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Abstract 

This paper discusses the computer-aided (CAD) classification between Hepatocellular 

Carcinoma (HCC), i.e., the most common type of liver cancer, and Liver Abscess, based on 

ultrasound image texture features and Support Vector Machine (SVM) classifier. Among 79 

cases of liver diseases, with 44 cases of HCC and 35 cases of liver abscess, this research 

extracts 96 features of Gray-Level Co-occurrence Matrix (GLCM) and Gray-Level Run-

Length Matrix (GLRLM) from the region of interests (ROIs) in ultrasound images. Three 

feature selection models, i) Sequential Forward Selection, ii) Sequential Backward 

Selection, and iii) F-score, are adopted to determine the identification of these liver diseases. 

Finally, the developed system can classify HCC and liver abscess by SVM with the accuracy 
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of 88.875%. The proposed methods can provide diagnostic assistance while distinguishing 

two kinds of liver diseases by using a CAD system. 

I. Introduction 

Liver diseases are ones of the most life-threatening causes worldwide. Among the 

different kinds of liver diseases, liver cancer and liver abscess, which have the high mortality 

rate, are the most dangerous ones. The distribution of liver cancer is irregular, with the high 

occurrence rate in countries of Eastern or South-eastern Asian, sub-Saharan Africa and 

Melanesia [1]. Liver abscess is not as popular as liver cancer. However if it is not detected 

in time and treated in the proper treatment protocol, the patients are uniformly fatal. The 

liver biopsy tests are often used to evaluate the disease. They permit the doctors to examine 

the liver, provide a lot of helpful information to give the high-accuracy predictions. In 

addition to those undeniable benefits, it could cause pain, infection to patients or other 

injuries to later treatments.   

In order to reduce the unnecessary number of biopsy cases, other non-invasive methods 

for diagnosis have been applied popularly, especially using imaging technique such as 

Ultrasound (US) [2]-[3], Computed Tomography (CT) or Magnetic Resonance Imaging 

(MRI). Among those methods, the ultrasound imaging, with the unique advances such as no 

radiation, low-cost, easy operation, and non-invasive, is widely applied to visualizing the 

liver for clinical diagnoses. Therefore, it could provide the visual information for doctors to 

identify the state of disease. Nevertheless, the diagnoses are significantly affected by the 

quality of ultrasound images as well as the knowledge, experience of doctors. For 

inexperienced clinicians, it may be not easy to distinguish between liver cancers and liver 

abscess because of their similarity.  

To overcome this obstacle, it will be helpful to develop a computer-aided diagnosis 

(CAD) system by using the image processing and pattern recognition techniques because the 

well-built system can help clinicians effectively and objectively recognize the distinction. 

Literature survey indicates that some scientists have studied about the liver-issue 

classification based on ultrasound images. For example, Nicolas et al. first exploited the 

textual features to discriminate between liver and spleen of normal humans [4]. Richard and 

Keen utilized the 5-by-5 Laws' feature mask and then apply the probabilistic relaxation 
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algorithm for the segmentation [5]. Many textual features were used by Pavlopoulos for 

quantitative characterization of ultrasonic images [6]. Blecket al. applied the random field 

model to distinguishing the four states of liver [7]. The models proposed by Gebbincket al. 

and Kadahetal combined neural network and discriminant analysis to separate the different 

liver disease [8]-[9]. Pavlopoulos et al. improved their model by applying the fuzzy neural 

network to process the features [10]. Hornget al. evaluated the efficiency of the textual 

spectrum, the fractual dimension, the textual feature coding method, and gray level co-

occurrence matrix in distinguishing cirrhosis, normal samples and hepatitis [11]. Yang et al. 

developed an algorithm for classifying cirrhotic and non-cirrhotic liver with the spleen-

referenced approach [12]. 

As mentioned above, analyzing and classifing the images presenting organ lesion to 

differentiate its benign and malignant is the common purpose of many researchers, for 

example. So far in ultrasound imaging to explore the classification of Hepatocellular 

Carcinoma and liver abscess, we still have few clinically relevant studies, even though there 

are so many research about the analyzing the characteristics of Hepatocellular Carcinoma 

(HCC) (e.g., see [13]-[14]) or liver abscess (e.g., see [15]-[16]). Recently, many methods 

have been proposed to extract the features from the ultrasound images. For instance, the first 

and second order statistics are used (e.g., see [17]). Other approaches based on Wavelet 

Transform (e.g., see [18]), Gabor filter (e.g. see [19]), Monogenic Decomposition (e.g. see 

[20]), or Fractual Analysis (e.g. see [21]) were also proposed. There are various features 

could be extracted. However, the textual feature applied the most is Gray Level Co-

occurrence Matrix (GLCM) (e.g., see [22]-[25]).  

