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Abstract: In computer networks, loss of data packets is inevitable, in particular, because of the 8 
buffer memory overflow of at least one of the nodes located on the path from the source to the 9 
receiver, including the latter. Such losses associated with overflows are hereinafter referred to as 10 
congestion of network nodes. There are many ways to prevent and eliminate overloads; these 11 
methods, in the majority, are based on the management of data flows. A special place is taken by 12 
the maintenance of packages, taking into account their priorities. The article considers a number of 13 
original technical solutions to improve the quality of control and reduce the required amount of 14 
buffer memory of network nodes. The ideas of these solutions are quite simple for their 15 
implementation in the development of appropriate software and hardware for telecommunication 16 
devices. 17 

 18 
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 21 

1. Introduction 22 

One of the known ways to control the flow of data is explained in Fig. 1, on which a fragment of the 23 
computer network is shown and the trace of the data stream transmitted through it is indicated[1]. 24 
The packets are transferred from the node A - the data source (transmitter) to the node B - the data 25 
receiver through the intermediate nodes, for example, switches and / or M1-M3 routers[2]. 26 

2. Materials and Methods 27 

Method 1: Control the flow of data adjusting the length of pauses between packets 28 

Prototype Mode 1 29 

In this example, the node M2 is overloaded, its input buffer memory (in the following, for brevity, 30 
the input buffer) is completely or almost completely filled with incoming data packets. New 31 
packages, at least some of them, are lost due to lack of free space in the buffer[3]. 32 

During the data transfer, the receiver notices a persistent shortage of arriving packets (for example, 33 
by tracking their sequence numbers) and sends a control packet containing the XOFF command to 34 
suspend the data stream to the data source A. The address of the data source is known to the 35 
receiver, since the data packets coming to it contain information about the addresses (or directly 36 
addresses) of devices A and B[4]. Sending requests for retransmission of lost packets is also sent. 37 

When the XOFF command is received, the data source completely stops sending packets and 38 
resumes it, either after some time specified in the data exchange protocol, or after receiving the 39 
renewal of transmission from the XON command receiver [1]. 40 
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This method has several drawbacks. 41 

First, data flow control is quite crude (the flow is either there or it is not). The delay in the execution 42 
of commands can lead to unjustified idle of the transmitter and the periodic occurrence of new 43 
overloads, in which some of the packets[5], including those belonging to other flows, will be lost[6]. 44 

Secondly, with prolonged overload, the receiver sends the transmitter a series of identical stopping 45 
commands, which clogs the communication channel with a large number of repetitive service 46 
packets[7]. 47 

Thirdly, the commands for suspending the transmitter are generated by the receiver only if the 48 
number of packets rejected due to buffer overflows is large enough. Otherwise, if one responds to 49 
insignificant packet losses, the transmitter will receive and execute suspense commands without any 50 
special reason. 51 

Fourth, the suspension of the transmitter increases the average and maximum packet delay on the 52 
route, which can reduce the quality of service (QoS) parameters specified in the contract between the 53 
user and the provider [8]. 54 

The idea of method 1 55 

 56 

 57 

Figure 1.Traditional way to control the flow of data 58 
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 59 

Figure 2. Improved way to control the flow of data: a - if there is a danger of overflow of the buffer 60 
memory of the node M2; b - during normal operation 61 

 62 

The proposed solution (Figure 2) largely eliminates these shortcomings due to a smooth and 63 
"advanced event" adjustment of the data transmission rate by the source. The speed is controlled by 64 
changing the length of pauses between packets: the longer the pause, the lower the data transfer rate, 65 
and vice versa[9]. Note that the presence of a pause does not mean that there is no signal in the 66 
communication line - the signal is present constantly, but there are no flag codes indicating the 67 
beginning of the packet, or vice versa - a continuous stream of these codes is transmitted[10]. 68 

 In the one shown in Fig. 2, and the pause situations between packets transmitted on the route A-B 69 
are relatively small, or in other words, the data rate of the data placed in the packets is relatively 70 
large, in the sense that the buffer memory level of the intermediate node M2 is steadily increasing, 71 
which may result in buffer overflow[11]. Buffer memory for clarity is shown in the figure as a tank 72 
with liquid replenished by the input stream of packets, while the output stream tends to reduce the 73 
level of its filling[12]. 74 

In this case, the node M2 registers the operation of the second upper level sensor (the comparator of 75 
read and write addresses of the buffer memory block). This means that the level of filling is close to 76 
critical, therefore, it is necessary to reduce the rate of data flow to the buffer. To reduce the speed, the 77 
node M2 sends to the node A a service packet, a command to increase the pauses between 78 
packets[13]. 79 

In response to this command, node A increases the duration of pauses between packets (Figure 2, b). 80 
The degree of increase can be stipulated in the protocol of data exchange between nodes of the 81 
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network or in the explicit form indicated in the service package. After increasing the pauses, the 82 
buffer memory level of the M2 node starts to decrease, if there is no other reason for its increase[12]. 83 
Upon reaching the central or lower mark, the node M2 sends to the node A the command to reduce 84 
the duration of the pauses, the level of the buffer filling again begins to increase, etc. 85 

