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Abstract: In computer networks, loss of data packets is inevitable, in particular, because of the
buffer memory overflow of at least one of the nodes located on the path from the source to the
receiver, including the latter. Such losses associated with overflows are hereinafter referred to as
congestion of network nodes. There are many ways to prevent and eliminate overloads; these
methods, in the majority, are based on the management of data flows. A special place is taken by
the maintenance of packages, taking into account their priorities. The article considers a number of
original technical solutions to improve the quality of control and reduce the required amount of
buffer memory of network nodes. The ideas of these solutions are quite simple for their
implementation in the development of appropriate software and hardware for telecommunication
devices.

Keywords: data transmission, data stream, input output buffers, telecommunication devices, data
packets, blocks of memory, switching matrix, high priority packets, bitstaffing.

1. Introduction

One of the known ways to control the flow of data is explained in Fig. 1, on which a fragment of the
computer network is shown and the trace of the data stream transmitted through it is indicated[1].
The packets are transferred from the node A - the data source (transmitter) to the node B - the data
receiver through the intermediate nodes, for example, switches and / or M1-M3 routers[2].

2. Materials and Methods
Method 1: Control the flow of data adjusting the length of pauses between packets
Prototype Mode 1

In this example, the node M2 is overloaded, its input buffer memory (in the following, for brevity,
the input buffer) is completely or almost completely filled with incoming data packets. New
packages, at least some of them, are lost due to lack of free space in the buffer[3].

During the data transfer, the receiver notices a persistent shortage of arriving packets (for example,
by tracking their sequence numbers) and sends a control packet containing the XOFF command to
suspend the data stream to the data source A. The address of the data source is known to the
receiver, since the data packets coming to it contain information about the addresses (or directly
addresses) of devices A and B[4]. Sending requests for retransmission of lost packets is also sent.

When the XOFF command is received, the data source completely stops sending packets and
resumes it, either after some time specified in the data exchange protocol, or after receiving the
renewal of transmission from the XON command receiver [1].
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41 This method has several drawbacks.

42 First, data flow control is quite crude (the flow is either there or it is not). The delay in the execution
43 of commands can lead to unjustified idle of the transmitter and the periodic occurrence of new
44 overloads, in which some of the packets[5], including those belonging to other flows, will be lost[6].

45  Secondly, with prolonged overload, the receiver sends the transmitter a series of identical stopping
46  commands, which clogs the communication channel with a large number of repetitive service
47  packets[7].

48  Thirdly, the commands for suspending the transmitter are generated by the receiver only if the
49  number of packets rejected due to buffer overflows is large enough. Otherwise, if one responds to
50  insignificant packet losses, the transmitter will receive and execute suspense commands without any
51  special reason.

52 Fourth, the suspension of the transmitter increases the average and maximum packet delay on the
53 route, which can reduce the quality of service (QoS) parameters specified in the contract between the
54 user and the provider [8].

55 The idea of method 1
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58 Figure 1.Traditional way to control the flow of data
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60 Figure 2. Improved way to control the flow of data: a - if there is a danger of overflow of the buffer
61 memory of the node M2; b - during normal operation
62

63  The proposed solution (Figure 2) largely eliminates these shortcomings due to a smooth and
64  "advanced event" adjustment of the data transmission rate by the source. The speed is controlled by
65  changing the length of pauses between packets: the longer the pause, the lower the data transfer rate,
66  and vice versa[9]. Note that the presence of a pause does not mean that there is no signal in the
67  communication line - the signal is present constantly, but there are no flag codes indicating the
68  beginning of the packet, or vice versa - a continuous stream of these codes is transmitted[10].

69 In the one shown in Fig. 2, and the pause situations between packets transmitted on the route A-B
70 are relatively small, or in other words, the data rate of the data placed in the packets is relatively
71 large, in the sense that the buffer memory level of the intermediate node M2 is steadily increasing,
72 which may result in buffer overflow[11]. Buffer memory for clarity is shown in the figure as a tank
73 with liquid replenished by the input stream of packets, while the output stream tends to reduce the
74 level of its filling[12].

75  In this case, the node M2 registers the operation of the second upper level sensor (the comparator of
76  read and write addresses of the buffer memory block). This means that the level of filling is close to
77 critical, therefore, it is necessary to reduce the rate of data flow to the buffer. To reduce the speed, the
78  node M2 sends to the node A a service packet, a command to increase the pauses between
79  packets[13].

80  Inresponse to this command, node A increases the duration of pauses between packets (Figure 2, b).
81  The degree of increase can be stipulated in the protocol of data exchange between nodes of the
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82  network or in the explicit form indicated in the service package. After increasing the pauses, the
83 buffer memory level of the M2 node starts to decrease, if there is no other reason for its increase[12].
84  Upon reaching the central or lower mark, the node M2 sends to the node A the command to reduce
85  the duration of the pauses, the level of the buffer filling again begins to increase, etc.

86 Thus, in an ideal case, the buffer memory of node M2 does not overflow and does not emptied, the
87  speed of data output from the buffer memory remains constant, the rate of data arrival adapts to it,
88  making slow fluctuations inherent in conventional automatic control systems[14].

