would thus be highly desirable.

62 Most conotoxin transcripts can be readily divided into three distinct regions: (1) an N-terminal
63  signal sequence for targeting to the endoplasmic reticulum; (2) an intermediate propeptide region
64  that has been suggested to play a role in secretion, posttranslational modification and folding; and
65  (3) a single copy of the mature toxin region, located at the C terminus [18-20]. We hypothesized that
66  even though conotoxin sequences evolve very rapidly [14], conotoxin retain these three traits even
67  when their sequence similarities become too low to allow detection by alignment-based methods
68  such as Blast and HMMER. If this were true, even highly divergent conotoxins might be identifiable
69  using machine learning methods trained to identify these three traits as features. With this in mind,
70 we implemented three machine learning models for data mining of 12 Conus transcriptomes from 10
71  different species: logistic regression (logit), semi-supervised learning (LabelSpreading) and an
72 artificial neural network (perceptron) [21-25]. The resulting tool for conotoxin discovery is called
73 ConusPipe.

74 Generalized Linear Models (GLMs) are versatile, powerful, commonly used statistical
75  approaches to model relationship between scalar response variables given several predictor
76 variables/features [21,26]. In particular the logistic regression model computes a weighted sum of the
77  input features (plus a bias term), but instead of outputting the result directly like the linear regression
78  model does, it outputs the logistic of this result [21,25]. This approach often outperforms simple linear
79 regression for binary outcome prediction [26].

80 Unlike GLMs which completely employ labeled data for training, in semi-supervised learning
81  only some of the training data is labeled. Graph-based methods are then used to make use of
82  additional unlabeled data in order to better capture the shape of the underlying data distribution and
83  generalize the method to apply to new samples [27]. The assumption is that unlabeled data with
84  features that render them neighbors of labeled data are likely to have a common label. In keeping
85  with general practice, we used the K-nearest neighbors method to connect each data point [28]. Semi-
86  supervised learning approaches can perform well when only a small number of labeled data but large
87  amounts of unlabeled data are available.

88 The Perceptron is one of the simplest Artificial Neural Network ANN architectures, which is
89  composed of a single layer of linear threshold unit (LTU). The LTU computes a weighted sum of its
90  inputs and then applies a step function to that sum and outputs the result [22]. Unlike regression-
91  based approaches, ANNs can capture dependencies within the data, potentially resulting more
92 accurate classification.

93 The nature of the Conus training sets and input data also needs to be considered. For example,
94  the true-positive (labeled) training data is limited in scale and is incomplete, as many conotoxins
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presumably remain uncatalogued [29]. Moreover, the input data is very large, with RNA-seq datasets
typically exceeding five million reads and tens of thousands of assembled transcripts. Given these
features, logistic regression provides a well-established base-line approach, whereas semi-supervised
learning (LabelSpreading) provides a means to further leverage unlabeled true positives during
training. Finally, the Perceptron model scales well to very large training sets and is widely used for
pattern recognition with good results [30-33]. Additionally, since using these machine learning
models are based on the hypothesis that conotoxins will retain all three traits in sequence evolution,
we added cross-species Blastp to search for similar unknown sequences (if they contain a signal
sequence) between different Conus species to rescue potential conotoxins that only have one trait
(signal sequence) based on the knowledge that the signal peptide sequences of conotoxins from the
same superfamilies are highly similar to each other even if they are from different Conus species [4].
By employing three different machine learning models plus Blastp, ConusPipe allows users to
take an ensemble approach for discovery to maximize the prediction power. All four methods were
applied to 12 RNAseq datasets from 10 different species of Conus. The pipeline discovered 5,230 new
conotoxin candidates that provide a unique dataset for future pharmacotherapeutic exploration.

2. Results

2.1 The ConusPipe toolkit

ConusPipe is implemented in Perl and Python as a complete conotoxin discovery package. It is
available at https://github.com/Yandell-Lab/ConusPipe. ConusPipe takes 6-frame-translated peptide
sequences from nucleotide sequences which have no hit in current reference database and extracts
conotoxin sequence features to train datasets (Figure 1A). In addition to 3 machine learning
models, cross-species Blastp is used as the 4"method to retrieve putative toxin candidates that have
a signal sequence but may not have all features used in machine learning (Figure 1B).

ConusPipe then generates different combinations (single method, union or overlap) of the four
methods to predict candidate conotoxins (Figure 2). Users can change the settings in sample.config
file to use different cut-off options for transcript per million (tpm) values, blast e-values, signalP D-
values and provide paths to input and output fasta files and databases used.

d0i:10.20944/preprints201809.0587.v1
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125 Figure 1. A.Overview of feature selection for machine learning models (B) and cross-species Blastp methodology
126 used in addition to the machine learning model.

