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Abstract- The identification of linear dynamic systems with static nonlinearities in the delta
domain has been presented in this paper applying a firefly based hybrid meta-heuristic
algorithm integrating Firefly algorithm (FA) and Gray wolf optimizer (GWO). FA diversifies
the search space globally while GWO intensifies the solutions through its local search
abilities. A test system with continuous polynomial nonlinearities has been considered for
hammerstein and wiener system identification in continuous, discrete and delta domain. Delta
operator modelling unifies system identification of continuous-time systems with discrete
domain at higher sampling frequency. Pseudo random binary sequence, contaminated with
white noise, has been taken up as the input signal to estimate the unknown model parameters
as well as static nonlinear coefficients. The hybrid algorithm not only outperforms the parent
heuristics of which they are constituted but also proves better as compared to some standard

and latest heuristic approaches reported in the literature.
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Abbreviations

ABC Artificial bee colony

ALO Ant lion optimization

BFA Bacterial foraging algorithm

DA Dragonfly algorithm

DE Differential evolution

FA Firefly algorithm

GOA Grasshopper optimization algorithm
GWO Gray wolf optimizer

FAGWO Firefly algorithm gray wolf optimizer
MFO Moth flame optimization
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MVO Multi-verse optimization

PRBS Pseudo random binary sequence

PSO Particle swarm optimization

PSOGSA Particle swarm optimization gravitational search algorithm
SCA Sine cosine algorithm

SSA Salp swarm algorithm

WOA Whale optimization algorithm

1. Introduction

System identification is an approximate modeling for a specific application on the basis of
observed data and prior system knowledge. The literature on the system identification
problem is extensive [1]. Meta-heuristic algorithms and their hybridizations have also taken
active participation in the literature of system identification and control [2-3]. Linear systems
with static nonlinearities at the input termed as the Hammerstein model, and linear systems
with static nonlinearities at the output known as the Wiener model are two widely prevailing
models used for system identification [4]. Parameter estimation of these models has
traditionally been carried out in discrete-time using either shift operator in the time domain
and z-transformation in the complex domain via soft computing approaches [5-8]. Likewise,
a huge volume of literature also exists in the continuous-time system [9].

In the literature of identification and control, there have been several methods developed over
the last five decades on discrete time systems utilizing the potential of digital computers.
Concurrently, there has been a similar attempt in developing methods in continuous time
identification and control in system theory due to the very fact that the physical signals are
continuous time in nature. Modelling, identification and control with the help of delta
operator is a holistic approach in which the signals and systems are modelled in discrete
domain and leads to converge to its corresponding continuous time signals and systems at a
high sampling frequency thus unifying both discrete and continuous time signals and systems
[10].

Though hammerstein and wiener model identification with meta-heuristic approaches are
quite popular in the discrete-time domain, similar analyses are rarely investigated for
continuous-time systems. Hence system identification with hybrid meta-heuristic techniques
can be thought of to unify both continuous and discrete time systems leveraging the
properties of delta operator. A hybrid algorithm namely FAGWO developed by Ganguli et al.
[11] has been utilized to identify the unknown hammerstein and wiener model parameters in
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a unified delta operator framework. Continuous and discrete time analyses are carried out
simultaneously to highlight upon the usefulness of delta operator modelling.
The rest of the paper is developed as follows. Section 2 discusses the problem of wiener and
hammerstein models in the delta domain. Section 3 gives a brief overview of the parent
algorithms FA and GWO algorithms. Section 4 discusses the hybrid FAGWO algorithm.
Section 5 presents the results while Section 6 concludes the paper.

2. Statement of the problem

2.1 Delta operator modelling

The o -operator, an alternative formulation of discrete-time system [10] is defined in the time
domain as:

50t
A 1)

where A denotes the sampling period while qis the forward shift operator. Operating o on a
differential signal x(t) gives

Sx(t) = X(t+A)—x(t)
A )
It is straightforward to see that
limox(t) = d X(t)
A—0 dt (3)

which indicate the close relationship between the discrete-time o -operator and the

. . : : d . .
continuous-time differential operator p at high sampling rate.

Similarly relation exists in the complex domain as well. The delta transform operator y is
defined as

Lz
A (4)

2.2 Wiener system identification in delta domain

The wiener model is characterized by a linear dynamic part followed by a static nonlinearity
shown in the Fig. 1.
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Fig. 1. Wiener model

The intermediate signal x(k) is however not available for measurement. Assuming that the
nonlinearity has a known structure with unknown parameters, the wiener model is

represented by the following equations in the delta domain:

_B()

y(k)= A(é)u(k) ()

where

B(5) =b,o™ +b6™ +0,6™ % +--+D

A(S)=a,0" +a, 0" +a,0"* +---+a,

B and A are two polynomials of unknown orders and coefficients, u and y represents system
input and output respectively. The non-measured intermediate variable x(k) is the input to the

static nonlinearity given by-
y(k) = £(6,x(k)) +w(k) (6)

f () is any nonlinear function and 6 is a set of parameters describing the nonlinearity. Thus,
the problem of the wiener model identification is to estimate the unknown parameters
By,---,b,.a,--,a, from the input-output data. Further, ‘w’ represents the white gaussian
noise of fixed signal-to-noise ratio (SNR). In case the structure of the nonlinear function f ()
is not known, a polynomial of degree L can be used to approximate the nonlinearity as-

y(K) = x(K) +¢,x* (k) +- -+, x" (k) +w(k) )
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2.3 Hammerstein model identification in the delta domain

Hammerstein model is a good example of nonlinear dynamic systems in which nonlinear
static system and linear dynamic systems are separated in different order. The block diagram

of Hammerstein model is shown below in Fig. 2.

w(k)

u(k) x(k)

—> STATIC NONLINEARITY LINEAR DYNAMICS

— ~

Fig. 2. Hammerstein model

The input/output relation of discrete-delta system is represented as:

y(k) B?; X(k) +w(k) =G(0)x(k) +w(k) (8)
with B(6) =b,o™ +b ™ +b,6™F 4+ D,
A(®)=a,0" +a 0" +a,0" t +--+a,
where x(k) = f (8,u(k))