The main purpose of this research is to develop a reliable CAD system to provide the 

classification between two liver diseases, i) Hepatocellular Carcinoma (HCC), i.e., the most 

common type of liver cancer, and ii) liver abscess, based on Support Vector Machine (SVM) 

method and ultrasound image textual features. In this paper, we compare the results between 

the popular features GLCM with Gray Level Run Length Matrix (GLRLM). In this research, 

we totally have a large number of features, 96 features from each sample. If all of them are 

used to train a classifier, it not only costs too much time but also is hardly to achieve the 

high accuracy. To reduce the processing time as well as improve the accuracy, it is necessary 

to search the important features from the feature set. Then, the crucial features of the samples 
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are used to train and test by SVM. There are some steps to achieve this goal. Firstly, in the 

ultrasound images, the liver lesions are marked by the experienced doctors and the region of 

interests (ROIs) are sampled inside the red boundary. Secondly, all features are extracted 

from the collected ROIs. Thirdly, several feature selection processes are carried out to 

optimize the feature set. Finally, the optimal feature sets are used to train and test by SVM. 

II. Feature Extraction 

Feature extraction is one of the most important stages in pattern recognition. It collects 

the input data for classifier, and thus can directly affect the performance of a CAD system. 

For example, with the same number of features, a better feature set could more exactly 

describe the special characteristics of each kind of liver diseases such that it can improve the 

diagnosis result. As mentioned in Section I, textual analysis of ultrasound (US) images is a 

very useful tool for liver diagnosis and two of the most effective method is Gray Level Co-

occurrence Matrix (GLCM) and Gray Level Run-Length Matrix (GLRLM). In this research, 

we totally extract 96 features, including 52 features of GLCM and 44 features of GLRLM, 

for analysis. 

A. Materials    

 

Figure 2-1. An example of the cropping process for the original US image 
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The original US images, supported by the Medical University Hospital in Taipei, were 

stored as JPG format. They were converted into 256-gray-scale BMP files by Matlab 

function for more convenient processing. All images are included in 79 cases of liver 

diseases, with 44 cases of Hepatocellular Carcinoma (HCC) and 35 cases of liver abscess. 

At first, the original images were marked by the experiences clinician and verified in clinical 

reality. Then, the 32*32 -pixel ROIs were selected inside the marked boundaries as presented 

in Fig. 2-1. In Fig. 2-2, the 32*32-pixel ROIs were sampled from the marked image. All 

samples were collected from the liver disease images for later procedure as Fig. 2-3. In this 

research, we sampled 400 ROIs of each kind of diseases for training and testing process. 

 

Figure 2-2. The cropping window 
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Figure 2-3. The ROIs taken by Matlab: The first row is the samples of HCC and the 

second row is the samples of liver abscess 

B. Gray Level Co-occurrence Matrix (GLCM) and Haralick Beatures 

In this step, ROIs are analyzed by GLCM, the most popular second order statistical 

features proposed by Haralick [26] in 1973. The Haralick-feature extraction could be done 

through two steps. In the first step, the co-occurrence matrix is calculated, and in the second, 

the texture features, which are very useful in a various kind of imaging application, 

especially biomedical images, are computed based on the co-occurrence matrix.  

B-1. Gray Level Co-occurrence Matrix   

The Gray Level Co-occurrence Matrix is a matrix that shows how often the different 

combinations of gray levels transpire in an image. It was widely applied to extracting the 

features, especially in the research of liver diseases (e.g., see [27]). In other words, it presents 

the relationship between two neighbour pixels. The whole procedure to extract the Haralick 

features is presented as Fig. 2-4 and the co-occurrence matrix can be calculated as the 

following equation (2.1): 

 Cd,θ(i, j) = ∑ ∑ {
1, if I(x, y) = i, I(x + ∆x, y + ∆y) = j

0, otherwise                       
M
y=1

N
x=1  (2.1) 

where Cd,θ(i, j) is the number of occurrences of the pair of gray levels i and j, with d, θ 

are the distance and angularity respectively; I(x, y) is the intensity of a pixel at xth row and 

yth column in the image. We can see that, with the different pairs (d, θ), the image could be 
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explored in different directions and distances. In this research, we choose the 4 directions 

θ = 0, 45o, 90o, 135o with d = 1 (illustrated in Figure 2-5). Thus, the pair (d = 1, θ = 0) 

is the nearest horizontal pixel. Moreover, there are also co-occurrence matrixes for vertical 

(θ = 90o) and diagonal axes (θ = 45o, 135o). 

 

Figure 2-4. GLCM process 

 

Figure 2-5. The directions of Gray Level Co-occurrence Matrix 

For example in Figure 2-6, we calculate the Gray Level Co-occurrence Matrix of a 

4*4-pixel image. In this case, 3 and 1 are nearby each other 2 times in the image, so the 

position (3;1) and (1;3) are filled with 2. Similarly, applying the same principle to all other 

pixels we could get the GLCM of the image.  

The ROI that we need to process is a 32*32 pixels with 256-gray level. Therefore, we 

will have a 256*256 matrix with totally 65,536 cells, but many cells are filled with zeros 
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(because these combinations do not exist). This could lead to the bad approximation due to 

so many zeros cells). The solution for this problem is that the number of gray levels should 

be reduced, so this will decrease the number of zeros cells and the validity could be improved 

considerably. In this research, the ROIs were scaled to 16-gray-level images before 

computing GLCM. After that, it was normalized to be converted into probabilistic form by 

equation (2.2) and procedure is shown in Figure. 2-7. 

