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Abstract: Cone snails (genus Conus) are venomous marine snails that inject prey with a lethal 17 
cocktail of conotoxins, small, secreted, cysteine-rich peptides. Given the diversity and often high 18 
affinity for their molecular targets, consisting of ion channels, receptors or transporters, many 19 
conotoxins have become invaluable pharmacological probes, drug leads and therapeutics. 20 
Transcriptome sequencing of Conus venom glands followed by de novo assembly and homology-21 
based toxin identification and annotation is currently the state-of-the-art for discovery of new 22 
conotoxins. However, homology-based search techniques, by definition, can only detect novel 23 
toxins that are homologous to previously reported conotoxins. To overcome these obstacles for 24 
discovery we have created ConusPipe, a machine learning tool that utilizes prominent chemical 25 
characters of conotoxins to predict whether a certain transcript in a Conus transcriptome, which has 26 
no otherwise detectable homologs in current reference databases, is a putative conotoxin. By using 27 
ConusPipe on RNASeq data of 10 species, we report 5,230 new putative conotoxin transcripts that 28 
have no homologues in current reference databases. 893 of these were identified by at least 3 out of 29 
4 models used. These data significantly expand current publicly available conotoxin datasets and 30 
our approach provides a new computational avenue for the discovery of novel toxin families. 31 

Keywords: machine learning; conotoxins; cone snails, venom, drug discovery 32 

Key Contribution: By using ensemble methods, we report 5,230 new candidate conotoxins that have 33 
no homologues in current reference databases and provide a unique dataset for future 34 
pharmacotherapeutic exploration. 35 

 36 

1. Introduction  37 
Predatory marine cone snails (genus Conus) have attracted the attention of biologists and 38 

pharmacologists for the great neuropharmacological potential of their venom toxins [1-3]. It is 39 
estimated that each of the ~750 extant Conus species produces ~100-400 distinct venom toxins 40 
(conotoxins) with almost no overlap in the toxin repertoire between the ~750 species, not even 41 
between sister species [4]. Despite the tremendous diversity and drug discovery potential of Conus 42 
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venoms, only ~ ~5,000 nucleotide sequences of conotoxin-encoding transcripts have been reported 43 
from 100 Conus species over the past decades, with most sequences having been discovered in recent 44 
years [5,6]. Traditional methods, such as isolation of conotoxins from venom and subsequent Edman- 45 
or de novo mass spectrometric (MS) sequencing are time-consuming and limited by sample 46 
availability. In contrast, high throughput transcriptome sequencing can achieve greater sequencing 47 
depth and only requires small amounts of biological sample [7 ]. Recent studies on the venom gland 48 
transcriptomes of several cone snail species, using next generation sequencing technologies (NGS), 49 
have discovered ~100-400 conotoxin genes per Conus species [4,8-12]. Other authors have reported 50 
larger diversities but these are likely to have resulted from inappropriate analyses of NGS datasets, 51 
as previously discussed [4,10]. 52 

Conotoxins can be classified into different gene superfamilies based on their conserved N-53 
terminal signal sequence [13]. To date, more than 53 conotoxin gene superfamilies have been 54 
described for Conus [14]. After NGS sequencing and de novo transcriptome assembly, candidate 55 
conotoxin genes are usually assigned to different superfamilies using BlastX, regular expression-56 
based techniques and profile hidden Markov model (HMMER) analysis against a local reference 57 
database of known conotoxins from the Uniprot and/or ConoServer databases. Available tools 58 
include ConoPrec, ConoDictor and Conosorter [5,15-17]. However, these approaches can only detect 59 
novel toxins that are similar to previously reported sequences. An approach that could overcome the 60 
limitations of homology based-searches would thus be highly desirable. 61 

Most conotoxin transcripts can be readily divided into three distinct regions: (1) an N-terminal 62 
signal sequence for targeting to the endoplasmic reticulum; (2) an intermediate propeptide region 63 
that has been suggested to play a role in secretion, posttranslational modification and folding; and 64 
(3) a single copy of the mature toxin region, located at the C terminus [18-20]. We hypothesized that 65 
even though conotoxin sequences evolve very rapidly [14], conotoxin retain these three traits even 66 
when their sequence similarities become too low to allow detection by alignment-based methods 67 
such as Blast and HMMER. If this were true, even highly divergent conotoxins might be identifiable 68 
using machine learning methods trained to identify these three traits as features. With this in mind, 69 
we implemented three machine learning models for data mining of 12 Conus transcriptomes from 10 70 
different species: logistic regression (logit), semi-supervised learning (LabelSpreading) and an 71 
artificial neural network (perceptron) [21-25]. The resulting tool for conotoxin discovery is called 72 
ConusPipe. 73 