Thus, in an ideal case, the buffer memory of node M2 does not overflow and does not emptied, the 86 
speed of data output from the buffer memory remains constant, the rate of data arrival adapts to it, 87 
making slow fluctuations inherent in conventional automatic control systems[14]. 88 

If there are several data sources, then to prevent overload the work of the most active one, but not 89 
the most priority, is slowed down; if the sources are equally active, then the impact on those with 90 
low priorities is primarily affected[8]. 91 

In the development of the described method, it is proposed to take into account, not only the level of 92 
the buffer completion, but also the dynamics of its change when forming commands for decreasing 93 
or increasing the intensity of the flow[15]. This allows eliminating unnecessary flow control 94 
commands when the buffer fill level is high, but the history of the process is such that there is a 95 
steady tendency to stop its growth and the subsequent decrease (and vice versa). Essentially, along 96 
with absolute reference, the rate of change in the rate (acceleration) of the motion of the level of 97 
buffer memory filling is considered[16]. 98 

 99 

Method 2: Managing the flow of data by notifying the packet source of causes of overload 100 

Prototypes of method 2  101 

Let's continue our consideration of the known methods of data flow control (Fig. 3) using the same 102 
network model as before (Figure 1, 2). The data source A transmits a series of data packets to the 103 
receiver B. In response to each packet or to a group of packets, the receiver B sends the ACK or 104 
NACK response packets to the source A. The ACK response acknowledges the successful reception; 105 
the NACK response is a request to retransmit a single packet or group of packets[14]. 106 

The first prototype of method 2. In principle, even such a simple feedback (using ACK or NACK 107 
response packets) allows detecting and eliminating network congestion on the A TO B path[17]. 108 
Indeed, if the data source is increasing the packet rate or at some fixed rate starts to receive an 109 
excessive number of retransmission requests, then, most likely, at least one of the nodes of the route 110 
entered the overload mode[18]. 111 
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 112 

Figure 3. Informing the data source A about the upcoming or available overload of the input buffer 113 
of the M2 node of the network: a - packet propagation paths b, c - packet structure D and ACK 114 

(NACK) 115 

 116 

In this case, the data source drastically reduces the packet transmission rate or (and) increases their 117 
length to reduce the share of the overhead bits that make up the headers in the data stream[19]. In 118 
the future, the data source gradually either by random trial and error increases the data transmission 119 
speed, moving to the permissible upper limit, taking into account some permitted speed increase 120 
margin. Such a method is called a "slow start". 121 

Of course, packet loss is possible, not related to the overload of network nodes, for example, due to 122 
uncorrectable errors caused by interference in the communication line, but in this case we are not 123 
interested in such losses[20]. 124 

The considered method of data flow control does not prevent the forthcoming loss of packets, but 125 
allows reacting only to the accomplished fact of overloading of the intermediate node of the network 126 
or the data receiver[21]. This is its main defect. 127 

The second prototype of method 2. The idea is to warn in time the data source A about the threat of 128 
overloading one or several nodes along the route A In the propagation of data packets D. This 129 
warning is the bit Z included in the header of the ACK or NACK response packet[22] (Figure 3, c). 130 

In the example shown in Fig. 3, the processor of node M2 anticipates overload, observing the 131 
steadily increasing level of buffer filling, as it was shown on its model, shown in the right part of Fig. 132 
2, a; (other events are possible, such as predecessors of congestion[23]. 133 
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In packages passing through the node M2, more precisely, in the header of each of them, there is 134 
information sufficient for its routing, for example, in the form of IP addresses of the source and the 135 
data receiver[24]. Viewing this information allows the M2 node to identify the "culprit" of the 136 
expected overload, from which the most intensive flow of packets originates. There can be several 137 
such. 138 

Suppose that the main "culprit" of the impending congestion is the data source A. This source, like 139 
all others, transmitting data packets D, sets the Z bits to zero. With normal data transmission on the 140 
route A TO B, these bits remain in the zero state[25]. 141 

If the conditions for the upcoming overload are detected and knowing that the largest number of 142 
packets per unit of time originate from the source A, the node M2, when transmitted along the route 143 
A TO B, marks all packets or a part of them with their Z = 1 bits that inserts in the headers, as shown 144 
in Fig. 3, b. The data receiver B returns the received Z = 1 bits to source A, including them in the 145 
headers of the response packets ACK and NACK (Figure 3, c). 146 

Finally, data source A receives bits Z = 1 and sharply reduces the data transfer rate to node M2[26]. 147 
Further, the data source A gradually restores the original data flow parameters or even exceeds the 148 
previously reached data transmission rate until a new series of bits Z = 1, etc., is detected (here, too, 149 
the "slow start" mentioned earlier is applied). Having determined the allowable upper speed limit, 150 
the data source takes a small step down to create some margin, guaranteeing the route from 151 
overload[27]. 152 

This way of preventing or eliminating overloads is satisfactory, but not optimal. Its disadvantage is 153 
that, without knowing the reason for the overload of node M2, the source of data A is unable to 154 
adequately respond to it. So, the "natural reaction" 155 

- a sudden and sharp decrease in the data transfer rate - is unacceptable for many applications. But if, 156 
for example, the data source A knew that the reason for the upcoming overload was that the 157 
processor of the M2 node could not cope with header stream processing, then it could, without 158 
reducing the transfer rate of payload data, increase the packet length to reduce the intensity of this 159 
flow[28]. 160 