P(i, j) =
C(i,j)

∑ ∑ C(i,j)l−1
j=0

l−1
i=0

.                        (2.2) 

Therefore, we could get the GLCM as in equation (2.3): 

 G = [

P(0,0) P(0,1) ⋯ P(0, l − 1)

P(1,0) P(1,1) ⋯ P(1, l − 1)
⋮ ⋮ ⋱ ⋮

P(l − 1,0) P(l − 1,1) ⋯ P(l − 1, l − 1)

]. (2.3) 

From co-occurrence matrix, the textual features proposed by Haralick could be calculated. 
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Figure 2-6. Extracting Gray Level Co-occurrence Matrix (GLCM) from an image 

  

 

Figure 2-7. Calculation for Gray Level Co-occurrence. 
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B-2. Haralick features 

There are thirteen features which could be extracted from GLCM for an image. These 

features are presented as follows: 

1. Energy feature: 

It is also called angular second moment (ASM) feature or uniformity. It describes the 

uniformity of an image. When the gray levels of pixels are similar, the energy value will be 

large.  

 f1 = ∑ ∑ Pd,θ
2(i, j)l−1

j=0
l−1
i=0  (2.4) 

2. Entropy feature: 

This concept comes from thermodynamics, which is a field of physics concern with heat, 

temperature and their relationship with energy and work. In our case, it could be considered 

as a chaotic or disordered quantity. 

 f2 = − ∑ ∑ Pd,θ(i, j). logPd,θ(i, j)l−1
j=0

l−1
i=0  (2.5) 

3. Contrast feature: 

This measures the intensity variations between the pixels with the fixed direction and 

distance (d, θ). With the same gray level, the contrast value will be equal to 0. If |i − j| =

1, there is a little contrast so the weight is just 1. If |i − j| = 2, the contrast of gray level is 

higher, so the weight is bigger, 4. It means that the weight increase exponentially. 

 f3 = ∑ ∑ |i − j|2. Pd,θ(i, j)l−1
j=0

l−1
i=0  (2.6) 

4. Correlation feature: 

 This feature describes the linear dependency of gray level in the Co-occurrence 

matrix. It shows how a centre pixel relates to each other. 

 f4 = ∑ ∑ Pd,θ(i, j)
(i−μx)(j−μy)

σxσy

l−1
j=0

l−1
i=0  (2.7) 
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With μx, μy and σx, σy  are the mean and standard deviations which could be 

calculated as following: 

 σx = √∑ ∑ Pd,θ(i, j). (i − μx)2l−1
j=0

l−1
i=0  (2.8) 

 σy = √∑ ∑ Pd,θ(i, j). (i − μy)2l−1
j=0

l−1
i=0  (2.9) 

 μx = ∑ ∑ i. Pd,θ(i, j)l−1
j=0

l−1
i=0  (2.10) 

 μy = ∑ ∑ j. Pd,θ(i, j)l−1
j=0

l−1
i=0  (2.11) 

With the symmetrical Gray Level Co-occurrence Matrix, μx = μyand σx = σy. 

5. Homogeneity feature: 

 This feature is also known as Inverse Difference Moment (IDM) feature which 

describes the local similarity of an image.   

 f5 = ∑ ∑
1

1+(i−j)2
l−1
j=0

l−1
i=0 Pd,θ(i, j) (2.12) 

The weight of IDM is the inverse of the weight of Contrast so it decreases away from 

the diagonal of GLCM. It means that the position which is nearer the GLCM diagonal will 

have the larger weight. 

6. Sum average feature:  

 f6 = ∑ i. Px+y(i)
2(l−1)
i=0  (2.13) 

With: Px+y(k) = ∑ ∑ Pd,θ(i, j)l−1
j=0

l−1
i=0 ,k = i + j (2.14) 

7. Sum entropy feature:  

 f7 = − ∑ Px+y(i). log
2(l−1)
i=0 Px+y(i) (2.15) 

8. Sum variance feature:  

 f8 = ∑ (i − f7)2. Px+y(i)
2(l−1)
i=0  (2.16) 
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9. Difference average feature:  

 f9 = ∑ i. Px−y(i)
(l−1)
i=0  (2.17) 

With : Px−y(k) = ∑ ∑ Pd,θ(i, j)l−1
j=0

l−1
i=0 , k = |i − j| (2.18) 

10. Difference variance feature:  

 f10 = ∑ (i − f9)2. Px−y(i)
(l−1)
i=0  (2.19) 

11. Difference entropy feature:  

 f11 = − ∑ Px−y(i). logPx−y(i)
(l−1)
i=0  (2.20) 

12. Information measures of correlation feature 1:  

 f12 =
HXY−HXY1

max(HX,HY)
 (2.21) 

13. Information measures of correlation feature 2:  

 f13 = (1 − exp[−2(HXY2 − HXY)])
1

2⁄  (2.22) 

With: Px(i) = ∑ Pd,θ(i, j)l−1
j=0  (2.23) 

 Py(i) = ∑ Pd,θ(i, j)l−1
i=0  (2.24) 

 HX = − ∑ Px(i)log (Px(i))l−1
i=0  (2.25) 

