
Article

Business Process Configuration according to Data
Dependency Specification

Luisa Parody 1,†*, María Teresa Gómez-López 2,†, Angel Jesús Varela-Vaca 2,† and Rafael M.
Gasca2,†

1 Universidad Loyola Andalucía; mlparody@uloyala.es
2 Universidad de Sevilla; {maytegomez, ajvarela, gasca}@us.es
* Correspondence: mlparody@uloyola.es; Tel.: +34-955-641-659
† These authors contributed equally to this work.

Abstract: Configuration techniques have been used in several fields, such as the design of business
process models. Sometimes these models depend on the data dependencies, being easier to describe
what has to be done instead of how. Configuration models enable to use a declarative representation
of business processes, deciding the most appropriate work-flow in each case. Unfortunately, data
dependencies among the activities and how they can affect the correct execution of the process, has
been overlooked in the declarative specifications and configurable systems found in the literature. In
order to find the best process configuration for optimizing the execution time of processes according
to data dependencies, we propose the use of Constraint Programming paradigm with the aim of
obtaining an adaptable imperative model in function of the data dependencies of the activities
described declarative.

Keywords: Business Process Modelling; Declarative Model; Imperative Model; Model
Configuration; Constraint Programming

1. Introduction

A business process, henceforth referred to as BP, consists of a set of activities that are executed
in coordination within an organizational and technical environment. These activities jointly attain
a business goal [1]. Several languages propose an imperative representation of business processes,
whose specification allows business experts to describe an explicit order of execution between
activities, and to transform the process into an executable model (for example, that activities A, B
and C are executed sequentially, or activities D and E are executed in parallel) [2], [3], [4], [5], and [6].
Sometimes the order of the activities is therefore derived from the data dependencies, being possible
different configurations. In those cases, the imperative languages fail in the consideration of the data
dependencies between activities. Configurable work-flows permit to include a degree of freedom
about how the activities are related according to their data dependencies.

Configurable models tend to use a declarative representation of the configurable aspects.
Although the imperative process models are significantly more understandable than declarative
models [7] [8], it is sometimes very difficult or even impossible to describe a problem in an imperative
way [9] and [10]. One of the cases in business processes, where this difficulty can be found, is when
the data relation can determine different activities order. The variation of the model is the reason
why several authors have proposed languages for the definition of BPs as declarative models [11],
[12], [13], and [14]. Unfortunately, the data dependencies and its relation with declarative description
has not been faced up.

This paper develops two ideas: (1) propose a declarative description of the activities that form
a BP, including the data dependencies between them; (2) based on this declarative model, it is
automatically transformed into an imperative model where the work-flow is defined to minimize
the execution time of the instances when the process is executed, and keeping the data dependencies

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy
http://dx.doi.org/10.20944/preprints201810.0076.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/app8102008

2 of 23

relations. In order to obtain the imperative model, we propose the use of Constraint Programming,
an Artificial Intelligence Technique.

The analysis of the data interchanged during the process execution can affect to two aspects
to optimize a BP: (i) attainment of a better business product, for example, by reducing the costs or
satisfying customers’ preferences; and, (ii) the reduction of the execution time of the instances. The
problem of determining the best product in terms of the input and output data of the activities is
presented in [15]. In these studies only the first type of aspect is solved, specifically, the way in
which the input data can influence the successful execution of a process is analyzed in order to find
an optimized product. On the other hand, in the proposal presented in this paper, these previous
works are extended to include the second aspect, the optimization of the execution of the instances
regarding the data dependencies. How to order the activities by considering these data dependencies
in an imperative representation is a hard and difficult task. In order to support business experts
in the design task, we propose an automatic transformation from the declarative model into an
optimal imperative model where the execution time is minimized. The main reason of transforming
declarative model into an imperative model is that imperative models are easier to implement in
commercial Business Process Management Systems (BPMS).

Therefore, the aim of this article is to present a framework capable of obtaining the
model configuration of the imperative description from a declarative specification based on data
dependencies using Constraint Programming. This configurable system must also be able to detect
errors and omissions in the declarative model, and to reason and validate, through the different
stages of the transformations. To the best of our knowledge, there are no proposals of declarative
specification focused on data management, that create optimal executable BP using techniques of
configuration.

The rest of the paper is organized as follows: Section 2 presents the example used in the
paper to set out the proposal. Section 3 describes related work. Section 4 presents the Conf-BP
Framework. Each individual component of the framework is then described in detail. Section
5 formalizes the declarative specification and applies it to the example. Section 6 proposes the
automatic transformation of the declarative configurable model into a imperative BP. Section 7 defines
the configurable system in charge of the transformation from declarative to imperative modelling
using Constraint Programming, and applies it to the example. Results are presented by applying the
automatic transformation to the example in Section 8. Finally, conclusions are drawn and future work
is proposed in Section 9.

2. Detailing an Example

One clear example, where the fundamental aspect is the successful execution of a BP, arises in
the form of the organization of a trip. Generally, the customer searches by hand on the Internet for
the cheapest combination of flight and hotel, for specific dates and cities. In addition, if the results
obtained remain unsatisfactory, then other dates are sought until a convenient combination is found.
Moreover, if necessary and also cheaper, a car can be rented in order to drive to another city to take a
flight from another airport, thereby expanding the range of cities of departure and arrival.

In order to obviate the search of several combinations by hand, it is possible to combine the
activities that represent the three providers (Hotel, Flight, and Car Rental Providers) into a single BP.
The question becomes how to configure the activities in a business process since the input and output
are related between them. Therefore, the model of the BP implies two difficulties:

• To find the input of the activities that optimize the trip by means of minimizing the price:
The process has to provide customers with various possibilities of trips with flights, hotel and
car rental (if necessary), while taking into account the existing combinations between a set of
possible dates and airports. In addition, there is an objective function to optimize which selects
only one of all the possible combinations obtained by the process. An evaluation and a proposal
of this part of the problem is analyzed in [15].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

3 of 23

• To obtain an imperative model that minimizes the execution time of the BP taking into
account the data dependencies: Although the activities to enjoy during the trip are: “take a
car to go to the airport”, “catch the flight” and “arrive to the hotel”, the process of booking each
part of the trip does not have to follow the same sequence. If the input data of each activity
were known, all the activities related to the provider could be executed in parallel. The problem
arises when certain activity inputs are related to other activity outputs, or when the activities
are executed or not depending on the information obtained from activities executed previously.
The objective of this paper is the use of artificial intelligence techniques based on Constraint
Programming in order to create an imperative model where the data dependencies are taken
into account to minimize the execution time of each instance. For example, it is possible for a
flight to arrive at its destination on a different day to when it takes off (overseas route), and
therefore the check-in date in the hotel cannot be determined until this information is known.
The question is: how to configure a business process formed by these activities to minimize the
execution time of the instances? This implies the analysis of every combination of activities and
to select the control flow gates that relate them.

3. Related Work

The configuration problems have been used in various industrial application fields, such as
computer networks, electrical engineering, telecommunication, financial services, or surveillance [16].
Furthermore, configuration has long been part of the field of Artificial Intelligence. Certain attempts
to formalize configuration have been proposed in [17] and [18]. Although many studies relate the
term “configuration” to the setting of parameters [19] [20], we focus on the definition of configuration
which consists of finding sets of specific objects that satisfy the properties of a given model, such as
in [21], [22], and [23].

In this paper, we propose the application of the configuration techniques based on
artificial intelligence to business process models. These techniques apply declarative knowledge
representation and reasoning methods based on Constraint Satisfaction Problems [24]. Unfortunately,
BPs are not typical configuration problems oriented to execute simple tasks [25]. This lack of
simplicity is due to the fact that different control flow patterns must be combined in an unknown
way taking into account the possible instances that will be executed at runtime.

Several perspective can be analyzed in configuration area [26]. Configuration in Business
Processes [27] deals with the problem of managing families of business processes, i.e. business
processes that are similar to one another in many ways, yet differ in some other ways from
one organization, project or industry to another. This problem arises for example in the context
of multinational companies that need to localize their business processes to different legislation,
compliance regulations, quality requirements, etc. It also manifests itself in the context of acquisition
projects, where an organization needs to merge their own processes with the ones of the acquired
organization [28]. In the case of the data relation, implies the possibility to create business process
models only modifying the data input and output relation and keeping the rest of information.
On the other hand, Vanderfeesten et al. in [29] and [30] define a product-based workflow support
to create an optimized process based on a set of recommendations. They firstly analyze the data
elements to combine them into a product data model. Then, they select a strategy and configure a
product-based workflow system. However, the resulting product model does not make any choice
about the ordering of activities.