127

128

129 2.1.1 Building and cross-validation of the machine learning models

130 4,950 known conotoxin sequences (from the ConoServer [5] and Uniprot databases [34] and

131 52,613 randomly selected non-conotoxin Conus transcripts were used to build the machine learning
132 models. In order to assess the performance of the models, 10-fold cross validation was applied to the
133 same dataset [35]. The main measures of performance were sensitivity, specificity and accuracy under
134 different regularization parameters. Sensitivity was defined as the fraction of known conotoxins
135 predicted as conotoxin divided by the number of known conotoxins in the test dataset. Specificity
136  was defined as the fraction of known non-conotoxins predicted as non-conotoxin divided by the
137  number of known non-conotoxins in the test dataset. Accuracy was defined as the fraction of known
138  sequences (conotoxin/non-conotoxin) predicted divided by the total number of sequences in the test
139 dataset. The regularized parameter settings were chosen by plotting accuracy vs parameter settings
140  for each model to make sure the trained model has the best accuracy with minimum overfitting/under
141  fitting. Since the prevalence of conotoxins in the training dataset is only 9.97%, sensitivity is an
142 important performance measure in consideration when choosing regularization parameter settings.

143 The sensitivity, specificity and accuracy for the chosen regularization parameter settings for each
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144 model is shown in Table 1. The highest overall testing accuracy and sensitivity were 98.2% and
145 90.93%, respectively, achieved by the LabelSpreading model.

146

147  Table 1. Maximized sensitivity, specificity and accuracy for chosen regularization parameter

148  settings for three machine learning models in 10-fold cross validation.

149
Machine learning model Performance measure
Sensitivity Specificity Accuracy
Logit 82.85% 99.30% 97.78%
LabelSpreading 90.93% 99.07% 98.32%
Perceptron 83.24% 97.65% 96.32%
150
151

152 2.2. Benchmark by identifying known superfamilies

153 To assess the sensitivity of ConusPipe in identifying conotoxin transcripts, we performed a
154  benchmark analysis for sequences belonging to known conotoxin gene superfamilies [6]. For these
155  analyses, we deleted an entire superfamily from the training set and then tried to re-discover this
156  superfamily as a putative new superfamily using ConusPipe. The specificity of ConusPipe (i.e., the
157  ability to distinguish between known conotoxins and non-conotoxin proteins from various
158  organisms) was assessed by screening hits against the entire UniProtKB/Swiss-Prot database.

159 We found that the sensitivity varied among different superfamilies and combinations of models
160  used. The highest sensitivity was achieved by the union of the 4 methods (logit, LabelSpreading,
161  perceptron and Blastp, mean sensitivity = 95.7%, SD = 0.11) and the union of 3 methods (logit,
162 perceptron and Blastp or LabelSpreading, perceptron and Blastp, mean sensitivity =95.7%, SD =0.11)
163 across all superfamilies. A union of methods means that a conotoxin predicted by one or more
164 methods is a putative positive. A graphical overview of the different groups is provided in Figure 2.
165  Results are shown in Supp. Figure 1 and Tables 1 and 2.

166  In addition to machine learning, using cross-species Blastp to search candidate sequences from
167  different Conus species against each other provides better performance for conotoxin superfamilies
168  that contain sequences which don’t satisfy the hypothesis of having all 3 traits (signal sequence,
169  propeptide and mature toxin at the C-terminus), such as the SF-mi2, 14, MEFRR, B4 and Prohormone
170  gene families. However, this approach is less powerful for superfamilies that are limited to a small
171 number of species, such as conorfamides, DivMTFLLLLVSV, MEVKM, MTSTL, Teretoxins and
172 Conocaps. The sensitivity for recovering all known conotoxin superfamilies by different
173 combinations of methods is provided in Supp. Table 1.

174 The ability of ConusPipe to distinguish between conotoxins and other proteins from various
175  organisms was assessed by screening the entire UniProtKB/Swiss-Prot database. Using the version
176  released on June 2013 we examined a total of 540,261 protein sequences isolated from diverse
177  organisms. The overall highest specificity was achieved using an overlap of the 4 methods (logit,
178  LabelSpreading, Perceptron and Blastp, specificity = 99.92%) and the overlap of 3 methods
179  (LabelSpreading, Perceptron and Blastp, specificity = 99.92%). These results are shown in Table 2.
180


http://dx.doi.org/10.20944/preprints201809.0587.v1
http://dx.doi.org/10.3390/toxins10120503

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 September 2018 d0i:10.20944/preprints201809.0587.v1

Union.LSP
Perceptron
Union.PB
5188
2870
. Union.LSB Unslcglé%’B
Union.LP 3825 .
=P : Union.SB
Union.LB 3349
Union.LPB 3632
5188
Union.4methods
182 s3%o

183 Figure 2. Venn diagram illustrates the different combinations of methodologies used (single method, overlap or
184 union of methods). A union of methods means that a conotoxin is predicted by one or more methods, for
185 example, Union.4methods = predicted by Perceptron or Logit or Label Spreading or Blast. An overlap of methods
186 means that the conotoxin is predicted by all the applied methods, for example, Overlap.4methods = predicted
187 by Perceptron and Logit and Label Spreading and Blast. Abbreviations used: Blast — B, Logit — L, Label Spreading
188 — S, Perceptron - P. Numbers indicate putative novel toxins identified by ConusPipe.