 HY = − ∑ Py(i)log (Py(i))l−1
i=0  (2.26) 

 HXY = − ∑ ∑ Pd,θ(i, j). log (Pd,θ(i, j))l−1
j=0

l−1
i=0  (2.27) 

 HXY1 = − ∑ ∑ Pd,θ(i, j). log (Px(i)Py(j))l−1
j=0

l−1
i=0  (2.28) 

 HXY2 = − ∑ ∑ Px(i)Py(j). log (Px(i)Py(j))l−1
j=0

l−1
i=0  (2.29) 

The following example of 4x4 gray-scale image will illustrate the above equations as 

in Fig. 2-8.  
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After we get a co-occurrence matrix of the 4x4 gray-level image, 13 textual features 

can be calculated. The results of 13 textual features are shown in Table 2-1. 

 

 Figure 2-8. GLCM example with (𝐝 = 𝟏, 𝛉 = 𝟗𝟎𝐨) 

Table 2-1. GLCM features of an image 

 Textual Features Value 

1 Energy 0.1386 

2 Entropy 2.0915 

3 Contrast 0.9960 

4 Correlation 0.5119 

5 Homogeneity 0.7213 

6 Sum average 2.3260 

7 Sum variance 2.8829 

8 Sum entropy 1.5155 

9 Difference average 0.4980 

10 Difference variance 0.5542 

11 Difference entropy 1.0107 

12 Information Measures of Correlation Feature 1 -0.3713 

13 Information Measures of Correlation Feature 2 0.7840 
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C. Gray Level Run-Length Matrix (GLRLM) and Textual Features 

The other method which we applied in this paper to analyzing the ROIs is Gray Level 

Run-Length Matrix (GLRLM). It is firstly proposed by Galloway in 1975 with 5 features 

[26]. In 1990, Chu et al. [29] suggested two new features to extract gray level information 

in the matrix before Dasarathy and Holder [30] offered another four features following the 

idea of joint statistical measure of gray level and run length. Tang [31] provided a good 

summary of some features achieved from the GLRLM.  

C-1. Gray Level Run-Length Matrix 

Run-length statistics extract the coarseness of a texture in the different directions. A 

run is defined as a string of consecutive pixels which have the same gray level intensity 

along a specific linear orientation. Fine textures contain more short runs with similar gray 

level while coarse textures have more long runs with significantly different gray level 

intensities.  

For a given image, the pair (i, j) of a run-length matrix Q(i, j) is defined as the run-

number of grey level i and run length j as described the following example in Figure 2-9. 

Hence, the RLM measures how many times there are runs of j consecutive pixels with the 

same value, with j going from 2 to the length of the longest in a fixed orientation. Even 

though there are many GLRLM can be defined for a given image, normally 4 matrices are 

computed, for the horizontal, vertical and diagonal directions. The matrix P has the size 

(M × N), where M is equal to the maximum gray level and N is the possible maximum run 

length in the corresponding image. The typical directions are 0°, 45°, 90°, and 135°, and 

calculating the run-length encoding for each orientation will produce a run-length matrix. 
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Figure 2-9. GLRLM example. the first row is a 4x4 image with 4 gray levels and the 

others are the corresponding GLRLMs in 4 directions. 

 

C-2. GLRLM Features: 

After a run-length matrix is calculated along a given direction, several texture 

descriptors are calculated to obtain the texture properties and differentiate among different 

Image 

G
re

y
-L

ev
el

 

Run-length 

G
re

y
-L

ev
el

 

Run-length 

G
re

y
-L

ev
el

 

Run-length 

G
re

y
-L

ev
el

 

Run-length 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 October 2018                   doi:10.20944/preprints201810.0073.v1

http://dx.doi.org/10.20944/preprints201810.0073.v1


16 

 

textures. These descriptors can be used either with respect to each direction or by combining 

them if a global view of the texture information is required. There are eleven features which 

are typically extracted from the run-length matrices: Short Run Emphasis (SRE), Long Run 

Emphasis (LRE), High Gray-Level Run Emphasis (HGRE), Low Gray- Level Run Emphasis 

(LGRE), pair-wise combinations of the length and gray level emphasis (SRLGE, SRHGE, 

LRLGE, LRHGE), Run-Length Non-uniformity (RLN), Grey-Level Non-uniformity 

(GLN), and Run Percentage (RPC). These features describe specific characteristics in the 

image. For example, (SRE) measures the distribution of short runs in an image, while Run 

Percentage measures both the homogeneity and the distribution of runs of an image in a 

specific direction. The formulas for calculating the features and their explanation are 

provided as following: 

1. Short Run Emphasis: 

It describes the distribution of short runs. This value indicates how much is a texture 

composed of runs of short length in a given direction. 

 SRE =
1

nr
∑ ∑

Q(i,j)

j2
N
j=1

M
i=1  (2.30) 

With nr denotes the total number of runs. 

2. Long Run Emphasis: 

Similar to SRE, it describes the distribution of long runs. This value indicates how 

much is a texture composed of runs of long length in a given direction. These two features 

give a more in depth information of the coarseness of an image. 