The problem solved by the method 2 discussed below is thus not only to prevent the source of data 161 
on the impending overload, but also to inform him of its cause. Then the source could choose the 162 
most appropriate "line of behavior" in this situation[29]. 163 

The idea of method 2 164 

The problem is solved by extending the single-digit sign Z to several bits. Let us explain what has 165 
been said by example, accepting some assumptions. 166 

Suppose that route A-B (Figure 3) is a virtual telephone link between devices A and B, for example, 167 
between computers or IP telephones. The technology of VoIP (Voice over IP) is used. Devices A and 168 
B contain codecs such as AMR (adaptive multi rate)[30]. The codec generates compressed speech 169 
fragments every 20 msec and encodes data from one of eight speeds in the range from 4.75 to 12.2 170 
kbps. Further, as before, one-way data transfer from device A to device B is considered[31]. 171 

After the connection A-B is established, the data source generates packets, each of which contains a 172 
header and a data field. The data field of the packet is filled with fragments of speech from the codec 173 
output, and then the packet is sent along the communication line to node M2[32]. The codec, if the 174 
bandwidth of the A-B channel allows, is initially set to the maximum coding rate to ensure the 175 
highest speech intelligibility recovered from the data input to receiver B. The Z bits of the sent 176 
packets are set to zero. 177 
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In the event of detection of the danger of overload by some node located along the A TO B route, this 178 
node (in our example, the M2 node) inserts some indication Z in the headers of packets originating 179 
from the most active source (A), as described earlier, taking into account that this feature contains 180 
not one, but at least two bits. This attribute is returned to the source; as a result, the processor of 181 
node A receives information about the reason for the upcoming overload. 182 

The node M2 may experience overloading for at least one of the following reasons. 183 

1. Narrowing the bandwidth (bandwidth) of the channel A TO B due to the appearance of a 184 
"bottleneck." This can happen, for example, because a part of the dedicated link A TO B of the 185 
linkage between the nodes M2 and M3 (Figure 3) has decreased. This decrease may be due to various 186 
reasons. Let's name two of them. 187 

- The previously unobtrusive competing data flow along the route M4 M2 M3, which uses the 188 
same channel M2 to M3, as the route A TO B, has increased to a significant level earlier. As a result, 189 
the M2 node redistributed the strip of this channel to the detriment of the route A TO B . 190 

- The M2 node has changed the type of signal modulation in the M2 to M3 channel, reducing the 191 
transmission rate due to the deterioration of the signal-to-noise ratio in this channel. 192 

2.  The M2 node processor for some reason or other has stopped coping with the volume of work 193 
on analyzing packet headers following the route A TO B. 194 

The first and second reasons above for the approaching overload are displayed respectively by the 195 
codes Z = 012 and Z = 102, the absence of an overload hazard corresponds to the code Z = 002, both 196 
causes simultaneously generate the code Z = 112. The code Z = 112 can Form one node if it 197 
simultaneously observes both reasons for the upcoming overload, or by two or more nodes located 198 
along the A to V. 199 

So, the node M2 can insert the Z = 102 codes into the headers of the A B packets that pass along the 200 
route, because the processor of this node cannot cope with the volume of work on the analysis of 201 
headers. These packets are transmitted to the M3 node, which is supposed to reveal a decrease in the 202 
M3 to B channel bandwidth allocated to the A to B route. In this case, the M3 node replaces the Z = 203 
102 codes in the packets passing through it with Z = 112. These codes, as described, reach the 204 
receiver B and return to the data source A as part of the headers of the response packets (Figure 3, c). 205 

The optimal response of the data source to the identified causes (1 or 2) of overloading may be this. 206 

The narrowing of the channel bandwidth A to B (reason 1) should cause a corresponding decrease in 207 
the total data rate (both useful and service) of the source A. To estimate the rate reduction, it would 208 
be desirable to use a multi-bit code Z in which this degree is reflected. However, in this case there is 209 
no such possibility, therefore the processor of the data source A switches its codec to the mode of the 210 
lowest encoding speed (out of eight possible - from 4.75 to 12.2 kbps). If the packet length is 211 
unchanged, and the lowest 212 

The frequency of their succession decreases due to the increase in pauses between them. At the same 213 
time, the delay in the formation of the packet increases due to the increase in the time it is filled with 214 
compressed fragments of speech. Thus, the data transfer rate (both useful and service data) is 215 
reduced by source A, and if the narrowing of the band is not too large, then there is no danger of 216 
overloads. 217 

In the future, to restore the high quality of voice transmission, the coding rate and, correspondingly, 218 
the packet repetition rate gradually increase to the experimentally detected limit, in which there is 219 
still no danger of overloading the network nodes on the A to B 220 
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Alternative response of the data source to the narrowing of the channel band A to B also provides for 221 
using the lowest encoding rate. When this keeps the packet repetition rate, and their length 222 
decreases. The rate of transfer of useful data decreases, the service data flow remains unchanged. 223 

Finally, the strongest reaction is possible, at which the coding rate is set to the minimum, and the 224 
length of the packets increases to such an extent that their average delay approaches the permissible 225 
limit (not more than 100 ms [3]), after which, during a telephone conversation, begins eavesdropped. 226 
Such a reaction is the maximum that can be done in this situation. 227 