Related to the languages used to represents declarative and imperative models. There is quite
a long history of research dedicated to the development of configuration knowledge representation
language [31]. In the case of Business Processes, several declarative languages have been created in
the last years, as analyzed in [32].

The transformation from declarative to imperative models with data dependencies has never
been studied as a configuration problem. However, some papers in literature can be found about the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

4 of 23

transformation between models in BPs. Kulza and Honkisz in [33] transform a Semantic of Business
Vocabulary and Rules (SBVR) [34] into a BPMN model. The work is oriented to the transformation
of business rules rather than to the dependencies between data. In [35], Natschläger et al. extend
BPMN with Deontic Logic. The extension aims to improve the readability and the overall structural
complexity, and avoid duplication. The extension proves that a transformation by applying graphs is
trusted. In [36], Wiśniewski et al. develop an approach by providing a method for business process
modelling. The proposal consists of collecting data coming from different participants and merging it
into one declarative specification of performed tasks. Based on this semi-formal description, authors
generate synthetic logs which are then used to obtain the BPMN model. Although their BPMN
composition is also based on graphs, the main difference with our proposal lies in that they do not
take into account data dependencies for the process modeling.

Although a certain number of these papers are focused on defining the interaction between
various participants in order to achieve business goals, none of them deals with the type of problems
presented in this work: the creation of an imperative model to minimize the BP execution time
according to data dependencies.

4. Conf-BP Framework: A Configurable System to create Imperative BP

In order to generate an imperative model, we propose a framework, called Conf-BP
(Configuration of Activities in Business Processes). Conf-BP creates automatically an imperative
model from its data declarative description. Therefore, the main objective of Conf-BP is to solve
the data dependencies where a business expert knows what is required (since the specification of the
problem is given), but not the specific work-flow to know how to obtain it in an optimal way. The
configurable model specifies the activities involved and the data relation between them. The relation
between the activities is provided through the relationships and constraints of the data dependencies.
Once all these features are specified, the framework is used to analyze the relationships between the
activities, and to create the work-flow for an imperative model. The standard Business Process Model
and Notation (BPMN) is used to represent the imperative model, since it can be enacted in any of the
existing commercial BPMSs.

ConfD-BP
(declarative) Automatic Configuration ConfM-BP

(imperative)

Variables

Domains

Constraints

Obj. Function

COP Model Configuration
solver

Business Process
Model Configured

translate

Business
Expert

Execute
Sub-process

+

Supply Input
Data Values

Show
Results

Im
pe

ra
tiv

e
BP

More input
data to

analyse?

Ac
tiv

iti
es
 D
ep

en
de

nc
ie
s

Car Rental Search 1

Hotel
Search

t1 t2
t

Flight
Search

t3

Car Rental
Search 2

Flight
Search

Car Rental
Search 1

Hotel
Search

Car Rental
Search 2

Flight
Search

Car Rental
Search 1

Hotel
Search

Car Rental
Search 2

Figure 1. Conf-BP Architecture.

As shown in Figure 1, Conf-BP Declarative Specification (ConfD-BP) represents the highest level
of abstraction, where the experts specify the model. The second stage consists of a configuration
system in charge of the transformation from the declarative specification into a specific model for a
particular imperative language, BPMN in our case. This transformation is performed in two steps: (1)
the definition of a Constraint Optimization Problem which obtains the time interval relations between
the activities, and (2) the application of an algorithm that builds the work-flow model. This algorithm
creates the work-flow that minimizes the execution time of the process. Finally, Conf-BP Imperative

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

5 of 23

Modelling (ConfM-BP) completes the third stage, by deploying this configuration into a BPMS. A
more detailed description of the Conf-BP stages is presented below.

5. Conf-BP Declarative Specification (ConfD-BP). A formalization of the language

The first stage of the framework is the specification of the configurable model in a declarative
way [15]. In this section, the parts of the configurable declarative model are detailed. The elements
are shown in Figure 2, and they are described following. As the configurable system can be combined
with other elements in a more complex work-flow, we provide the way to include the configurable
description into a sub-process.

...
PDI1, …, PDIn

PDI

PDO1, …, PDOm

PDO

A

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

B

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

C1, …, Cn

ID

C1, …, Cn

ID

 f: v

ADI ADO

Figure 2. Parts of the Configurable Declarative Description [15].

In order to introduce the formalization of the data provided and combined (see Figure 2),
the different descriptions to include are divided into: (i) Sub-process description, including the
descriptions of the components associated with the activities of the imperative part, detailed in
Section 5.1; and (ii) Sub-process relationships, which is the declarative description of the relationships
between the components through the data-flow (DF), addressed in Section 5.2.

5.1. Sub-process description

The sub-process description includes the components associated with the activities, gateways, and
control-flow which are known and can be represented in an imperative way. Taking A as the finite
set of activities {A1, . . ., Ai, . . ., An} contained in a determined BP, the following definitions are
introduced.

Definition 1. ACTIVITIES_DATA_INPUT(ADI) and ACTIVITIES_DATA_OUTPUT(ADO)

represent the sets containing, respectively, all the input data and output data involved in the
execution of all the activities.

Within the set ADI/ADO, containing all the input (output) variables, it is possible to identify the
input (output) variables of each activity, defined as follows.

Definition 2. DATA_INPUT (AI) and DATA_OUTPUT (AI) describe the set of input and output
data of an activity (AI) involved in the sub-process, respectively, so that

∀Ai, DATA_INPUT (Ai) ⊆ ADI, where ADI ⊂ DF and
∀Ai, DATA_OUTPUT (Ai) ⊆ ADO, where ADO ⊂ DF

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

6 of 23

Since various activities can share the same data input (or output), then it is also possible that:

DATA_INPUT (Ai) ∩ DATA_INPUT (Aj) 6= ∅, for i 6=j and
DATA_OUTPUT (Ai) ∩ DATA_OUTPUT (Aj) 6= ∅, for i 6=j

The union of all the DATA_INPUT sets and all the DATA_OUTPUT sets of all the activities,
constitute the sets ADI and ADO respectively, with non-repetitive elements.

ADI = {DATA_INPUT (A1) ∪ . . . ∪ DATA_INPUT(An)}
ADO = {DATA_OUTPUT(A1) ∪ . . . ∪ DATA_OUTPUT (An)}

Likewise, the specific variables that are inputs or outputs of the overall sub-process can be
distinguished. They represent the information that flows from the customer to the sub-process and
vice versa:

Definition 3. PROCESS_DATA_INPUT (PDI) is the set of input variables of the sub-process, which
determines the information provided and defined by the customer. PDI is composed of a subset of
variables of ADI.

PDI ⊂ ADI

Definition 4. PROCESS_DATA_OUTPUT (PDO) is the set of output variables of the sub-process.
PDO is composed of a subset of variables of ADO.

PDO ⊆ ADO

5.2. Sub-process relationships

There exist different relationships between the data inputs and data outputs defined in the
sub-process description. Those relationships are expressed as constraints, both at activity and at process
level, giving rise to the sub-process relationships, with the following definitions:

Definition 5. PRE (Ai) is the set of constraints that limits the specific values of the DATA_INPUT
(Ai) that must be satisfied to execute activity Ai. Likewise, POST (Ai) is the set of constraints that
limits the specific values of the DATA_OUTPUT (Ai) that must be satisfied after the execution of
activity Ai.

Definition 6. INPUT_CONSTRAINT (OUTPUT_CONSTRAINT) relates the values of variables of
PDI/PDO with variables of DATA_INPUT/DATA_OUTPUT can take according to the PDI/PDO
values in each instance, and the possible values between the input and output of the activities.

Definition 7. OBJECTIVE_FUNCTION (OBJ_FUNC) is an optimization function defined in terms
of the data output of the activities (ADO).

The objective of this optimization function is either to maximize or to minimize some of the
output data that represents the business product, which constitutes the outcome of the process.

OBJ_FUNC : f (v ⊆ ADO)→ value, where f is MAX or MIN

The result of this optimization problem is a set of input values that satisfies the objective function,
the pre and post-conditions of the activities, and also satisfies the input and output constraints.

The set of input values that optimizes the output is found at runtime. The role of the constraints
is to determine the possible values that this input and output data can take. All the constraints
(INPUT_CONSTRAINTS, OUTPUT_CONSTRAINTS, PRE, and POST) are always defined at
design time by a business expert who is familiar with the problem, although they are solved for

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

7 of 23

each instance at runtime. Among every possible tuples of solutions that satisfy the constraints, the
outcome of the sub-process will be the one which optimizes the variable defined in the optimization
function.