 LRE =
1

nr
∑ ∑ Q(i, j). j2N

j=1
M
i=1  (2.31) 

3. Low Gray-Level Run Emphasis: 

It describes the distribution of low gray level value. The more low gray level values 

are in an image, the larger this value is. 

 LGRE =
1

nr
∑ ∑

Q(i,j)

i2
N
j=1

M
i=1  (2.32) 
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4. High Gray-Level Run Emphasis: 

In contrast with Low Gray-Level Emphasis, it describes the distribution of high gray 

level value. The higher gray-level values are in an image, the larger this value is. 

 HGRE =
1

nr
∑ ∑ Q(i, j). i2N

j=1
M
i=1  (2.33) 

5. Short Run Low Gray-Level Emphasis: 

It describes the relative distribution of short runs and low gray level values. The 

SRLGE value is large for the image with many short runs and lower gray level values. 

 SRLGE =
1

nr
∑ ∑

Q(i,j)

i2.j2
N
j=1

M
i=1  (2.34) 

6. Short Run High Gray-Level Emphasis: 

It describes the relative distribution of short runs and high gray level values. The 

SRHGE value will be large for the image with many short runs and high gray level values. 

 SRHGE =
1

nr
∑ ∑

Q(i,j).i2

j2
N
j=1

M
i=1  (2.35) 

7. Long Run Low Gray-Level Emphasis: 

It describes the relative distribution of long runs and low gray level values. The 

LRLGE value will be large for the image with many short runs and high gray level values. 

 LRLGE =
1

nr
∑ ∑

Q(i,j).j2

i2
N
j=1

M
i=1  (2.36) 

8. Long Run High Gray-Level Emphasis: 

It describes the relative distribution of long runs and high gray level values. The 

LRHGE value will be large for the image with many short runs and high gray level values. 

 LRHGE =
1

nr
∑ ∑ Q(i, j). i2. j2N

j=1
M
i=1  (2.37) 
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9. Gray-Level Non-uniformity: 

It describes the similarity of pixel values throughout the image in a given direction. It 

is expected small if the gray level values are similar throughout the image. 

 GLN =
1

nr
∑ (∑ Q(i, j))2N

j=1
M
i=1  (2.38) 

10. Run Length Non-uniformity: 

It describes the similarity of the length of runs throughout the image in a given 

direction. It is expected small if the run lengths are similar throughout the image. 

 RLN =
1

nr
∑ (∑ Q(i, j))2M

i=1
N
j=1  (2.39) 

11. Run Percentage: 

This feature is not a percentage in spite of its name. It presents the homogeneity and 

the distribution of runs of an image in a given direction. The RPC is the largest when the 

length of runs is 1 for all gray levels in a given direction. 

 RPC =
nr

np
 (2.40) 

With np  is the number of pixels. Figure 2-10 shows an example about calculating the 

GLRLM from a 4x4 gray-scale image following horizontal direction. We will compute 11 

features following the above formulas.  

The results of 11 textual features, which can be computed, are shown in Table 2-2. 
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Figure 2-10. A 4x4 gray-scale image and its corresponding GLRLM 

 

Table 2-2. GLRLM features of an image 

 Textual Features Value 

1 SRE 0.8269 

2 LRE 1.6923 

3 SRHGE 5.9423 

4 LRLGE 0.4348 

5 LRHGE 14.3077 

6 LGRE 0.3371 

7 HGRE 7.6154 

8 SRLGE 0.3126 

9 LRN 8.3846 

10 GLN 3.3077 

11 RPC 0.8125 

 

III. Feature Selection 

Feature selection has been an interesting research field in machine learning, pattern 

recognition, data mining, and statistics. The main idea of feature selection is to eliminate 

redundant features that contain little or no predictive information as well as keep the useful 

ones. In order to find optimal features for classification, researchers have proposed several 

methods to analyse the feature set. In fact, the effectiveness of features on classification is 

highly problem-dependent. Extracted features could perform very well for one problem, but 

G
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may give poor performance for others. Hence, we have responsibility for picking proper 

features for the given problem at hand. Ultimately, we need to find a set of features from 

various kinds of feature extraction methods, which is optimal for the problem. In this 

research, we apply Sequential Forward Selection, Sequential Backward Selection and F-

score to finding the optimal feature subset.  

A. Sequential Forward Selection (SFS). 

This method begins by evaluating all samples of dataset which consist of only one 

input attribute. In other words, we start from the empty set sequentially add the feature xi 

which result has the highest objective function J(Yk + xi) when combined with the set of 

features Yk  that have already been selected. Its algorithm is explained as following 

procedure:  

• Step 1: Start with empty set Yo = {∅}. 

• Step 2: Select the next best feature x∗ = argmax[J(Yk + x)] with x ∉ Yk. In our case, the 

objective function bases on classification rate from cross validation test. The mean value of 

10-fold cross validation test is used to evaluate feature subset.  

• Step 3: Update Yk+1=Yk + x∗ and set k = k + 1. 

• Step 4: Go to step 2. 

This process continues until adding feature decreases the criterion. According to the 

above process, we see that the search space is drawn like an ellipse to emphasize the fact 

that there are fewer states towards the full or empty sets. For instance, the state space for 4 

features is illustrated in the following figure.   