189
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190 Table 2. The specificity of the individual machine learning methods and their unions/combinations

191 when searching results against the Uniprot/Swissprot non-conotoxin database and mean sensitivity

192 for recovering all known conotoxin superfamilies.
Method Mean sensitivity Specificitv
Overlap.4methods 34.19%+0.32 99.92%
Overlap.LSP 41.53%+0.35 99.90%
Overlap.LSB 35.15%10.32 99.87%
Overlap.LPB 76.25%+0.37 99.57%
Overlap.SPB 34.22%+0.32 99.92%
Overlap.LS 43.18%+0.34 99.85%
Overlap.LP 83.61%10.32 99.53%
Overlap.SP 41.68%+0.35 99.90%
Overlap.LB 79.57%+0.35 98.32%
Overlan.SB 35.52%10.32 99.86%
Overlap.PB 78.02%+0.36 99.57%
Logit 87.61%10.26 99.83%
LabelSpreading (SemiS) 43.67%+0.34 99.49%
Perceptron (NeuroNetWork) 85.96%10.29 94.02%
Blastp 87.10%+0.28 98.19%
Union.4methods 95.73%%0.11 93.89%
Union.LSP 90.31%+0.22 98.15%
Union.LSB 95.25%+0.12 93.89%
Union.LPB 95.73%+0.11 93.90%
Union.SPB 95.73%0.11 93.97%
Union.LS 88.10%0.26 98.17%
Union.LP 89.96%10.23 98.17%
Union.SP 87.95%10.25 99.41%
Union.LB 95.14%+0.12 93.90%
Union.SB 95.24%+0.12 93.99%
Union.PB 95.05%0.15 93.98%

193

194

195
196

2.3. Identification of new conotoxin candidates

To identify new conotoxin candidates, we assembled Conus transcripts from RNA-seq datasets

derived from venom glands of 10 different Conus species using our previously published methods [4]
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(see Table 3 for species used in this study). The resulting transcripts were prescreened for conotoxin
homology against the Uniprot and Conoserver databases as previously published [4] and described
under the methods section. The remaining transcripts were then used as inputs to ConusPipe. New
conotoxin candidates were defined as those which were predicted as conotoxins by at least one of the
4 models in ConusPipe, but lacked significant homology to known conotoxins using Blast against the
Uniprot database [17].

Since conotoxin gene superfamilies are generally found across multiple Conus species (hence,
the term superfamily) we considered those sequences that lacked significant homology to known
conotoxins but had high homology (Blastp e-value <le-10) to sequences from at least two other Conus
species examined here, as members of a new putative superfamily. 5,455 transcripts passed these
criteria. In order to validate our predictions, we used NCBI-Blastp to search the 5,455 transcripts
against the NCBI non-redundant (NR) protein database (August 2018 version), which includes
recently published conotoxin sequences that were not yet available in Uniprot/conoserver at the time
of original analysis (and even now) and also includes large numbers of uncharacterized molluscan
sequences not available in Uniprot. Out of 5,455 transcripts, 225 had significant Blastp hits (e-values
< le-4) against the NCBI-NR database. 92 transcripts had hits against other molluscan transcripts. As
the majority of conotoxins are not found outside of the genus Conus and these transcripts could
encode endogenous signaling/housekeeping polypeptides rather than polypeptides used for
envenomation, these were removed from our final datasets. 109 sequences were identified as
conotoxins. These were also removed from the final machine learning dataset and are provided in
Supp. File 1 (“sequences.with.Blastp.hits.to.ncbi.nr.conotoxins”). Finally, 24 sequences had Blastp
hits against non-molluscan species such as fish, tardigrade, sea anemone, worm, plant, bird. These
were removed from the final dataset.

A total of 5,230 sequences were left in our final dataset as new conotoxin candidates, 153 of these
were identified by all 4 models, 739 of these were identified by 3 models, 1,711 of these were identified
by 2 models, 2,627 of these were identified by 1 model (Figure 1). All of the 5,230 transcripts are
provided in Supp. File 2 (“total.predicted.MLLabel.rmNrHit.rmImpCo.label.pep”). Using single
linkage cluster analysis with a Jaccard Index [36,37] of 0.5 grouped 301 of sequences identified by at
least 3 models into 107 clusters that are likely to represent novel conotoxin gene superfamilies (Supp.
File 3, “Superfamily.cluster.0.5.seq”).

The highest number of putative new sequences were identified in C. striatus. Blastp against
Uniprot/Conoserver identified 99 toxin transcripts in C. striatus and 68 of these were also retrieved
using the machine learning method (i.e., 21 of these were missed by machine learning, see discussion
section below). 1,097 additional putative toxins were subsequently identified by machine learning, 7

of these were confirmed as toxins by Blastp against the NCBI-NR database (Table 3).

d0i:10.20944/preprints201809.0587.v1
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240  Table 3. Conotoxin candidates expressed in 12 samples from 10 Conus species identified by Blastp
241  and machine learning (ML).