&9 If there are several data sources, then to prevent overload the work of the most active one, but not
90  the most priority, is slowed down; if the sources are equally active, then the impact on those with
91  low priorities is primarily affected[8].

92 Inthe development of the described method, it is proposed to take into account, not only the level of
93  the buffer completion, but also the dynamics of its change when forming commands for decreasing
94 or increasing the intensity of the flow[15]. This allows eliminating unnecessary flow control
95  commands when the buffer fill level is high, but the history of the process is such that there is a
96  steady tendency to stop its growth and the subsequent decrease (and vice versa). Essentially, along
97  with absolute reference, the rate of change in the rate (acceleration) of the motion of the level of
98  buffer memory filling is considered[16].

99

100  Method 2: Managing the flow of data by notifying the packet source of causes of overload
101  Prototypes of method 2

102 Let's continue our consideration of the known methods of data flow control (Fig. 3) using the same
103 network model as before (Figure 1, 2). The data source A transmits a series of data packets to the
104  receiver B. In response to each packet or to a group of packets, the receiver B sends the ACK or
105  NACK response packets to the source A. The ACK response acknowledges the successful reception;
106  the NACK response is a request to retransmit a single packet or group of packets[14].

107  The first prototype of method 2. In principle, even such a simple feedback (using ACK or NACK
108  response packets) allows detecting and eliminating network congestion on the A TO B path[17].
109  Indeed, if the data source is increasing the packet rate or at some fixed rate starts to receive an
110 excessive number of retransmission requests, then, most likely, at least one of the nodes of the route
111  entered the overload mode[18].
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114 of the M2 node of the network: a - packet propagation paths b, c - packet structure D and ACK
115 (NACK)
116

117  In this case, the data source drastically reduces the packet transmission rate or (and) increases their
118  length to reduce the share of the overhead bits that make up the headers in the data stream[19]. In
119  the future, the data source gradually either by random trial and error increases the data transmission
120 speed, moving to the permissible upper limit, taking into account some permitted speed increase
121 margin. Such a method is called a "slow start".

122 Of course, packet loss is possible, not related to the overload of network nodes, for example, due to
123 uncorrectable errors caused by interference in the communication line, but in this case we are not
124 interested in such losses[20].

125  The considered method of data flow control does not prevent the forthcoming loss of packets, but
126  allows reacting only to the accomplished fact of overloading of the intermediate node of the network
127  or the data receiver[21]. This is its main defect.

128  The second prototype of method 2. The idea is to warn in time the data source A about the threat of
129 overloading one or several nodes along the route A In the propagation of data packets D. This
130  warning is the bit Z included in the header of the ACK or NACK response packet[22] (Figure 3, c).

131  In the example shown in Fig. 3, the processor of node M2 anticipates overload, observing the
132 steadily increasing level of buffer filling, as it was shown on its model, shown in the right part of Fig.
133 2, a; (other events are possible, such as predecessors of congestion[23].
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134 In packages passing through the node M2, more precisely, in the header of each of them, there is
135  information sufficient for its routing, for example, in the form of IP addresses of the source and the
136  data receiver[24]. Viewing this information allows the M2 node to identify the "culprit" of the
137  expected overload, from which the most intensive flow of packets originates. There can be several

138  such.

139 Suppose that the main "culprit" of the impending congestion is the data source A. This source, like
140  all others, transmitting data packets D, sets the Z bits to zero. With normal data transmission on the
141  route A TO B, these bits remain in the zero state[25].

142 If the conditions for the upcoming overload are detected and knowing that the largest number of
143 packets per unit of time originate from the source A, the node M2, when transmitted along the route
144 A TO B, marks all packets or a part of them with their Z = 1 bits that inserts in the headers, as shown
145  in Fig. 3, b. The data receiver B returns the received Z = 1 bits to source A, including them in the
146  headers of the response packets ACK and NACK (Figure 3, c).

147  Finally, data source A receives bits Z = 1 and sharply reduces the data transfer rate to node M2[26].
148  Further, the data source A gradually restores the original data flow parameters or even exceeds the
149 previously reached data transmission rate until a new series of bits Z =1, etc., is detected (here, too,
150  the "slow start” mentioned earlier is applied). Having determined the allowable upper speed limit,
I51  the data source takes a small step down to create some margin, guaranteeing the route from
152 overload[27].

153 This way of preventing or eliminating overloads is satisfactory, but not optimal. Its disadvantage is
154 that, without knowing the reason for the overload of node M2, the source of data A is unable to
155  adequately respond to it. So, the "natural reaction”

156 - asudden and sharp decrease in the data transfer rate - is unacceptable for many applications. But if,
157  for example, the data source A knew that the reason for the upcoming overload was that the
158  processor of the M2 node could not cope with header stream processing, then it could, without
159  reducing the transfer rate of payload data, increase the packet length to reduce the intensity of this
160  flow[28].

161  The problem solved by the method 2 discussed below is thus not only to prevent the source of data
162  on the impending overload, but also to inform him of its cause. Then the source could choose the
163 most appropriate "line of behavior" in this situation[29].

164  The idea of method 2

165  The problem is solved by extending the single-digit sign Z to several bits. Let us explain what has
166  been said by example, accepting some assumptions.

