Preprint
Article

Classification for Liver Diseases Based on Ultrasound Image Texture Features

This version is not peer-reviewed.

Submitted:

03 October 2018

Posted:

04 October 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
This paper discusses the computer-aided (CAD) classification between Hepatocellular Carcinoma (HCC), i.e., the most common type of liver cancer, and Liver Abscess, based on ultrasound image texture features and Support Vector Machine (SVM) classifier. Among 79 cases of liver diseases, with 44 cases of HCC and 35 cases of liver abscess, this research extracts 96 features of Gray-Level Co-occurrence Matrix (GLCM) and Gray-Level Run-Length Matrix (GLRLM) from the region of interests (ROIs) in ultrasound images. Three feature selection models, i) Sequential Forward Selection, ii) Sequential Backward Selection, and iii) F-score, are adopted to determine the identification of these liver diseases. Finally, the developed system can classify HCC and liver abscess by SVM with the accuracy of 88.875%. The proposed methods can provide diagnostic assistance while distinguishing two kinds of liver diseases by using a CAD system.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

439

Views

357

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated