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Abstract- The identification of linear dynamic systems with static nonlinearities in the delta 

domain has been presented in this paper applying a firefly based hybrid meta-heuristic 

algorithm integrating Firefly algorithm (FA) and Gray wolf optimizer (GWO). FA diversifies 

the search space globally while GWO intensifies the solutions through its local search 

abilities. A test system with continuous polynomial nonlinearities has been considered for 

hammerstein and wiener system identification in continuous, discrete and delta domain. Delta 

operator modelling unifies system identification of continuous-time systems with discrete 

domain at higher sampling frequency. Pseudo random binary sequence, contaminated with 

white noise, has been taken up as the input signal to estimate the unknown model parameters 

as well as static nonlinear coefficients. The hybrid algorithm not only outperforms the parent 

heuristics of which they are constituted but also proves better as compared to some standard 

and latest heuristic approaches reported in the literature. 

Keywords:- System idenfication; delta operator modelling; Firefly algorithm gray wolf 

optimizer (FAGWO) 

Abbreviations 

ABC Artificial bee colony 

ALO Ant lion optimization 

BFA Bacterial foraging algorithm 

DA Dragonfly algorithm 

DE Differential evolution 

FA Firefly algorithm 

GOA Grasshopper optimization algorithm 

GWO Gray wolf optimizer 

FAGWO Firefly algorithm gray wolf optimizer 

MFO Moth flame optimization 
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MVO Multi-verse optimization 

PRBS Pseudo random binary sequence 

PSO Particle swarm optimization 

PSOGSA Particle swarm optimization gravitational search algorithm 

SCA Sine cosine algorithm 

SSA Salp swarm algorithm 

WOA Whale optimization algorithm 

 

1. Introduction  

System identification is an approximate modeling for a specific application on the basis of 

observed data and prior system knowledge. The literature on the system identification 

problem is extensive [1]. Meta-heuristic algorithms and their hybridizations have also taken 

active participation in the literature of system identification and control [2-3]. Linear systems 

with static nonlinearities at the input termed as the Hammerstein model, and linear systems 

with static nonlinearities at the output known as the Wiener model are two widely prevailing 

models used for system identification [4]. Parameter estimation of these models has 

traditionally been carried out in discrete-time using either shift operator in the time domain 

and z-transformation in the complex domain via soft computing approaches [5-8]. Likewise, 

a huge volume of literature also exists in the continuous-time system [9]. 

In the literature of identification and control, there have been several methods developed over 

the last five decades on discrete time systems utilizing the potential of digital computers. 

Concurrently, there has been a similar attempt in developing methods in continuous time 

identification and control in system theory due to the very fact that the physical signals are 

continuous time in nature. Modelling, identification and control with the help of delta 

operator is a holistic approach in which the signals and systems are modelled in discrete 

domain and leads to converge to its corresponding continuous time signals and systems at a 

high sampling frequency thus unifying both discrete and continuous time signals and systems 

[10]. 

Though hammerstein and wiener model identification with meta-heuristic approaches are 

quite popular in the discrete-time domain, similar analyses are rarely investigated for 

continuous-time systems. Hence system identification with hybrid meta-heuristic techniques 

can be thought of to unify both continuous and discrete time systems leveraging the 

properties of delta operator. A hybrid algorithm namely FAGWO developed by Ganguli et al. 

[11] has been utilized to identify the unknown hammerstein and wiener model parameters in 
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a unified delta operator framework. Continuous and discrete time analyses are carried out 

simultaneously to highlight upon the usefulness of delta operator modelling. 

The rest of the paper is developed as follows. Section 2 discusses the problem of wiener and 

hammerstein models in the delta domain. Section 3 gives a brief overview of the parent 

algorithms FA and GWO algorithms. Section 4 discusses the hybrid FAGWO algorithm. 

Section 5 presents the results while Section 6 concludes the paper. 

2. Statement of the problem 

2.1 Delta operator modelling 

The  -operator, an alternative formulation of discrete-time system [10] is defined in the time 

domain as: 

1q





          (1) 

where   denotes the sampling period while q is the forward shift operator. Operating  on a 

differential signal ( )x t gives 

( ) ( )
( )

x t x t
x t

  


       (2) 

It is straightforward to see that 

0
lim ( ) ( )

d
x t x t

dt





       (3) 

which indicate the close relationship between the discrete-time  -operator and the 

continuous-time differential operator 
d

dt
 at high sampling rate. 

Similarly relation exists in the complex domain as well. The delta transform operator   is 

defined as 

1z





          (4) 

2.2 Wiener system identification in delta domain 

The wiener model is characterized by a linear dynamic part followed by a static nonlinearity 

shown in the Fig. 1. 
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Fig. 1. Wiener model 

The intermediate signal x(k) is however not available for measurement. Assuming that the 

nonlinearity has a known structure with unknown parameters, the wiener model is 

represented by the following equations in the delta domain: 

    
( )

( )
( )

B
y k u k

A




      (5) 

where 

1 2

0 1 2( ) m m m

mB b b b b          

1 2

0 1 2( ) n n n

nA a a a a          

B and A are two polynomials of unknown orders and coefficients, u and y represents system 

input and output respectively. The non-measured intermediate variable x(k) is the input to the 

static nonlinearity given by- 

( ) ( , ( )) ( )y k f x k w k         (6) 

f () is any nonlinear function and    is a set of parameters describing the nonlinearity. Thus, 

the problem of the wiener model identification is to estimate the unknown parameters 

0 1, , , , ,m nb b a a  from the input-output data. Further, ‘w’ represents the white gaussian 

noise of fixed signal-to-noise ratio (SNR). In case the structure of the nonlinear function f () 

is not known, a polynomial of degree L can be used to approximate the nonlinearity as- 

2

1 2( ) ( ) ( ) ( ) ( )L

Ly k c x k c x k c x k w k    
     (7) 
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2.3 Hammerstein model identification in the delta domain 

Hammerstein model is a good example of nonlinear dynamic systems in which nonlinear 

static system and linear dynamic systems are separated in different order. The block diagram 

of Hammerstein model is shown below in Fig. 2. 