The objective is to estimate the parameters a,,---,a,,b,,---,b,, 8 through the minimization of

mean square error (MSE) obtained by the difference between actual and estimated values

defined as-

=%Z Y~ J(6)] ©)

where y(k) = x(k)
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B(S) =b,6™ +bs™ +b,6™ 2 +---+b

m

with
AS)=4,0" +4," +48,0" 2 +---+4,
&(k) = f(6,u(k))

Here ‘N’ denotes the number of input-output data points used in the identification and the

A

parameter estimates 4&,---,4,0,,---,b_,6 are found by minimizing the fitness function

) n? 1 Mmo

defined in equation (9).
3. Brief overview of FA and GWO algorithms

In this section, the two parent algorithms viz. FA and GWO are introduced to set up an
appropriate background for the hybrid method. The hybrid technique is then utilized to solve

hammerstein and wiener model identification in the delta domain.

3.1 Firefly algorithm (FA)
Xin-She Yang developed the firefly algorithm [12] considering the following assumptions:
= All fireflies are unisex so that one firefly is attracted to other fireflies regardless of
their sex
= Attractiveness is proportional to their brightness, thus for any two flashing fireflies,
the less bright one will move towards the brighter one. The attractiveness is
proportional to the brightness and they both decrease as their distance increases. If no
one is brighter than a particular firefly, it moves randomly
= The brightness or light intensity of a firefly is affected or determined by the landscape
of the objective function to be optimized.
In the firefly algorithm, there are two salient aspects: the variation of light intensity and
formulation of attractiveness. For the sake of simplicity, it is assumed that the attractiveness
of a firefly is determined by its brightness or light intensity which in turn is correlated with

the encoded objective function. For maximum optimization problems, the brightness I()_() of

a firefly at a particular location (x) is chosen as I (x)aF (x). The attractiveness g is relative;
it will be seen in the eyes of the beholder or to be judged by the other fireflies. So it will vary

with the distance r; between firefly i and firefly j. As light intensity decreases with the

distance from its source, the light is also absorbed in the media, hence it is concluded that the
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attractiveness should vary with the degree of absorption. The light intensity I(r) varies with

the distance r monotonically and exponentially as:
[ =Ie " (10)

where 1, is the original light intensity and y is the light absorption coefficient. As a firefly’s

attractiveness is proportional to the light intensity seen by adjacent fireflies, the attractiveness

p of afirefly is defined as

B = Boe " (1)

where g, is the attractiveness at r=0. It is worth mentioning that the exponent »*can be
replaced by other functions such as »#™when m>0. The distance between any two fireflies i

and j at x;and X respectively, is the Cartesian distance is calculated as

o=l = B~ 207 @

where x, , is the dth component of the spatial coordinate x; of ith firefly. The movement of a

firefly i is attracted to another more attractive (brighter) firefly j is determined by

X =X + 30e—yr2 (ﬁ — x_]) +a(rand — 0.5) (13)

3.2 Gray wolf optimizer (GWO)
Gray wolf optimizer (GWO) is a population based meta-heuristic algorithm 7ehaviour the
leadership hierarchy and hunting mechanism of gray wolves found in nature [13]. Gray
wolves are considered as apex predators, belonging at the top of the food chain. They live in
groups (packs), each group containing 5-12 members on average. All the members in the

group maintain a strict social hierarchy as shown in Fig. 3.

/%, P
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T
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Fig. 3. Social hierarchy of gray wolves
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As seen from Fig. 3, four types of gray wolves such as alpha, beta, delta, and omega are

employed for simulating the leadership hierarchy. In the hierarchy, alpha («) is considered
the most dominating member among the group. The rest of the subordinates to o are beta (3)

and delta (o), which help to control the majority of wolves in the hierarchy that are

considered as omega () .The ® wolves are of the lowest ranking in the social hierarchy.

In GWO algorithm, the hunting is guided by «,f8 and 6. The @ solutions follow these

three wolves. During hunting, the gray wolves encircle the prey. The mathematical model of

the encircling 8ehaviour is presented as:
D =|CX(t)- X(t

CX, () - X ()| ”

X(t+1)=X,(t)-AD )

where t indicates the current iteration, A and C are the coefficient vectors, X o denotes the

position vector of the prey while X represents the position vector of a gray wolf. The vectors
A and C are computed using the following equations:

C =2rand,

—

(16)

>

=2a.rand, —a (17)

where d is linearly decreased from 2 to O over the course of iterations while rand, and

rand, denote random numbers lying in the range (0,1). The hunting operation of the gray

wolves is usually guided by the alpha wolves. The beta and delta wolves occasionally
participate in the hunting process. Thus, in the mathematical model for the hunting 8ehaviour
of gray wolves, it is assumed that the alpha, beta and delta type gray wolves have better
knowledge about the potential location of prey. Hence, the first three best solutions acquired
are saved and the other search agents are obliged to update their positions according to the

location of the best search agents. The following mathematical equations are thus framed as:

5, -|c.X, - X| w5
B, =|C.X, - X| -
5, -[C.X, - |

(20)
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Thus
X,=X,~AD, o
X,=X,-A,.D, (22)
XS:Xy—Ag.Dy 23)
and finally
X (t+1) = (X +X,+X,)
3 (24)

The gray wolves complete the hunt by attacking the prey when it stops moving. In this phase,
the value of d is decreased and thereby the fluctuation range of A is reduced. When A has

random values in the range [-11], the search agent’s next location will be in anywhere

between its current position and the position of the prey.