To find the overall best input feature set, the easiest way is exhaustive search. 

However, it is very expensive. Compared with the exhaustive search, forward selection is 

much cheaper. SFS works best when the optimal subset has a small number of features and 

the main disadvantage of SFS is that it is unable to remove features that become obsolete 

after the addition of other features.  
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B. Sequential Backward Selection (SBS) 

Contrary to Sequential Forward Selection, Sequential Backward Selection works in 

the opposite way. This starts from full of features and sequentially eliminates the worst 

feature x∗ to result in the highest objective function J(Yk − xi). Its algorithm is explained 

as following procedure: 

• Step 1: Start with full set Yo = X 

• Step 2: Eliminate the worst feature x∗ = argmax[J(Yk − x)] with x ∈ Yk . The objective 

function is the based on classification rate from cross validation test. The mean value of 10-

fold cross validation test is used to evaluate feature subset.  

• Step 3: Update Yk+1=Yk − x∗ and set k = k + 1. 

• Step 4: Go to step 2. 

This process continues until removing feature decreases the criterion. SBS usually 

works best when the optimal feature subset has a large number of features, since SBS spends 

most of its time visiting large subsets. Its procedure could be shown as in the following 

example. 

C. F-score 

F-score is a technique which measures the discrimination. Given training vectors xk, 

𝑘 = 1, . . . , 𝑚, if the number of positive and negative instances are n+ and n-, respectively, 

then the F-score of the ith feature could be calculated as equation (3.1): 

 F(i) =
(x̅i

(+)
−x̅i)2+(x̅i

(−)
−x̅i)2

1

n+−1
∑ (xk,i

(+)
−x̅i

(+)
)2n+

k=1
+

1

n−−1
∑ (xk,i

(−)
−x̅i

(−)
)2n−

k=1

 (3.1) 

With 𝑥̅𝑖 , 𝑥̅𝑖
(+)

, 𝑥̅𝑖
(−)

 are the averages of the ith feature of the whole, positive, and 

negative data and 𝑥𝑘,𝑖
(+)

, 𝑥𝑘,𝑖
(−)

 is the ith feature of kth positive and negative sample 

respectively. F-score indicates the discrimination between the positive and negative sets so 

the larger the F-score is, the more likely this feature is more discriminative. Thus, we could 

consider this score as a criterion for feature selection. A disadvantage of this method is that 

it cannot reveal mutual information among features as shown in the figure 3-5. In the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 October 2018                   doi:10.20944/preprints201810.0073.v1

http://dx.doi.org/10.20944/preprints201810.0073.v1


22 

 

example, both of features also have lower value of F-score; however, the set of them could 

classify two groups precisely.  

In despite of this drawback, F-score is simple and generally quite effective. We order 

all features based on its F-scores and then apply a classifier for training/testing for the set 

included the feature with highest H-score. Then we add the second highest F-score feature 

to the feature set before training and testing all dataset again. The procedure is repeated until 

all features added to feature set. 

IV. SVM Classification 

Support Vector Machine (SVM), which was proposed by Vapnik et al, is a powerful 

machine learning method based on statistical learning theory. Its theory is based on the idea 

of finding an optimal hyper-plane to separate two classes. This produces a classifier that 

could perform well on unseen patterns. Nowadays, SVM has been widely applied in many 

fields such as regression estimation, environment illumination learning, object recognition, 

bioinformatics analysis and so forth. In each case, there are usually many possible hyper-

planes to separate the groups, but there is only one that has maximal margin. 

In this research, two kinds of liver diseases are needed to discriminate. Hence, 

LIBSVM, a popular machine learning tool for classification, regression, and other machine 

learning tasks were used for implement multi-class learning task. LIBSVM, which was 

proposed by Lin et al [32], is a library for support vector machines. It is a integrated library 

for support vector classification (C-SVC, nu-SVC), distribution estimation (one-class SVM). 

A typical use of LIBSVM includes two steps: the first step is training a data set to obtain a 

model and the second one is using the model to predict information of a testing data set.  

V. Experimental Results and Discussion 

A. Performance Evaluation 

To reduce the variability of the prediction performance, Cross-validation test was 

usually applied to evaluate the performance of the proposed system. It is one of the most 

popular methods to evaluate a model’s prediction performance. If a model was trained and 

tested on the same data, it is easy to lead to an over-optimistic result. Therefore, the better 

approach, the holdout method, was to split the training data into disjoint subsets. 
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As it is a single train-and-test method, the error rate we got was resulted from an 

“unfortunate” split. Moreover, in some case of lacking samples, we cannot afford the 

"luxury' of setting. The drawbacks of the holdout can be overcome with a family of re-

sampling methods, Cross Validation. Two well-known kinds of Cross-validation are Leave-

one-out Cross-validation (LOOCV) and k-fold Cross-validation.   