 

 

 

 

 

Fig. 2. Hammerstein model 

The input/output relation of discrete-delta system is represented as: 

 
( )

( ) ( ) ( ) ( ) ( )
( )

B
y k x k w k G x k w k

A





         (8) 

with    1 2

0 1 2( ) m m m

mB b b b b        
 

1 2

0 1 2( ) n n n

nA a a a a          

 

where     ( ) ( , ( ))x k f u k  

The objective is to estimate the parameters 1 0, , , , , ,n ma a b b  through the minimization of 

mean square error (MSE) obtained by the difference between actual and estimated values 

defined as- 

 
2

1

1
ˆ( ) ( )

N

k

J y k y k
N 

          (9) 

where     
 

ˆ ( )
ˆ ˆ( ) ( )

ˆ

B
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
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with     

1 2

0 1 2
ˆ ˆ ˆ ˆˆ( ) m m m

mB b b b b        
 

    

1 2

0 1 2
ˆ ˆ ˆ ˆ ˆ( ) n n n

nA a a a a        
 

    

ˆˆ( ) ( , ( ))x k f u k

 

Here ‘N’ denotes the number of input-output data points used in the identification and the 

parameter estimates 
1 0

ˆ ˆ ˆˆ ˆ, , , , , ,n ma a b b   are found by minimizing the fitness function 

defined in equation (9). 

3. Brief overview of FA and GWO algorithms 

In this section, the two parent algorithms viz. FA and GWO are introduced to set up an 

appropriate background for the hybrid method. The hybrid technique is then utilized to solve 

hammerstein and wiener model identification in the delta domain. 

3.1 Firefly algorithm (FA) 

Xin-She Yang developed the firefly algorithm [12] considering the following assumptions: 

 All fireflies are unisex so that one firefly is attracted to other fireflies regardless of 

their sex 

 Attractiveness is proportional to their brightness, thus for any two flashing fireflies, 

the less bright one will move towards the brighter one. The attractiveness is 

proportional to the brightness and they both decrease as their distance increases. If no 

one is brighter than a particular firefly, it moves randomly 

 The brightness or light intensity of a firefly is affected or determined by the landscape 

of the objective function to be optimized. 

In the firefly algorithm, there are two salient aspects: the variation of light intensity and 

formulation of attractiveness. For the sake of simplicity, it is assumed that the attractiveness 

of a firefly is determined by its brightness or light intensity which in turn is correlated with 

the encoded objective function. For maximum optimization problems, the brightness  xI  of 

a firefly at a particular location  x  is chosen as    xFxI  . The attractiveness   is relative; 

it will be seen in the eyes of the beholder or to be judged by the other fireflies. So it will vary 

with the distance ijr between firefly i and firefly j. As light intensity decreases with the 

distance from its source, the light is also absorbed in the media, hence it is concluded that the 
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attractiveness should vary with the degree of absorption. The light intensity  rI  varies with 

the distance r monotonically and exponentially as:  

     
             (10) 

where 
0I is the original light intensity and   is the light absorption coefficient. As a firefly’s 

attractiveness is proportional to the light intensity seen by adjacent fireflies, the attractiveness 

  of a firefly is defined as 

       
    

        (11) 

where 
0  is the attractiveness at r=0. It is worth mentioning that the exponent 2r can be 

replaced by other functions such as mr when 0m . The distance between any two fireflies i 

and j at ix and jx respectively, is the Cartesian distance is calculated as 

    ‖     ‖  √∑           
 
         (12) 

where 
dix ,

is the dth component of the spatial coordinate 
ix of ith firefly. The movement of a 

firefly i is attracted to another more attractive (brighter) firefly j is determined by 

         
    

(     )  α               (13) 

3.2 Gray wolf optimizer (GWO) 

Gray wolf optimizer (GWO) is a population based meta-heuristic algorithm 7ehaviour the 

leadership hierarchy and hunting mechanism of gray wolves found in nature [13]. Gray 

wolves are considered as apex predators, belonging at the top of the food chain. They live in 

groups (packs), each group containing 5-12 members on average. All the members in the 

group maintain a strict social hierarchy as shown in Fig. 3. 

 

Fig. 3. Social hierarchy of gray wolves 
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As seen from Fig. 3, four types of gray wolves such as alpha, beta, delta, and omega are 

employed for simulating the leadership hierarchy. In the hierarchy, alpha    is considered 

the most dominating member among the group. The rest of the subordinates to α are beta    

and delta ( ), which help to control the majority of wolves in the hierarchy that are 

considered as omega   .The ω wolves are of the lowest ranking in the social hierarchy.  

In GWO algorithm, the hunting is guided by ,   and  . The   solutions follow these 

three wolves. During hunting, the gray wolves encircle the prey. The mathematical model of 

the encircling 8ehaviour is presented as: 

( ) ( )pD CX t X t 
        (14) 

( 1) ( ) .pX t X t A D  
       (15) 

where t  indicates the current iteration, A  and C  are the coefficient vectors, pX  denotes the 

position vector of the prey while X represents the position vector of a gray wolf. The vectors 

A  and C  are computed using the following equations: 

22.C rand
         (16) 

12 .A a rand a 
        (17) 

where a  is linearly decreased from 2 to 0 over the course of iterations while 1rand  and 