4. FAGWO algorithm
Ganguli et al. [11] integrated FA with GWO as a low level relay type heterogenous hybrid
topology, coined as FAGWO algorithm. From the literature it has been found that FA can
subdivide the whole population into subgroups automatically in terms of the attraction
mechanism with the variation of light intensity. Further, FA can also escape from the local
minima by virtue of long-distance mobility via Lévy flight. Such advantages clearly indicate
that FA has good exploration capabilities. Thus FA is used to explore the solution vector
globally whereas GWO is employed to exploit the solutions through its local search abilities.
The search operation begins with FA with the help of initialization through a group of
random agents. The computation continues with FA for a certain number of iterations to
search for the global best position in the specified search domain. The search process then
shifts to GWO to speed up the convergence for global optimum. Thus the hybrid algorithm
finds an optimum more accurately and precisely. The pseudocode of the hybrid algorithm to

solve identification problem is provided in Fig. 4 given below.

Begin:
Global search phase

Initialize the algorithm parameters:
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Max_iter: Maximum number of iterations

n: number of fireflies

y: the light absorption coefficient

[o: the initial brightness of a given firefly

D: the search domain

Define the objective function f(X) where X=(x1,X, ... ... ... xq)"
Generate the initial population of fireflies X; (i=1,2,.......n)

Determine the light intensity I; of the i firefly X; via the fitness function computed using the

following steps:

Stepl: Excite the static nonlinear system by PRBS sequence.

Step2: Generate random initial solutions for zeros and poles of the linear part, and the
parameters of the nonlinearity in the appropriate search space.

Step3: Evaluate the fitness function defined in equation (9) for all possible solutions
generated in Step 2.

t=1

while t<Max_iter do

fori=1to n(all ‘n’ fireflies) do

for j=1ton (all ‘n’ fireflies) do

if (I >1;) then

Move firefly i towards j

end if

Vary attractiveness with distance ‘r’

Evaluate new solutions and update light intensity
end for j

end for i

d0i:10.20944/preprints201809.0606.v1
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Rank the fireflies and find the current best

t=t+1

end

Local search phase

Consider the best solution obtained by FA as the initial guess for GWO
Apply GWO algorithm to search around global best, which is found by FA
Output the solution obtained from GWO

Post process results and visualization

End

Fig. 4. Pseudo code for identification algorithm using FAGWO
5. Results and discussions
The input-output relation of the continuous-time plant model to be identified [9] is given by-

-p+5
p* +23p° +185p° +800,0 + 2500 (25)

G(p) =

The symbol o means % operator. The zero order hold discrete-time approximation of this

system parameterized using shift operator with 100 Hz sampling rate is stated as-

107 x(0.15537q° +0.41605¢> — 0.47402q - 0.142)
q* —3.7777q° +5.35060° —3.3674q + 0.79453 (26)

G(a) =

The delta operator form of the transfer function at the same sampling time is represented as-

-0.86+4.5
4 1+2265° +1806% + 76065 + 2200 (27)

G(9)=~

Two separate continuous nonlinearities viz.

y(k) = x(K) +0.5x%(k) + 0.25x3(k) (28)
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x(k)
/0.10+0.90x%(k)

and y(k) =
(29)

are considered respectively for identifying wiener and hammerstein model parameters in
continuous, discrete and delta domain. As observed in equations (25) and (27), continuous
time and delta domain parameters are in close proximity, such is also the case after estimating
these parameters in the respective domains. Discrete time parameter estimation shows a slight
deviation. A sample size of 255 has been taken up for conducting the experiments. The input
signal in both cases have been contaminated with white gaussian noise of SNR 50 dB. A
population size of 20 and maximum no. of iterations of 100 are taken up for each of the
experiments. Standard parameter values available in the literature are considered for all the
algorithms mentioned for comparison with the hybrid method. Since heuristic algorithms are
stochastic processes, they have to be run at least more than 10 times to generate meaningful
statistical measures. Therefore around twenty independent test runs are carried out for each of
the algorithms to get meaningful statistical results. Wilcoxon rank sum test [14] is also
performed to validate the results. The actual and estimated parameters for wiener and
hammerstein model identification in continuous, discrete and delta domain are shown

respectively in Tables 1-6. The best estimates in these tables are marked in bold letters.

Table 1. Actual and estimated values of wiener system in continuous time

Types of  Algorithms by b, =0 a az ay Cy Cy C3
values
Actual -1 5 23 185 800 2500 1 0.5 0.25
Estimated FAGWO -0.9939  4.9964 227272  184.8096  799.0473  2502.8094  0.9934  0.4979  0.2459
FA[12] -1.0476 54998 221545 196.7104  808.4689  2661.3213  1.0550 05214  0.2250

BFA[15] -0.9452 52816  20.7916  195.4189  845.0546  2640.7955 1.0563 05282  0.2641
FPA[12] -0.9007 45021 20.7087  166.5247  720.0390  2550.2607  0.9005  0.4523  0.2262
GWO [13] -1.0099  5.0738 22.0321  188.6011  810.1951  2307.3943 0.9762 0.4631 0.2679

PSOGSA[16] -0.9553  4.7903  25.1954  189.6628  783.8390  2317.8042 0.9805 0.5347 0.2250

PSO -1.0608 45152  23.9994 1744268 767.0963  2519.7977  1.0164  0.4867  0.2698
DE -0.9745 53161 21.8083 199.2662  848.2653  2294.8964  1.0626  0.4842  0.2368
ABC -0.9328  4.7244  21.8578 174.1058  750.2416  2597.0666  0.9433  0.4680  0.2360