5.3. Grammar

The elements used in the declarative description, describe the data relationship by means of
numerical constraints. These constraints are defined by the following grammar [15], where Variable
and Constant, which represent the constant value for the variables, can be defined using Integer,
Natural, Float, or String domains. On the other hand, Set can be defined as a set of Constant values
of a specific Variable. The constraints can be IF-THEN constraints, which are equivalent to the
implication logic operator (→). IF-THEN constraints are used to represent that the relation of values
between some data is conditioned to the value of others. The grammar of constraints is the following:

Constraint := ’IF’ General−Constraint
’THEN’ General−Constraint
| General−Constraint

General−Constraint := Atomic−Constraint BOOL−OP General−Constraint
| Atomic−Constraint
| ‘¬’ Constraint
| Variable SET−FUNCTION Set

BOOL−OP:= ‘∨’ | ‘∧’
SET−FUNCTION:= ‘∈’ | ‘/∈’
Atomic−Constraint:= function PREDICATE function
function:= Variable FUNCTION−SYMBOL function
| Variable
| Constant

PREDICATE:= ‘=’ | ‘ 6=’ | ‘<’ | ‘≤’ | ‘>’ | ‘≥’
{For the String domain only ‘=’ and ‘ 6=’ are allowed }

FUNCTION−SYMBOL:= ‘+’ | ‘−’ | ‘∗’ | ‘/’
{These operators are only applicable to Numerical variables}

5.4. Specification Applied to the Trip Planner Example

In the trip planner example, the activities involved in the model share some data, being necessary
to create a work-flow aware data input and output. Figure 3 shows the trip example following the
formalization detailed in previous section and the notation described in [15].

Hence, there are eight PDI whose values are given by the customer:

• departingFrom: city from where the customer departs.

• goingTo: destination city.

• departDate: the day that the customer prefers to depart.

• returnDate: the day that the customer prefers to return.

• airportDepartingFrom: the departure airport to catch the flight.

• airportGoingTo: the arrival airport for the flight.

Four different activities are combined in order to perform the package trip offered to customers.
This package trip is composed of flights, hotel rooms and, if necessary, the renting of a car to drive
to an alternative departure airport, or from the arrival airport to the destination city. Each activity
calculates the price as output of the activities for each data input. For the example, the activities (Ai)
and their ADI are:

• Flight Search Activity (AF) returns the price of flights for a tuple of values for the data input.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

8 of 23

 departDate ≥ SystemDate,
 returnDate ≥ departDate

<<Pre>>

 carRentalInformation ≠null →
carRentalPrice > 0

<<Post>>

departingFrom,
goingTo,

departDate,
returnDate

DI

DO

flightPrice,
flightInformation,

DI

+

totalPrice
PDO

MIN
totalPrice

Flight
Search

departingFrom,
goingTo,

departDate,
returnDate,

airportDepartingFrom,
airportGoingTo.

PDI

location,
checkInDate,
checkOutDate

DI

DO

hotelPrice,
hotelInformation,

DI

hotelInformation ≠null →

hotelPrice > 0

<<Post>>

departingFrom,
goingTo,

departDate,
returnDate

DI

DO

carRentalPrice,
carRentalInformation,

DI
Car Rental
1 Search

DI

departingFrom,
goingTo,

departDate,
returnDate

Car Rental
2 Search

 departDate ≥ SystemDate,
 returnDate ≥ departDate

<<Pre>>

carRentalInformation ≠null →

carRentalPrice > 0

<<Post>>

departDate ≥ SystemDate,
 returnDate ≥ departDate,
departingFrom ≠ goingTo

<<Pre>>

flightInformation ≠null →

flightPrice > 0

<<Post>>

 checkInDate ≥ SystemDate,
checkInDate < checkOutDate

<<Pre>>

Hotel
Search

DO

carRentalPrice,
carRentalInformation,

DI

+

departDate = AF.departDate,
AF.departDate = returnDate,

...

ID

totalPrice = AF.flightPrice + AH.hotelPrice +
ACR1.carRentalPrice + ACR2.carRentalPrice

ID

Trip Planner Sub-Process

Figure 3. Example of Trip Planner Formalization [15].

DATA_INPUT(AF) = {departingFrom, goingTo, departDate, returnDate}
DATA_OUTPUT(AF) = {flightPrice, flightInformation, DATA_INPUT(AF)} where flightInformation =

{outwardArrivalDate, returnArrivalDate, seat, number, ...}

The pre- and post-conditions of the activity AF are:

PRE(AF) = departDate ≥ SystemDate AND returnDate ≥ departDate AND departingFrom 6= goingTo
POST(AF) = f lightIn f ormation 6= null → priceFlight > 0

• Hotel Search Activity (AH) is employed to ascertain the cost of booking a hotel room.

DATA_INPUT(AH) = {location, checkInDate, checkOutDate}
DATA_OUTPUT(AH) = {hotelPrice, hotelInformation, DATA_INPUT(AH)}

The pre- and post-conditions of the activity AH are:

PRE(AH) = checkInDate ≥ SystemDate AND checkInDate < checkOutDate
POST(AH) = hotel In f ormation 6= null → hotelPrice > 0

• Car Rental Search Activities (ACR1 and ACR2) are employed to determine the price of renting a car.
Two cars can be rented during the trip, one at the source (ACR1) and another at the destination (ACR2).
Nevertheless, the price of renting both cars is represented by ACRx, where x = {1 ∨ 2}, depends on these
entries:

DATA_INPUT(ACRx) = {departingFrom, goingTo, departDate, returnDate}
DATA_OUTPUT(ACRx, ACRx) = {carRentalPrice, carRentalInformation, DATA_INPUT(ACRx)}

The pre- and post-conditions of the activity ACRx are:

PRE(ACRx) = departDate ≥ SystemDate AND departDate < returnDate
POST(ACRx) = carRental In f ormation 6= null → carRentalPrice > 0

Therefore, the output of the process, PDO, are the outputs of the activities, which contain the
information about the various components of the trip, as well as the total price of the trip (totalPrice).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

9 of 23

The customer only provides data to the sub-process: the eight PDI. Then, each search
activity only uses the necessary data, as detailed in its specification, for the searching. On the
one hand, the sub-process can have input data that is not used by some search activity: for
example, the Flight Search Activity takes the possible dates and cities given by the customer to
the sub-process, meanwhile, the Hotel Search Activity takes the possible dates, the destination city
and the preferences. The constraints between the input data of the sub-process and the activities
are specified as INPUT_CONSTRAINTS at design time. In the same way, the sub-process returns
different data with respect to those returned by the activities, and it is necessary to define, at
design time, how these data are calculated and related with the output data of the activities.
Therefore, the OUTPUT_CONSTRAINTS define these relationships between these output data of
the activities and the data returned by the sub-process to the customer. Although in the experimental
evaluation all the constraints have been included, only the most representative constraints have been
formulated in this section. Regarding the relationships between the data input and output that
belong to the sub-process and the activities, the most representatives INPUT_CONSTRAINTS and
OUTPUT_CONSTRAINTS are detailed below:

There are several numerical constraints that relate data input and output belonging to the process
and the activities. Some of the constraints are defined below:

• INPUT_CONSTRAINTS:

– The constraints that establish the values of departure date (C1) and return date (C2) of the
flights have to coincide with the input data proposed by the customer.

(C1) departDate = AF.departDate
(C2) returnDate = AF.returnDate

– The constraints that describe the values of the departure airport (C3) and arrival airport (C4) of the
flight have to coincide with the input data proposed by the customer.

(C3) AF.departingFrom = airportDepartingFrom
(C4) AF.goingTo = airportGoingTo

– The date of check-in into the hotel should coincide with the arrival date of the outward flight (C5).

(C5) AH .checkInDate = AF.outwardArrivalDate

– If the flight does not depart from the departure location (C6), then the rental of a car (CR1) is
necessary .

(C6) departingFrom 6= airportDepartingFrom→ ACR1.departingFrom = departingFrom ∧
ACR1.goingTo = AF.departingFrom ∧ ACR1.departDate = AF.departDate ∧
ACR1.returnDate = AF.returnArrivalDate

– If the flight arrives at the destination city (C7), then it is not necessary to rent a car at the destination
city.

(C7) goingTo = AF.goingTo → AF.goingTo = AH .location

– If the flight does not depart from the departure location (C8), then the rental of a car (CR2) is
necessary.