167  Suppose that route A-B (Figure 3) is a virtual telephone link between devices A and B, for example,
168  between computers or IP telephones. The technology of VoIP (Voice over IP) is used. Devices A and
169 B contain codecs such as AMR (adaptive multi rate)[30]. The codec generates compressed speech
170  fragments every 20 msec and encodes data from one of eight speeds in the range from 4.75 to 12.2
171  kbps. Further, as before, one-way data transfer from device A to device B is considered[31].

172 After the connection A-B is established, the data source generates packets, each of which contains a
173 header and a data field. The data field of the packet is filled with fragments of speech from the codec
174  output, and then the packet is sent along the communication line to node M2[32]. The codeg, if the
175  bandwidth of the A-B channel allows, is initially set to the maximum coding rate to ensure the
176  highest speech intelligibility recovered from the data input to receiver B. The Z bits of the sent
177  packets are set to zero.
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178  In the event of detection of the danger of overload by some node located along the A TO B route, this
179  node (in our example, the M2 node) inserts some indication Z in the headers of packets originating
180  from the most active source (A), as described earlier, taking into account that this feature contains
181 not one, but at least two bits. This attribute is returned to the source; as a result, the processor of
182  node A receives information about the reason for the upcoming overload.

183  The node M2 may experience overloading for at least one of the following reasons.

184 1. Narrowing the bandwidth (bandwidth) of the channel A TO B due to the appearance of a
185  "bottleneck." This can happen, for example, because a part of the dedicated link A TO B of the
186  linkage between the nodes M2 and M3 (Figure 3) has decreased. This decrease may be due to various
187  reasons. Let's name two of them.

188 - The previously unobtrusive competing data flow along the route M4 M2 M3, which uses the
189 same channel M2 to M3, as the route A TO B, has increased to a significant level earlier. As a result,
190  the M2 node redistributed the strip of this channel to the detriment of the route ATOB.

191 - The M2 node has changed the type of signal modulation in the M2 to M3 channel, reducing the
192 transmission rate due to the deterioration of the signal-to-noise ratio in this channel.

193 2. The M2 node processor for some reason or other has stopped coping with the volume of work
194  on analyzing packet headers following the route A TO B.

195  The first and second reasons above for the approaching overload are displayed respectively by the
196 codes Z =012 and Z =102, the absence of an overload hazard corresponds to the code Z = 002, both
197  causes simultaneously generate the code Z = 112. The code Z = 112 can Form one node if it
198  simultaneously observes both reasons for the upcoming overload, or by two or more nodes located

199  alongthe AtoV.

200  So, the node M2 can insert the Z = 102 codes into the headers of the A B packets that pass along the
201  route, because the processor of this node cannot cope with the volume of work on the analysis of
202  headers. These packets are transmitted to the M3 node, which is supposed to reveal a decrease in the
203 M3 to B channel bandwidth allocated to the A to B route. In this case, the M3 node replaces the Z =
204 102 codes in the packets passing through it with Z = 112. These codes, as described, reach the
205  receiver B and return to the data source A as part of the headers of the response packets (Figure 3, c).

206  The optimal response of the data source to the identified causes (1 or 2) of overloading may be this.

207  The narrowing of the channel bandwidth A to B (reason 1) should cause a corresponding decrease in
208  the total data rate (both useful and service) of the source A. To estimate the rate reduction, it would
209  be desirable to use a multi-bit code Z in which this degree is reflected. However, in this case there is
210  no such possibility, therefore the processor of the data source A switches its codec to the mode of the
211  lowest encoding speed (out of eight possible - from 4.75 to 12.2 kbps). If the packet length is
212 unchanged, and the lowest

213 The frequency of their succession decreases due to the increase in pauses between them. At the same
214  time, the delay in the formation of the packet increases due to the increase in the time it is filled with
215  compressed fragments of speech. Thus, the data transfer rate (both useful and service data) is
216  reduced by source A, and if the narrowing of the band is not too large, then there is no danger of
217  overloads.

218  In the future, to restore the high quality of voice transmission, the coding rate and, correspondingly,
219  the packet repetition rate gradually increase to the experimentally detected limit, in which there is
220  still no danger of overloading the network nodes on the A to B


http://dx.doi.org/10.20944/preprints201809.0592.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 September 2018 d0i:10.20944/preprints201809.0592.v1

8 0f 20

221  Alternative response of the data source to the narrowing of the channel band A to B also provides for
222 using the lowest encoding rate. When this keeps the packet repetition rate, and their length
223 decreases. The rate of transfer of useful data decreases, the service data flow remains unchanged.

224  Finally, the strongest reaction is possible, at which the coding rate is set to the minimum, and the
225  length of the packets increases to such an extent that their average delay approaches the permissible
226  limit (not more than 100 ms [3]), after which, during a telephone conversation, begins eavesdropped.
227  Such areaction is the maximum that can be done in this situation.

228  After exiting the crisis, the coding rate gradually increases, and the length of the packets decreases
229  with this in time (to reduce the delay of their transmission along the route A to B). This process of
230  two-dimensional optimization of flow parameters is completed when the boundary is reached, after
231  which the risk of overloading again arises.