Generalized Linear Models (GLMs) are versatile, powerful, commonly used statistical 74 
approaches to model relationship between scalar response variables given several predictor 75 
variables/features [21,26]. In particular the logistic regression model computes a weighted sum of the 76 
input features (plus a bias term), but instead of outputting the result directly like the linear regression 77 
model does, it outputs the logistic of this result [21,25]. This approach often outperforms simple linear 78 
regression for binary outcome prediction [26]. 79 

Unlike GLMs which completely employ labeled data for training, in semi-supervised learning 80 
only some of the training data is labeled. Graph-based methods are then used to make use of 81 
additional unlabeled data in order to better capture the shape of the underlying data distribution and 82 
generalize the method to apply to new samples [27]. The assumption is that unlabeled data with 83 
features that render them neighbors of labeled data are likely to have a common label. In keeping 84 
with general practice, we used the K-nearest neighbors method to connect each data point [28]. Semi-85 
supervised learning approaches can perform well when only a small number of labeled data but large 86 
amounts of unlabeled data are available.  87 

The Perceptron is one of the simplest Artificial Neural Network ANN architectures, which is 88 
composed of a single layer of linear threshold unit (LTU). The LTU computes a weighted sum of its 89 
inputs and then applies a step function to that sum and outputs the result [22]. Unlike regression-90 
based approaches, ANNs can capture dependencies within the data, potentially resulting more 91 
accurate classification. 92 

The nature of the Conus training sets and input data also needs to be considered. For example, 93 
the true-positive (labeled) training data is limited in scale and is incomplete, as many conotoxins 94 
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presumably remain uncatalogued [29]. Moreover, the input data is very large, with RNA-seq datasets 95 
typically exceeding five million reads and tens of thousands of assembled transcripts. Given these 96 
features, logistic regression provides a well-established base-line approach, whereas semi-supervised 97 
learning (LabelSpreading) provides a means to further leverage unlabeled true positives during 98 
training. Finally, the Perceptron model scales well to very large training sets and is widely used for 99 
pattern recognition with good results [30-33]. Additionally, since using these machine learning 100 
models are based on the hypothesis that conotoxins will retain all three traits in sequence evolution, 101 
we added cross-species Blastp to search for similar unknown sequences (if they contain a signal 102 
sequence) between different Conus species to rescue potential conotoxins that only have one trait 103 
(signal sequence) based on the knowledge that the signal peptide sequences of conotoxins from the 104 
same superfamilies are highly similar to each other even if they are from different Conus species [4].  105 

By employing three different machine learning models plus Blastp, ConusPipe allows users to 106 
take an ensemble approach for discovery to maximize the prediction power. All four methods were 107 
applied to 12 RNAseq datasets from 10 different species of Conus. The pipeline discovered 5,230 new 108 
conotoxin candidates that provide a unique dataset for future pharmacotherapeutic exploration.  109 

 110 

2. Results  111 
2.1 The ConusPipe toolkit 112 
ConusPipe is implemented in Perl and Python as a complete conotoxin discovery package. It is 113 

available at https://github.com/Yandell-Lab/ConusPipe. ConusPipe takes 6-frame-translated peptide 114 
sequences from nucleotide sequences which have no hit in current reference database and extracts 115 
conotoxin sequence features to train datasets (Figure 1A). In addition to 3 machine learning 116 
models, cross-species Blastp is used as the 4thmethod to retrieve putative toxin candidates that have 117 
a signal sequence but may not have all features used in machine learning (Figure 1B).  118 

ConusPipe then generates different combinations (single method, union or overlap) of the four 119 
methods to predict candidate conotoxins (Figure 2). Users can change the settings in sample.config 120 
file to use different cut-off options for transcript per million (tpm) values, blast e-values, signalP D-121 
values and provide paths to input and output fasta files and databases used.  122 

 123 
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 124 
Figure 1. A.Overview of feature selection for machine learning models (B) and cross-species Blastp methodology 125 
used in addition to the machine learning model.  126 
 127 
 128 