After exiting the crisis, the coding rate gradually increases, and the length of the packets decreases 228 
with this in time (to reduce the delay of their transmission along the route A to B). This process of 229 
two-dimensional optimization of flow parameters is completed when the boundary is reached, after 230 
which the risk of overloading again arises. 231 

Overloading the processor of one or more nodes on the A to B route (reason 2) is eliminated by 232 
reducing the intensity of the header stream that it (they) has to process. For this, while maintaining a 233 
high coding rate, the data source increases the length of the transmitted packets to such an extent 234 
that their average propagation delay along the A to B path does not exceed the previously 235 
mentioned allowable limit (100 ms). 236 

Thus, the correct response to the overload warning in many situations allows to eliminate the danger 237 
of overflow of input buffers and, what is essential, to maintain high quality of voice transmission. 238 

 239 

Method 3: Control of the flow of data with compensation of the inertia of the feedback loop 240 

Prototype of method 3 241 

One of the simplest ways to control the flow of data transmitted between the nodes of the network J1 242 
and J2 (Figure 4, a) is as follows. 243 

In steady state, data packets are accumulated in the output buffer of node J1 for transmission along a 244 
certain route, possibly through other network nodes (not shown in the figure) to the input buffer of 245 
node J2. Both buffers are executed in the form of blocks of memory of type FIFO. 246 

The flow of data packets passing through the system from the left to the right has the character of 247 
"machine-gun queuing", since the series of packets are transmitted by the J1 node via the 248 
communication line only with the permission of the receiver, node J2, which "causes fire to the 249 
extent possible". The instantaneous packet transfer rate inside the series is C; the average speed is 250 
less than the instantaneous one and depends on the average ratio of the pauses between packets to 251 
the length of the series. The unevenness of the arrival of packets in the buffers of the nodes J1 and J2 252 
causes fluctuations in the levels of their filling. The challenge is to protect these buffers from 253 
overflow or emptying. 254 

Further, this task is solved only with respect to the input buffer of the node J2, however, the output 255 
buffer of the node J1 can be protected in a similar way by introducing feedback from the source of 256 
the packets sent to it (in the figure this source and its feedback are not shown). Such a successive 257 
chain with feedbacks between neighboring elements can be arbitrarily long. Each transmitting port 258 
thus issues a stream of packets to the communication line only if there is a transmission permission 259 
previously received from the destination of the XON command. 260 

The input buffer of node J2 contains a pointer to the threshold level F of its filling. In this example, 261 
the input buffer of node J2 contains Q packets. At the moment the current level Q overcomes the 262 
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threshold level filling in the F upward side (Q < F), the node J2 transfers to J1 the packet with the 263 
XOFF command of the transmission suspension. Similarly, at the moment overcoming the current 264 
level Q filling the threshold level F downwards (Q>= F), the J2 node sends a packet to the J1 node 265 
with the XON resumption command. 266 

 267 

Figure 4. Flow control scheme: a - traditional; b - the proposed 268 

The problem is that flow control can be very inertial.The response time of the system to the XON and 269 
XOFF commands is determined by the delay T = T1 + T2, where 270 

T1 - the time from the instant the command is generated by the node J2 until the previously stopped 271 
process of sending packets by the node J1 resumes or the previously activated process of issuing 272 
packets by the node J1 is suspended; 273 

T2 - the time of packet transmission from the output buffer of node J1 to the input buffer of node J2. 274 

Thus, if the increasing filling level of the input buffer of the node J2 has overcome the threshold 275 
value F, then the generated XOFF command will stop the flow of packets at the input of the node J2 276 
only through the time T. During this time, the input buffer of the node J2 continues "by inertia "To 277 
replenish. 278 

Similarly, the first packet after issuing the XON command to resume the previously-stopped stream 279 
will arrive at the input buffer no earlier than the time T. During this time, the level of filling the input 280 
buffer of the node J2 "by inertia" is reduced due to the outflow of data from it. 281 

If the capacity of the input buffer of node J2 is small, then the inertia of the control can lead to 282 
overflow or emptying. In the worst case, after the moment of exceeding the threshold level F (Q < F, 283 
the command XOFF is issued) and at the time no outflow of data from the input buffer of the node J2 284 
during the time T in this buffer "by inertia" will come with C*T packets. 285 

Similarly, if there was no inflow of data, after the moment of crossing the threshold level F in the 286 
direction of decrease (Q  = >F, the command XON is issued) and with continuous data flow from the 287 
input buffer of node J2 during the time T from this buffer "on inertia "will be selected C*T packets. 288 
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Thus, to protect against overflow and emptying, the input buffer of node J2 should be designed to 289 
store at least 2С*Т packets; the threshold F must correspond to its middle. 290 

The resulting estimate of the minimum buffer size is disappointing. Some switches contain several 291 
hundred buffers, so the actual task of reducing their volume is actual. In high-speed networks, the T 292 
value reaches tens and hundreds of microseconds. The value of C is of the order of 10 Gbit / s. As a 293 
result, the buffer size 2С Т = 2 1010 10   –4 is several megabits. The goal of the next 294 
solution is to reduce the buffer size by half thanks to smoother flow control. 295 