2rand  denote random numbers lying in the range (0,1).The hunting operation of the gray 

wolves is usually guided by the alpha wolves. The beta and delta wolves occasionally 

participate in the hunting process. Thus, in the mathematical model for the hunting 8ehaviour 

of gray wolves, it is assumed that the alpha, beta and delta type gray wolves have better 

knowledge about the potential location of prey. Hence, the first three best solutions acquired 

are saved and the other search agents are obliged to update their positions according to the 

location of the best search agents. The following mathematical equations are thus framed as: 

1D C X X  
        (18) 

2D C X X  
        (19) 

3D C X X  
        (20) 
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Thus 

1 1.X X A D  
        (21) 

2 2.X X A D  
       (22) 

3 3.X X A D  
        (23) 

and finally 

1 2 3( )
( 1)

3

X X X
X t

 
 

       (24) 

The gray wolves complete the hunt by attacking the prey when it stops moving. In this phase, 

the value of a  is decreased and thereby the fluctuation range of A  is reduced. When A  has 

random values in the range  1,1 ,  the search agent’s next location will be in anywhere 

between its current position and the position of the prey.  

4. FAGWO algorithm 

Ganguli et al. [11] integrated FA with GWO as a low level relay type heterogenous hybrid 

topology, coined as FAGWO algorithm. From the literature it has been found that FA can 

subdivide the whole population into subgroups automatically in terms of the attraction 

mechanism with the variation of light intensity. Further, FA can also escape from the local 

minima by virtue of long-distance mobility via Lévy flight. Such advantages clearly indicate 

that FA has good exploration capabilities. Thus FA is used to explore the solution vector 

globally whereas GWO is employed to exploit the solutions through its local search abilities. 

The search operation begins with FA with the help of initialization through a group of 

random agents. The computation continues with FA for a certain number of iterations to 

search for the global best position in the specified search domain. The search process then 

shifts to GWO to speed up the convergence for global optimum. Thus the hybrid algorithm 

finds an optimum more accurately and precisely. The pseudocode of the hybrid algorithm to 

solve identification problem is provided in Fig. 4 given below. 

Begin: 

Global search phase 

Initialize the algorithm parameters: 
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Max_iter: Maximum number of iterations 

n: number of fireflies 

γ: the light absorption coefficient 

β0: the initial brightness of a given firefly 

D: the search domain 

Define the objective function f(X) where X=(x1,x2,………xd)
T
 

Generate the initial population of fireflies Xi (i=1,2,…….n) 

Determine the light intensity Ii of the i
th 

firefly Xi via the fitness function computed using the 

following steps: 

Step1: Excite the static nonlinear system by PRBS sequence. 

Step2: Generate random initial solutions for zeros and poles of the linear part, and the 

parameters of the nonlinearity in the appropriate search space. 

Step3: Evaluate the fitness function defined in equation (9) for all possible solutions 

generated in Step 2. 

t=1 

while t<Max_iter do 

for i = 1 to  n (all ‘n’ fireflies) do 

for  j = 1 to n (all ‘n’ fireflies) do 

if (Ij >Ii) then 

Move firefly i towards j 

end if 

Vary attractiveness with distance ‘r’ 

Evaluate new solutions and update light intensity 

end for j 

end for i 
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Rank the fireflies and find the current best 

t = t + 1 

end 

Local search phase 

Consider the best solution obtained by FA as the initial guess for GWO 

Apply GWO algorithm to search around global best, which is found by FA 

Output the solution obtained from GWO 

Post process results and visualization 

End 

Fig. 4. Pseudo code for identification algorithm using FAGWO 

5. Results and discussions 

The input-output relation of the continuous-time plant model to be identified [9] is given by- 

4 3 2

5
( )

23 185 800 2500
G




   

 


         (25)

 

The symbol   means 
d

dt
 operator. The zero order hold discrete-time approximation of this 

system parameterized using shift operator with 100 Hz sampling rate is stated as- 

 6 3 2

4 3 2

10 0.15537 0.41605 0.47402 0.142
( )

3.7777 5.3506 3.3674 0.79453

q q q
G q

q q q q

    


      (26)

 

The delta operator form of the transfer function at the same sampling time is represented as- 

4 3 2

0.8 4.5
( )

22 180 760 2200
G




   

 


         (27) 

Two separate continuous nonlinearities viz. 

2 3( ) ( ) 0.5 ( ) 0.25 ( )y k x k x k x k         (28) 
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and   2

( )
( )

0.10 0.90 ( )

x k
y k

x k



      (29)

 

are considered respectively for identifying wiener and hammerstein model parameters in 

continuous, discrete and delta domain. As observed in equations (25) and (27), continuous 

time and delta domain parameters are in close proximity, such is also the case after estimating 

these parameters in the respective domains. Discrete time parameter estimation shows a slight 

deviation. A sample size of 255 has been taken up for conducting the experiments. The input 

signal in both cases have been contaminated with white gaussian noise of SNR 50 dB. A 

population size of 20 and maximum no. of iterations of 100 are taken up for each of the 

experiments. Standard parameter values available in the literature are considered for all the 

algorithms mentioned for comparison with the hybrid method. Since heuristic algorithms are 

stochastic processes, they have to be run at least more than 10 times to generate meaningful 

statistical measures. Therefore around twenty independent test runs are carried out for each of 

the algorithms to get meaningful statistical results. Wilcoxon rank sum test [14] is also 

performed to validate the results. The actual and estimated parameters for wiener and 

hammerstein model identification in continuous, discrete and delta domain are shown 

respectively in Tables 1-6. The best estimates in these tables are marked in bold letters. 