(C8) goingTo 6= AF.goingTo → ACR2.departingFrom = AF.goingTo ∧ ACR2.goingTo = AH .location
∧ACR2.departDate = AF.outwardArrivalDate ∧ ACR2.returnDate = AF.returnDate

• OUTPUT_CONSTRAINTS:

– The total price is the sum of all the prices returned by the activities, as presented in
constraint (C9).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

10 of 23

(C9) totalPrice = AF. f ightPrice + AH .hotelPrice + ACR1.carRentalPrice + ACR2.carRentalPrice

In this example, the optimization involves the minimization of the total price of the trip, which
is composed of the cost of buying flight tickets, staying in a hotel room, and renting cars for the
departure and arrival cities.

OBJ_FUNC : MIN (totalPrice)

6. Conf-BP Imperative Modelling (ConfM-BP)

Once the declarative model is described, it can be possible to obtain an imperative model that satisfy the
data dependencies. Between the different options, we propose the most optimal, according to the execution
time of the instances of the process. In order to model the BP work-flow in an imperative way, the standard
BPMN [37] is chosen, since it is supported by several commercial BPMS. The activities will be combined in a
sub-process that starts and ends with the corresponding events. The various order combination of the activities
will be represented with a sequence or by means of the control flows: parallel, exclusive or inclusive execution.

A1 A2

A1

A2

Supply Input
Data Values

Show
Results

O
rg
an

iz
at
io
n

A1

A2

A1

A2

Execute
 sub-process

+
More combinations
of data to analyse

Legend:
Start Event Sequence Flow

End Event Parallel Gateway

Act Activity Exclusive Gateway

+ Sub-process Inclusive Gateway

Sub-process with the model in
accordance with data dependencies

Bu
sin

es
s E

xp
er
t

Figure 4. Imperative Representation of the Declarative Model.

Figure 4 shows how the imperative configuration obtained from the declarative description is included in a
business process model. The activity “Supply Input Data Values” provides the input data values used during
the process execution. As was commented before, sometimes the most appropriate input data to optimize
the business product are unknown at design time, since it depends on each instance. The used example, the
trip planner, has these characteristics, since the dates and city airport must be found, as detailed in [15]. The
sub-process “Execute sub-process” represents the imperative model that should be created according to the data
dependencies described and detailed in the following sections. This sub-process is formed of the set of activities
involved in the declarative model by means of the BPMN connections and gateways as detailed in Section 7.
Several possible imperative models exist that satisfy the data dependencies, but our objective is to find the
optimal model with respect to execution time of any instantiation of the BP.

A simplification of the possibilities of the problem are shown in Figure 5, where only the activities “Flight
Search” and “Car Rental 1 Search” are considered for the modelling configuration. Analyzing the five possibilities
we can find: (a) and (b) describe a sequence relation between two activities that can mean that one of the activities
has priority order over the another activity, for the example it will be used if ‘Car Rental 1’ cannot be executed
until ‘Flight Search’ ends or vice versa, and; (c), (d) and (e) represent the execution of one (XOR gateway), more
than one (or gateway), or every activities at the same time. For the example it will be used if there not exists an
order dependency between the activities. Therefore, which is the best model option to satisfy our trip problem?

This modelling combination and analysis increase considerably as soon as the number of activities grows.
Hitherto, this configuration has been made by the a human experts, we propose obtain it automatically in the
Conf-BP Framework. Therefore, in order to transform this declarative model into an imperative model that
supports any value of input variables of the process by considering the data dependencies, we propose the use
of the Constraint Programming paradigm, as explained in Section 7.

7. Automatic Transformation from Declarative to Imperative Model

The transformation from the declarative description into an imperative model is a difficult and hard task,
since it implies the analysis of every possible configuration to obtain at design time the most optimal model

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

11 of 23

(c) (d)

(a) (b)

(e)

Flight

Search

Car Rental 1

Search

Flight

Search

Car Rental 1

Search

Flight

Search

Car Rental 1

Search

Car Rental 1

Search

Flight

Search

Flight

Search

Car Rental 1

Search

Figure 5. “Flight Search” and “Car Rental 1 Search” Model Possibilities

at runtime. The difficulty lies in establishing the order of the activities and the control flows components
that combine the activities, taking into account the data dependencies. In order to perform the optimal
transformation, we propose the three steps shown in Figure 6.

Variables

Domains

Constraints

Obj. Function

A3A4

A2

Model Configuration

solver

A1

A2

A4 A3

t1 t2 t3
t

Business Process Model

Configuration

translate
Activities

Temporal

Variables

And

Domains

Configuration

COP

Declarative

Definition

Input and output

Constraints

Temporal

Constraints

Minimize

Total Time
Objective Function

Result:

 - A1 = <t0,t1>

 - A2 = <t1,{t2,t3}>

 - A3 = <t2,t3>

 - A4 = <t1,t2> A1

t0

(1)

(2) (3)

Figure 6. Configuration problem Transformation

1. Create a Constraint Optimization Problem using the declarative Model: As explained in detail in Section
7.1, we used Constraint Satisfaction Problems (CSPs) [38] to solve the configuration problem.

CSPs represent a reasoning methodology consisting of the representation of a problem by means of a set
of variables, domains and constraints. CSPs have also a declarative description, then very similar to the
Declarative Specification of ConfD-BP. CSPs are a widely used model-based knowledge representation
formalism. In a formal way, it is defined as a tuple 〈X, D, C〉, where X = {x1, x2, . . ., xn} is a finite set of
variables, D = {d(x1), d(x2), . . ., d(xn)} is a set of domains of the values of the variables, and C = {C1,
C2, . . ., Cm} is a set of constraints. A constraint Ci = (Vi, Ri) specifies the possible values of the variables
in V that simultaneously satisfy R.Let Vk ={xk1

, xk2 , . . ., xkl
} be a subset of X, and an l-tuple (xk1

, xk2 ,
. . ., xkl

) from d(xk1
), d(xk2), . . ., d(xkl

) can therefore be called an instantiation of the variables in Vk. An
instantiation is a solution if and only if it satisfies the constraints C. If an objective function is included
in the CSP, it is called a Constraint Optimization Problem (COP). It is necessary to highlight that CSP and
COP specifications are very similar to the process models proposed here, since both are declarative models
which define the problem but do not solve it. A solver of CSPs or COPs tries to find a possible tuple of
values for the variables that satisfies the constraints defined in the domain.

2. Solve the COP: In order to solve the COP created in the second step, it is necessary to analyze the possible
values of the variables to find the satisfied tuples. In order to avoid the analysis of every possibilities
of values of variables, the solvers use a combination of search and consistency techniques [39] reducing
drastically the complexity and time consuming. The consistency techniques remove inconsistent values
from the domains of the variables during or before the search. Several local consistency and optimization

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

12 of 23

techniques have been proposed as ways of improving the efficiency of search algorithms. There are several
commercial constraint problem solvers. The main different between them is the programming language
that they used, and the types of constraints that can be included. For the proof of concept to validate the
configuration problem, we have used JsolverTM [40], although any of the existing CSP solvers could be
used, since the constraints that we need to include (explained in Subsection 7.1) are very common and
supported by every commercial solvers. The resolution of the COP will obtain a set of time intervals each
of them associated to an activity, representing the moment when each activity can start and end.

3. Translate the COP solution into a BPMN Model: As explained in detail in Section 7.2, by using the results
obtained from the COP, the imperative model can be created. This result has to be interpreted as gateways
that relates the activities. For example, if the COP allows that two activities A and B could start at the
same instant of time, perhaps there is a constraint which states that only one activity can be executed in
each instance. In that case, there can be an exclusive or inclusive gateway relating the two activities. The
decision between the possible gateways between the various activities is based on: (a) the study of the
domains of the data related in the declarative problem description, and; (b) the data obtained from the
resolution of the COP as it is explained in Subsection 7.2.

7.1. Configuration of a BP model: Creating a COP from the declarative model

The relation between the input and output of the activities determines their relational order. For the same
declarative model, it is possible to find several configurations of activities that satisfy the requirements and
description. To find the best configuration, we propose the use of an intelligent system to find the optimal
BP model that maximizes the parallelism of the activities, with the aim of minimizing the execution time. To
determine this configuration, we suggest the transformation of the declarative model into a COP, to analyze the
possible instant when the activities can start and end their executions, according to data dependency.

Firstly, and before to explain how to create the COP, it is necessary a previous step to ascertain the data
relation, specially when they are included in the IF-THEN constraints of the description of the problem. The
definition of Tuple of Condition-Relation in order to introduce this relation is introduced.

Definition 8. A Tuple of Condition-Relation is a tuple formed of 〈Condition, Activity 1, Activity 2〉, where
Condition represents under which condition Activity 2 is executed after Activity 1. Therefore, the value true
in the Condition implies that Activity 2 is always executed after Activity 1, or, in the case when the Condition
contains an expression, Activity 2 is executed after Activity 1 if and only if the expression is met.