232 Overloading the processor of one or more nodes on the A to B route (reason 2) is eliminated by
233 reducing the intensity of the header stream that it (they) has to process. For this, while maintaining a
234 high coding rate, the data source increases the length of the transmitted packets to such an extent
235  that their average propagation delay along the A to B path does not exceed the previously
236  mentioned allowable limit (100 ms).

237  Thus, the correct response to the overload warning in many situations allows to eliminate the danger
238  of overflow of input buffers and, what is essential, to maintain high quality of voice transmission.

239
240  Method 3: Control of the flow of data with compensation of the inertia of the feedback loop
241  Prototype of method 3

242 One of the simplest ways to control the flow of data transmitted between the nodes of the network J1
243 and ]2 (Figure 4, a) is as follows.

244  In steady state, data packets are accumulated in the output buffer of node J1 for transmission along a
245  certain route, possibly through other network nodes (not shown in the figure) to the input buffer of
246  node J2. Both buffers are executed in the form of blocks of memory of type FIFO.

247  The flow of data packets passing through the system from the left to the right has the character of
248  "machine-gun queuing”, since the series of packets are transmitted by the J1 node via the
249  communication line only with the permission of the receiver, node ]2, which "causes fire to the
250  extent possible". The instantaneous packet transfer rate inside the series is C; the average speed is
251  less than the instantaneous one and depends on the average ratio of the pauses between packets to
252 thelength of the series. The unevenness of the arrival of packets in the buffers of the nodes J1 and J2
253 causes fluctuations in the levels of their filling. The challenge is to protect these buffers from
254  overflow or emptying.

255  Further, this task is solved only with respect to the input buffer of the node ]2, however, the output
256  bulffer of the node J1 can be protected in a similar way by introducing feedback from the source of
257  the packets sent to it (in the figure this source and its feedback are not shown). Such a successive
258  chain with feedbacks between neighboring elements can be arbitrarily long. Each transmitting port
259  thus issues a stream of packets to the communication line only if there is a transmission permission
260  previously received from the destination of the XON command.

261  The input buffer of node ]2 contains a pointer to the threshold level F of its filling. In this example,
262  the input buffer of node J2 contains Q packets. At the moment the current level Q overcomes the
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threshold level filling in the F upward side (Q < F), the node ]2 transfers to J1 the packet with the
XOFF command of the transmission suspension. Similarly, at the moment overcoming the current
level Q filling the threshold level F downwards (Q>= F), the ]2 node sends a packet to the J1 node
with the XON resumption command.

node:H node .IJ2
a) | output buffer T=T1+T2 Iﬁlpm buffer
. [ . [ s
—e— I = L[ =—
T r —
XON, XOFF
node :}1 node ,IJQ
1 output buffer T=Ti+T2 Iiﬂpm buffer
5 | " £ @ &
——[[H{{ll = L =—
1 |

shift direction
[olol111]1]olo[olof}|[1]1[1]0]1] 1]o]o]o

[ 0= X0ON, 1= XOFF

Figure 4. Flow control scheme: a - traditional; b - the proposed

The problem is that flow control can be very inertial. The response time of the system to the XON and
XOFF commands is determined by the delay T = T1 + T2, where

T1 - the time from the instant the command is generated by the node J2 until the previously stopped
process of sending packets by the node J1 resumes or the previously activated process of issuing
packets by the node J1 is suspended;

T2 - the time of packet transmission from the output buffer of node J1 to the input buffer of node J2.

Thus, if the increasing filling level of the input buffer of the node J2 has overcome the threshold
value F, then the generated XOFF command will stop the flow of packets at the input of the node J2
only through the time T. During this time, the input buffer of the node J2 continues "by inertia "To
replenish.

Similarly, the first packet after issuing the XON command to resume the previously-stopped stream
will arrive at the input buffer no earlier than the time T. During this time, the level of filling the input
buffer of the node J2 "by inertia" is reduced due to the outflow of data from it.

If the capacity of the input buffer of node J2 is small, then the inertia of the control can lead to
overflow or emptying. In the worst case, after the moment of exceeding the threshold level F (Q <F,
the command XOFF is issued) and at the time no outflow of data from the input buffer of the node J2
during the time T in this buffer "by inertia" will come with C*T packets.

Similarly, if there was no inflow of data, after the moment of crossing the threshold level F in the
direction of decrease (Q =>F, the command XON is issued) and with continuous data flow from the
input buffer of node J2 during the time T from this buffer "on inertia "will be selected C*T packets.
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289  Thus, to protect against overflow and emptying, the input buffer of node J2 should be designed to
290  store at least 2C*T packets; the threshold F must correspond to its middle.

291  The resulting estimate of the minimum buffer size is disappointing. Some switches contain several
292 hundred buffers, so the actual task of reducing their volume is actual. In high-speed networks, the T
293 value reaches tens and hundreds of microseconds. The value of C is of the order of 10 Gbit / s. As a
294  result, the buffer size 2C T=2 1010 104 is several megabits. The goal of the next
295  solution is to reduce the buffer size by half thanks to smoother flow control.