Table 1. Actual and estimated values of wiener system in continuous time 

Types of 

values 

Algorithms b0 b1 a1 a2 a3 a4 c1 c2 c3 

Actual  -1 5 23 185 800 2500 1 0.5 0.25 

Estimated FAGWO -0.9939 4.9964 22.7272 184.8096 799.0473 2502.8094 0.9934 0.4979 0.2459 

 FA [12] -1.0476 5.4998 22.1545 196.7104 808.4689 2661.3213 1.0550 0.5214 0.2250 

 BFA [15] -0.9452 5.2816 20.7916 195.4189 845.0546 2640.7955 1.0563 0.5282 0.2641 

 FPA [12] -0.9007 4.5021 20.7087 166.5247 720.0390 2550.2607 0.9005 0.4523 0.2262 

 GWO [13] -1.0099 5.0738 22.0321 188.6011 810.1951 2307.3943 0.9762 0.4631 0.2679 

 PSOGSA[16] -0.9553 4.7903 25.1954 189.6628 783.8390 2317.8042 0.9805 0.5347 0.2250 

 PSO -1.0608 4.5152 23.9994 174.4268 767.0963 2519.7977 1.0164 0.4867 0.2698 

 DE -0.9745 5.3161 21.8083 199.2662 848.2653 2294.8964 1.0626 0.4842 0.2368 

 ABC -0.9328 4.7244 21.8578 174.1058 750.2416 2597.0666 0.9433 0.4680 0.2360 

 ALO [17] -0.9155 4.7343 25.2560 180.2339 780.1791 2277.2918 1.0461 0.5500 0.2673 

 DA [18] -1.0266 4.9227 21.0482 176.3234 752.4213 2477.9154 1.0438 0.4802 0.2384 
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 MFO [19] -0.9610 4.8545 20.8164 195.1274 877.9816 2721.4627 0.9757 0.5488 0.2624 

 GOA [20] -1.0613 4.8990 24.1544 197.4717 776.7262 2749.9633 1.0685 0.4546 0.2670 

 SCA [21] -1.0397 5.0248 25.2236 196.0021 817.6265 2472.3345 0.9273 0.5448 0.2742 

 SSA [22] -0.9115 4.7288 20.7738 203.5000 814.4726 2750.0000 0.9872 0.5212 0.2737 

 WOA [23] -1.0980 4.5930 20.7347 170.6249 872.2001 2738.4178 0.9006 0.5467 0.2287 

 

Table 2. Actual and estimated values of wiener system in discrete time 

Types of 

values 

Algorithms b0 b1 b2 b3 a1 a2 a3 a4 c1 c2 c3 

Actual  -1.5537E-07 -4.1605E-07 4.7402E-07 1.4200E-07 -3.7777 5.3506 -3.3674 0.7945 1.0000 0.5000 0.2500 

Estimated FAGWO -1.5423E-07 -4.1278E-07 4.7391E-07 1.4114E-07 -3.7427 5.3019 -3.3579 0.7826 0.9865 0.4826 0.2418 

 FA [12] -1.5047E-07 -4.5551E-07 4.4501E-07 1.3112E-07 -3.5003 4.9063 -3.2602 0.8658 1.0834 0.4620 0.2250 

 BFA [15] -1.4912E-07 -3.7492E-07 4.2868E-07 1.3014E-07 -3.5152 4.8642 -3.1124 0.7771 0.9020 0.4702 0.2254 

 FPA [12] -1.4680E-07 -3.7440E-07 4.2828E-07 1.2792E-07 -3.5197 4.8267 -3.0416 0.7406 0.9024 0.4616 0.2216 

 GWO [13] -1.5314E-07 -4.0623E-07 4.8399E-07 1.4740E-07 -3.6231 5.1298 -3.3731 0.8680 0.9222 0.4554 0.2480 

 PSOGSA [16] -1.4302E-07 -3.7663E-07 4.4130E-07 1.3053E-07 -3.6912 5.2341 -3.3824 0.8340 1.0483 0.5500 0.2382 

 PSO -1.4179E-07 -3.8254E-07 4.9885E-07 1.3149E-07 -3.5770 4.9643 -3.1541 0.7657 0.9000 0.4566 0.2251 

 DE -1.7065E-07 -4.5651E-07 5.2088E-07 1.4745E-07 -3.5860 4.9318 -3.0843 0.7412 1.0074 0.4511 0.2310 

 ABC -1.7062E-07 -4.3803E-07 4.6534E-07 1.3952E-07 -3.5728 4.9100 3.0711 0.7368 0.9383 0.4838 0.2292 

 ALO [17] -1.4559E-07 -4.5770E-07 5.2160E-07 1.4295E-07 -3.5007 4.9224 -3.2623 0.8740 0.9410 0.5500 0.2322 

 DA [18] -1.3980E-07 -4.5418E-07 4.5521E-07 1.3763E-07 -3.5816 5.0248 -3.3094 0.8671 1.0235 0.4925 0.2389 

 MFO [19] -1.7090E-07 -4.5770E-07 4.9987E-07 1.5620E-07 -3.5370 4.9075 -3.1868 0.8173 1.0291 0.5467 0.2250 

 GOA [20] -1.5767E-07 -3.7481E-07 5.2156E-07 1.3568E-07 -3.6838 5.2425 -3.4181 0.8605 0.9342 0.4662 0.2363 

 SCA [21] -1.6221E-07 -4.1481E-07 4.4600E-07 1.4877E-07 -3.5385 4.8155 -3.0307 0.7538 0.9646 0.4500 0.2750 

 SSA [22] -1.4971E-07 -4.4296E-07 4.7581E-07 1.4923E-07 -3.7207 5.2746 -3.3531 0.7968 1.0535 0.4581 0.2544 

 WOA [23] -1.6254E-07 -3.9890E-07 5.0421E-07 1.3137E-07 -3.5487 5.1182 -3.4519 0.8451 0.9617 0.5335 0.2745 

 

Table 3. Actual and estimated values of wiener system in delta domain 

Types of values Algorithms b0 b1 a1 a2 a3 a4 c1 c2 c3 

Actual  -0.8 4.5 22 180 760 2200 1 0.5 0.25 

Estimated FAGWO 0.8007 4.9189 21.9993 179.8898 759.8564 2196.8982 1.0008 0.4993 0.2506 