In k-Fold Cross-validation, the total samples are randomly partitioned into k groups 

which have the same size. Of the k group, one group is for testing the model while the 

remaining (k − 1) groups are used as training data. This process is repeated k times (the folds) 

until all groups are tested. Then the results from the k experiments can be averaged to 

produce a single estimation. Thus, the true accuracy is estimated as the average accuracy 

rate 

 Acc =
1

K
∑ Acci

k
i=1  (5.1) 

 The advantage of this method (see in the above figure) is that all samples are used for 

both training and validation, and each observation is used for validation only one time. 

Although 10-fold and 5-fold Cross-validation are commonly used, in general k is an unfixed 

parameter. 

Leave-one-out Cross-validation could be considered as a degenerate case of k-fold 

Cross Validation with k is the total number of samples. Consequently, for a data with N 

samples, LOOCV performs N experiments. In each experiment, only one sample is used for 

testing while N-1 samples left are for training process.  

In this research, we use 10-fold Cross-validation for performance evaluation. The 

classification result 4 kinds of values: True Positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN), which mean is described as Table 5-1: 
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Table 5-1. The confusion matrix 

 

where true or false are intended for result correction while positive or negative signifies the 

tumor is either HCC or liver abscess. Based on the information, we could calculate the 

accuracy factors as (5.2) which describes the performance of classifiers 

  Accuracy =
TP+TN

TP+TN+FP+FN
.  (5.2) 

B. Result and Discusion 

Various experiments were conducted. In this result, 2 kinds of features (GLCM and 

GLRLM) were calculated and selected by the feature selection methods (Sequential Forward 

Selection, Sequential Backward selection or F-score) before classified by Support Vector 

Machine or Neural Network. The following sections will present the results of the different 

combination for considering the optimal methods for CAD system. 

B-1. Classification by all features  

As mentioned in the previous parts, we totally extracted 96 features from a region of 

interest. They consist many characteristics of each kind of liver diseases. In this experiment, 

SVM was applied to discriminate the diseases by using each kind of features (GLCM or 

GLRLM) and using 2 kinds (GLCM and GLRLM) together. The following table shows the 

result of classification in this case. 
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Table 5-2. Accuracy rate without applying selection method 

GLCM 

(52 features) 

GLRLM 

(44 features) 

GLCM+GLRLM 

(96 features) 

75.75% 54.53% 61% 

As can be seen from the Table 5-2, the classification results without applying any 

feature selection method of SVM are not good except the model, included GLCM and SVM, 

with the accuracy rate was 75.75%. The other combination of SVM just obtained the 

detection rate of 54.53% and 61%.  

This result shows that both of GLCM and GLRLM features could be applied for 

classification of HCC and liver abscess; however, GLRLM seems to contain more noise than 

GLCM. It could adapt to the redundant features in both GLCM and GLRLM while SVM's 

performance was affected significantly. In the next section, classification was conducted by 

applying Sequential Forward Selection method.  

B-2. Classifications by using Sequential Forward Selection  

After applying the Sequential Forward Selection for the different kind of feature sets, 

the different numbers of features were selected. The results are shown as in figure 5-3. In 

SVM classification, we set one more condition for SFS process. That is the lower bound of 

selected features is 4 features because if the number of selected features is not large enough, 

the result of classification will be not good. For example, the process of SVM, which is used 

to trains and test all samples with only one features, just takes about 0.3s.  

In regards to SVM, we could see that SFS give a slight improvement from 75.75% to 

78% with GLCM, and a significant change of recognition rate with GLRLM and the 

combination of GLCM and GLRLM from 54.53% to 88.13% and from 61% to 89.25% 

respectively. 
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Table 5-3. Accuracy rate with applying Sequential Forward Selection method 

 Without SFS With SFS 
The number of 

selected features 

Accuracy rate with GLCM features 75.75% 78% 5 

Accuracy rate with GLRLM features 54.53% 88.13% 7 

Accuracy rate with GLCM and 

GLRLM features 
61% 89.25% 9 

 

B-3. Classifications by using Sequential Backward Selection  

Table 5-4. Accuracy rate with applying Sequential Backward Selection method 

 Without SBS With SBS 
The number of 

selected features 

Accuracy rate with GLCM features 75.75% 75.5% 48 

Accuracy rate with GLRLM features 54.53% 88.25% 28 

Accuracy rate with GLCM and 

GLRLM features 
61% 88.87% 68 

After conducting the Sequential Backward Selection, we got the results shown as in 

figure 5-4. It is obviously that SBS enhanced the accuracy of all method with the different 

level. In case of GLCM features, the accuracy was slightly decreased 0.25% with SVM. As 

for GLRLM and the combination between GLCM and GLCM, the highest result achieved 

by SVM and the GLCM-GLRLM combination with SBS (88.87%). It is followed by 88.25% 

of the model which used GLRLM and SVM. 
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B-4. F-Score 

Based on the equation (3.1), the F-score of each feature could be computed and shown 

as in Table 5-5 and Table 5-6. 