 296 

The idea of method 3 297 

Smoothness of control is achieved by fragmentation of series of packets and more intelligent 298 
algorithm of forming commands XON and XOFF to resume and stop transmission of the stream. 299 

The circuit shown in Fig. 4, b, [4] contains the same components and has the same parameters (T, C, 300 
Q), which have just been discussed. The volume of the input buffer of the node J2 is denoted by B. 301 
The new element of this node - the history memory of the control - is shown for clarity in the form of 302 
a shift register RG, although it can be executed programmatically using a set of memory cells. 303 

For definiteness, suppose that the flow of ATM cells is transmitted via the communication channel 304 
[5]. (The term "cell" is equivalent to the term "packet".) This stream is continuous - after the last bit of 305 
the previous cell, the first bit of the next is transmitted. The length of the cell is 53 bytes. The cells 306 
follow the line of communication with a period of 40 ns. This does not mean that the proposed idea 307 
is applicable only to ATM technology - it is easy in the following description to operate with strictly 308 
prescribed quanta of time with duration of 40 ns. 309 

Suspension of the flow in this case is conditional (a continuous stream of cells follows the connection 310 
line always) and means that the output of the nodes J1 accumulated in the output buffer really stops, 311 
but instead of them, bypassing this buffer, empty cells of the same length are output into the 312 
communication line, as well as cells with data. Empty cells can be inserted once or form more or less 313 
lengthy sequences. Blank cells are rejected by the J2 node and do not enter its input buffer. 314 

Suppose that the time T = T1 + T2 = 2 μs, that is, corresponds to the passage of 50 cells. The rate of 315 
issuing commands XON or XOFF is equal to the rate of arrival of cells (empty and non-empty) at the 316 
input of node J2, that is, commands are issued every 40 ns. The commands issued by the node J2 in 317 
response to each incoming cell on the communication line affect the input stream after a time of 50 318 
cells - this is the inertia of the control loop. 319 

Simultaneously with issuing the XON or XOFF command from node J2 to node J1, it is stored as the 320 
corresponding bit (0 or 1) in the right-hand bit of the shift register RG, the remaining bits are shifted 321 
one position to the left, the leftmost bit is pushed out of the register. Thus, in the RG register, the 322 
history of issuing control commands for the next 50 cycles (the periods of succession of the cells) is 323 
displayed. 324 

Each XON or XOFF command when entering J1 is responsible for making a decision to issue one 325 
(regular) cell either from the output buffer of this node (when receiving the XON command) or from 326 
a source of empty cells to bypass the output buffer (upon receipt command XOFF). 327 

The code in the RG register is analyzed by the J2 node. Counting the number of zeroes contained in 328 
it, the node predicts the number of cells with data that will go to its input buffer within the next 50 329 
cycles. The single bits in this register correspond to the number of empty cells that will arrive at the 330 
input of node J2 during this period and will be destroyed by them. 331 
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The formation of XON or XOFF commands is as follows. Let NON be the number of zero bits in the 332 
RG register, B the size of the input buffer of the node J2, Q the current size of the queue. Then: 333 

if Q + NON В, then the XOFF command is generated; otherwise, the XON command.  334 

Indeed, in the worst case, when there is no outflow of data from the input buffer of the node J2, the 335 
expected level of its filling is equal to the current level of Q, increased by the number of NON cells 336 
that are actually already in transit and will surely be received in the next 50 cycles. The expected 337 
level of buffer filling Q + NON should not exceed its size B. If this condition is met, then the thread 338 
should not be suspended, so the XON command is generated. In the opposite situation, when the 339 
predicted level of buffer filling exceeds the volume of the buffer, stop the flow for at least one clock 340 
cycle, that is, generate the XOFF command. 341 

The commands, of course, will have an effect only after 50 clock cycles, but due to the "smallness" of 342 
their action and the integration of many commands in time, the total effect is expressed in that the 343 
fluctuations in the buffer fill level become smaller, and the necessary buffer memory capacity is 344 
reduced by two times. 345 

So, in the steady state, the average level of buffer memory of the J2 node is close to V / 2, in the 50-bit 346 
RG register the average number of zeros and ones is approximately the same. Suppose that B = 50, 347 
the average level is 25. Then the stocks in relation to overflow and emptying the buffer will be 25 348 
cells in each direction. This is consistent with the fact that the average number of arriving cells 349 
expected in the nearest time interval T is 50/2 = 25. 350 

In the prototype (Figure 4, a), in the worst case (in the absence of data outflow from the buffer), at the 351 
time T, 50 cells arrive at the input of the buffer of node J2. Similarly, in the opposite situation, in the 352 
absence of data flow to the buffer, the level of its filling during the time T will decrease by 50 cells. 353 
Therefore, to create the necessary reserves of 50 cells in each direction, a buffer with a volume of 100 354 
cells is needed, which is twice as large as when using method 3 (Figure 4, b). 355 

 356 

Expanding the scope of the method 3 357 

Previously, the idea of reducing the amount of buffer memory of the receiver when building a data 358 
transfer system between nodes of a computer network was considered. However, this idea can find 359 
wider application. 360 