 FA [12] -0.7572 4.3832 21.7958 172.1841 763.0585 2258.0174 1.0442 0.4592 0.2620 

 BFA [15] -0.7489 4.4711 20.8981 185.6811 784.0277 1988.0011 0.9440 0.4778 0.2700 

 FPA [12] -0.8344 4.5947 22.0104 175.9721 766.0472 2370.6045 1.0576 0.5189 0.2565 

 GWO [13] -0.7610 4.4137 22.7008 175.3825 714.7724 2223.9991 0.9913 0.4693 0.2601 
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 PSOGSA [16] -0.7988 4.9418 20.9575 188.6559 820.1872 2273.5409 1.0198 0.5167 0.2275 

 PSO -0.8332 4.2612 21.7696 179.7970 796.8625 2332.6948 0.9634 0.5188 0.2359 

 DE -0.8121 4.7793 20.2434 178.9678 774.0527 2257.0789 1.0289 0.5238 0.2357 

 ABC -0.6239 3.7989 21.5476 120.8981 767.6003 3097.9705 1.0312 0.4816 0.2878 

 ALO [17] -0.7228 4.0736 22.0121 167.1997 729.4998 2190.0464 1.0135 0.5210 0.2345 

 DA [18] -0.8748 4.0742 23.5855 170.7276 730.4107 2019.8426 1.0022 0.5102 0.2300 

 MFO [19] -0.7265 4.7379 23.1151 169.4181 734.5583 2251.8777 0.9507 0.4694 0.2538 

 GOA [20] -0.7368 4.7694 23.1672 176.8427 760.3113 1997.8028 0.9101 0.5443 0.2314 

 SCA [21] -0.7753 4.2673 21.7239 164.1472 741.4551 2312.0279 0.9608 0.4675 0.2636 

 SSA [22] -0.8429 4.4526 22.2516 172.5593 699.8514 2309.6354 1.0326 0.5385 0.2485 

 WOA [23] -0.8732 4.8243 22.6977 188.5943 802.2568 2378.2787 0.9588 0.5189 0.2326 

 

Table 4. Actual and estimated values of hammerstein system in continuous time 

Types of 

values 

Algorithms c1 c2 b0 b1 a1 a2 a3 a4 

Actual  0.1 0.9 -1 5 23 185 800 2500 

Estimated FAGWO 0.1005 0.9010 -1.0007 4.9919 22.8451 185.1138 798.6565 2489.7281 

 FA [12] 0.0975 0.9708 -1.0106 5.2112 25.0142 197.9079 730.8170 2543.4192 

 BFA [15] 0.0927 0.9452 -1.0016 4.8382 23.3631 167.8127 821.0134 2652.2858 

 FPA [12] 0.1025 0.8730 -0.9617 5.4506 21.7504 201.2880 790.5437 2644.1293 

 GWO [13] 0.1017 0.8227 -0.9635 4.7647 23.5477 170.0642 775.2239 2611.2419 

 PSOGSA[16] 0.0962 0.9492 -1.0791 5.1010 21.7703 184.0202 871.9438 2441.2051 

 PSO 0.1036 0.8701 -0.9070 5.1071 23.3836 200.0911 866.1118 2420.9381 

 DE 0.0972 0.9715 -0.9359 4.8392 25.2715 181.1624 849.5250 2378.9182 

 ABC 0.1036 0.8589 -1.0112 5.2038 22.0595 189.9783 751.0919 2694.6895 

 ALO [17] 0.1012 0.9356 -1.0748 4.5286 20.9742 191.6522 725.3687 2263.9133 

 DA [18] 0.0924 0.8217 -1.0244 4.7467 25.1438 195.9269 804.6110 2517.1808 

 MFO [19] 0.0904 0.9020 -1.0874 4.5681 23.3205 172.4943 763.8203 2612.8700 

 GOA [20] 0.1021 0.8817 -1.0634 4.9887 23.7851 196.0922 739.6902 2656.9626 

 SCA [21] 0.1045 0.9719 -0.9029 5.1086 21.0825 184.8791 809.2040 2689.4568 

 SSA [22] 0.1041 0.9867 -0.9710 5.0217 24.7271 187.5363 794.4100 2730.7054 

 WOA [23] 0.0933 0.8345 -0.9442 5.2642 23.6772 833.5913 833.5913 2254.1685 
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Table 5. Actual and estimated values of hammerstein system in discrete time 

Types of 

values 

Algorithms c1 c2 b0 b1 b2 b3 a1 a2 a3 a4 

Actual  0.1 0.9 -1.5537E-07 -4.1605E-07 4.7402E-07 1.4200E-07 -3.7777 5.3506 -3.3674 0.7945 

Estimated FAGWO 0.1003 0.9008 -1.5541E-07 -4.1851E-07 4.7396E-07 1.4184E-07 -3.7691 5.3126 -3.3593 0.7927 