296
297  The idea of method 3

298  Smoothness of control is achieved by fragmentation of series of packets and more intelligent
299  algorithm of forming commands XON and XOFF to resume and stop transmission of the stream.

300 The circuit shown in Fig. 4, b, [4] contains the same components and has the same parameters (T, C,
301  Q), which have just been discussed. The volume of the input buffer of the node J2 is denoted by B.
302  Thenew element of this node - the history memory of the control - is shown for clarity in the form of
303 a shift register RG, although it can be executed programmatically using a set of memory cells.

304  For definiteness, suppose that the flow of ATM cells is transmitted via the communication channel
305  [5]. (The term "cell" is equivalent to the term "packet".) This stream is continuous - after the last bit of
306 the previous cell, the first bit of the next is transmitted. The length of the cell is 53 bytes. The cells
307  follow the line of communication with a period of 40 ns. This does not mean that the proposed idea
308 isapplicable only to ATM technology - it is easy in the following description to operate with strictly
309  prescribed quanta of time with duration of 40 ns.

310  Suspension of the flow in this case is conditional (a continuous stream of cells follows the connection
311  line always) and means that the output of the nodes J1 accumulated in the output buffer really stops,
312 but instead of them, bypassing this buffer, empty cells of the same length are output into the
313 communication line, as well as cells with data. Empty cells can be inserted once or form more or less
314 lengthy sequences. Blank cells are rejected by the J2 node and do not enter its input buffer.

315  Suppose that the time T = T1 + T2 = 2 ps, that is, corresponds to the passage of 50 cells. The rate of
316  issuing commands XON or XOFF is equal to the rate of arrival of cells (empty and non-empty) at the
317  input of node J2, that is, commands are issued every 40 ns. The commands issued by the node J2 in
318  response to each incoming cell on the communication line affect the input stream after a time of 50
319  cells - this is the inertia of the control loop.

320  Simultaneously with issuing the XON or XOFF command from node ]2 to node J1, it is stored as the
321  corresponding bit (0 or 1) in the right-hand bit of the shift register RG, the remaining bits are shifted
322 one position to the left, the leftmost bit is pushed out of the register. Thus, in the RG register, the
323 history of issuing control commands for the next 50 cycles (the periods of succession of the cells) is

324  displayed.

325  Each XON or XOFF command when entering J1 is responsible for making a decision to issue one
326  (regular) cell either from the output buffer of this node (when receiving the XON command) or from
327  asource of empty cells to bypass the output buffer (upon receipt command XOFF).

328  The code in the RG register is analyzed by the ]2 node. Counting the number of zeroes contained in
329  it, the node predicts the number of cells with data that will go to its input buffer within the next 50
330  cycles. The single bits in this register correspond to the number of empty cells that will arrive at the
331  input of node J2 during this period and will be destroyed by them.
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332 The formation of XON or XOFF commands is as follows. Let NON be the number of zero bits in the
333 RGregister, B the size of the input buffer of the node ]2, Q the current size of the queue. Then:

334  ifQ+NON B, then the XOFF command is generated; otherwise, the XON command.

335 Indeed, in the worst case, when there is no outflow of data from the input buffer of the node ]2, the
336  expected level of its filling is equal to the current level of Q, increased by the number of NON cells
337  that are actually already in transit and will surely be received in the next 50 cycles. The expected
338  level of buffer filling Q + NON should not exceed its size B. If this condition is met, then the thread
339  should not be suspended, so the XON command is generated. In the opposite situation, when the
340  predicted level of buffer filling exceeds the volume of the buffer, stop the flow for at least one clock
341  cycle, that is, generate the XOFF command.

342 The commands, of course, will have an effect only after 50 clock cycles, but due to the "smallness" of
343 their action and the integration of many commands in time, the total effect is expressed in that the
344  fluctuations in the buffer fill level become smaller, and the necessary buffer memory capacity is
345  reduced by two times.

346  So, in the steady state, the average level of buffer memory of the J2 node is close to V /2, in the 50-bit
347  RG register the average number of zeros and ones is approximately the same. Suppose that B = 50,
348  the average level is 25. Then the stocks in relation to overflow and emptying the buffer will be 25
349  cells in each direction. This is consistent with the fact that the average number of arriving cells
350  expected in the nearest time interval T is 50/2 = 25.

351  Inthe prototype (Figure 4, a), in the worst case (in the absence of data outflow from the buffer), at the
352 time T, 50 cells arrive at the input of the buffer of node J2. Similarly, in the opposite situation, in the
353  absence of data flow to the buffer, the level of its filling during the time T will decrease by 50 cells.
354 Therefore, to create the necessary reserves of 50 cells in each direction, a buffer with a volume of 100
355  cells is needed, which is twice as large as when using method 3 (Figure 4, b).

356
357  Expanding the scope of the method 3

358  Previously, the idea of reducing the amount of buffer memory of the receiver when building a data
359  transfer system between nodes of a computer network was considered. However, this idea can find
360  wider application.

361  Asan example, consider the circuit of the commutator (Fig. 5). As usual, to simplify the description,
362  we assume that the data streams propagate only in one direction - from left to right. In fact, to
363 construct a switch operating with flows of both directions, it is necessary to apply the same circuit
364  deployed in the opposite direction, superimpose the resulting circuit to the original one, and
365  combine the corresponding external inputs with the outputs.