2.1.1 Building and cross-validation of the machine learning models 129 
4,950 known conotoxin sequences (from the ConoServer [5] and Uniprot databases [34] and 130 

52,613 randomly selected non-conotoxin Conus transcripts were used to build the machine learning 131 
models. In order to assess the performance of the models, 10-fold cross validation was applied to the 132 
same dataset [35]. The main measures of performance were sensitivity, specificity and accuracy under 133 
different regularization parameters. Sensitivity was defined as the fraction of known conotoxins 134 
predicted as conotoxin divided by the number of known conotoxins in the test dataset. Specificity 135 
was defined as the fraction of known non-conotoxins predicted as non-conotoxin divided by the 136 
number of known non-conotoxins in the test dataset. Accuracy was defined as the fraction of known 137 
sequences (conotoxin/non-conotoxin) predicted divided by the total number of sequences in the test 138 
dataset. The regularized parameter settings were chosen by plotting accuracy vs parameter settings 139 
for each model to make sure the trained model has the best accuracy with minimum overfitting/under 140 
fitting. Since the prevalence of conotoxins in the training dataset is only 9.97%, sensitivity is an 141 
important performance measure in consideration when choosing regularization parameter settings. 142 
The sensitivity, specificity and accuracy for the chosen regularization parameter settings for each 143 
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model is shown in Table 1. The highest overall testing accuracy and sensitivity were 98.2% and 144 
90.93%, respectively, achieved by the LabelSpreading model. 145 
 146 
Table 1. Maximized sensitivity, specificity and accuracy for chosen regularization parameter 147 
settings for three machine learning models in 10-fold cross validation. 148 
 149 

Machine learning model Performance measure 
 Sensitivity Specificity Accuracy 
Logit 82.85% 99.30% 97.78% 
LabelSpreading 90.93% 99.07% 98.32% 
Perceptron 83.24% 97.65% 96.32% 

 150 
 151 

2.2. Benchmark by identifying known superfamilies 152 

To assess the sensitivity of ConusPipe in identifying conotoxin transcripts, we performed a 153 
benchmark analysis for sequences belonging to known conotoxin gene superfamilies [6]. For these 154 
analyses, we deleted an entire superfamily from the training set and then tried to re-discover this 155 
superfamily as a putative new superfamily using ConusPipe. The specificity of ConusPipe (i.e., the 156 
ability to distinguish between known conotoxins and non-conotoxin proteins from various 157 
organisms) was assessed by screening hits against the entire UniProtKB/Swiss-Prot database. 158 

We found that the sensitivity varied among different superfamilies and combinations of models 159 
used. The highest sensitivity was achieved by the union of the 4 methods (logit, LabelSpreading, 160 
perceptron and Blastp, mean sensitivity = 95.7%, SD = 0.11) and the union of 3 methods (logit, 161 
perceptron and Blastp or LabelSpreading, perceptron and Blastp, mean sensitivity = 95.7%, SD = 0.11) 162 
across all superfamilies. A union of methods means that a conotoxin predicted by one or more 163 
methods is a putative positive. A graphical overview of the different groups is provided in Figure 2. 164 
Results are shown in Supp. Figure 1 and Tables 1 and 2.  165 
In addition to machine learning, using cross-species Blastp to search candidate sequences from 166 
different Conus species against each other provides better performance for conotoxin superfamilies 167 
that contain sequences which don’t satisfy the hypothesis of having all 3 traits (signal sequence, 168 
propeptide and mature toxin at the C-terminus), such as the SF-mi2, I4, MEFRR, B4 and Prohormone 169 
gene families. However, this approach is less powerful for superfamilies that are limited to a small 170 
number of species, such as conorfamides, DivMTFLLLLVSV, MEVKM, MTSTL, Teretoxins and 171 
Conocaps. The sensitivity for recovering all known conotoxin superfamilies by different 172 
combinations of methods is provided in Supp. Table 1. 173 

The ability of ConusPipe to distinguish between conotoxins and other proteins from various 174 
organisms was assessed by screening the entire UniProtKB/Swiss-Prot database. Using the version 175 
released on June 2013 we examined a total of 540,261 protein sequences isolated from diverse 176 
organisms. The overall highest specificity was achieved using an overlap of the 4 methods (logit, 177 
LabelSpreading, Perceptron and Blastp, specificity = 99.92%) and the overlap of 3 methods 178 
(LabelSpreading, Perceptron and Blastp, specificity = 99.92%). These results are shown in Table 2. 179 
 180 
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 181 