 FA [12] 0.10094 0.87585 -1.5084E-07 -4.4440E-07 4.9604E-07 1.4640E-07 -3.8517 4.9503 -3.0569 0.8142 

 BFA [15] 0.10274 0.85244 -1.5650E-07 -4.5295E-07 4.7360E-07 1.4740E-07 -3.9742 4.9089 -3.1844 0.76297 

 FPA [12] 0.10976 0.84761 -1.5341E-07 -3.7444E-07 4.3340E-07 1.3693E-07 -3.3999 4.9172 -3.1193 0.83146 

 GWO [13] 0.10122 0.84377 -1.4053E-07 -4.3568E-07 4.8855E-07 1.4810E-07 -3.7526 4.8229 -3.2459 0.84807 

 PSOGSA [16] 0.10794 0.98615 -1.6592E-07 -3.9185E-07 4.8987E-07 1.3833E-07 -3.6397 4.8718 -3.0485 0.74243 

 PSO 0.096331 0.86196 -1.6882E-07 -4.2564E-07 4.4745E-07 1.5320E-07 -3.4873 4.9545 -3.6092 0.81398 

 DE 0.10751 0.95917 -1.4477E-07 -3.8589E-07 5.0570E-07 1.3806E-07 -3.5264 4.8155 -3.1441 0.81657 

 ABC 0.10055 0.97293 -1.6966E-07 -4.2249E-07 4.6219E-07 1.3488E-07 -4.1338 4.9899 -3.0795 0.77282 

 ALO [17] 0.093972 0.97703 -1.5263E-07 -4.5385E-07 4.9892E-07 1.4639E-07 -3.6932 5.0305 -3.1525 0.78367 

 DA [18] 0.10089 0.83585 -1.5085E-07 -4.4540E-07 4.7606E-07 1.4542E-07 -3.8611 4.9606 -3.0679 0.8478 

 MFO [19] 0.10274 0.85244 -1.5650E-07 -4.5295E-07 4.7360E-07 1.4740E-07 -3.9742 4.9089 -3.1844 0.76297 

 GOA [20] 0.10976 0.84761 -1.5341E-07 -3.7444E-07 4.3340E-07 1.3693E-07 -3.3999 4.9172 -3.1193 0.83146 

 SCA [21] 0.10122 0.84377 -1.4053E-07 -4.3568E-07 4.8855E-07 1.4810E-07 -3.7526 4.8229 -3.2459 0.84807 

 SSA [22] 0.10794 0.98615 -1.6592E-07 -3.9185E-07 4.8987E-07 1.3833E-07 -3.6397 4.8718 -3.0485 0.74243 

 WOA [23] 0.096331 0.86196 -1.6882E-07 -4.2564E-07 4.4745E-07 1.5320E-07 -3.4873 4.9545 -3.6092 0.81398 

 

Table 6. Actual and estimated values of hammerstein system in delta domain 

Types of values Algorithms c1 c2 b0 b1 a1 a2 a3 a4 

Actual  0.1 0.9 -0.8 4.5 22 180 760 2200 

Estimated FAGWO 0.1002 0.9016 0.8022 4.5056 21.8819 179.8914 759.7545 2203.2891 

 FA [12] 0.1009 0.9099 -0.8623 4.7801 20.6720 188.4102 763.1495 2031.5233 

 BFA [15] 0.0911 0.9512 -0.7238 4.8713 23.9882 196.6399 799.4870 2102.4735 

 FPA [12] 0.0909 0.8992 -0.8045 4.4909 23.1408 164.1544 825.5786 2031.3154 

 GWO [13] 0.1082 0.8646 -0.7699 4.6708 20.0113 194.1521 761.2539 2038.4687 

 PSOGSA [16] 0.0921 0.8388 -0.7737 4.7146 21.9818 168.9356 802.2432 2308.1866 

 PSO 0.0972 0.9804 -0.8666 4.5083 21.5148 164.97335 815.51509 2163.3531 

 DE 0.0950 0.8618 -0.8449 4.3414 22.9583 169.9138 825.1344 2147.6116 

 ABC 0.1033 0.8404 -0.7705 4.4753 22.5379 188.7374 730.1771 2035.7064 

 ALO [17] 0.1068 0.8987 -0.8577 4.2764 20.0365 172.6891 777.9958 1989.3751 

 DA [18] 0.0925 0.8897 -0.8767 4.6237 22.9182 179.7771 711.7970 2301.3454 
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 MFO [19] 0.0992 0.8659 -0.7829 4.5010 21.4638 188.7328 804.1881 2237.43 

 GOA [20] 0.0998 0.9695 -0.8658 4.6001 21.7052 174.5740 833.4633 2075.5985 

 SCA [21] 0.0983 0.9848 -0.7929 4.6235 20.1478 165.2356 793.3553 2275.4090 

 SSA [22] 0.1063 0.920612 -0.8153 4.4029 20.0600 166.9278 808.3730 2076.1786 

 WOA [23] 0.1035 0.8573 -0.8390 4.8825 21.8649 181.1502 706.6982 2195.8506 

 

The hybrid method employed outperforms the parent algorithms as well as some standard 

heuristics in all the three domains. In addition, the results are better than a popular hyrbrid 

algorithm PSOGSA. Further, the continuous-time and discrete-delta parameters show close 

resemblance. The statistical measures of the test system in respective domains are narrated in 

Table 7.  

Table 7. Statistical measures of test systems 

Test Systems Algorithms Best Worst Average Std. 

Wiener system in 

continuous-time 
FAGWO 0.0016 0.0017 0.0016 3.0779e-05 

 FA [12] 0.0018 0.0020 0.0019 5.8361e-05 

 BFA [15] 0.0018 0.0021 0.0020 6.7289e-05 

 FPA [12] 0.0019 0.0021 0.0020 7.4325e-05 

 GWO [13] 0.0018 0.0019 0.0019 5.4884e-05 

 PSOGSA [16] 0.0017 0.0020 0.0018 7.6356e-05 

 PSO 0.0018 0.0019 0.0019 5.8215e-05 

 DE 0.0018 0.0020 0.0019 5.6053e-05 

 ABC 0.0019 0.0021 0.0020 5.8263e-05 

 ALO [17] 0.0018 0.0021 0.0019 8.5345e-05 

 DA [18] 0.0018 0.0020 0.0019 5.8430e-05 

 MFO [19] 0.0018 0.0020 0.0019 5.8296e-05 

 GOA [20] 0.0018 0.0019 0.0019 6.5716e-05 

 SCA [21] 0.0018 0.0019 0.0019 6.7876e-05 

 SSA [22] 0.0018 0.0020 0.0019 5.5030e-05 

 WOA [23] 0.0018 0.0019 0.0018 5.8973e-05 

Wiener system in FAGWO 0.0018 0.0020 0.0018 4.1039e-05 
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discrete-time 