242

Conus species No. of conotoxins No. of conotoxins No. of conotoxins No. of
identified by Blastp  identified by Blastp identified by conotoxin
against against ML and candidates
Uniprot/Conoserver  Uniprot/Conoserver subsequently identified by
database database also retrieved identified as ML only

using ML conotoxins by Blastp
against NCBI

C. magus 119 78 24 980

C. striatus 99 72 32 1065

C. marmoreus 108 75 13 495

C. marmoreus2 [10] 80 55 6 83

C. textile 224 126 34 505

C. gloriamaris 145 82 26 518

C. imperialis 90 67 9 50

C. virgo 159 104 36 701

C. virgo2 [10] 96 65 3 60

C. terebra 154 116 15 374

C. coronatus [10] 286 206 15 72

C. ebraeus [10] 100 77 12 102

243

244 2.3. Transcripts identified using 3 or 4 out of 4 methods

245 In this study, we provide a list of all new conotoxin candidates from the venom gland
246  transcriptomes of several cone snail species. We emphasise that these sequences require further
247  experimental validation to confirm their designation as genuine conotoxins. This is discussed in more
248  detail below. However, we propose that many of the transcripts identified by 3 out of 4 methods (739
249  sequences) or by a combination of all 4 methods (153 sequences) are likely to represent genuine
250  conotoxin sequences since they were independetly identified using different approaches. Several of
251  these sequences exhibit clear hallmarks of conotoxins (presence of propeptides, found in multiple
252 species, similar but distinct sequences found in different species, multiple cysteines in mature toxin
253 region). An alignment of some of these is shown in Figure 3. Several sequences that were identified
254 by 3 or more models but seem unlikely to represent genuine conotoxins are also shown. These
255  typically exhibit a long series of cysteine repeats, several vicinal cysteines and/or series of
256  methionines (M) in the signal sequence. In future our model could be further refined to exclude such
257  sequences as candidates.

258
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A Signal Sequence Propeptide(s) Toxin Postpeptide
s 10 20 20 w 50 s

gloriamaris. TRINITY_DN2615_c0_g1_i1 MKI ILVLLLFPQTAEASWKNGANHP INGLCRSPSPFLDRWFSEITVWYFLCIKS

marmoreus. TRINITY_DN2320_c0.gi_i1 ~ MK | I LVLLLFPQTAEASWRNGANHP INGLCRSPSPFLDR-FSEITVWYFLCMKS

1 52
marmoreus.TRINITY_DN11070_c0_g1_i1 MLLCFIAFFPVISLSVCIYRPEEIMKP-FFCLINVFREKMVTGKVSVRGSCC
gloriamaris. TRINITY_DN6962_c0_g1_i1 MLLCFIAFFPVICVSVCIYRPEEIMKPFFFCLINVFREKMVPGKVSVRGSCC
1 10 20 30 40 50 60 70 80 84
gloriamaris. TRINITY_DN96_c0_g1_i1 MGHLRLHF IGSILLVSNWIACRFCQILNVRGVPWPSLSVSLNGTLVLFTASCENFAKNWHAVSWIKDVVTCCVENIRCIFHFKN
textile. TRINITY_DN7444_c0_g2_i2 MGHLRLHFISSILLASNWIACRFCQILNVRGVPWPSLSVSLNGTLVLFTASCETFAKNWHAVSWIKDVVTCCVENIRCIFHFKN
1 10 20 30 40 50 6 63
terebra.TRINITY_DN2356_c0_g1_i1 MHVHFYMGLLLLFGLSLVRFKLDEPCSDV ICLKCALYNLLCWHRASLEMGMGL | STVQGCTVC
virgo_MP.TRINITY_DN1496_c0_g1_i1 MHVHF YMGLLLLFGLSLVRFKLDEPCSDV ICLKCALYNLLCWHRASLEMGMGL | STVHSCTVC
1 10 20 30 40 50 60 70 74
magus.TRINITY_DN9483_c0_g1_i1 MRCYRGPGLFAWSFLIIPVTNPILPVHSRISVLRLHPRIGSQSGSESQCRQRLGDCTSEERRRWNVDVGVGSWF
striatus. TRINITY_DN7196_c0_g1_i1 MRCYRGPGLFAWSFLIIPVTNPILPVHSRISLLQLHPRIGSQSGSESRCRQRLGDCTSEERRRWNVDVGVGSWF

1 -
textile. TRINITY_DN886_c0_g1_i1 MSSLTVSYWSFFSFCLLVMGDDTSP ILHVRNLHICCFGAGTDRDWRASLCYHCFQAAAYLQCSPR
virgo. TRINITY_DN992_c0_g1_i1 MSSLTVSYWSVFSLCLMVMGDETSHILHDRSLHICCFGAGTDKGWRASLCCHCFQAAVYLQRSLRLTTWS
TRINITY_DN5S88_c0_g1_i1 ! 10 R S @ 30 & 2
S ] MTKLLLVFSLWGV I LMAAARRPLRRRVKVTIPEGTME ILEPVPNY IHLNEGCVDQCPLNEGALCVLDCRYVDNDGSRN
erebra, 5 L) MTKLLLVFFLWGVILMAAARRPLRRRVRGT I PEGMMERLEPVPNYTHVNEGCVDECPLNEGALCVLDCRFVHPDGTRD
e MTKLLLVFFLWGVVLMAAACRPLRRRVRVTIPEGIMERLEPVPNYTHVNEGCFDECPLSQGALCVLDCRFVYPDGTRD
virgo_MP.TRINITY_DN1525_c0_g1_i1 MTKLLLVFFLWGVVQMAAACRPLRRRVRVTIPEGIMERLEPVPNYTHVNEGCVDECPLSQGALCVLDCRFVYPDGTRD
80 90 98

coronatus.TRINITY_DN588_c0_g1_i1 Gt | VNHYDPQTGK Rv}:cygﬁ
terebra. TRINITY_DN2929_c0_g1_i1 DCINNHYNRQTGERVFCWI
virgo.TRINITY_DN3390_c0_g1_i1 DCIHNHYNRQTGKRVFCWT
virgo_MP.TRINITY_DN1525_c0_g1_i1 DC I HNHYNRQTGKRVFCWT