 182 

Figure 2. Venn diagram illustrates the different combinations of methodologies used (single method, overlap or 183 
union of methods). A union of methods means that a conotoxin is predicted by one or more methods, for 184 
example, Union.4methods = predicted by Perceptron or Logit or Label Spreading or Blast. An overlap of methods 185 
means that the conotoxin is predicted by all the applied methods, for example, Overlap.4methods = predicted 186 
by Perceptron and Logit and Label Spreading and Blast. Abbreviations used: Blast – B, Logit – L, Label Spreading 187 
– S, Perceptron - P. Numbers indicate putative novel toxins identified by ConusPipe.  188 

189 
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Table 2. The specificity of the individual machine learning methods and their unions/combinations 190 
when searching results against the Uniprot/Swissprot non-conotoxin database and mean sensitivity 191 
for recovering all known conotoxin superfamilies.  192 

Method Mean sensitivity  Specificity 

Overlap.4methods 34.19%±0.32 99.92% 

Overlap.LSP 41.53%±0.35 99.90% 

Overlap.LSB 35.15%±0.32 99.87% 

Overlap.LPB 76.25%±0.37 99.57% 

Overlap.SPB 34.22%±0.32 99.92% 

Overlap.LS 43.18%±0.34 99.85% 

Overlap.LP 83.61%±0.32 99.53% 

Overlap.SP 41.68%±0.35 99.90% 

Overlap.LB 79.57%±0.35 98.32% 

Overlap.SB 35.52%±0.32 99.86% 

Overlap.PB 78.02%±0.36 99.57% 

Logit 87.61%±0.26 99.83% 

LabelSpreading (SemiS) 43.67%±0.34 99.49% 

Perceptron (NeuroNetWork) 85.96%±0.29 94.02% 

Blastp 87.10%±0.28 98.19% 

Union.4methods 95.73%±0.11 93.89% 

Union.LSP 90.31%±0.22 98.15% 

Union.LSB 95.25%±0.12 93.89% 

Union.LPB 95.73%±0.11 93.90% 

Union.SPB 95.73%±0.11 93.97% 

Union.LS 88.10%±0.26 98.17% 

Union.LP 89.96%±0.23 98.17% 

Union.SP 87.95%±0.25 99.41% 

Union.LB 95.14%±0.12 93.90% 

Union.SB 95.24%±0.12 93.99% 

Union.PB 95.05%±0.15 93.98% 

 193 

2.3. Identification of new conotoxin candidates  194 

To identify new conotoxin candidates, we assembled Conus transcripts from RNA-seq datasets 195 
derived from venom glands of 10 different Conus species using our previously published methods [4] 196 
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(see Table 3 for species used in this study). The resulting transcripts were prescreened for conotoxin 197 
homology against the Uniprot and Conoserver databases as previously published [4] and described 198 
under the methods section. The remaining transcripts were then used as inputs to ConusPipe. New 199 
conotoxin candidates were defined as those which were predicted as conotoxins by at least one of the 200 
4 models in ConusPipe, but lacked significant homology to known conotoxins using Blast against the 201 
Uniprot database [17].  202 

Since conotoxin gene superfamilies are generally found across multiple Conus species (hence, 203 
the term superfamily) we considered those sequences that lacked significant homology to known 204 
conotoxins but had high homology (Blastp e-value <1e-10) to sequences from at least two other Conus 205 
species examined here, as members of a new putative superfamily. 5,455 transcripts passed these 206 
criteria. In order to validate our predictions, we used NCBI-Blastp to search the 5,455 transcripts 207 
against the NCBI non-redundant (NR) protein database (August 2018 version), which includes 208 
recently published conotoxin sequences that were not yet available in Uniprot/conoserver at the time 209 
of original analysis (and even now) and also includes large numbers of uncharacterized molluscan 210 
sequences not available in Uniprot. Out of 5,455 transcripts, 225 had significant Blastp hits (e-values 211 
< 1e-4) against the NCBI-NR database. 92 transcripts had hits against other molluscan transcripts. As 212 
the majority of conotoxins are not found outside of the genus Conus and these transcripts could 213 
encode endogenous signaling/housekeeping polypeptides rather than polypeptides used for 214 
envenomation, these were removed from our final datasets. 109 sequences were identified as 215 
conotoxins. These were also removed from the final machine learning dataset and are provided in 216 
Supp. File 1 (“sequences.with.Blastp.hits.to.ncbi.nr.conotoxins”). Finally, 24 sequences had Blastp 217 
hits against non-molluscan species such as fish, tardigrade, sea anemone, worm, plant, bird. These 218 
were removed from the final dataset. 219 