ALO [17] -0.9155  4.7343 252560  180.2339  780.1791  2277.2918 1.0461 0.5500 0.2673

DA [18] -1.0266  4.9227  21.0482  176.3234  752.4213 24779154  1.0438 0.4802 0.2384
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MFO [19] -0.9610  4.8545 20.8164 195.1274 877.9816  2721.4627 09757 0.5488  0.2624
GOA [20] -1.0613  4.8990 24.1544 197.4717  776.7262  2749.9633  1.0685 0.4546  0.2670
SCA [21] -1.0397 50248 252236 196.0021 817.6265 2472.3345 09273 0.5448  0.2742
SSA [22] -09115 47288  20.7738  203.5000 814.4726  2750.0000 0.9872 0.5212  0.2737
WOA[23]  -1.0980 45930 20.7347 170.6249  872.2001  2738.4178 0.9006 05467  0.2287
Table 2. Actual and estimated values of wiener system in discrete time
Types of Algorithms bo by b, bs a1 a as a C1 Cz Cs
values
Actual -15537E-07  -4.1605B-07  4.7402B-07  14200B-07 37777 53506 -3.3674 07945  1.0000 05000  0.2500
Estimated FAGWO -1.5423E-07 -4.1278E-07 4.7391E-07 1.4114E-07 -3.7427 5.3019 -3.3579 0.7826 0.9865 0.4826 0.2418
FA[12] -1.5047E-07 -4.5551E-07 4.4501E-07 1.3112E-07 -3.5003 4.9063 -3.2602 0.8658 1.0834 0.4620 0.2250
BFA [15] -1.4912E-07 -3.7492E-07 4.2868E-07 1.3014E-07 -3.5152 4.8642 -3.1124 0.7771 0.9020 0.4702 0.2254
FPA[12] -1.4680E-07 -3.7440E-07 4.2828E-07 1.2792E-07 -3.5197 4.8267 -3.0416 0.7406 0.9024 0.4616 0.2216
GWO [13] -1.5314E-07 -4.0623E-07 4.8399E-07 1.4740E-07 -3.6231 5.1298 -3.3731 0.8680 0.9222 0.4554 0.2480
PSOGSA [16] -1.4302E-07 -3.7663E-07 4.4130E-07 1.3053E-07 -3.6912 5.2341 -3.3824 0.8340 1.0483 0.5500 0.2382
PSO -1.4179E-07 -3.8254E-07 4.9885E-07 1.3149E-07 -3.5770 4.9643 -3.1541 0.7657 0.9000 0.4566 0.2251
DE -1.7065E-07 -4.5651E-07 5.2088E-07 1.4745E-07 -3.5860 4.9318 -3.0843 0.7412 1.0074 0.4511 0.2310
ABC -1.7062E-07 -4.3803E-07 4.6534E-07 1.3952E-07 -3.5728 4.9100 3.0711 0.7368 0.9383 0.4838 0.2292
ALO [17] -1.4559E-07 -4.5770E-07 5.2160E-07 1.4295E-07 -3.5007 4.9224 -3.2623 0.8740 0.9410 0.5500 0.2322
DA [18] -1.3980E-07 -4.5418E-07 4.5521E-07 1.3763E-07 -3.5816 5.0248 -3.3094 0.8671 1.0235 0.4925 0.2389
MFO [19] -1.7090E-07 -4.5770E-07 4.9987E-07 1.5620E-07 -3.5370 4.9075 -3.1868 0.8173 1.0291 0.5467 0.2250
GOA [20] -1.5767E-07 -3.7481E-07 5.2156E-07 1.3568E-07 -3.6838 5.2425 -3.4181 0.8605 0.9342 0.4662 0.2363
SCA[21] -1.6221E-07 -4.1481E-07 4.4600E-07 1.4877E-07 -3.5385 4.8155 -3.0307 0.7538 0.9646 0.4500 0.2750
SSA [22] -1.4971E-07 -4.4296E-07 4.7581E-07 1.4923E-07 -3.7207 5.2746 -3.3531 0.7968 1.0535 0.4581 0.2544
WOA [23] -1.6254E-07 -3.9890E-07 5.0421E-07 1.3137E-07 -3.5487 5.1182 -3.4519 0.8451 0.9617 0.5335 0.2745
Table 3. Actual and estimated values of wiener system in delta domain
Types of values Algorithms bo by a a, as a C1 C, Cs
Actual 0.8 45 22 180 760 2200 1 0.5 0.25
Estimated FAGWO 0.8007 4.9189 21.9993 179.8898 759.8564 2196.8982 1.0008 0.4993  0.2506
FA[12] -0.7572 43832 217958 172.1841 763.0585 2258.0174 1.0442 04592 0.2620
BFA [15] 07489  4.4711 20.8981 185.6811 784.0277 1988.0011 09440 0.4778  0.2700
FPA[12] -0.8344 45947 22,0104 1759721 766.0472 2370.6045 10576 0.5189  0.2565
GWO [13] -0.7610  4.4137 227008 175.3825 714.7724 22239991 09913 0.4693  0.2601
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PSOGSA[16] -0.7988 4.9418 20.9575 188.6559 820.1872 2273.5409 1.0198 0.5167 0.2275

PSO -0.8332 42612 21.7696  179.7970  796.8625 2332.6948 0.9634 0.5188  0.2359
DE -0.8121 47793  20.2434 178.9678 774.0527 2257.0789 1.0289 0.5238  0.2357
ABC -0.6239  3.7989 21.5476 120.8981 767.6003 3097.9705 1.0312 0.4816 0.2878

ALO [17] -0.7228 4.0736  22.0121 167.1997 729.4998  2190.0464 1.0135 0.5210 0.2345
DA[18] -0.8748  4.0742 235855 170.7276  730.4107 2019.8426 1.0022 0.5102  0.2300
MFO [19] -0.7265 4.7379  23.1151 169.4181 734.5583  2251.8777 0.9507 0.4694  0.2538
GOA [20] -0.7368  4.7694  23.1672 176.8427 760.3113 1997.8028 0.9101 0.5443 0.2314
SCA[21] -0.7753  4.2673  21.7239 164.1472  741.4551 2312.0279 0.9608 0.4675 0.2636
SSA[22] -0.8429  4.4526  22.2516 1725593 699.8514 2309.6354 1.0326  0.5385  0.2485

WOA [23] -0.8732  4.8243  22.6977 188.5943 802.2568 2378.2787 0.9588 0.5189  0.2326

Table 4. Actual and estimated values of hammerstein system in continuous time

Types of Algorithms C1 C2 bo by a a a3 a
values
Actual 0.1 0.9 -1 5 23 185 800 2500