As an example, consider the circuit of the commutator (Fig. 5). As usual, to simplify the description, 361 
we assume that the data streams propagate only in one direction - from left to right. In fact, to 362 
construct a switch operating with flows of both directions, it is necessary to apply the same circuit 363 
deployed in the opposite direction, superimpose the resulting circuit to the original one, and 364 
combine the corresponding external inputs with the outputs. 365 

The switch contains three input buffers # 1 - # 3, a switching matrix, a processor and three output 366 
buffers ## 1 - ## 3. Comparing Fig. 5 with Fig. 4b, one can note the similarity between the block 367 
structures used in both schemes. Some designations also coincide, therefore further are not 368 
explained. The signals GO_1 - GO_3 from the rightmost cell of the corresponding input buffer of 369 
type FIFO are given a data packet, with the queue moving one position to the right. 370 

Data packets from independent sources, for example, from computer network nodes, enter the input 371 
buffers of the switch. As a result, buffers create queues of packets waiting to be sent to the output 372 
buffers. The directions of packet transmission are detected by the processor based on the analysis of 373 
address information contained in their headers. 374 
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 375 

Figure 5. Structure of the switch, the first option 376 

 377 

The packets are transferred from the input buffers to the output through the switching matrix under 378 
the control of the processor. Packets of some types are sent simultaneously to all output buffers or to 379 
some subset of them. The switching matrix allows simultaneous transmission of packets in different 380 
independent directions. For example, simultaneously with the transfer of a packet from the buffer # 381 
1 to the buffer ## 3, transmissions along the directions # 2 ## 1 and # 3 ## 2 can be carried out. 382 

In the output buffers, queues of packets awaiting delivery to the corresponding communication lines 383 
are also created. In each of these buffers, the previously discussed method of preventing overflows 384 
and devastations of the queue is applied (Fig. 4, b). However, in this case (Figure 5), the output 385 
buffer "does not know" from which directions and in what order the data is expected to arrive, ie, it 386 
does not have information about which input buffers and which sequence should be sent the results 387 
of the queue state forecasting - the XON or XOFF commands. 388 

Therefore, the output buffers form the XON / XOFF flag bits (flag 1-flag 3), irrespective of which 389 
input buffer will be affected. The flags are polled by the processor and used by the processor to 390 
control the transmission of data through the switching matrix. 391 

Looking through the outputs of buffers # 1 - # 3, the processor monitors a lot of packets, ready to be 392 
sent to the buffers ## 1 - ## 3. The decision to send each of these packets is accepted by the processor 393 
only if the flag of the corresponding output buffer is set to the enabling state - XON. Then the 394 
processor creates the required path through the switching matrix and initiates the issuance of the 395 
packet by the command (signal) GO_i (i = 1, 2, 3). 396 

The structure of the switch (see Figure 5) has a drawback that is not related to the application of the 397 
proposed method for managing data flows. 398 
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If the packet type provides its transfer to a group of several output buffers, the processor does not 399 
wait for the entire group to receive data at the same time to speed up the process. It transmits copies 400 
of this package sequentially, as the output buffers that make up the group appear. In this case, until 401 
the complete distribution of the packet across the whole group of output buffers, this packet is not 402 
removed from the input buffer and therefore prevents the progress of the queue in it. 403 

A similar situation (blocking of the input queue) can be observed when sending a normal packet 404 
addressed to only one output buffer. If the output buffer is not ready for data reception for a 405 
relatively long time, then the packet remains at the output of the input buffer, and the queue in it 406 
does not advance, but only grows with the arrival of new packets. This queue may contain packages 407 
that could be serviced, since the corresponding output buffers are ready to receive data, but they are 408 
all prevented by the priority packet waiting for maintenance and blocking access to the rest of the 409 
packets to the switching matrix. 410 

 411 

Figure 6.  Switch structure, second option 412 

 413 

Blocking of input queues is eliminated in the scheme shown in Fig. 6. In comparison with the 414 
previously considered circuit (Figure 5), the input buffers are replaced by buffer groups, the 415 
switching matrix is excluded. Each group of input buffers accumulates more than one queue for the 416 
number of input channels of the switch. Each group of input buffers transfers data to the 417 
corresponding output buffer. 418 

Packets coming from the input channels Z, X and Y are sorted. Packets of channel Z, which should 419 
get into the output buffer ## 1, are written to the upper buffer of group # 1. Packets of the Z channel, 420 
intended for sending to the line through the buffer ## 2, are written to the upper buffer of group # 2. 421 
Packets of channel Z, which should be sent to the output buffer ## 3, are written to the upper buffer 422 
of group # 3. Packages from the input channels X and Y are sorted similarly. 423 
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The processor analyzes the flags 1 to 3 and, in the presence of the readiness of one or more output 424 
buffers, receives one or more GO_i signals (i = 1, 2, 3) to receive data. Each of these commands is 425 
addressed to one group of input buffers. Since in this example the group contains three buffers, the 426 
command contains three bits that indicate from which queue the next data packet should be issued 427 
via the OR gate. Commands (a, b, c) = (0, 0, 1), (a, b, c) = (0, 1, 0) and (a, b, c) = (1, 0, 0) correspond to 428 
the issuance The data packet from the upper, middle and lower case of the selected group. The 429 
queue number can be transmitted from the processor with binary code with its decoding in groups 430 
of input buffers, but this possibility is not considered to simplify the figure. 431 