A total of 5,230 sequences were left in our final dataset as new conotoxin candidates, 153 of these 220 
were identified by all 4 models, 739 of these were identified by 3 models, 1,711 of these were identified 221 
by 2 models, 2,627 of these were identified by 1 model (Figure 1). All of the 5,230 transcripts are 222 
provided in Supp. File 2 (“total.predicted.MLLabel.rmNrHit.rmImpCo.label.pep”). Using single 223 
linkage cluster analysis with a Jaccard Index [36,37] of 0.5 grouped 301 of sequences identified by at 224 
least 3 models into 107 clusters that are likely to represent novel conotoxin gene superfamilies (Supp. 225 
File 3, “Superfamily.cluster.0.5.seq”).  226 

The highest number of putative new sequences were identified in C. striatus. Blastp against 227 
Uniprot/Conoserver identified 99 toxin transcripts in C. striatus and 68 of these were also retrieved 228 
using the machine learning method (i.e., 21 of these were missed by machine learning, see discussion 229 
section below). 1,097 additional putative toxins were subsequently identified by machine learning, 7 230 
of these were confirmed as toxins by Blastp against the NCBI-NR database (Table 3).  231 

 232 
 233 
 234 
 235 
 236 
 237 
 238 
 239 
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Table 3. Conotoxin candidates expressed in 12 samples from 10 Conus species identified by Blastp 240 
and machine learning (ML).  241 
 242 

Conus species  No. of conotoxins 

identified by Blastp 

against 

Uniprot/Conoserver 

database 

No. of conotoxins 
identified by Blastp 
against 
Uniprot/Conoserver 
database also retrieved 
using ML 

No. of conotoxins 

identified by 

ML and 

subsequently 

identified as 

conotoxins by Blastp 

against NCBI  

No. of 

conotoxin 

candidates 

identified by 

ML only  

C. magus  119 78 24 980 

C. striatus 99 72 32 1065 

C. marmoreus 108 75 13 495 

C. marmoreus2 [10] 80 55 6 83 

C. textile 224 126 34 505 

C. gloriamaris 145 82 26 518 

C. imperialis 90 67 9 50 

C. virgo 159 104 36 701 

C. virgo2 [10] 96 65 3 60 

C. terebra 154 116 15 374 

C. coronatus [10] 286 206 15 72 

C. ebraeus [10] 100 77 12 102 

 243 

2.3. Transcripts identified using 3 or 4 out of 4 methods  244 

 In this study, we provide a list of all new conotoxin candidates from the venom gland 245 
transcriptomes of several cone snail species. We emphasise that these sequences require further 246 
experimental validation to confirm their designation as genuine conotoxins. This is discussed in more 247 
detail below. However, we propose that many of the transcripts identified by 3 out of 4 methods (739 248 
sequences) or by a combination of all 4 methods (153 sequences) are likely to represent genuine 249 
conotoxin sequences since they were independetly identified using different approaches. Several of 250 
these sequences exhibit clear hallmarks of conotoxins (presence of propeptides, found in multiple 251 
species, similar but distinct sequences found in different species, multiple cysteines in mature toxin 252 
region). An alignment of some of these is shown in Figure 3. Several sequences that were identified 253 
by 3 or more models but seem unlikely to represent genuine conotoxins are also shown. These 254 
typically exhibit a long series of cysteine repeats, several vicinal cysteines and/or series of 255 
methionines (M) in the signal sequence. In future our model could be further refined to exclude such 256 
sequences as candidates.  257 

 258 
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 259 

Figure 3. Comparative alignments of selected sequences identified by at least 3 out of 4 methods that are (A) 260 
likely or (B) not likely to represent genuine novel conotoxins. Cysteines are highlighted in yellow, signal 261 
sequences, pro- and postpeptides and predicted mature toxins are underlined in purple, green and blue, 262 
respectively, as shown on top of panel A. Sequence labels (contigs) correspond to those provided in Supp. File 263 
2.  264 