Estimated FAGWO 0.1005 0.9010 -1.0007 4.9919 22.8451 185.1138 798.6565 2489.7281
FA [12] 0.0975 0.9708 -1.0106 5.2112 25.0142 197.9079 730.8170 2543.4192

BFA[15] 0.0927 0.9452 -1.0016 4.8382 23.3631 167.8127 821.0134 2652.2858

FPA[12] 0.1025 0.8730 -0.9617 5.4506 21.7504 201.2880 790.5437 2644.1293

GWO [13] 0.1017 0.8227 -0.9635 4.7647 23.5477 170.0642 775.2239 2611.2419

PSOGSA[16]  0.0962 0.9492 -1.0791 5.1010 21.7703 184.0202 871.9438 2441.2051

PSO 0.1036 0.8701 -0.9070 5.1071 23.3836 200.0911 866.1118 2420.9381
DE 0.0972 0.9715 -0.9359 4.8392 25.2715 181.1624 849.5250 2378.9182
ABC 0.1036 0.8589 -1.0112 5.2038 22.0595 189.9783 751.0919 2694.6895

ALO [17] 0.1012 0.9356 -1.0748 4.5286 20.9742 191.6522 725.3687 2263.9133
DA[18] 0.0924 0.8217 -1.0244 4.7467 25.1438 195.9269 804.6110 2517.1808
MFO [19] 0.0904 0.9020 -1.0874 4.5681 23.3205 172.4943 763.8203 2612.8700
GOA [20] 0.1021 0.8817 -1.0634 4.9887 23.7851 196.0922 739.6902 2656.9626
SCA[21] 0.1045 0.9719 -0.9029 5.1086 21.0825 184.8791 809.2040 2689.4568
SSA[22] 0.1041 0.9867 -0.9710 5.0217 24.7271 187.5363 794.4100 2730.7054

WOA [23] 0.0933 0.8345 -0.9442 5.2642 23.6772 833.5913 833.5913 2254.1685
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Table 5. Actual and estimated values of hammerstein system in discrete time

Types of A|gOritth C1 Cy bo b1 bz b3 a a as s
values
Actual 0.1 0.9 -1.5537E-07 -4.1605E-07 4.7402E-07 1.4200E-07 37777 5.3506 3.3674 0.7945
Estimated FAGWO 0.1003 0.9008 -1.5541E-07 -4.1851E-07 4.7396E-07 1.4184E-07 -3.7691 5.3126 -3.3593 0.7927
FA[12] 0.10094 0.87585 -1.5084E-07 -4.4440E-07 4.9604E-07 1.4640E-07 -3.8517 4.9503 -3.0569 0.8142
BFA[15] 0.10274 0.85244 -1.5650E-07 -4.5295E-07 4.7360E-07 1.4740E-07 -3.9742 4.9089 -3.1844 0.76297
FPA[12] 0.10976 0.84761 -1.5341E-07 -3.7444E-07 4.3340E-07 1.3693E-07 -3.3999 4.9172 -3.1193 0.83146
GWO [13] 0.10122 0.84377 -1.4053E-07 -4.3568E-07 4.8855E-07 1.4810E-07 -3.7526 4.8229 -3.2459 0.84807
PSOGSA [16] 0.10794 0.98615 -1.6592E-07 -3.9185E-07 4.8987E-07 1.3833E-07 -3.6397 4.8718 -3.0485 0.74243
PSO 0.096331 0.86196 -1.6882E-07 -4.2564E-07 4.4745E-07 1.5320E-07 -3.4873 4.9545 -3.6092 0.81398
DE 0.10751 0.95917 -1.4477E-07 -3.8589E-07 5.0570E-07 1.3806E-07 -3.5264 4.8155 -3.1441 0.81657
ABC 0.10055 0.97293 -1.6966E-07 -4.2249E-07 4.6219E-07 1.3488E-07 -4.1338 4.9899 -3.0795 0.77282
ALO [17] 0.093972 0.97703 -1.5263E-07 -4.5385E-07 4.9892E-07 1.4639E-07 -3.6932 5.0305 -3.1525 0.78367
DA [18] 0.10089 0.83585 -1.5085E-07 -4.4540E-07 4.7606E-07 1.4542E-07 -3.8611 4.9606 -3.0679 0.8478
MFO [19] 0.10274 0.85244 -1.5650E-07 -4.5295E-07 4.7360E-07 1.4740E-07 -3.9742 4.9089 -3.1844 0.76297
GOA [20] 0.10976 0.84761 -1.5341E-07 -3.7444E-07 4.3340E-07 1.3693E-07 -3.3999 4.9172 -3.1193 0.83146
SCA[21] 0.10122 0.84377 -1.4053E-07 -4.3568E-07 4.8855E-07 1.4810E-07 -3.7526 4.8229 -3.2459 0.84807
SSA [22] 0.10794 0.98615 -1.6592E-07 -3.9185E-07 4.8987E-07 1.3833E-07 -3.6397 4.8718 -3.0485 0.74243
WOA [23] 0.096331 0.86196 -1.6882E-07 -4.2564E-07 4.4745E-07 1.5320E-07 -3.4873 4.9545 -3.6092 0.81398

Table 6. Actual and estimated values of hammerstein system in delta domain

Types of values Algorithms C1 [ bo by a a as as
Actual 0.1 0.9 -0.8 45 22 180 760 2200
Estimated FAGWO 0.1002 0.9016 0.8022 45056 21.8819 179.8914 759.7545 2203.2891
FA[12] 0.1009 0.9099 -0.8623  4.7801  20.6720 188.4102 763.1495  2031.5233
BFA [15] 0.0911 0.9512 -0.7238  4.8713  23.9882 196.6399 799.4870 2102.4735
FPA[12] 0.0909 0.8992 -0.8045 4.4909 23.1408 164.1544 825.5786 2031.3154