These tuples are built analyzing the data relations found in the INPUT_CONSTRAINTS and
OUTPUT_CONSTRAINTS that describe the declarative model. For each constraint where the output of an
activity Ai is related to the input of an activity Aj, a tuple is created. If the input-output relation appears in an
IF-THEN constraint with a c condition, the tuple will be 〈c, Ai, Aj〉, and 〈true, Ai, Aj〉 otherwise.

With the list of intervals and the list of tuples of data relations, the following COP is created:

• Variables: The possible instants when each activity can be executed, are defined as the tuple of variables
〈tAi

ini, tAi
end〉, where tAi

ini is the instant of time in which the activity Ai begins, and tAi
end is the instant of time in

which the activity Ai finishes. For each activity Ai, the COP will include a couple of variables 〈tAi
ini, tAi

end〉.
To represent the execution time of the whole process, the variable T is included, that represents the tend of
the last activity executed. If every activities will be executed in parallel, T will be the maximum value of
tAi , but if every activities are executed sequentially, the value of T will be the summation of every tAi .

• Domain: The domain of the tAi
ini and tAi

end variables is related to the execution time of each activity. If we

suppose that each activity spends tAi
units of time, then the domain of each variable is:

– tAi
ini: 0..(∑1..j..N tAj

)− tAi

– tAi
end: tAi

..(∑1..j..N tAj
)

– T: max(tAi
)..∑1..j..N tAj

• Constraints: The necessary constraint to model the COP are:

– It is mandatory that for every activity Ai, tAi
ini + tAi ≤ tAi

end

– T has to be the greatest value of tend, then T ≥ tAi
end for every Ai.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

13 of 23

– For each element of the list of tuples building by using the data relations, a numerical constraint is
included in the COP. Each relation between data input and output in the way 〈c, Aj, Ai〉 is translated

into the constraint tAi
ini ≥ t

Aj

end. For example, in the trip planner, the constraint {AH .checkInDate =

AF.outwardArrivalDate} is translated into tAH
ini ≥ tAF

end. Therefore, all the activities could start at the
same instant unless there exists a relationship requiring one activity to start after another.

• Objective: The optimization function of the COP is the minimization of the total time, it implies to
minimize the value of T (minimization(T)).

Table 1 gives a summary of the equivalence of the elements of the formalization and the COP built.

Table 1. Declarative model and COP elements relationship

Declarative COP
Activity 〈tini, tend〉
PDI, ADI, PDO, ADO Variables
Numerical Constraints (Input
and Output Constraints)

Temporal Constraints

Pre and Post Conditions Activity Definition
Objective Function Minimize Total Time

The solving of the COP will obtain a pair of start and end instants of time for each activity that minimizes
any instantiation time (T) for the model. As mentioned earlier, the minimum execution time of an activity is
modelled as a tAi

units of time. But it is possible to obtain the same value of (T), where the execution time is
minimized, with different tAi

ini and tAi

end for the same problem. Suppose activities (A1, A2, A3 and A4) that last a
unit of time, where the input data of A4 depends on the output of A1, and the input data of A3 depends on the
output of A4. Figure 7 depicts two possible configurations (a) and (b) that minimize the theoretical execution
time (t3). However, there exist more variations, since A2 can be executed in a parallel way with any of the other
activities.

A1

A2

A4 A3

t1 t2 t3
t

A3A4
A2

A1

A2

A4 A3

t1 t2 t3
t

A1

A3A4

A2

A1

(a)

(b)

Figure 7. Flexibility of the BP in terms of the execution time of the Activities

Although both options (a) or (b) are optimal according time consuming, the model of Figure 7(b) is better
than the model of Figure 7(a), since it supports an unexpected delay of A2 executing, not increasing the total
execution time (t3).

To make the imperative model more robust to unexpected delays, we propose to modify the proposed COP
to find the most paralleled process. To this end, the COP must find the greatest value of tAi

end for each Ai. It is
obtained including the tAi

ini variables as a goal in the COP, and leaving the domain of tAi

end open during the search.
Then, the tAi

ini variables will be instantiated during the propagation phase, while all the possible values of the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

14 of 23

domains of tAi

end variables will be obtained as solutions of the COP for each value of tAi

ini. The greatest value of the
tAi

end domain is the most appropriate value to build an imperative robust business process model.
Algorithm 1 describes the creation of the COP from a declarative specification as explained before.

Algorithm 1 Creation of a COP from a Declarative Specification

1: Create variable: int TStart = 0
2: Create variable: int TEnd = 0.. ∑n

i=1 tAi

3: for each Activity(Ai) do
4: Create a variable: int tAi

ini = 0.. ∑n
i=1 tAi

5: Create variable: int tAi

end = 0.. ∑n
i=1 tAi

6: end for
7: for each Activity(i) do
8: Create constraint: (tAi

ini + tAi
) ≤ tAi

end
9: Create constraint: TEnd ≥ (tAi

end + tAi
)

10: end for
11: for each ADOi = ADIj, where an output of Activity i is related to the input of Activity j do

12: Create constraint: (tAi

end + tAi
) = tAj

ini
13: end for
14: Define goal variables: { (tA1

end + tA1
), ..., (tAn

end + tAn
), TEnd }

15: Define objective function: Minimize (TEnd− TStart)

7.2. Transformation of the COP results into a BP Imperative Model

The list of time intervals, obtained from the COP, with the most appropriate values for tAi

ini and tAi

end for
each activity, has to be translated into an imperative BP model. For the example of Figure 7(b), the obtained list
is: {A1[0, t1], A2[0, t3], A3[t2, t3], A4[t1, t2]}. There exist various imperative models in business processes, but the
most widely used standard language is BPMN [37]. Although the model in the standard is represented by means
of an XML file, to facilitate the understanding of the algorithm that obtains the imperative model, we propose
the use of a BPMN-Graph. As explained in [1], BPMN is a graph-oriented language in which control and action
nodes can be connected. Therefore, we propose to model the BPMN using a directed graph as defined in [41].

The problem is solved in two steps: firstly, the BPMN-Graph is built not specifying the type of gateways,
only including which are splits and joins, and; secondly, the uncertain about the gateways is solved analyzing
the list of tuples created in function of the IF-THEN constraints of the model, that related the activity execution
on function of the value of other variables.

7.2.1. Step 1: Building BPMN-Graph

The proposed BPMN-Graph is a direct graph composed of: (i) vertexes, which represent the activities and
the gateways; and (ii) edges, which represent the sequence flows that join the various vertexes. Firstly, the idea of
the algorithm is explained by means of a trace, after which the algorithm is detailed. Analyzing the tAi

ini and tAi

end
of each activity, it is possible to discover the activities that have parallel or sequential relation between them. The
main idea of the algorithm is to detect these relations building sub-graphs, that will be combined in a sequential
or parallel way. An example of the trace of the algorithm is shown in Figure 8. The initial Problem is formed by
a set of activities A1, ..., A8, associated to a time interval 〈tAi

ini, tAi

end〉, and a list of tuples that describe the condition
about the activities order dependencies. The algorithm divides the problem in function of the sequential points
and the parallel subsets. Both definitions are introduced:

Definition 9. Sequential point (List of Time Intervals): For a List of Time Intervals, a sequential point is an
instant, or set of instants of time at which no activity can be executed. It implies that in a sequential point, only
the execution of an activity can start or end, and therefore the problem can be broken into two smaller problems
that can be executed sequentially.

Definition 10. Parallel subsets (List of Time Intervals, List of Tuples of Relations): For a list of Time Intervals
associated with the activities A1 . . . An, the parallel subsets are a set of subset of activities ps1, . . ., psm, where @

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

15 of 23

any activity a ∈ psi and an activity b ∈ psj, where psi 6= psj, such that ∃ a tuple in the List of Tuples of Relations
that 〈condition, a, b〉. A way to obtain the parallel subsets, is creating a parallel subset for each activity (ps1,
. . ., psn), if there exist an activity a ∈ psi and another activity b ∈ psj, both subsets are merged. This process is
repeated until no more sets can be merged.

With the aim of facilitating the understanding of the algorithm and our proposal in general, we use the
example of Figure 8, with the list of tuples:

• (R1) 〈A1.output ≤ 50, A1, A3〉
• (R2) 〈A1.output < 100, A1, A4〉
• (R3) 〈true, A3, A5〉
• (R4) 〈true, A4, A5〉
• (R5) 〈true, A5, A8〉
• (R6) 〈true, A2, A8〉
• (R7) 〈true, A6, A7〉

t1 t2 t3
t

t4

A1
A3

A4

A6
A7

A2

A5
A8

secp1
secp2

t1 t2 t3
t

t4

A1

A3

A4

A6

A7

A2

A5
A8

...
t3

t
t4

A8

A8

t1 t2 t3
t

A1
A3

A4

A6
A7

A2

A5

subg1

subg2

subg3

A2

t1 t2 t3
t

A1
A3

A4
A5

...