Table 5-5. F-score of GLCM 

F F-score F F-score F F-score F F-score 

1 0.094006 14 0.046439 27 0.041523 40 0.048657 

2 0.000759 15 0.003384 28 0.00427 41 0.000678 

3 0.222294 16 0.087401 29 0.104389 42 0.15354 

4 0.166121 17 0.115392 30 0.114496 43 0.128984 

5 0.225713 18 0.092026 31 0.093941 44 0.135722 

6 0.175996 19 0.175218 32 0.176167 45 0.175231 

7 0.129382 20 0.126291 33 0.123562 46 0.118854 

8 0.144281 21 0.098294 34 0.09322 47 0.092418 

9 0.225882 22 0.094314 35 0.100657 48 0.145838 

10 0.219637 23 0.086611 36 0.104336 49 0.149344 

11 0.22536 24 0.096301 37 0.10026 50 0.14694 

12 0.083251 25 0.001884 38 0.00122 51 0.007818 

13 0.000225 26 0.003192 39 0.003984 52 0.000644 

 

Table 5-6. F-score of GLRLM 

F F-score F F-score F F-score F F-score 

53 0.309454 64 0.108676 75 0.087955 86 0.135784 

54 0.105037 65 0.026292 76 0.019915 87 0.031407 
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55 0.112888 66 0.12426 77 0.136258 88 0.116255 

56 0.258012 67 0.097652 78 0.092349 89 0.140583 

57 2.50E-05 68 1.20E-05 79 4.00E-06 90 1.20E-06 

58 0.113405 69 0.111519 80 0.110956 91 0.110342 

59 0.187865 70 0.183068 81 0.17762 92 0.175827 

60 0.064373 71 0.108361 82 0.109202 93 0.107328 

61 0.11555 72 0.053881 83 0.062097 94 0.083418 

62 0.503327 73 0.297173 84 0.266923 95 0.271874 

63 0.009315 74 0.001695 85 0.003806 96 0.002537 

As shown in Fig. 5-1, when we added more GLCM feature based on their F-score, the 

accuracy increased and reached the peak at the 36th feature with 77.25% accuracy before 

slightly decreasing to the end. Meanwhile, SVM achieved 87.125% at the 87th feature 

(including 34 features) before dropping rapidly from the 63th feature to the end of GLRLM 

features as shown in Fig. 5-2. In this case, we also can get 86.625% accuracy with only 16 

features at the 61st feature of GLRLM. In case of using all features, the trend of accuracy 

chart was quite similar with the case of applying GLRLM features. SVM can obtain the 

classification result up to the best accuracy of 88.875%, before plunging to the end as shown 

in Fig. 5-3. 
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Figure 5-1. The result of GLCM features and SVM  
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Figure 5-2. The result of GLRLM features and SVM 
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Figure 5-3. The result of all features and SVM 
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The other way to apply F-score is just picking some thresholds where the gap 

between low F-score and high F score is considerable. We chose 4 thresholds for each 

kind of feature and 6 thresholds for all features. The results are shown in Table 5-7. 

Table 5-7. Comparison between searching all and using threshold 

  Threshold Search all 

GLCM 76.25% 77.25% 

GLRLM 87.125% 87.125% 

GLCM+GLRLM 87.375% 88.875% 

As presented in the Table 5-7, the threshold method could achieve the results 

which are as good as by searching all features in case of SVM.  

C. Performance Analysis 

The performance of all methods was summarized as in following Table 5-8. The 

models using SVM and GLRLM or all features with any selection method gave the 

most outstanding accuracy, about 88%. For example, SVM tried all cases of features 

set based on F-score during about 40s. Finally, the best accuracy obtained by the model, 

which contains SVM and all features selected by SFS, was 89.25%. Nevertheless, in 

case of reducing the processing load, the threshold of F-score for SVM could be 

considerd because it also gives the good performance. It took only 1.8s to achieve the 
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classification rate of 87.375% compared with 40s of SFS. It will have the significant 

meaning for processing a large dataset. 

Table5 -8. Overall results 

 No Feature 

Selection 

SFS SBS 

F-score 

(Threshold) 

F-score 

(Search all) 

GLCM+SVM 75.75% 78% 75.5% 76.25% 77.25% 

GLRLM+SVM 54.53% 88.13% 88.25% 87.125% 87.125% 

All features +SVM 61% 89.25% 88.87% 87.375% 88.875% 

 

VI. Conclusion 

Hepatocellular Carcinoma (HCC) and liver abscess are ones of the most dangerous 

diseases all over the world. Due to the requirement of diagnosis of liver disease based 

on ultrasound images, it is very necessary to develop a CAD system to assist the 

inexperienced physicians in their decision making. Therefore, this research proposes a 

system to reduce the erroneous diagnosis for classification of HCC and liver abscess. 

First, 96 textural features, including 52 features of Gray-Level Co-occurrence Matrix 

(GLCM) and 44 features of Gray-Level Run-Length Matrix (GLRLM), were extracted 

from the Region of Interests (ROIs), which were verified by radiologist and recognized 

by biopsy. In order to obtain the important features, we applied the feature selection 

(SFS, SBS, and F-score) and select the most discriminative feature set. Finally, the 
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classifiers Support Vector Machine (SVM) were trained from the features of training 

set and test by 10-fold Cross-validation to get a reliable result. It shows that the 

proposed system can identify two types of liver disease with high accuracy (up to 

89.25%). This research can provide diagnostic assistance while distinguishing two 

kinds of liver diseases by using the proposed CAD system. 
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