 265 

3. Discussion 266 
Previous approaches for toxin discovery have been alignment based, using regular expressions, 267 

Blast and/or HMMER to identify new members of known conotoxin superfamilies [5,15-17] . Because 268 
conotoxins are hyperdiverse, these approaches are intrinsically limited. In an attempt to cast a wider 269 
net for discovery, we have created a machine learning based pipeline, ConusPipe, that utilizes 270 
functional characteristics of conotoxins to identify new conotoxin candidates that have no significant 271 
sequence homology to conotoxin sequences currently available in reference databases. 272 
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By using more than one machine learning model, we expected to see that an ensemble of 273 
different models can maximize the prediction power. Indeed, as determined by benchmark analyses, 274 
the highest sensitivity is achieved by the union of 3 or more methods and the highest specificity is 275 
achieved in the overlap of 3 or more methods.  276 

ConusPipe allows users to choose different combinations of methods according to their 277 
requirement on discovery specificity and sensitivity (Table 1). In addition to developing machine 278 
learning, we demonstrate that using Blast to search candidate sequences from different Conus species 279 
against each other provides better performance for conotoxin superfamilies that contain sequences 280 
that don’t satisfy the hypothesis of having all 3 traits. However, this approach is less powerful for 281 
superfamilies that are limited to a small number of species and only works if more than one 282 
transcriptome is to be analyzed. 283 

We would like to note that, for best performance, ConusPipe should be used in combination with 284 
standard Blast-based annotation methodologies as ConusPipe relies on the presence of full-length 285 
sequences (containing N-terminal signal sequences) and will not work for truncated contigs. 286 
Furthermore, several conotoxin gene superfamilies reported in Uniprot/Conoserver have low SignalP 287 
values (D value of < 0.45). These would also be missed by our pipeline. Table 1 provides information 288 
on how many conotoxins which have significant homology to sequences in Uniprot/Conoserver 289 
database could also be retrieved by ConusPipe (average value for recovery: 68 %, ranging from 56 % 290 
for C. textile – 77 % for C. ebraeus). 291 

We provide a large set of new conotoxin candidates and a bioinformatic pipeline that is freely 292 
available and can be applied to any newly sequenced venom gland. No doubt our approach also 293 
identifies false positives, particularly when only a single or a combination of two methods is 294 
employed. Thus, using our method without further validation is not suitable for defining the venom 295 
composition of a species. What it provides is a new tool to identify candidate toxin transcripts that 296 
are not able to be detected by homology-based methods. Generating comprehensive databases of all 297 
putative toxin candidates expressed in a venom gland will empower current mass spectrometric toxin 298 
sequencing approaches [7]. Using mass spectrometry, candidate transcripts can then be verified and 299 
subjected to functional characterizations.  300 

4. Conclusions 301 
Using ConusPipe, we identified 5,230 new conotoxin candidates from 1,359,647 transcripts 302 

derived from venom gland transcriptomes of 10 Conus species. None of these candidate conotoxins 303 
has significant homology to any known conotoxin in the Uniprot database, although like known 304 
conotoxins, most candidates have an N-terminal signal sequence, a characteristic propeptide spacer 305 
region and a single copy of a mature peptide at the C-terminus. Moreover, we have shown that 306 
several of these candidates share high homology to newly published conotoxins in the NCBI-NR 307 
molluscan database. In conclusion, our approach opens new avenues for the discovery of novel 308 
contoxin transcripts from cone snails and other venomous animals with similar venom repertoires.  309 

 310 

5. Materials and Methods  311 
5.1. Transcriptome sequencing 312 
Total RNA was isolated from venom glands using TRIzol® Reagent (Life Technologies) or the 313 

RNeasy kit (Qiagen) following the manufacturers’ instructions. RNA integrity, quantity and purity 314 
were determined on a 2100 Bioanalyzer (Agilent Technologies). cDNA libraries were prepared and 315 
sequenced on an Illumina HiSeq 2000 instrument (Sanger/Illumina 1.9 reads, 101 bp or 125 bp paired-316 
end). Publically available Illumina datasets were used for the venom gland transcriptomes of C. 317 
marmoreus (specimen 2), C. virgo (specimen 2), C. coronatus and C. ebraeus [10].  318 