1

5

8...
t1 t2 t3

t

A2

t1 t2 t3
t

A6
A7

A6 A7

G1 G1
A3

A4

A5A1

A2

A6 A7

G2 G2

G1 G1
A3

A4

A5A1

... ... 10 11

A8

G1 G1
A3

A4

A5A1

A2

A6 A7

G2 G2

 step

Legend:
Call to the
recursive methods

Result from the
recursive callsProblem

Figure 8. Trace example of the Algorithm to create a BPMN-Graph using the COP results

The trace follows the next steps:

1. Look for sequential points: Firstly, the set of activities should be separated by the sequential points (arrow
1 in Figure 8). The separation is carried out by detecting those instants of time where there is a sequential
point. The intervals that are derived from these sequential points delimit the subset of activities. In the
example, the set of activities is separated into two subsets of activities, since there is only one sequential
point in t3. The first subset secp1 goes from t0 to t3 and includes all activities except activity A8. On the
other hand, the second subset secp2 goes from t3 to t4 and only includes activity A8.

2. Solving sequential sub-problems: Each subset of activities is solved as a sub-problem (arrows 2 and 3)
and combined sequentially both BPMN-sub-graphs are solved.

3. Look for parallel subsets: The secp1 is separated in three parallel subsets: subg1, subg2 and subg3. To
obtain these subsets, the idea described in Definition 10 is applied:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

16 of 23

(a) Create a subset of each activity: {ps1: {A1}, ps2: {A2}, ps3: {A3}, ps4: {A4}, ps5: {A5}, ps6: {A6}, ps7:
{A7}}.

(b) Since A1 is related with A3 in R1, and with A4 in R2, both subsets are merged. Also, A6 and A7 are
related in R7. The obtained parallel subsets are: {ps1: {A1, A3, A4}, ps2: {A2}, ps5: {A5}, ps6: {A6, A7}}.

(c) Since A5 is related with A3 in R3, and with A4 in R4, both subsets are merged. Therefore, the parallel
subsets: {ps1: {A1, A3, A4, A5}, ps2: {A2}, ps6: {A6, A7}} are also obtained.

(d) Tuple relations (R5) and (R6) are not used in the creation of subsets since A8 is not involved in the
parallel analysis.

4. Solving parallel sub-problems: The next step implies to solve each sub-problem (arrows 4, 5 and 6),
followed by the search of sequential points.

5. Combining parallel sub-problems: To solve secp1 it is necessary to combine the sub-graphs obtained by
solving subg1, subg2 and subg3 (return of arrow 4, 5 and 6). These BPMN-sub-graphs are combined as
various branches joined by a split and join node (G2 in the example).

6. Combining sequential sub-problems: The obtained results after a sequential analysis of sub-graphs
(returns of arrow 2 and 3) implies joining the results of secp1 and secp2. To this end, the result
(BPMN-Graph) of secp1 and secp2 are joined by an edge between the final vertex of secp1 and the initial
vertex of secp2, which are G2 and A8 respectively.

Algorithm 2 Create a BP model from COP result

1: procedure SEQUENTIALTREATMENT(Problem p): BPMN-Graph
2: sol: BPMN-Graph to return
3: lprob: list of Problems
4: lsol: list of BPMN-Graphs
5: if (p.listActivities.size() == 1) then
6: sol ← p
7: else
8: lprob← separate p by detecting sequential points
9: for each p ∈ lprob do

10: lsol.add(parallelTreatment(p))
11: end for
12: end if
13: sol ← link sequentially lsol
14: return sol
15: end procedure
16: procedure PARALLELTREATMENT(Problem p): BPMN-Graph
17: sol: BPMN-Graph to return
18: lprob: list of Problems
19: lsol: list of BPMN-Graphs
20: if (p.listActivities.size() == 1) then
21: sol ← p
22: else
23: lprob← separate p by detecting parallel groups
24: for each p ∈ lprob do
25: lsol.add(sequentialTreatment(p))
26: end for
27: end if
28: sol ← link lsol by gateways
29: return sol
30: end procedure

Algorithm 2 details the procedures for the sequential and parallel treatments explained above. Algorithm
2 takes a Problem and transforms it into a BPMN-Graph. Initially, the Problem is treated sequentially with the
algorithm sequentialTreatment, which finds the sequential points following Definition 9. Each of the subproblems
found, has to be analyzed to identify the parallel subsets of activities with the algorithm parallelTreatment

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

17 of 23

(following Definition 10). The parallel treatment of a Problem consists of gathering the activities that are related
into subsets and creating new problems from these subsets. The relationships among the activities are given
by the tuples of Condition-Relation of the Problem. Each subproblem is then solved recursively. To combine the
parallel subsets, two gateway vertexes are inserted as split and join gateway respectively. Each BPMN-sub-graph
will be a branch related by means of the gateway. To combine two sequential BPMN-sub-graphs, only and edge
needs to be included between the last node of the first solution and the first node of the second solution. The
algorithm draws to a halt when reaching a base case, or when the problem contains only one activity. In both
treatments, the solution of a base case is a graph with a unique vertex that represents this activity.

7.2.2. Step 2: Defining the gateways

Once the graph is created, the correct gateways that diverge the sequence flows have to be selected. In
the graph, the gateways are identified by means of studying the tuples of Condition-Relation obtained from the
constraints, defined in the declarative specification.

The different types of relations described by means of the tuples of Condition-Relation, and how they affect
to the type of gateway are explained below:

• Parallel: two activities are executed in a parallel way if there are no conditions that relate the tini of both
activities (see Figure 9).

A1
A2

A3

A2

t1 t2
t A3

A1
Constraints:
...
True, A1, A2
True, A1, A3
...

Figure 9. Parallel Relationship

• Exclusive: two activities are executed in an exclusive way if the constraints that relate the tini of the two
activities and the domain of these constraints are complete and do not overlap. For example, as shown in
Figure 10, if the execution of A2 and A3 depends on a value of the output data A1.output, but there are no
overlaps (A2 is executed when A1.output is less than 50 and A3 is executed when A1.output is greater than
or equal to 50), then there is an exclusive relationship between them. There is another possibility when
only one condition is described, for example only exists the condition (A2 is executed when A1.output is
less than 50), in that case it means that there are two branches for the XOR gateway, but one of them with
no activities.

A1
A2

A3

A2

t1 t2
t A3

A1
Constraints:
...
A1.output < 50, A1, A2
A1.output ≥ 50, A1, A3
...

Figure 10. Exclusive Relationship

• Inclusive: two activities are executed in an inclusive way if there are conditions that relate the tini of both
activities, and the domain of these conditions are complete and overlapped. For example, as shown in
Figure 11, if the execution of A2 and A3 depends on a value of the output data A1.output, but there are
overlaps between the domains that satisfy the constraints (A2 is executed when A1.output is less than 75
and A3 is executed when A1.output is greater or equal to 25, and hence both coincide when A1.output is
greater than 25 and less than 75), then there is an inclusive relationship.

Table 2 gives a summary of the resulting gateways depending on the conditions established by the
constraints that relate the data of the activities.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

18 of 23

A3

A2

t1 t2
t

A1
Constraints:
...
A1.output < 75, A1, A2
A1.output ≥ 25, A1, A3
...

A1
A2

A3

Figure 11. Inclusive Relationship

Table 2. Type of gateway decision

Gateway Constraints Conditions
Parallel No dependencies in domains
Exclusive Domains without overlaps
Inclusive Domains with overlaps

For the example explained in Figure 8, it is necessary to analyze G2 and G1 (see Figure 12). Since there are
no relations between activities A1, A2, and A6, then G2 is a parallel gateway. On the other hand, the execution
of activities A3 and A4 depends on the outputs of A1. The conditions specified in relations R1 and R2 indicate
that the domain of the constraints is complete and there are no overlaps, therefore, G1 is an exclusive gateway.

G1 G1

A3

A4

A5A1

A2

A6 A7

G2 G2 A8

A5

A3

A4

A1

A2

A6 A7

A8

Figure 12. From graph to BPMN Model Example

8. Results: Transformation applied to the Trip Planner Example

In order to illustrate the use of the algorithms, the application of the algorithms to the Trip Planner example
is presented in this section.