GWO [13] 0.1082 0.8646 -0.7699  4.6708 20.0113  194.1521 761.2539  2038.4687

PSOGSA [16] 0.0921 0.8388 -0.7737 47146 21.9818  168.9356 802.2432  2308.1866

PSO 0.0972 0.9804 -0.8666 45083 21.5148 164.97335 81551509  2163.3531
DE 0.0950 0.8618 -0.8449 43414 229583  169.9138 825.1344  2147.6116
ABC 0.1033 0.8404 -0.7705 4.4753 225379  188.7374 730.1771  2035.7064
ALO [17] 0.1068 0.8987 -0.8577  4.2764  20.0365  172.6891 777.9958  1989.3751

DA[18] 0.0925 0.8897 -0.8767  4.6237 229182  179.7771 711.7970  2301.3454
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MFO [19] 0.0992 0.8659 -0.7829 45010 21.4638  188.7328 804.1881 2237.43
GOA [20] 0.0998 0.9695 -0.8658  4.6001 21.7052  174.5740 833.4633  2075.5985
SCA [21] 0.0983 0.9848 -0.7929  4.6235 20.1478  165.2356 793.3553  2275.4090
SSA[22] 0.1063  0.920612 -0.8153 4.4029 20.0600  166.9278 808.3730  2076.1786

WOA [23] 0.1035 0.8573 -0.8390 4.8825 21.8649  181.1502 706.6982  2195.8506

The hybrid method employed outperforms the parent algorithms as well as some standard
heuristics in all the three domains. In addition, the results are better than a popular hyrbrid
algorithm PSOGSA. Further, the continuous-time and discrete-delta parameters show close
resemblance. The statistical measures of the test system in respective domains are narrated in
Table 7.

Table 7. Statistical measures of test systems

Test Systems Algorithms Best Worst Average Std.
Wiener system in FAGWO 0.0016 0.0017 0.0016 3.0779e-05
continuous-time
FA [12] 0.0018 0.0020 0.0019 5.8361e-05
BFA [15] 0.0018 0.0021 0.0020 6.7289e-05
FPA [12] 0.0019 0.0021 0.0020 7.4325e-05
GWO [13] 0.0018 0.0019 0.0019 5.4884e-05
PSOGSA [16] 0.0017 0.0020 0.0018 7.6356e-05
PSO 0.0018 0.0019 0.0019 5.8215e-05
DE 0.0018 0.0020 0.0019 5.6053e-05
ABC 0.0019 0.0021 0.0020 5.8263e-05
ALO [17] 0.0018 0.0021 0.0019 8.5345e-05
DA [18] 0.0018 0.0020 0.0019 5.8430e-05
MFO [19] 0.0018 0.0020 0.0019 5.8296e-05
GOA [20] 0.0018 0.0019 0.0019 6.5716e-05
SCA [21] 0.0018 0.0019 0.0019 6.7876e-05
SSA [22] 0.0018 0.0020 0.0019 5.5030e-05
WOA [23] 0.0018 0.0019 0.0018 5.8973e-05

Wiener system in FAGWO 0.0018 0.0020 0.0018 4.1039e-05
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discrete-time

FA[12] 0.0020 0.0022 0.0021 5.9134e-05
BFA [15] 0.0020 0.0023 0.0022 6.8297e-05
FPA [12] 0.0021 0.0023 0.0022 7.6349e-05

GWO [13] 0.0020 0.0025 0.0023 1.6068e-04
PSOGSA [16] 0.0019 0.0022 0.0021 7.7783e-05
PSO 0.0020 0.0024 0.0022 1.0138e-04

DE 0.0020 0.0024 0.0022 1.3089e-04
ABC 0.0021 0.0023 0.0022 6.1283e-05
ALO [17] 0.0020 0.0023 0.0021 6.9473e-05

DA [18] 0.0020 0.0022 0.0021 8.1356e-05
MFO [19] 0.0020 0.0022 0.0021 5.9185e-05
GOA [20] 0.0020 0.0021 0.0021 7.3561e-05
SCA[21] 0.0020 0.0021 0.0021 7.8124e-05
SSA [22] 0.0020 0.0022 0.0021 9.7183e-05

WOA [23] 0.0020 0.0021 0.0021 6.7377e-05
Wiener system in FAGWO 0.0016 0.0017 0.0016 3.0779e-05
delta domain

FA[12] 0.0018 0.0020 0.0019 5.8361e-05
BFA [15] 0.0018 0.0021 0.0020 6.7289e-05
FPA [12] 0.0019 0.0021 0.0020 7.4325e-05

GWO [13] 0.0018 0.0019 0.0019 5.4884e-05
PSOGSA [16] 0.0017 0.0020 0.0018 7.6356e-05
PSO 0.0018 0.0019 0.0019 5.8215e-05

DE 0.0018 0.0020 0.0019 5.6053e-05
ABC 0.0019 0.0021 0.0020 5.8263e-05
ALO [17] 0.0018 0.0021 0.0019 8.5345e-05

DA [18] 0.0018 0.0020 0.0019 5.8430e-05
MFO [19] 0.0018 0.0020 0.0019 5.8296e-05

GOA [20] 0.0018 0.0019 0.0019 6.5716e-05
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SCA [21] 0.0018 0.0019 0.0019 6.7876e-05