 FA [12] 0.0020 0.0022 0.0021 5.9134e-05 

 BFA [15] 0.0020 0.0023 0.0022 6.8297e-05 

 FPA [12] 0.0021 0.0023 0.0022 7.6349e-05 

 GWO [13] 0.0020 0.0025 0.0023 1.6068e-04 

 PSOGSA [16] 0.0019 0.0022 0.0021 7.7783e-05 

 PSO 0.0020 0.0024 0.0022 1.0138e-04 

 DE 0.0020 0.0024 0.0022 1.3089e-04 

 ABC 0.0021 0.0023 0.0022 6.1283e-05 

 ALO [17] 0.0020 0.0023 0.0021 6.9473e-05 

 DA [18] 0.0020 0.0022 0.0021 8.1356e-05 

 MFO [19] 0.0020 0.0022 0.0021 5.9185e-05 

 GOA [20] 0.0020 0.0021 0.0021 7.3561e-05 

 SCA [21] 0.0020 0.0021 0.0021 7.8124e-05 

 SSA [22] 0.0020 0.0022 0.0021 9.7183e-05 

 WOA [23] 0.0020 0.0021 0.0021 6.7377e-05 

Wiener system in 

delta domain 
FAGWO 0.0016 0.0017 0.0016 3.0779e-05 

 FA [12] 0.0018 0.0020 0.0019 5.8361e-05 

 BFA [15] 0.0018 0.0021 0.0020 6.7289e-05 

 FPA [12] 0.0019 0.0021 0.0020 7.4325e-05 

 GWO [13] 0.0018 0.0019 0.0019 5.4884e-05 

 PSOGSA [16] 0.0017 0.0020 0.0018 7.6356e-05 

 PSO 0.0018 0.0019 0.0019 5.8215e-05 

 DE 0.0018 0.0020 0.0019 5.6053e-05 

 ABC 0.0019 0.0021 0.0020 5.8263e-05 

 ALO [17] 0.0018 0.0021 0.0019 8.5345e-05 

 DA [18] 0.0018 0.0020 0.0019 5.8430e-05 

 MFO [19] 0.0018 0.0020 0.0019 5.8296e-05 

 GOA [20] 0.0018 0.0019 0.0019 6.5716e-05 
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 SCA [21] 0.0018 0.0019 0.0019 6.7876e-05 

 SSA [22] 0.0018 0.0020 0.0019 5.5030e-05 

 WOA [23] 0.0018 0.0019 0.0018 5.8973e-05 

Hammerstein system 

in continuous-time 
FAGWO 0.0183 0.0186 0.0184 4.7946e-05 

 FA [12] 0.0190 0.0196 0.0193 5.9423e-05 

 BFA [15] 0.0191 0.0198 0.0195 6.8792e-05 

 FPA [12] 0.0190 0.0196 0.0193 7.7482e-05 

 GWO [13] 0.0189 0.0194 0.0192 5.4519e-05 

 PSOGSA [16] 0.0188 0.0192 0.0189 5.8183e-05 

 PSO 0.0190 0.0195 0.0193 5.0138e-05 

 DE 0.0190 0.0196 0.0193 5.3128e-05 

 ABC 0.0191 0.0196 0.0194 6.8249e-05 

 ALO [17] 0.190 0.0197 0.0193 6.9985e-05 

 DA [18] 0.0189 0.0194 0.0191 5.2386e-05 

 MFO [19] 0.0191 0.0197 0.0193 5.9376e-05 

 GOA [20] 0.0190 0.0196 0.0193 7.4566e-05 

 SCA [21] 0.0191 0.0195 0.0193 7.8523e-05 

 SSA [22] 0.0190 0.0195 0.0193 9.7813e-05 

 WOA [23] 0.0188 0.0194 0.0192 6.7287e-05 

Hammerstein system 

in discrete-time 
FAGWO 0.0187 0.0190 0.0188 4.9827e-05 

 FA [12] 0.0192 0.0198 0.0195 6.1683e-05 

 BFA [15] 0.0193 0.0200 0.0197 6.7632e-05 

 FPA [12] 0.0192 0.0198 0.0195 6.1986e-05 

 GWO [13] 0.0191 0.0196 0.0194 6.1243e-05 

 PSOGSA [16] 0.0190 0.0194 0.0191 5.5235e-05 

 PSO 0.0192 0.0197 0.0195 5.9223e-05 

 DE 0.0192 0.0198 0.0195 5.7135e-05 

 ABC 0.0193 0.0198 0.0196 5.9394e-05 

 ALO [17] 0.193 0.0200 0.0197 8.8759e-05 
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 DA [18] 0.0192 0.0201 0.0196 5.5637e-05 

 MFO [19] 0.0194 0.0201 0.0197 5.8909e-05 

 GOA [20] 0.0193 0.0199 0.0196 6.1181e-05 

 SCA [21] 0.0193 0.0198 0.0195 5.3989e-05 

 SSA [22] 0.0194 0.0199 0.0196 5.8979e-05 

 WOA [23] 0.0193 0.0198 0.0196 5.6291e-05 

Hammerstein system 

in delta domain 
FAGWO 0.0183 0.0186 0.0184 4.7946e-05 

 FA [12] 0.0190 0.0196 0.0193 5.9423e-05 

 BFA [15] 0.0191 0.0198 0.0195 6.8792e-05 

 FPA [12] 0.0190 0.0196 0.0193 7.7482e-05 

 GWO [13] 0.0189 0.0194 0.0192 5.4519e-05 

 PSOGSA [16] 0.0188 0.0192 0.0189 5.8183e-05 

 PSO 0.0190 0.0195 0.0193 5.0138e-05 

 DE 0.0190 0.0196 0.0193 5.3128e-05 

 ABC 0.0191 0.0196 0.0194 6.8249e-05 

 ALO [17] 0.190 0.0197 0.0193 6.9985e-05 

 DA [18] 0.0189 0.0194 0.0191 5.2386e-05 

 MFO [19] 0.0191 0.0197 0.0193 5.9376e-05 

 GOA [20] 0.0190 0.0196 0.0193 7.4566e-05 

 SCA [21] 0.0191 0.0195 0.0193 7.8523e-05 

 SSA [22] 0.0190 0.0195 0.0193 9.7813e-05 

 WOA [23] 0.0188 0.0194 0.0192 6.7287e-05 

 