The first step is to obtain the list of tuples of Condition-Relation according Definition 8. Analyzing the
constraints of the example, we can find: (i) Constraints C1, C2, C3 and C4 do not relate input and output of the
activities, then they are not involved in the list of tuples of Condition-Relation; (ii) Constraint C5 is used to create
the relation: 〈 true, AF, AH 〉; (iii) Constraint C6 is used to create the tuple: 〈Condition of C6, Start−Event, ACR1
〉, and; (iv) Constraint C8 is used to create the tuple: 〈Condition of C8, AF, ACR2〉}.

After that, the second step is to build the COP as detailed in Subsection 7.1, that for the example will have
the form.

• Variables: tAF

ini , tAF

end, tAH

ini , tAH

end, tACR1

ini , tACR1

end , tACR2

ini , tACR2

end , T.

• Domain: Supposing that the theoretical execution time of each activity is a unit of time, the domains are:

– tAF

ini , tAH

ini , tACR1

ini , tACR2

ini : 0..4 //Since there are 4 different activities.

– tAF

end, tAH

end, tACR1

end , tACR2

end : 1..4

– T: 1..4

• Constraints:

– tAF

ini + 1 ≤ tAF

end

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

19 of 23

– tAH

ini + 1 ≤ tAH

end

– tACR1

ini + 1 ≤ tACR1

end

– tACR2

ini + 1 ≤ tACR2

end

– T ≥ tAF

end ∧ T ≥ tAH

end ∧ T ≥ tACR1

end ∧ T ≥ tACR2

end

– For the list of tuples of Condition-Relation mentioned above, the constraints included in the COP
are:

∗ tAH

ini ≥ tAF

end
∗ tACR2

ini ≥ tAF

end

• Goal: tAF

ini , tAH

ini , tACR1

ini , tACR2

ini

• Objective: minimization(T).

The obtained values of the variables after the resolution of the COP are:

• TEnd: 2

• tAF

ini : 0 and tAF

end: 1

• tAH

ini : 1 and tAH

end: 2

• tACR1

ini : 0 and tACR1

end : [1..2], selecting the greatest value (2).

• tACR2

ini : 1 and tACR2

end : 2

The resulting BP Model is shown in Figure 13. According to the results, “Flight Search” and “Car Rental
1 Search” activities start at instant 0. However, the “Car Rental 2 Search” activity depends on the value of the
output data of the “Flight Search” activity, so there is an exclusive gateway before this activity. Since there is
not a complete domain with the constraint that determines the execution of the “Car Rental 2 Search” activity,
then there is a branch by default which indicates that nothing happens when the condition is not met. The same
situation occurs with “Hotel Search” and “Car Rental 2 Search” activities.

Flight

Search

Car Rental

1 Search

Hotel

Search

Car Rental

2 Search

ACR1

AH

t1 t2
t

AF

t3

ACR2

Figure 13. Trip Planner Model Result

The solution parallelizes the activities according to the data input and output relations, being possible
execute it in two units of times.

8.1. Empirical Evaluation

Since the generated imperative only depends on the declarative model, it is created only once at design
time. The transformation performed involves a COP and two own-developed algorithms. Therefore, the critical
points of our proposal lies in the resolution of the COP and these algorithms.

Regarding the resolution of a COP, we use one of the existing commercial tools to evaluate the COP, since
the COP resolution has remained a known problem studied by researchers in the area over several decades, and
is supported by an important set of tools used in real problems. In general, the time to find the solution of a COP
depends on: (1) the type of constraints (lineal, polynomial); (2) the number of constraints; and (3) the number and
type of the variables. It is possible to find an analysis in [42] on the complexity of the NP-complete constraint
problem resolution according to these characteristics. The complexity of resolution of CSPs depends on the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

20 of 23

number of possible solutions of the problem, and on whether it is neither under constraint nor unsolvable. The
most complex of these problems are those that are neither under constraint nor unsolvable. For these reasons,
no affirmation can be given concerning the efficiency in a generic way of our proposal, since our declarative
specification enables any type and any number of constraints; therefore the evaluation time depends on the
specific problem. Depending on the number of constraints associated to a COP, and the number of variables, the
COP evaluation time remains variable.

On the one hand, in relation to Algorithms 1 and Algorithm 2, the computational order is lineal since it
only depends on the number of activities. On the one hand, Algorithms 1 And on the other hand, Algorithm 2
defines two recursive functions which are related between each other. The main idea of this algorithm is to apply
a Divide-and-Conquer Method by means of reducing the problem in sub-problems, being the smallest problem,
in our case, a single activity. Therefore, in both the best and the worst cases, the computational order is lineal
since it depends on the number of activities either they have a parallel or sequential relationships.

With the aim of performing the evaluation, both algorithms are executed over a set of generated test cases.
Each test case establishes a different number of PDI and constraints that relate them. Figure 14 shows the
computing time needed to solve both algorithms. The test cases are measured using a PC with an Intel Core
i7-2675QM CPU with a 2.2 GHz processor and a 8GB of RAM.

Figure 14. Execution Time of Algorithm 1 and Algorithm 2.

9. Conclusions and Future Work

Declarative languages have been focused on the order of activities, and not on how the data values and
dependencies can affect the optimal execution of a process. In this paper, we apply configuration problems ideas
to the construction of an imperative model according to the declarative description of the data relation. Our
proposal shields the business experts from unnecessary details, and to provide assistance when experts know
what they want (the BP requirements by means of data dependencies) but do not know how to attain what they
want (establish the order of the activities), Conf-BP Framework is proposed. Conf-BP establishes a methodology
to transform a declarative model into an imperative representation using BPMN. Business experts only have to
specify the BP requirements, leaving the configuration of the activities in the imperative model to the intelligent
system, which uses the Constraint Programming paradigm and a set of proposed definitions and algorithms.
This automatic methodology obtains an imperative model described by BPMN where the optimal model related
to execution time is obtained. In addition, the framework is applied to an example: the process of organising
a trip. Future work into this area involves increasing the capabilities of Conf-BP by including loops within the
model, where there exists a cyclic relation between the data.

Acknowledgments: This work has been partially funded by the Ministry of Science and Technology of Spain
(TIN2015-63502-C3-2-R) and the European Regional Development Fund (ERDF/FEDER).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

21 of 23

The following abbreviations are used in this manuscript:

ADI: Activities Data Input
ADO: Activities Data Output
BP: Business Process
BPEL: Business Process Executation Language
BPM: Business Process Management
BPMN: Business Process Model and Notation
BPMS: Business Process Management System
Conf-BP: Configuration of Activities in Business Processes
ConfD-BP: Conf-BP Declarative Specification
ConfM-BP: Conf-BP Imperative Modelling Specification
COP: Constraint Optimization Problem
CSP: Constraint Satisfaction Problem
OBJ_FUNC: Objective Function
PDI: Process Data Input
PDO: Process Data Output

Bibliography

1. Weske, M. Business Process Management: Concepts, Languages, Architectures; Springer, 2007.

2. Aguilar-Saven, R.S. Business process modelling: Review and framework. International Journal of
Production Economics 2004, 90, 129–149.

3. Tsai, A.; Wang, J.; Tepfenhart, W.; Rosea, D. EPC Workflow Model to WIFA Model Conversion.
Proceedings of IEEE International Conference on Systems, Man and Cybernetics. IEEE International
Conference on Systems, Man and Cybernetics, 2006. SMC ’06., 2006, Vol. 4766/2007, pp. 2758 – 2763.

4. Sinogas, P.; Vasconcelos, A.; Caetano, A.; Neves, J.; Mendes, R.; Tribolet, J.M. Business Processes
Extensions to UML Profile for Business Modeling. ICEIS (2), 2001, pp. 673–678.

5. List, B.; Korherr, B. A UML 2 Profile for Business Process Modelling. ER (Workshops), 2005, pp. 85–96.

6. Bosilj-Vuksic, V.; Hlupic, V. Petri Nets and IDEF diagrams: Applicability and efficacy for business process
modelling. An International Journal of Computing and Informatics 2001, 25, 123–133.

7. Pichler, P.; Weber, B.; Zugal, S.; Pinggera, J.; Mendling, J.; Reijers, H.A. Imperative versus Declarative
Process Modeling Languages: An Empirical Investigation. Business Process Management Workshops
(1). Springer, 2011, Vol. 99, Lecture Notes in Business Information Processing, pp. 383–394.

8. Zugal, S.; Soffer, P.; Haisjackl, C.; Pinggera, J.; Reichert, M.; Weber, B. Investigating expressiveness and
understandability of hierarchy in declarative business process models. Software & Systems Modeling 2015,
14, 1081–1103.