366  The switch contains three input buffers # 1 - # 3, a switching matrix, a processor and three output
367  buffers ## 1 - ## 3. Comparing Fig. 5 with Fig. 4b, one can note the similarity between the block
368  structures used in both schemes. Some designations also coincide, therefore further are not
369  explained. The signals GO_1 - GO_3 from the rightmost cell of the corresponding input buffer of
370  type FIFO are given a data packet, with the queue moving one position to the right.

371  Data packets from independent sources, for example, from computer network nodes, enter the input
372 buffers of the switch. As a result, buffers create queues of packets waiting to be sent to the output
373 buffers. The directions of packet transmission are detected by the processor based on the analysis of
374  address information contained in their headers.
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376 Figure 5. Structure of the switch, the first option
377

378  The packets are transferred from the input buffers to the output through the switching matrix under
379  the control of the processor. Packets of some types are sent simultaneously to all output buffers or to
380  some subset of them. The switching matrix allows simultaneous transmission of packets in different
381  independent directions. For example, simultaneously with the transfer of a packet from the buffer #
382 1 to thebuffer ## 3, transmissions along the directions # 2 ## 1 and # 3 ## 2 can be carried out.

383  Inthe output buffers, queues of packets awaiting delivery to the corresponding communication lines
384  are also created. In each of these buffers, the previously discussed method of preventing overflows
385  and devastations of the queue is applied (Fig. 4, b). However, in this case (Figure 5), the output
386 buffer "does not know" from which directions and in what order the data is expected to arrive, ie, it
387  does not have information about which input buffers and which sequence should be sent the results
388  of the queue state forecasting - the XON or XOFF commands.

389  Therefore, the output buffers form the XON / XOFF flag bits (flag 1-flag 3), irrespective of which
390  input buffer will be affected. The flags are polled by the processor and used by the processor to
391  control the transmission of data through the switching matrix.

392 Looking through the outputs of buffers # 1 - # 3, the processor monitors a lot of packets, ready to be
393 sent to the buffers ## 1 - ## 3. The decision to send each of these packets is accepted by the processor
394  only if the flag of the corresponding output buffer is set to the enabling state - XON. Then the
395  processor creates the required path through the switching matrix and initiates the issuance of the
396  packet by the command (signal) GO_i (i=1, 2, 3).

397  The structure of the switch (see Figure 5) has a drawback that is not related to the application of the
398  proposed method for managing data flows.
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399  If the packet type provides its transfer to a group of several output buffers, the processor does not
400  wait for the entire group to receive data at the same time to speed up the process. It transmits copies
401  of this package sequentially, as the output buffers that make up the group appear. In this case, until
402  the complete distribution of the packet across the whole group of output buffers, this packet is not
403  removed from the input buffer and therefore prevents the progress of the queue in it.

404 A similar situation (blocking of the input queue) can be observed when sending a normal packet
405  addressed to only one output buffer. If the output buffer is not ready for data reception for a
406  relatively long time, then the packet remains at the output of the input buffer, and the queue in it
407  doesnot advance, but only grows with the arrival of new packets. This queue may contain packages
408  that could be serviced, since the corresponding output buffers are ready to receive data, but they are
409  all prevented by the priority packet waiting for maintenance and blocking access to the rest of the
410  packets to the switching matrix.
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412 Figure 6. Switch structure, second option

411

413

414  Blocking of input queues is eliminated in the scheme shown in Fig. 6. In comparison with the
415  previously considered circuit (Figure 5), the input buffers are replaced by buffer groups, the
416  switching matrix is excluded. Each group of input buffers accumulates more than one queue for the
417  number of input channels of the switch. Each group of input buffers transfers data to the
418  corresponding output buffer.

419  Packets coming from the input channels Z, X and Y are sorted. Packets of channel Z, which should
420  get into the output buffer ## 1, are written to the upper buffer of group # 1. Packets of the Z channel,
421  intended for sending to the line through the buffer ## 2, are written to the upper buffer of group # 2.
422 Packets of channel Z, which should be sent to the output buffer ## 3, are written to the upper buffer
423 of group # 3. Packages from the input channels X and Y are sorted similarly.
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424  The processor analyzes the flags 1 to 3 and, in the presence of the readiness of one or more output
425 buffers, receives one or more GO_i signals (i = 1, 2, 3) to receive data. Each of these commands is
426  addressed to one group of input buffers. Since in this example the group contains three buffers, the
427  command contains three bits that indicate from which queue the next data packet should be issued
428  via the OR gate. Commands (a, b, ¢)= (0,0, 1), (a, b, )= (0, 1, 0) and (a, b, ¢) = (1, 0, 0) correspond to
429  the issuance The data packet from the upper, middle and lower case of the selected group. The
430  queue number can be transmitted from the processor with binary code with its decoding in groups
431  of input buffers, but this possibility is not considered to simplify the figure.