If one of the output buffers is not ready to receive data for a relatively long time, this does not affect 432 
the transmission of packet flows through other output buffers. For example, the output buffer ## 1 433 
may not be ready to receive data (flag 1 in the XOFF state), then the GO_1 signal remains zero for 434 
this time (0, 0, 0), preventing the issuance of packets from group 1. Other groups remain in normal 435 
operating mode, i.e., as far as possible under the control of the processor, data is transferred to the 436 
corresponding output buffers. 437 

3. Discussion 438 

Accelerated transmission of high priority packets through the switch. The switch shown in Fig. 7, 439 
is an improved version of the previously considered structure (Fig. 6). Comparing Fig. 6 and Fig. 7, 440 
one can note that some of the previously considered elements in Fig. 7 are not shown, although they 441 
may be present in the circuit. At the same time, new elements have been introduced, the functions of 442 
which do not violate the work of the previously considered schemes. The purpose of introducing 443 
new elements is to accelerate the transfer of high-priority packets through the switch. 444 

Just like in the previous scheme, the switch contains three groups # 1 - # 3 input buffers of type FIFO. 445 
The outputs of these buffers in each group are connected through the first logical OR and the L1-L3 446 
packet converters with the inputs of the output buffers ## 1 - ## 3. In each group of input buffers, the 447 
second logical OR is added, through which bypass paths (without queue) pass high-priority 448 
covenants, if they enter buffers. 449 

Switches SW1 to SW3 translate packets either from the corresponding queues located in the buffers 450 
## 1 - ## 3, or from the workarounds. In the first case, the key is set to LP (low priority), in the second 451 
- to HP (high priority). Coordination of actions of all components of the multiplexer is performed by 452 
one or several processors (in Figure 7 processors are not shown). 453 

In general, the proposed idea is as follows: As in the previous scheme (Figure 6), the packets 454 
arriving from the input channels Z, X and Y are sorted. Packets of channel Z, which are addressed to 455 
buffer ## 1, are written to the upper buffer of group # 1. Packets of channel Z, addressed to buffer ## 456 
2, are written to the upper buffer of group # 2. Finally, the Z channel packets addressed to buffer ## 3 457 
are written to the upper buffer of group # 3. Packages from the input channels X and Y are sorted 458 
similarly. 459 

Then the packets are moved along the corresponding input queues, through the first logical OR 460 
elements and the lower channels of the converters L1 to L3 are transmitted to the output buffers ## 1 461 
- ## 3 and in the order of their arrival are output from them to the output lines Q, R and S via the 462 
keys SW1 to SW3, which are in the LP state. 463 

This "natural" sequence of events is violated with the arrival of a high-priority packet, for example, 464 
in the upper buffer of group # 1. All new arrivals in the buffers, packets are checked for priority. 465 
Suppose first that the number of priority levels is two, and the high-priority packet came at a time 466 
when all other packets on the switch have low priorities. The priority level of the package is 467 
indicated in its header. 468 
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 469 

Figure 7.  Switch structure with accelerated maintenance of high-priority packets 470 

 471 

In the known switch structures, a simple and understandable reaction to the entry of a high-priority 472 
packet was adopted: 473 

• If the desired output link is not used, then the high priority packet immediately, without delay, 474 
begins to be issued to it; 475 

• If the communication line is busy transmitting a low-priority packet, the delivery of a high-priority 476 
packet is delayed until it is released. 477 

The latter circumstance leads to delays in switching high-priority packets, which for some 478 
applications is highly undesirable or even unacceptable. In the worst case, a high-priority packet 479 
may be a little late at the time of issuing a low priority, which may have a significant length, for 480 
example, 1500 bytes. 481 

The proposed solution allows interrupting transmission of the low-priority packet practically at any 482 
stage, then to transmit a high-priority packet and only then resume the interrupted transfer. Nested 483 
interrupts are possible if the number of priority levels exceeds two. Let us consider this solution in 484 
more detail. 485 

Suppose that in each transmitted packet (Figure 8), in addition to the address and other information, 486 
its priority P and length N are indicated. The codes P and N can be located, for example, in two 487 
adjacent bytes, with three bits defining one of the eight priority- and the remaining 13 bits are the 488 
length of the packet (in bytes) in the range from some fixed minimum length U to the maximum, 489 
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equal to (U + 213 - 1) bytes. All transmitted packets pass through converters L1-L3 (Figure 7), where 490 
each of them is bit-oriented and is preceded by a unique flag. 491 

 492 

Figure 8. Conversion of packets by blocks L1-L3 (Figure 7) 493 

 494 

Recall that bit staffing allows you to exclude from the data stream a random copy of the unique code 495 
selected as the frame start flag F. In this example, F = 01111110. 496 

In Fig. 9, and the "true" flag F of the beginning of the frame (circled in a rectangular frame) is inserted 497 
into some sequence of bits. The problem is that, most likely, this sequence also contains codes 498 
01111110, which can be considered as false flags. In order to prevent the transmission of false flags to 499 
the far side of the communication channel, they are intentionally reversibly distorted, for example, 500 
according to the algorithm proposed in [7]. 501 

 502 

Figure 9. Improved bitstaffing: a - the initial sequence of bits with the "true" flag of the beginning of 503 
the frame introduced into it; b - the same sequence after excluding false flags from it 504 