1 10 20 30 40 50 60 69
coronatus. TRINITY_DN770_c0_g1_i1 MTPRMNLLLLMLVVMTVPLLQAQRHTRCETTSDGTVICRHANSPDRRDDGNAASRQEGSLMSVLQGLRH
coronatus. TRINITY_DN770_c0_g1_i2 MTPRMNLLLLMLVVMTVPLLQAQRHTRCETLPDGRVVCRHANSPDRRDDGNAASRQEGSLMSVLQGLRH
coronatus. TRINITY_DN770_c0_g1_i3 MTPRMNLLLLMLVVMTVPLLQAKLHIRCETESDGTVVCRHANSPGRRDDGNAASRQEGPLMSALQGLQH

1 10 20 30 40 50 60 70 80 82
gloriamaris.TRINITY_DN3112_c0_g1_i1 MVKCLVLLFLGCLAFTICFADLRLK-LRPKQQRGCCVNFVAPCDVTSCPNYPTAECINVMCMCTAAFHYNGRLLTYAECNSH
gloriamaris. TRINITY_DN3112_c0_g1i2 ~ MVKCLVLLFLGCLAFTICFADLRLK-LRPKQQRGCCVNFVAPCDVTSCPNYPTAECINIPCMCTAAFYDNGRLLAYTDCNSR
textile. TRINITY_DN8822_c1_g1_i1 MVKCLVLLFLGCLAFTTCFADLRLK-LRPKRQPGCCVNFMAPCDVTSCPKYPTAECINIPCMCAAAFYSNGRLLADTECNSR
textile. TRINITY_DN8822_c1_g2_i2 MVKCLVLLFLGCLAFTTCFADLRLK-LRPKRQPGCCVNFMAPCDVTSCPNYPTAECINIPCMCAAAFYSNGRLLADTECNSR
textile. TRINITY_DN8822_c1_g2.i1 MVKCLVLLFLGCLAFTTCFADLRLK-LRPKWYPGCCMNFVAPCDVTSCPNYPTAHCENVMCMCAAAFHYNGRLLTYAECNSR
textile. TRINITY_DN8822_c1_g2_i3 MVKCLVLLFLGCLAFTTCFADLRLK-LRPKRHPGCCMNVVSPCDVTSCPNYPTAECENILCMCTAAFYYNGQLLTYAECNSR
imperialis_MP.TRINITY_DN378_c0_g1_il ~ MVKCLVLFILGCLVFTTCFAKLSLKRFRFKRPQGCCMN IVAPCTVDRCPNYSDAECEN|LCMCAAAFYHNGQRLSYEECHGR

1 10 20 30 1{0 50 60 ZD 7{1
marmoreus.TRINITY_DN1041_c0_g1 il MWKMRFLFCFFFFAAPLFPPPPLVYCFPSATSI| IPPSRPVTCIPPLPFTPHQDFLCMPCTGRRLCCSVVS ICRR
textile. TRINITY_DN7726_c0_g1_i1 MWKMRFLFCFFVFAAPLFPPPPLVYRFPFATFIIPPSPPVTCIPPLPFSPHQDFLCMPCTGGRLCCAVVS ICRR
virgo. TRINITY_DN12873_c0_g1_i1 MWKMRFLF-FFSFAAPLFPPPPLVYCFPSATSIPPPSPPVTCIPPLPFTPHQDFLRMPCTGERLCCSVVS ICRR
striatus. TRINITY_DN8653_c0_g1_i1 MWKMRFL---FSFAAPLFPPSPLVYCFPSATSITPPFPPVTCIPPLPFTRRQDFLCMPCTGERLCCSVVS ICRR

1 10 20 3 €0 70
virgo_MP.TRINITY_DN934_c0_g1_i1 MLLLLLSLLICIAMATTKSVTEIDS--RQD SHTNLCECKLTCSEQPAVWINRN
virgo. TRINITY_DN2428_c0_g1_i1 MLLLLLSLLICIAMATTKSVTEIDS--RQD SHTNLCECKLTCSEQPAVWINRN
ebraeus. TRINITY_DN373_c0_g1_i1 MLLLWSFLICIAMATTRTVKD IDSQPRREP RRNNLCDCR--CSRQPAVWINRN
terebra. TRINITY_DN1962_c0_g2_i1 MLLLLLSFLICIAMATTK----1DS--RQGGVVT RLEDRCTCN--CSSQPAIWINHN

80 90 700 110 120 130 140 143

virgo_MP.TRINITY_DN934_c0_g1_i1 DGIKEKKFYICEQDLPLPTCSVRDAPVDEDPDMREPVMVECECGEYAVGTQWPVCVVNDNSQPQK
virgo. TRINITY_DN2428_c0_g1_i1 DGIKEKKFYICEQDLPLPTCSVRDAPVDEDPDMREPVMVECECGEYAVGTQWPVCVVNDNSQPQK
ebraeus. TRINITY_DN373_c0_g1_i1 GGVHEKKFYKCELHEELKLCDGGDLP IDVITNRSAPIQIECVCSVYVENYRWPMCVVEDES
terebra. TRINITY_DN1962_c0_g2_i1 GGLKEKKFY|CADDPPLTTCSGRNVPVDKNFDRNEPVKIECRCDEYVRDNLWPECVVNNPP-PQK