432 If one of the output buffers is not ready to receive data for a relatively long time, this does not affect
433 the transmission of packet flows through other output buffers. For example, the output buffer ## 1
434  may not be ready to receive data (flag 1 in the XOFF state), then the GO_1 signal remains zero for
435  this time (0, 0, 0), preventing the issuance of packets from group 1. Other groups remain in normal
436  operating mode, i.e., as far as possible under the control of the processor, data is transferred to the
437  corresponding output buffers.

438 3. Discussion

439  Accelerated transmission of high priority packets through the switch. The switch shown in Fig. 7,
440  is an improved version of the previously considered structure (Fig. 6). Comparing Fig. 6 and Fig. 7,
441  one can note that some of the previously considered elements in Fig. 7 are not shown, although they
442  may be present in the circuit. At the same time, new elements have been introduced, the functions of
443 which do not violate the work of the previously considered schemes. The purpose of introducing
444  new elements is to accelerate the transfer of high-priority packets through the switch.

445 Just like in the previous scheme, the switch contains three groups # 1 - # 3 input buffers of type FIFO.
446  The outputs of these buffers in each group are connected through the first logical OR and the L1-L3
447  packet converters with the inputs of the output buffers ## 1 - ## 3. In each group of input buffers, the
448  second logical OR is added, through which bypass paths (without queue) pass high-priority
449  covenants, if they enter buffers.

450  Switches SW1 to SW3 translate packets either from the corresponding queues located in the buffers
451  ##1- ## 3, or from the workarounds. In the first case, the key is set to LP (low priority), in the second
452 - to HP (high priority). Coordination of actions of all components of the multiplexer is performed by
453 one or several processors (in Figure 7 processors are not shown).

454  In general, the proposed idea is as follows: As in the previous scheme (Figure 6), the packets
455  arriving from the input channels Z, X and Y are sorted. Packets of channel Z, which are addressed to
456  buffer ## 1, are written to the upper buffer of group # 1. Packets of channel Z, addressed to buffer ##
457 2, are written to the upper buffer of group # 2. Finally, the Z channel packets addressed to buffer ## 3
458  are written to the upper buffer of group # 3. Packages from the input channels X and Y are sorted
459  similarly.

460  Then the packets are moved along the corresponding input queues, through the first logical OR
461  elements and the lower channels of the converters L1 to L3 are transmitted to the output buffers ## 1
462 - ## 3 and in the order of their arrival are output from them to the output lines Q, R and S via the
463  keys SW1 to SW3, which are in the LP state.

464  This "natural" sequence of events is violated with the arrival of a high-priority packet, for example,
465  in the upper buffer of group # 1. All new arrivals in the buffers, packets are checked for priority.
466  Suppose first that the number of priority levels is two, and the high-priority packet came at a time
467  when all other packets on the switch have low priorities. The priority level of the package is
468  indicated in its header.
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471

472  In the known switch structures, a simple and understandable reaction to the entry of a high-priority
473  packet was adopted:

474 e If the desired output link is not used, then the high priority packet immediately, without delay,
475  begins to be issued to it;

476 e If the communication line is busy transmitting a low-priority packet, the delivery of a high-priority
477  packet is delayed until it is released.

478  The latter circumstance leads to delays in switching high-priority packets, which for some
479  applications is highly undesirable or even unacceptable. In the worst case, a high-priority packet
480  may be a little late at the time of issuing a low priority, which may have a significant length, for
481  example, 1500 bytes.

482  The proposed solution allows interrupting transmission of the low-priority packet practically at any
483  stage, then to transmit a high-priority packet and only then resume the interrupted transfer. Nested
484  interrupts are possible if the number of priority levels exceeds two. Let us consider this solution in
485  more detail.

486  Suppose that in each transmitted packet (Figure 8), in addition to the address and other information,
487  its priority P and length N are indicated. The codes P and N can be located, for example, in two
488  adjacent bytes, with three bits defining one of the eight priority- and the remaining 13 bits are the
489  length of the packet (in bytes) in the range from some fixed minimum length U to the maximum,
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490  equal to (U +213 - 1) bytes. All transmitted packets pass through converters L1-L3 (Figure 7), where
491  each of them is bit-oriented and is preceded by a unique flag.

Packet

P Packet priority

& N Packet length
e
| |

" !
{ bitstaffing *.\
i 4Py N, |
| 1 I I
492
493 Figure 8. Conversion of packets by blocks L1-L3 (Figure 7)
494

495  Recall that bit staffing allows you to exclude from the data stream a random copy of the unique code
496  selected as the frame start flag F. In this example, F=01111110.

497  InFig. 9, and the "true" flag F of the beginning of the frame (circled in a rectangular frame) is inserted
498  into some sequence of bits. The problem is that, most likely, this sequence also contains codes
499 01111110, which can be considered as false flags. In order to prevent the transmission of false flags to
500 the far side of the communication channel, they are intentionally reversibly distorted, for example,
501  according to the algorithm proposed in [7].

falsg_ ﬂagﬂ true flag H___..ffa}_c,e flag

\\
2y 0 111/0111111(0]11111101111111111111111111,,, ——initial data
F F

¥ v "-, b

b) _._111 0111111(0]111111s0)111111s 111111111111 bitstaffing
— z £ S results

distorted false true flag distorted false

flags flag
502 s
503 Figure 9. Improved bitstaffing: a - the initial sequence of bits with the "true" flag of the beginning of
504 the frame introduced into it; b - the same sequence after excluding false flags from it
505

506  This algorithm is as follows. The original sequence of bits with the "true” flag inserted into it is
507  viewed through a sliding seven-bit window in order to detect in it the code 0111111, almost
508  coincident with the flag. If such a code is detected and is not a component of the "true” flag, then it is
509  supplemented by a single bit of s, regardless of the value of the subsequent bit (Figure 9, b). Such a
510  procedure is called bitstaffing.