The statistical assessments viz. best, worst, average and standard deviation of the fitness 

function for each algorithm are provided in this table. In addition to this, the best results 

obtained with respect to the best and worst values, average, standard deviations are 

highlighted with bold letters. The hybrid method has the least value in all the statistical 

measures in all the domains. The continuous-time and discrete-delta results are in close 

match. Since standard deviation turns out to be least with the hybrid method, it can be 

concluded the algorithm is more stable than those considered for comparison. 
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Additionally, some more statistical tests need to be performed to validate the significance of 

the results obtained justifying the very fact that the results did not come by chance. Hence, 

the non-parametric Wilcoxon rank sum test [14] is carried out to validate the significance of 

the results obtained and the calculated p-values are quoted in two parts in Table 8 and Table 9 

respectively as metrics of significance.        in this test turns to be non-significant 

values.  

Table 8. p-values for Wilcoxon rank sum test (part-1) 

Test systems Hybrid Algorithm PSOGSA FA BFA FPA GWO PSO DE ABC 

Wiener system in continuous-time FAGWO 3.6067E-06 1.9323E-05 3.6384E-05 7.0135E-06 3.6556E-06 1.9552E-09 1.8675E-09 1.1329E-07 

Wiener system in discrete-time FAGWO 1.0550E-07 9.3989E-06 2.2600E-05 9.8000E-03 2.6862E-08 1.0725E-08 9.3694E-11 1.6365E-08 

Wiener system in delta domain FAGWO 3.6067E-06 1.9323E-05 3.6384E-05 7.0135E-06 3.6556E-06 1.9552E-09 1.8675E-09 1.1329E-07 

Hammerstein system in continuous-time FAGWO 1.9514E-05 4.6708E-05 4.9824E-05 5.2319E-05 7.6790E-07 7.3220E-07 5.7997E-10 2.3675E-06 

Hammerstein system in discrete-time FAGWO 5.6379E-05 4.9103E-05 5.6522E-05 4.7214E-05 1.3350E-06 2.0024E-06 7.8642E-10 7.9023E-06 

Hammerstein system in delta domain FAGWO 1.9514E-05 4.6708E-05 4.9824E-05 5.2319E-05 7.6790E-07 7.3220E-07 5.7997E-10 2.3675E-06 

 

Table 9. p-values for Wilcoxon rank sum test (part-2) 

Test systems Hybrid Algorithm ALO DA MFO GOA SCA SSA WOA 

Wiener system in continuous-time FAGWO 1.2128E-06 1.0414E-05 3.6067E-06 1.2147E-06 1.0414E-05 1.2030E-06 1.0186E-05 

Wiener system in discrete-time FAGWO 2.1324E-08 1.9780E-04 1.3247E-05 1.5643E-04 8.3573E-05 4.7941E-08 1.0572E-07 

Wiener system in delta domain FAGWO 1.2128E-06 1.0414E-05 3.6067E-06 1.2147E-06 1.0414E-05 1.2030E-06 1.0186E-05 

Hammerstein system in continuous-time FAGWO 6.5000E-03 1.0700E-02 5.9000E-03 1.7000E-03 5.4000E-03 3.0230E-06 1.9536E-05 

Hammerstein system in discrete-time FAGWO 1.3100E-02 2.0300E-02 4.5000E-03 1.1300E-02 1.2000E-02 6.5556E-06 5.6434E-05 

Hammerstein system in delta domain FAGWO 6.5000E-03 1.0700E-02 5.9000E-03 1.7000E-03 5.4000E-03 3.0230E-06 1.9536E-05 

 

Tables 8 and 9 clearly indicate that the results obtained by the hybrid technique are 

significant with respect to all other algorithms. The convergence characteristics showing the 

normalized value of the fitness function versus the number of iterations for the proposed 

method are plotted in Fig. 5(a)-(b) for the test system used for wiener and hammerstein model 

identification in the delta domain respectively. 
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Fig. 5(a). Convergence characteristics of wiener model in delta domain 

 

Fig. 5(b). Convergence characteristics of hammerstein model in delta domain 

It is clearly evident from Fig. 5 that the proposed method converge faster as compared to the 

standard and parent algorithms considered. 

6. Conclusions 

A hybrid technique referred to as FAGWO is applied to identify hammerstein and wiener 

systems in the delta domain. Parameter estimation has been carried out in continuous, 

discrete and delta domain respectively. Delta operator modelling provides unification of 

continuous and discrete-delta results. The unknown model parameters are estimated through 

the minimization of mean square error (MSE). The fitness value of the hybrid technique not 

only surpasses that obtained by some popular metaheuristic algorithms but also the parent 

heuristics of which they are constituted for the test system under consideration. Wilcoxon test 

also validates the significance of the results obtained by the hybrid approach. The hybrid 

method also exhibits better convergence in the delta domain as compared to other algorithms. 
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The algorithm can further be applied for identification of systems with time delay as well as 

multi-input multi-output system in the delta domain. 
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