1 10 20 30 40 50 €0 70
ebraeus. TRINITY_DN738_c0_g1_i1 MTTSLMVMLGCLLLTSYTMAVSLPW--GIYVRDADGGGADVAEVKKVLNDAKAKLDTEVSSEFKKPLDELLTVVEEKVD
magus. TRINITY_DN5474_c0_g1_i1 MTTSLMVMLGCLLLTSYTMAVYLPWTHPVYVRDA-GGDDDVAKVKEALNAAKAKVDAE-ASEFQKPLDELLAAVKEKVE
magus. TRINITY_DN5474_c0_g2_i1 MTTSLMVMLGCLLLTSYTMAVYLPWTHPVYVRDA-GGDDDVAKVKEALNAAKAKVDAE-ASEFQKPLDELLAAVKEKVE
striatus. TRINITY_DN18782_c0_g2_i1 MTTSLMVMLGCLFLTSYTMAISL----PTFGRDV---DDDVAKVEEALNAAKVKVDAE-ASEFKKPLDELLAALKEKVE

80 90 100 111
ebraeus. TRINITY_DN738_c0_g1_i1 KGE-VEVIEDPVKRDERDVTKR-WYFHIGTS
magus. TRINITY_DN5474_c0_g1_i1 KGEDVEVSVD--KRDERG I TKR-GK | CLHWGR
magus. TRINITY_DN5474_c0_g2_i1 KGEGVEVSVN--KRGEGD I TKR-GS | TWTWR
striatus. TRINITY_DN18782_c0_g2_i1 KGEGVEVSVNPDKRDERDVTKRDWEFSVTYRG

‘1 1‘0 ZP 310 4]0 5]0 5]0 7.0 8.0 9]0 9]8
marmoreus.TRINITY_DN6311... | TVPQKGK L RE SKRNVDVDDQMMMVMTTTTMTMTM | NDDNDR

magus.TRINITY_DN7111_c0_g... MTMMMTMTMMVMMMMMTTTVMTLCATKRPLNPRLPASDKLCASFHDVGLYSVSSQAPDPLSAAAVITDFCCCCCCCRSQRRTCCSESESGRCGCSLPD
virgo.TRINITY_DN2284_c0_g1... MCVCACMCVCLMCVCVCVCVHACVRVCVPACVCACVHACVFKTNHFENSNEL

striatus. TRINITY_DN45_cO_g5... MLVVESCCGCMFE I VLCMCSGMCLQCVSSLCLQKCMCVCSCVCVCVCVCVCVPA

striatus. TRINITY_DN6505_c0_... MYVMVCMMICDSLCMCVQSSVICGFEDE | CVMVYVMACVRVCVCVLCVCVLCVHVCISTIQ

259

260 Figure 3. Comparative alignments of selected sequences identified by at least 3 out of 4 methods that are (A)
261  likely or (B) not likely to represent genuine novel conotoxins. Cysteines are highlighted in yellow, signal
262 sequences, pro- and postpeptides and predicted mature toxins are underlined in purple, green and blue,
263 respectively, as shown on top of panel A. Sequence labels (contigs) correspond to those provided in Supp. File

264 2
265

266 3. Discussion

267 Previous approaches for toxin discovery have been alignment based, using regular expressions,
268 Blast and/or HMMER to identify new members of known conotoxin superfamilies [5,15-17] . Because
269  conotoxins are hyperdiverse, these approaches are intrinsically limited. In an attempt to cast a wider
270  net for discovery, we have created a machine learning based pipeline, ConusPipe, that utilizes
271  functional characteristics of conotoxins to identify new conotoxin candidates that have no significant
272 sequence homology to conotoxin sequences currently available in reference databases.
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273 By using more than one machine learning model, we expected to see that an ensemble of
274  different models can maximize the prediction power. Indeed, as determined by benchmark analyses,
275  the highest sensitivity is achieved by the union of 3 or more methods and the highest specificity is
276  achieved in the overlap of 3 or more methods.

277 ConusPipe allows users to choose different combinations of methods according to their
278  requirement on discovery specificity and sensitivity (Table 1). In addition to developing machine
279  learning, we demonstrate that using Blast to search candidate sequences from different Conus species
280  against each other provides better performance for conotoxin superfamilies that contain sequences
281  that don’t satisfy the hypothesis of having all 3 traits. However, this approach is less powerful for
282  superfamilies that are limited to a small number of species and only works if more than one
283  transcriptome is to be analyzed.

284 We would like to note that, for best performance, ConusPipe should be used in combination with
285  standard Blast-based annotation methodologies as ConusPipe relies on the presence of full-length
286  sequences (containing N-terminal signal sequences) and will not work for truncated contigs.
287  Furthermore, several conotoxin gene superfamilies reported in Uniprot/Conoserver have low SignalP
288  values (D value of < 0.45). These would also be missed by our pipeline. Table 1 provides information
289  on how many conotoxins which have significant homology to sequences in Uniprot/Conoserver
290  database could also be retrieved by ConusPipe (average value for recovery: 68 %, ranging from 56 %
291  for C. textile — 77 % for C. ebraeus).