Adapter clipping and quality trimming of raw reads were performed using fqtrim software 319 
(version 0.9.4, http://ccb.jhu.edu/software/fqtrim/) and PRINSEQ (version 0.20.4 [38]). After 320 
processing, sequences shorter than 70 bps and those containing more than 5% ambiguous bases (Ns) 321 
were discarded. De novo transcriptome assembly was performed using Trinity version 2.0.5 [39] with 322 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 September 2018                   doi:10.20944/preprints201809.0587.v1

Peer-reviewed version available at Toxins 2018, 10, 503; doi:10.3390/toxins10120503

http://dx.doi.org/10.20944/preprints201809.0587.v1
http://dx.doi.org/10.3390/toxins10120503


 

 

a kmer size for building De Bruijn Graphs of 31, a minimum kmer coverage of 10 and a minimum 323 
glue of 10. Assembled transcripts were annotated using Blastx ((NCBI-Blast-2.2.28+, [40]) against 324 
conotoxin sequences extracted from the Conoserver [5] and UniProt databases [34]. 325 
 326 
5.2. Development of ConusPipe 327 

ConusPipe proceeds by first extracting 16 features (see feature explanation below) from known 328 
conotoxin sequences (from the ConoServer [6] and Uniprot databases) and non-conotoxin Conus 329 
transcripts to make the training dataset. Sequences are required to contain a signal sequence as 330 
determined by SignalP [41]. Next, the 16 features extracted from Conus transcripts of 10 species, which 331 
have no homologues in current reference database (the combined ConoServer and UniProtKB 332 
database) are used as real test data to run the machine learning methods to predict whether a certain 333 
input transcript is conotoxin. All the transcripts predicted by any of the 4 method are output by the 334 
pipeline as putative new conotoxins. 335 
 336 
5.2.1 Feature Selection and Classifiers 337 

We employed 16 features for the machine learning models: signalP D value for signal sequence; 338 
cysteine percentage; molecular weight; percentage of positively/negatively charged amino acids; and 339 
isoelectric point for all three regions of the precursor sequence (signal sequence, propeptide and 340 
mature toxin). All features are continuous re-normalized to lie between 0 and 1 (Figure 1A). The 341 
features are mainly chemical characters of amino acids in the three different parts of conotoxin 342 
sequence. The motivating hypothesis is that even though conotoxins evolve very rapidly they must 343 
still share similar chemical characters in amino acid composition, since they carry out similar 344 
functions, e.g. bind transporters and receptors. For example, the three parts of conotoxin sequence - 345 
signal sequence, propeptide and mature toxin carry out different functions in conotoxin secretion 346 
process in the cell, so their charge distributions are stereotypical and different. The signal sequence 347 
is mainly hydrophobic, while the amino acids in propeptide are mainly charged, and the mature toxin 348 
is somewhat intermediate as regards charge distribution. To train the models we first ran signalP on 349 
a training dataset consisting of known conotoxin/nonconotoxin sequences to get the signalP D value 350 
for each known sequence (Petersen et al. 2011). Next, we calculated the cysteine percentage, 351 
molecular weight, percentage of positively/negatively charged amino acids and isoelectric point for 352 
signal sequence, propeptide and mature toxin, respectively. The pipeline uses the 16 extracted 353 
features in training dataset to train the logistic regression model, LabelSpreading model and 354 
Perceptron model using the Python scikit learn package (Pedregosa et al. 2011). The accuracy under 355 
different regularization parameters of the three models were tested by cross validation with training 356 
dataset from known conotoxin and nonconotoxin sequences. 357 
 358 
5.2.2. Cross validation 359 

4,950 known conotoxin sequences (from ConoServer and Uniprot/Swissprot) and 5,2613 non-360 
conotoxin Conus transcripts with matched sequence length were first split into 10 equal bins, and 361 
then sequentially 1 tenth of the data was taken as the test set and the remaining other 9 tenths were 362 
used for the training set. The three models were trained under different regularization parameters 363 
and evaluated with the test set in 10 iterations. For the logistic regression model, the regularization 364 
parameter we tested is slack number C, which is the inverse of regularization strength. . We tested 365 
this parameter from 0.001 to 10**10. For the LabelSpreading model, we chose knn as the kernel 366 
function, so the regularization parameter we tested is n_neighbors, which was tested from 1 to 15. 367 
For the Perceptron model, the regularization parameter we tested is n_iter, the number of passes over 368 
the training data, which we tested from 5 to 70. The plots of accuracy versus regularization parameter 369 
of different models are shown in Supp. Figure 2. 370 