SSA [22] 0.0018 0.0020 0.0019 5.5030e-05

WOA [23] 0.0018 0.0019 0.0018 5.8973e-05

I—!ammerstein system FAGWO 0.0183 0.0186 0.0184 4.7946e-05
in continuous-time

FA[12] 0.0190 0.0196 0.0193 5.9423e-05

BFA [15] 0.0191 0.0198 0.0195 6.8792e-05

FPA [12] 0.0190 0.0196 0.0193 7.7482e-05

GWO [13] 0.0189 0.0194 0.0192 5.4519e-05

PSOGSA [16] 0.0188 0.0192 0.0189 5.8183e-05

PSO 0.0190 0.0195 0.0193 5.0138e-05

DE 0.0190 0.0196 0.0193 5.3128e-05

ABC 0.0191 0.0196 0.0194 6.8249e-05

ALO [17] 0.190 0.0197 0.0193 6.9985e-05

DA [18] 0.0189 0.0194 0.0191 5.2386e-05

MFO [19] 0.0191 0.0197 0.0193 5.9376e-05

GOA [20] 0.0190 0.0196 0.0193 7.4566e-05

SCA [21] 0.0191 0.0195 0.0193 7.8523e-05

SSA [22] 0.0190 0.0195 0.0193 9.7813e-05

WOA [23] 0.0188 0.0194 0.0192 6.7287e-05

Hammerstein system FAGWO 0.0187 0.0190 0.0188 4.9827e-05

in discrete-time

FA[12] 0.0192 0.0198 0.0195 6.1683e-05

BFA [15] 0.0193 0.0200 0.0197 6.7632e-05

FPA [12] 0.0192 0.0198 0.0195 6.1986e-05

GWO [13] 0.0191 0.0196 0.0194 6.1243e-05

PSOGSA [16] 0.0190 0.0194 0.0191 5.5235e-05

PSO 0.0192 0.0197 0.0195 5.9223e-05

DE 0.0192 0.0198 0.0195 5.7135e-05

ABC 0.0193 0.0198 0.0196 5.9394e-05

ALO [17] 0.193 0.0200 0.0197 8.8759e-05
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DA [18] 0.0192 0.0201 0.0196 5.5637e-05
MFO [19] 0.0194 0.0201 0.0197 5.8909e-05
GOA [20] 0.0193 0.0199 0.0196 6.1181e-05
SCA[21] 0.0193 0.0198 0.0195 5.3989e-05
SSA [22] 0.0194 0.0199 0.0196 5.8979e-05
WOA [23] 0.0193 0.0198 0.0196 5.6291e-05

Hammerstein system FAGWO 0.0183 0.0186 0.0184 4.7946e-05
in delta domain

FA[12] 0.0190 0.0196 0.0193 5.9423e-05
BFA [15] 0.0191 0.0198 0.0195 6.8792e-05
FPA [12] 0.0190 0.0196 0.0193 7.7482e-05
GWO [13] 0.0189 0.0194 0.0192 5.4519e-05

PSOGSA [16] 0.0188 0.0192 0.0189 5.8183e-05
PSO 0.0190 0.0195 0.0193 5.0138e-05

DE 0.0190 0.0196 0.0193 5.3128e-05
ABC 0.0191 0.0196 0.0194 6.8249e-05
ALO [17] 0.190 0.0197 0.0193 6.9985e-05

DA [18] 0.0189 0.0194 0.0191 5.2386e-05
MFO [19] 0.0191 0.0197 0.0193 5.9376e-05
GOA [20] 0.0190 0.0196 0.0193 7.4566e-05
SCA [21] 0.0191 0.0195 0.0193 7.8523e-05
SSA [22] 0.0190 0.0195 0.0193 9.7813e-05
WOA [23] 0.0188 0.0194 0.0192 6.7287e-05

The statistical assessments viz. best, worst, average and standard deviation of the fitness
function for each algorithm are provided in this table. In addition to this, the best results
obtained with respect to the best and worst values, average, standard deviations are
highlighted with bold letters. The hybrid method has the least value in all the statistical
measures in all the domains. The continuous-time and discrete-delta results are in close
match. Since standard deviation turns out to be least with the hybrid method, it can be

concluded the algorithm is more stable than those considered for comparison.
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Additionally, some more statistical tests need to be performed to validate the significance of
the results obtained justifying the very fact that the results did not come by chance. Hence,
the non-parametric Wilcoxon rank sum test [14] is carried out to validate the significance of
the results obtained and the calculated p-values are quoted in two parts in Table 8 and Table 9
respectively as metrics of significance. p > 0.05 in this test turns to be non-significant

values.

Table 8. p-values for Wilcoxon rank sum test (part-1)

Test systems Hybrid Algorithm PSOGSA FA BFA FPA GWO PSO DE ABC
Wiener system in continuous-time FAGWO 3.6067E-06 1.9323E-05 3.6384E-05 7.0135E-06 3.6556E-06 1.9552E-09 1.8675E-09 1.1329E-07
Wiener system in discrete-time FAGWO 1.0550E-07 9.3989E-06 2.2600E-05 9.8000E-03 2.6862E-08 1.0725E-08 9.3694E-11 1.6365E-08
Wiener system in delta domain FAGWO 3.6067E-06 1.9323E-05 3.6384E-05 7.0135E-06 3.6556E-06 1.9552E-09 1.8675E-09 1.1329E-07
Hammerstein system in continuous-time FAGWO 1.9514E-05 4.6708E-05 4.9824E-05 5.2319E-05 7.6790E-07 7.3220E-07 5.7997E-10 2.3675E-06
Hammerstein system in discrete-time FAGWO 5.6379E-05 4.9103E-05 5.6522E-05 4.7214E-05 1.3350E-06 2.0024E-06 7.8642E-10 7.9023E-06
Hammerstein system in delta domain FAGWO 1.9514E-05 4.6708E-05 4.9824E-05 5.2319E-05 7.6790E-07 7.3220E-07 5.7997E-10 2.3675E-06

Table 9. p-values for Wilcoxon rank sum test (part-2)

Test systems Hybrid Algorithm ALO DA MFO GOA SCA SSA WOA

Wiener system in continuous-time FAGWO 1.2128E-06  1.0414E-05 3.6067E-06 1.2147E-06 1.0414E-05 1.2030E-06 1.0186E-05
Wiener system in discrete-time FAGWO 2.1324E-08 1.9780E-04 1.3247E-05 1.5643E-04 8.3573E-05 4.7941E-08 1.0572E-07
Wiener system in delta domain FAGWO 1.2128E-06 1.0414E-05 3.6067E-06 1.2147E-06 1.0414E-05 1.2030E-06  1.0186E-05