511  Bitstaffing does not apply to "true" flags, so they become unique, since all false flags are deliberately
512 distorted by bits of s.
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513 On the far side of the communication channel, the reverse operation is performed - bits s (following
514 the sequences 0111111, which are not constituent parts of the "true” flags) are destroyed.

515  In contrast to the classical bitstaffing used in the HDLC protocol, the variant proposed in [7] allows
516  us to reduce the redundancy introduced into the initial bitstream by half. Indeed, for a single
517  random sample, the probability of detecting a 7-bit code (0111111) in a random data stream is 1/27 =
518  1/128. In the classical version of bitstaffing, the probability of detecting a 6-bit code (011111) in a
519 random data stream is 1/26 = 1/64. In other words, the insertion of redundant bits in the classical
520  version of bitstaffing is carried out twice as often as in the version proposed in [7].

521  Suppose that in the initial state, a low-priority packet is sent to the line from the output buffer ## 1 of
522 the switch (Figure 7). The SW1 switch is set to LP. As shown in Fig. 10, a, at some time T0, a high
523 priority packet arrives from the upper channel of the packet transformer L1, bypassing the output
524  queue. The transmission of the low priority packet terminates in the nearest bit interval, the SW1
525  switch goes to the HP state and the first flag bit of the high priority packet is placed in place of the
526  not transmitted bit. Then all the bits of this packet are transmitted (Fig. 10, b).

low-priority packet
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| :
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527
528 Figure 10. Interruption of low-priority data stream high priority: a - low-priority data packet; b -
529 high-priority data packet; c is the total data flow in the line

530 At the time T1, the last bit of the high priority packet is transmitted. The key SW1 returns to the LP
531  position. Following the last bit of the high-priority packet, all the bits of the previously suspended
532 low-priority packet are transmitted. The total data flow (Fig. 10, c) can be divided on the far side of
533 the communication channel into two components corresponding to Fig. 10, a and b, due to the
534 uniqueness of the flags F and the presence of the P and N fields in the packet headers.

535  To simplify the analysis of code situations by the receiver, one can accept the condition that the
536  low-priority packet flag is protected from interrupts, ie., not crashed when switching to a
537  high-priority packet transmission. In other words, if a high-priority packet has entered the SW1 key
538  during the low priority packet transmission, it is delayed and its transmission begins only after the
539  low-priority packet flag is fully transmitted. In the worst case, the delay is eight bit intervals.

540  With a greater number of priority levels, the described process of switching data flows acquires the
541  nature of nested interrupts widely used in microprocessor technology. As shown in Fig. 11, the
542  transmission of packets can repeatedly go from one priority level to another and back.

543  In the period TO - T1, the packet YO of the zero (lowest) priority level is transmitted to the line. At
544  time T1, this transmission is interrupted due to the arrival of the Y1 packet of the first (higher)
545  priority level. The transmission of the packet Y1, in turn, is interrupted at the time T2, after which
546  the Y2 packet of the second priority level is fully transmitted. The end of the transmission of this
547  packet is marked by a period.
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549 Figure 11. Transmission of data packets YO to Y6 using a four-level priority system
550

551 At time T3, the switch returns to the transmission of the packet Y1, but at the time T4 the
552 transmission is again interrupted by the higher priority packet Y3, which in turn is interrupted by
553 the Y4 packet at the time T5. This packet has the highest priority; therefore its transfer cannot be
554  interrupted under any circumstances.

555 Further, at the moments T6 to T8, in the order of decreasing priorities, the transmissions of the
556 packets Y4, Y3, Y1 are completed, and the transmission of the packet YO resumes. At time T9, this
557  transmission is again interrupted by a Y5 packet having the highest priority. At time T10, the Y6
558  packet is ready for dispatch, but it is performed only starting from the moment T11, when the
559  transmission of the Y5 packet is complete. At the moments T12 and T13, the transmission of the
560  packets Y6 and YO is completed.

561

562 5. Conclusions

563 High-priority packets are "wedged" into low-priority packets, without waiting for the end of
564  their transmission. This allows reducing delays in high-priority packets even with low-priority
565  packets of long length. The increase in the intelligence of telecommunication devices became
566  possible to apply more sophisticated algorithms and original flow control schemes in comparison
567  with the known ones. This allows solving the following tasks:

568 e reduce the likelihood of overflow and emptying of buffer blocks located along the
569  distribution routes of packets and, ultimately, improve the quality of computer networks;

570 * reduce the required amount of buffer memory;

571 e improve the efficiency of servicing high-priority packets.

572 The article considers a number of original solutions to these problems at a level sufficient for the

573 development of new generations of telecommunication devices and systems.

574
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