9. Fahland, D.; Lubke, D.; Mendling, J.; Reijers, H.; Weber, B.; Weidlich, M.; Zugal, S. Declarative versus
Imperative Process Modeling Languages: The Issue of Understandability. In Enterprise, Business-Process
and Information Systems Modeling; Springer Berlin Heidelberg, 2009; Vol. 29, Lecture Notes in Business
Information Processing, pp. 353–366.

10. Fahland, D.; Mendling, J.; Reijers, H.; Weber, B.; Weidlich, M.; Zugal, S. Declarative versus Imperative
Process Modeling Languages: The Issue of Maintainability. In Business Process Management Workshops;
Springer Berlin Heidelberg, 2010; Vol. 43, Lecture Notes in Business Information Processing, pp. 477–488.

11. Sadiq, S.W.; Orlowska, M.E.; Sadiq, W. Specification and validation of process constraints for flexible
workflows. Information Systems 2005, 30, 349 – 378.

12. Rychkova, I.; Regev, G.; Wegmann, A. High-level design and analysis of business processes: the
advantages of declarative specifications. RCIS; Pastor, O.; Flory, A.; Cavarero, J.L., Eds. IEEE, 2008,
pp. 99–110.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

22 of 23

13. Pesic, M.; van der Aalst, W.M.P. A Declarative Approach for Flexible Business Processes Management.
Business Process Management Workshops; Eder, J.; Dustdar, S., Eds. Springer, 2006, Vol. 4103, Lecture
Notes in Computer Science, pp. 169–180.

14. Rychkova, I.; Regev, G.; Wegmann, A. Using Declarative Specifications in Business Process Design. IJCSA
2008, 5, 45–68.

15. Parody, L.; Gómez-López, M.T.; M. Gasca, R. Hybrid business process modeling for the optimization of
outcome data. Information & Software Technology 2016, 70, 140–154.

16. Teppan, E.C.; Friedrich, G. The Partner Units Configuration Problem. CoRR 2013, abs/1308.6206.

17. GröNer, G.; BošKović, M.; Silva Parreiras, F.; GašEvić, D. Modeling and Validation of Business Process
Families. Inf. Syst. 2013, 38, 709–726.

18. Petrie, C.J. Automated Configuration Problem Solving; Springer Publishing Company, Incorporated, 2012.

19. Gillmann, M.; Mindermann, R.; Weikum, G. Benchmarking and Configuration of Workflow Management
Systems. In Cooperative Information Systems; Springer Berlin Heidelberg, 2000; Vol. 1901, pp. 186–197.

20. van der Aalst, W.M.P.; van Hee, K. Workflow Management: Models, Methods, and Systems; MIT Press:
Cambridge, MA, USA, 2004.

21. Albert, P.; Henocque, L.; Kleiner, M. An End-to-End Configuration-Based Framework for Automatic SWS
Composition. 20th IEEE International Conference on Tools with Artificial Intelligence, 2008, Vol. 1, pp.
351–358.

22. Bertoli, P.; Pistore, M.; Traverso, P. Automated composition of Web services via planning in asynchronous
domains. Artificial Intelligence 2010, 174, 316 – 361.

23. Mesmoudi, A.; Mrissa, M.; Hacid, M.S. Combining configuration and query rewriting for Web service
composition. IEEE International Conference on Web Services (ICWS), 2011, pp. 113–120.

24. Drescher, C. The Partner Units Problem a Constraint Programming Case Study. IEEE 24th International
Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7-9, 2012. IEEE
Computer Society, 2012, pp. 170–177.

25. Mittal, S.; Frayman, F. Towards a Generic Model of Configuraton Tasks. Proceedings of the 11th
International Joint Conference on Artificial Intelligence - Volume 2; Morgan Kaufmann Publishers Inc.:
San Francisco, CA, USA, 1989; IJCAI’89, pp. 1395–1401.

26. Rosa, M.L.; Dumas, M.; ter Hofstede, A.H.M.; Mendling, J. Configurable multi-perspective business
process models. Inf. Syst. 2011, 36, 313–340.

27. van der Aalst, W.M.P.; Dumas, M.; Gottschalk, F.; ter Hofstede, A.H.M.; Rosa, M.L.; Mendling, J.
Correctness-Preserving Configuration of Business Process Models. Fundamental Approaches to Software
Engineering, 11th International Conference, FASE 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings;
Fiadeiro, J.L.; Inverardi, P., Eds. Springer, 2008, Vol. 4961, Lecture Notes in Computer Science, pp. 46–61.

28. Rosemann, M.; van der Aalst, W.M.P. A configurable reference modelling language. Inf. Syst. 2007,
32, 1–23.

29. Vanderfeesten, I.; Reijers, H.A.; van der Aalst, W.M. Product-based workflow support. Information
Systems 2011, 36, 517 – 535. Special Issue: Semantic Integration of Data, Multimedia, and Services.

30. Vanderfeesten, I.T.P.; Reijers, H.A.; van der Aalst, W.M.P. Product Based Workflow Support: Dynamic
Workflow Execution. Advanced Information Systems Engineering, 20th International Conference, CAiSE
2008, Montpellier, France, June 16-20, 2008, Proceedings; Bellahsene, Z.; Léonard, M., Eds. Springer, 2008,
Vol. 5074, Lecture Notes in Computer Science, pp. 571–574.

31. Gottschalk, F.; van der Aalst, W.M.P.; Jansen-Vullers, M.H.; Rosa, M.L. Configurable Workflow Models.
Int. J. Cooperative Inf. Syst. 2008, 17, 177–221.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

23 of 23

32. Parody, L.; Gómez-López, M.T.; Martínez Gasca, R. Data-Oriented Declarative Language for Optimizing
Business Processes. 22nd International Conference on Information Systems Development (ISD2013), 2013,
p. To appear.

33. Kluza, K.; Honkisz, K. From SBVR to BPMN and DMN Models. Proposal of Translation from Rules to
Process and Decision Models. Artificial Intelligence and Soft Computing; Rutkowski, L.; Korytkowski,
M.; Scherer, R.; Tadeusiewicz, R.; Zadeh, L.A.; Zurada, J.M., Eds. Springer International Publishing, 2016,
pp. 453–462.

34. (OMG), O.M.G. Semantics of Business Vocabulary and Business Rules (SBVR). Version 1.4: Formal
Specification., 2017.

35. Natschläger, C.; Kossak, F.; Schewe, K.D. Deontic BPMN: a powerful extension of BPMN with a trusted
model transformation. Software & Systems Modeling 2015, 14, 765–793.

36. Wiśniewski, P.; Kluza, K.; Ligęza, A. An Approach to Participatory Business Process Modeling: BPMN
Model Generation Using Constraint Programming and Graph Composition. Applied Sciences 2018, 8.

37. OMG. Business Process Model and Notation (BPMN) Version 2.0; Object Management Group Standard, 2011.

38. Rossi, F.; van Beek, P.; Walsh, T. Handbook of Constraint Programming (Foundations of Artificial Intelligence);
Elsevier Science Inc.: New York, NY, USA, 2006.

39. Dechter, R. Constraint processing; Elsevier Morgan Kaufmann, 2003; pp. I–XX, 1–481.

40. Manual, R. JSolver 2.1. Accedded on the 24th of February of 2014.

41. Gómez López, M.T.; M. Gasca, R.; Pérez-Álvarez, J.M. Decision-Making Support for the Correctness of
Input Data at Runtime in Business Processes. Int. J. Cooperative Inf. Syst. 2014, 23.

42. Cheeseman, P.; Kanefsky, B.; Taylor, W.M. Where the Really Hard Problems Are. IJCAI; Mylopoulos, J.;
Reiter, R., Eds. Morgan Kaufmann, 1991, pp. 331–340.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2018 doi:10.20944/preprints201810.0076.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 2008; doi:10.3390/app8102008

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.20944/preprints201810.0076.v1
http://dx.doi.org/10.3390/app8102008

	Introduction
	Detailing an Example
	Related Work
	Conf-BP Framework: A Configurable System to create Imperative BP
	Conf-BP Declarative Specification (ConfD-BP). A formalization of the language
	Sub-process description
	Sub-process relationships
	Grammar
	Specification Applied to the Trip Planner Example

	Conf-BP Imperative Modelling (ConfM-BP)
	Automatic Transformation from Declarative to Imperative Model
	Configuration of a BP model: Creating a COP from the declarative model
	Transformation of the COP results into a BP Imperative Model
	Step 1: Building BPMN-Graph
	Step 2: Defining the gateways

	Results: Transformation applied to the Trip Planner Example
	Empirical Evaluation

	Conclusions and Future Work