 371 
5.2.3. Discovering new putative conotoxins and conotoxin gene families 372 
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Paired-end RNAseq data from 10 Conus species were generated by Illumina HiSeq 2000 373 
platform (Table 4). RNAseq reads were assembled using best practice Trinity settings, annotated with 374 
Blastx against our reference dataset, and all the Conus transcripts which do not have homologous 375 
sequences in the current reference databases were selected and 6-frame translated into peptide 376 
sequences. These peptide sequences were then used as the input dataset for ConusPipe to drive 377 
machine learning models built in previous steps to predict whether they are conotoxins. Cross-378 
species Blastp is also used on all putative peptide sequences that have a signal sequence as an 379 
independent method to predict putative conotoxin candidates. The pipeline output all input 380 
transcripts which were predicted as conotoxins.  381 

We then used NCBI- Blastp to search all putative toxin transcripts against the NCBI non-382 
redundant (NR) protein database (August 2018 version), which includes recently published 383 
conotoxin sequences that were not yet available in Uniprot/conoserver at the time of original analysis. 384 
Sequences with significant Blastp hits were excluded from final datasets (e-values < 1e-4).  385 

Then all by all Blastp and single linkage cluster analysis were conducted among the new 386 
conotoxins, and the new conotoxins that shared at least 50% hit connections with one another were 387 
designated as to be in the same superfamily. 388 

 389 
 390 
Table 4. RNAseq Data sets from 12 samples in 10 Conus species used in the discovery pipeline. 391 
 392 

 393 
 394 
 395 
 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
 404 
 405 
 406 
 407 
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Conus Species Illumina HiSeq 2000 
Number of reads  

Read length (nt) 
C. magus 85,877,500 101 
C. striatus 101,170,402 101 
C. marmoreus 53,901,510 125 
C. marmoreus2 [10] 50,652,396 101 
C. textile 63,365,620 125 
C. gloriamaris 28,783,428 125 
C. imperialis 30,784,548 125 
C. virgo 30,038,902 125 
C. virgo2 [10] 31,056,732 125 
C. terebra 31,180,460 125 
C. coronatus [10] 27,927,952 125 
C. ebraeus [10] 19,556,244 125 
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Appendix 418 

Supporting Table 1. The sensitivity for recovering all known conotoxin superfamilies by different combinations 419 
of methods. 420 

Supporting File 2. ConusPipe discovered 109 putative novel conotoxins confirmed by Blastp against the 421 
NCBI NR database. 422 

Supporting File 1. ConusPipe discovered 5,230 putative novel conotoxins with no significant sequence 423 
homology in any current reference database (Unipro/Conoserver/NCBI NR). 424 

Supporting File 3. Cluster analysis of putative new gene superfamilies. 425 

426 
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 427 

Supporting Figure 1. Box plot shows that the sensitivity varied among different combinations (single 428 
method, overlap or union of methods) of methods used. The union of different methods can achieve higher 429 
sensitivity. Union of methods means that the conotoxin is predicted by one method or another, as described 430 
in the caption for Figure 1. 431 

432 
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 433 

 434 
Supporting Figure 2. Plot of accuracy vs regularization parameter settings in each machine learning model. (A) 435 
Accuracy vs hyper-parameter C in logistic regression model. No overfitting/under fitting was observed. When 436 
choosing C= 10**10, the logit model achieved the best accuracy and sensitivity. (B) Accuracy vs hyper-parameter 437 
n_neighbors in LabelSpreading model. No overfitting/under fitting was observed. When choosing n_neighbors= 438 
3 and alpha=1, the LabelSpreading model achieved the best accuracy and sensitivity. (C) Accuracy vs hyper-439 
parameter n_iter in Perceptron model. Overfitting was observed between n_iter =12 and n_iter=25, between 440 
n_iter =30 and n_iter=50. When choosing n_iter= 5, the Perceptron model achieved the best accuracy and 441 
sensitivity. 442 

 443 

 444 
445 
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