292 We provide a large set of new conotoxin candidates and a bioinformatic pipeline that is freely
293  available and can be applied to any newly sequenced venom gland. No doubt our approach also
294 identifies false positives, particularly when only a single or a combination of two methods is
295  employed. Thus, using our method without further validation is not suitable for defining the venom
296  composition of a species. What it provides is a new tool to identify candidate toxin transcripts that
297  are not able to be detected by homology-based methods. Generating comprehensive databases of all
298  putative toxin candidates expressed in a venom gland will empower current mass spectrometric toxin
299  sequencing approaches [7]. Using mass spectrometry, candidate transcripts can then be verified and
300  subjected to functional characterizations.

301 4. Conclusions

302 Using ConusPipe, we identified 5,230 new conotoxin candidates from 1,359,647 transcripts
303  derived from venom gland transcriptomes of 10 Conus species. None of these candidate conotoxins
304  has significant homology to any known conotoxin in the Uniprot database, although like known
305  conotoxins, most candidates have an N-terminal signal sequence, a characteristic propeptide spacer
306  region and a single copy of a mature peptide at the C-terminus. Moreover, we have shown that
307  several of these candidates share high homology to newly published conotoxins in the NCBI-NR
308  molluscan database. In conclusion, our approach opens new avenues for the discovery of novel
309  contoxin transcripts from cone snails and other venomous animals with similar venom repertoires.

310

311 5. Materials and Methods

312 5.1. Transcriptome sequencing

313 Total RNA was isolated from venom glands using TRIzol® Reagent (Life Technologies) or the
314  RNeasy kit (Qiagen) following the manufacturers’ instructions. RNA integrity, quantity and purity
315  were determined on a 2100 Bioanalyzer (Agilent Technologies). cDNA libraries were prepared and
316  sequenced on an Illumina HiSeq 2000 instrument (Sanger/Illumina 1.9 reads, 101 bp or 125 bp paired-
317  end). Publically available Illumina datasets were used for the venom gland transcriptomes of C.
318 marmoreus (specimen 2), C. virgo (specimen 2), C. coronatus and C. ebraeus [10].

319 Adapter clipping and quality trimming of raw reads were performed using fqtrim software
320  (version 0.9.4, http://ccb.jhu.edu/software/fqtrim/) and PRINSEQ (version 0.20.4 [38]). After
321  processing, sequences shorter than 70 bps and those containing more than 5% ambiguous bases (Ns)
322 were discarded. De novo transcriptome assembly was performed using Trinity version 2.0.5 [39] with
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323 a kmer size for building De Bruijn Graphs of 31, a minimum kmer coverage of 10 and a minimum
324  glue of 10. Assembled transcripts were annotated using Blastx ((NCBI-Blast-2.2.28+, [40]) against
325 conotoxin sequences extracted from the Conoserver [5] and UniProt databases [34].

326
327  5.2. Development of ConusPipe
328 ConusPipe proceeds by first extracting 16 features (see feature explanation below) from known

329 conotoxin sequences (from the ConoServer [6] and Uniprot databases) and non-conotoxin Conus
330  transcripts to make the training dataset. Sequences are required to contain a signal sequence as
331  determined by SignalP [41]. Next, the 16 features extracted from Conus transcripts of 10 species, which
332  have no homologues in current reference database (the combined ConoServer and UniProtKB
333 database) are used as real test data to run the machine learning methods to predict whether a certain
334 input transcript is conotoxin. All the transcripts predicted by any of the 4 method are output by the
335  pipeline as putative new conotoxins.

336
337  5.2.1 Feature Selection and Classifiers
338 We employed 16 features for the machine learning models: signalP D value for signal sequence;

339  cysteine percentage; molecular weight; percentage of positively/negatively charged amino acids; and
340  isoelectric point for all three regions of the precursor sequence (signal sequence, propeptide and
341 mature toxin). All features are continuous re-normalized to lie between 0 and 1 (Figure 1A). The
342  features are mainly chemical characters of amino acids in the three different parts of conotoxin
343 sequence. The motivating hypothesis is that even though conotoxins evolve very rapidly they must
344 still share similar chemical characters in amino acid composition, since they carry out similar
345  functions, e.g. bind transporters and receptors. For example, the three parts of conotoxin sequence -
346  signal sequence, propeptide and mature toxin carry out different functions in conotoxin secretion
347  process in the cell, so their charge distributions are stereotypical and different. The signal sequence
348  ismainly hydrophobic, while the amino acids in propeptide are mainly charged, and the mature toxin
349  is somewhat intermediate as regards charge distribution. To train the models we first ran signalP on
350  atraining dataset consisting of known conotoxin/nonconotoxin sequences to get the signalP D value
351  for each known sequence (Petersen et al. 2011). Next, we calculated the cysteine percentage,
352  molecular weight, percentage of positively/negatively charged amino acids and isoelectric point for
353  signal sequence, propeptide and mature toxin, respectively. The pipeline uses the 16 extracted
354  features in training dataset to train the logistic regression model, LabelSpreading model and
355  Perceptron model using the Python scikit learn package (Pedregosa et al. 2011). The accuracy under
356  different regularization parameters of the three models were tested by cross validation with training
357  dataset from known conotoxin and nonconotoxin sequences.