 505 

This algorithm is as follows. The original sequence of bits with the "true" flag inserted into it is 506 
viewed through a sliding seven-bit window in order to detect in it the code 0111111, almost 507 
coincident with the flag. If such a code is detected and is not a component of the "true" flag, then it is 508 
supplemented by a single bit of s, regardless of the value of the subsequent bit (Figure 9, b). Such a 509 
procedure is called bitstaffing. 510 

Bitstaffing does not apply to "true" flags, so they become unique, since all false flags are deliberately 511 
distorted by bits of s. 512 
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On the far side of the communication channel, the reverse operation is performed - bits s (following 513 
the sequences 0111111, which are not constituent parts of the "true" flags) are destroyed. 514 

In contrast to the classical bitstaffing used in the HDLC protocol, the variant proposed in [7] allows 515 
us to reduce the redundancy introduced into the initial bitstream by half. Indeed, for a single 516 
random sample, the probability of detecting a 7-bit code (0111111) in a random data stream is 1/27 = 517 
1/128. In the classical version of bitstaffing, the probability of detecting a 6-bit code (011111) in a 518 
random data stream is 1/26 = 1/64. In other words, the insertion of redundant bits in the classical 519 
version of bitstaffing is carried out twice as often as in the version proposed in [7]. 520 

Suppose that in the initial state, a low-priority packet is sent to the line from the output buffer ## 1 of 521 
the switch (Figure 7). The SW1 switch is set to LP. As shown in Fig. 10, a, at some time T0, a high 522 
priority packet arrives from the upper channel of the packet transformer L1, bypassing the output 523 
queue. The transmission of the low priority packet terminates in the nearest bit interval, the SW1 524 
switch goes to the HP state and the first flag bit of the high priority packet is placed in place of the 525 
not transmitted bit. Then all the bits of this packet are transmitted (Fig. 10, b). 526 

 527 

Figure 10. Interruption of low-priority data stream high priority: a - low-priority data packet; b - 528 
high-priority data packet; c is the total data flow in the line 529 

At the time T1, the last bit of the high priority packet is transmitted. The key SW1 returns to the LP 530 
position. Following the last bit of the high-priority packet, all the bits of the previously suspended 531 
low-priority packet are transmitted. The total data flow (Fig. 10, c) can be divided on the far side of 532 
the communication channel into two components corresponding to Fig. 10, a and b, due to the 533 
uniqueness of the flags F and the presence of the P and N fields in the packet headers. 534 

To simplify the analysis of code situations by the receiver, one can accept the condition that the 535 
low-priority packet flag is protected from interrupts, i.e., not crashed when switching to a 536 
high-priority packet transmission. In other words, if a high-priority packet has entered the SW1 key 537 
during the low priority packet transmission, it is delayed and its transmission begins only after the 538 
low-priority packet flag is fully transmitted. In the worst case, the delay is eight bit intervals. 539 

With a greater number of priority levels, the described process of switching data flows acquires the 540 
nature of nested interrupts widely used in microprocessor technology. As shown in Fig. 11, the 541 
transmission of packets can repeatedly go from one priority level to another and back. 542 

In the period T0 - T1, the packet Y0 of the zero (lowest) priority level is transmitted to the line. At 543 
time T1, this transmission is interrupted due to the arrival of the Y1 packet of the first (higher) 544 
priority level. The transmission of the packet Y1, in turn, is interrupted at the time T2, after which 545 
the Y2 packet of the second priority level is fully transmitted. The end of the transmission of this 546 
packet is marked by a period. 547 
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 548 

Figure 11. Transmission of data packets Y0 to Y6 using a four-level priority system 549 

 550 

At time T3, the switch returns to the transmission of the packet Y1, but at the time T4 the 551 
transmission is again interrupted by the higher priority packet Y3, which in turn is interrupted by 552 
the Y4 packet at the time T5. This packet has the highest priority; therefore its transfer cannot be 553 
interrupted under any circumstances. 554 

Further, at the moments T6 to T8, in the order of decreasing priorities, the transmissions of the 555 
packets Y4, Y3, Y1 are completed, and the transmission of the packet Y0 resumes. At time T9, this 556 
transmission is again interrupted by a Y5 packet having the highest priority. At time T10, the Y6 557 
packet is ready for dispatch, but it is performed only starting from the moment T11, when the 558 
transmission of the Y5 packet is complete. At the moments T12 and T13, the transmission of the 559 
packets Y6 and Y0 is completed. 560 

 561 

5. Conclusions 562 
High-priority packets are "wedged" into low-priority packets, without waiting for the end of 563 

their transmission. This allows reducing delays in high-priority packets even with low-priority 564 
packets of long length. The increase in the intelligence of telecommunication devices became 565 
possible to apply more sophisticated algorithms and original flow control schemes in comparison 566 
with the known ones. This allows solving the following tasks: 567 

• reduce the likelihood of overflow and emptying of buffer blocks located along the 568 
distribution routes of packets and, ultimately, improve the quality of computer networks; 569 

• reduce the required amount of buffer memory; 570 
• improve the efficiency of servicing high-priority packets. 571 
The article considers a number of original solutions to these problems at a level sufficient for the 572 

development of new generations of telecommunication devices and systems. 573 
 574 
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