Hammerstein system in continuous-time FAGWO 6.5000E-03  1.0700E-02  5.9000E-03  1.7000E-03  5.4000E-03  3.0230E-06  1.9536E-05
Hammerstein system in discrete-time FAGWO 1.3100E-02  2.0300E-02  4.5000E-03  1.1300E-02 1.2000E-02  6.5556E-06  5.6434E-05
Hammerstein system in delta domain FAGWO 6.5000E-03  1.0700E-02  5.9000E-03  1.7000E-03  5.4000E-03  3.0230E-06  1.9536E-05

Tables 8 and 9 clearly indicate that the results obtained by the hybrid technique are
significant with respect to all other algorithms. The convergence characteristics showing the
normalized value of the fitness function versus the number of iterations for the proposed
method are plotted in Fig. 5(a)-(b) for the test system used for wiener and hammerstein model

identification in the delta domain respectively.


http://dx.doi.org/10.20944/preprints201809.0606.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 September 2018 d0i:10.20944/preprints201809.0606.v1

onvergence characteristics of wiener model in delta domain
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Fig. 5(a). Convergence characteristics of wiener model in delta domain
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Fig. 5(b). Convergence characteristics of hammerstein model in delta domain

It is clearly evident from Fig. 5 that the proposed method converge faster as compared to the

standard and parent algorithms considered.
6. Conclusions

A hybrid technique referred to as FAGWO is applied to identify hammerstein and wiener
systems in the delta domain. Parameter estimation has been carried out in continuous,
discrete and delta domain respectively. Delta operator modelling provides unification of
continuous and discrete-delta results. The unknown model parameters are estimated through
the minimization of mean square error (MSE). The fitness value of the hybrid technique not
only surpasses that obtained by some popular metaheuristic algorithms but also the parent
heuristics of which they are constituted for the test system under consideration. Wilcoxon test
also validates the significance of the results obtained by the hybrid approach. The hybrid

method also exhibits better convergence in the delta domain as compared to other algorithms.
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The algorithm can further be applied for identification of systems with time delay as well as

multi-input multi-output system in the delta domain.

Conflict of Interest Statement: The authors declare that they have no conflict of interest.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

References
Keesman, K. J. (2011). System identification: an introduction. Springer Science & Business
Media.

Bhushan, B., & Singh, M. (2011). Adaptive control of DC motor using bacterial foraging
algorithm. Applied Soft Computing, 11(8), 4913-4920.

Xu, X., Wang, F., & Qian, F. (2011, March). Study on method of nonlinear system
identification. In International Conference on Intelligent Computation Technology and
Automation (ICICTA), (Vol. 1, pp. 944-947).

Al-Duwaish, H. N. (2000). A genetic approach to the identification of linear dynamical
systems with static nonlinearities. International Journal of Systems Science, 31(3), 307-313.

Nanda, S. J., Panda, G., & Majhi, B. (2010). Improved identification of Hammerstein plants
using new CPSO and IPSO algorithms. Expert systems with applications, 37(10), 6818-6831.

Sun, J., & Liu, X. (2013). A novel APSO-aided maximum likelihood identification method
for Hammerstein systems. Nonlinear Dynamics, 73(1-2), 449-462.

Raja, M. A. Z., Shah, A. A., Mehmood, A., Chaudhary, N. I., & Aslam, M. S. (2016). Bio-
inspired computational heuristics for parameter estimation of nonlinear Hammerstein
controlled  autoregressive  system. Neural =~ Computing and  Applications, 1-20,
https://doi.org/10.1007/s00521-016-2677-X.

Pal, P. S., Kar, R.,, Mandal, D., & Ghoshal, S. P. (2016). Identification of NARMAX
Hammerstein models with performance assessment using brain storm optimization
algorithm. International Journal of Adaptive Control and Signal Processing, 30(7), 1043-
1070.

Sinha, N. K., & Rao, G. P. (Eds.). (2012). Identification of continuous-time systems:
Methodology and computer implementation (Vol. 7). Springer Science & Business Media.

Middleton, R. H., & Goodwin, G. C. (1990). Digital Control and Estimation: A Unified
Approach (Prentice Hall Information and System Sciences Series). Englewood Cliffs, NJ:
Prentice Hall.

Ganguli, S., Kaur, G., & Sarkar, P. (2018) A novel hybrid metaheuristic algorithm for model
order reduction in the delta domain: a unified approach. Neural Computing and Applications,
1-15, https://doi.org/10.1007/s00521-018-3440-2.

Yang, X. S. (2014). Nature-inspired optimization algorithms. Elsevier Inc.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in
engineering software, 69, 46-61.

Wilcoxon, F., Katti, S. K., & Wilcox, R. A. (1970). Critical values and probability levels for
the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected tables in
mathematical statistics, 1, 171-259.

d0i:10.20944/preprints201809.0606.v1


https://doi.org/10.1007/s00521-016-2677-x
https://doi.org/10.1007/s00521-018-3440-2
http://dx.doi.org/10.20944/preprints201809.0606.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 September 2018

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and
control. IEEE control systems, 22(3), 52-67.

Mirjalili, S., & Hashim, S. Z. M. (2010, December). A new hybrid PSOGSA algorithm for
function optimization. In International conference on Computer and information application
(ICCIA), (pp. 374-377).

Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80-98.

Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for
solving single-objective, discrete, and multi-objective problems. Neural Computing and
Applications, 27(4), 1053-1073.

Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic

paradigm. Knowledge-Based Systems, 89, 228-249.

Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and

application. Advances in Engineering Software, 105, 30-47.

Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization
problems. Knowledge-Based Systems, 96, 120-133.

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017).
Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Advances in
Engineering Software, 114, 163-191.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering
Software, 95, 51-67.

d0i:10.20944/preprints201809.0606.v1


http://dx.doi.org/10.20944/preprints201809.0606.v1