358
359  5.2.2. Cross validation
360 4,950 known conotoxin sequences (from ConoServer and Uniprot/Swissprot) and 5,2613 non-

361  conotoxin Conus transcripts with matched sequence length were first split into 10 equal bins, and
362  then sequentially 1 tenth of the data was taken as the test set and the remaining other 9 tenths were
363  used for the training set. The three models were trained under different regularization parameters
364  and evaluated with the test set in 10 iterations. For the logistic regression model, the regularization
365  parameter we tested is slack number C, which is the inverse of regularization strength. . We tested
366  this parameter from 0.001 to 10**10. For the LabelSpreading model, we chose knn as the kernel
367 function, so the regularization parameter we tested is n_neighbors, which was tested from 1 to 15.
368  For the Perceptron model, the regularization parameter we tested is n_iter, the number of passes over
369  the training data, which we tested from 5 to 70. The plots of accuracy versus regularization parameter
370  of different models are shown in Supp. Figure 2.

371

372 5.2.3. Discovering new putative conotoxins and conotoxin gene families


http://dx.doi.org/10.20944/preprints201809.0587.v1
http://dx.doi.org/10.3390/toxins10120503

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 September 2018 d0i:10.20944/preprints201809.0587.v1

373 Paired-end RNAseq data from 10 Conus species were generated by Illumina HiSeq 2000
374  platform (Table 4). RN Aseq reads were assembled using best practice Trinity settings, annotated with
375  Blastx against our reference dataset, and all the Conus transcripts which do not have homologous
376  sequences in the current reference databases were selected and 6-frame translated into peptide
377  sequences. These peptide sequences were then used as the input dataset for ConusPipe to drive
378  machine learning models built in previous steps to predict whether they are conotoxins. Cross-
379  species Blastp is also used on all putative peptide sequences that have a signal sequence as an
380 independent method to predict putative conotoxin candidates. The pipeline output all input
381  transcripts which were predicted as conotoxins.

382 We then used NCBI- Blastp to search all putative toxin transcripts against the NCBI non-
383  redundant (NR) protein database (August 2018 version), which includes recently published
384  conotoxin sequences that were not yet available in Uniprot/conoserver at the time of original analysis.
385  Sequences with significant Blastp hits were excluded from final datasets (e-values < le-4).

386 Then all by all Blastp and single linkage cluster analysis were conducted among the new
387 conotoxins, and the new conotoxins that shared at least 50% hit connections with one another were
388  designated as to be in the same superfamily.

389
390
391 Table 4. RN Aseq Data sets from 12 samples in 10 Conus species used in the discovery pipeline.
392
Conus Species [llumina HiSeq 2000 393
Number of reads 394
Read length (nt) 395
C. magus 85,877,500 101 396
C. striatus 101,170,402 101 397
C. marmoreus 53,901,510 125 3908
C. marmoreus2 [10] 50,652,396 101 399
C. textile 63,365,620 125 400
C. gloriamaris 28,783,428 125 401
C. imperialis 30,784,548 125
C. virgo 30,038,902 125 402
C. virgo2 [10] 31,056,732 125 403
C. terebra 31,180,460 125 404
C. coronatus [10] 27,927,952 125 405
C. ebraeus [10] 19,556,244 125 406
407
408
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418  Appendix

419 Supporting Table 1. The sensitivity for recovering all known conotoxin superfamilies by different combinations

420 of methods.

421 Supporting File 2. ConusPipe discovered 109 putative novel conotoxins confirmed by Blastp against the
422 NCBI NR database.

423 Supporting File 1. ConusPipe discovered 5,230 putative novel conotoxins with no significant sequence
424 homology in any current reference database (Unipro/Conoserver/NCBI NR).

425 Supporting File 3. Cluster analysis of putative new gene superfamilies.

426
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Supporting Figure 1. Box plot shows that the sensitivity varied among different combinations (single
method, overlap or union of methods) of methods used. The union of different methods can achieve higher
sensitivity. Union of methods means that the conotoxin is predicted by one method or another, as described

in the caption for Figure 1.
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435 Supporting Figure 2. Plot of accuracy vs regularization parameter settings in each machine learning model. (A)
436 Accuracy vs hyper-parameter C in logistic regression model. No overfitting/under fitting was observed. When

437 choosing C=10**10, the logit model achieved the best accuracy and sensitivity. (B) Accuracy vs hyper-parameter
438 n_neighbors in LabelSpreading model. No overfitting/under fitting was observed. When choosing n_neighbors=
439 3 and alpha=1, the LabelSpreading model achieved the best accuracy and sensitivity. (C) Accuracy vs hyper-
440 parameter n_iter in Perceptron model. Overfitting was observed between n_iter =12 and n_iter=25, between
441 n_iter =30 and n_iter=50. When choosing n_iter= 5, the Perceptron model achieved the best accuracy and
442 sensitivity.

443

444
445
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