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Abstract: The Global Human Settlement Layer (GHSL) produces new global spatial information,
evidence-based analytics and knowledge describing the human presence on the planet based mainly
on two quantitative factors: i) the spatial distribution (density) of built-up structures and ii) the spatial
distribution (density) of resident people. Both factors are observed in the long-term temporal domain
and per uniform surface units in order to support the analysis of trends and indicators for monitoring
the implementation of international framework agreements. The GHSL uses various input data
including global, multi-temporal archives of fine-scale satellite imagery, census data, and
volunteered geographic information.

In this paper, we reflect on the characteristics of GHSL information to demonstrate how original
frameworks of data and tools rooted on Earth Observation could support Sustainable Development
Goals monitoring. In particular, we demonstrate the reach of gridded, open and free, local yet
globally consistent, multi-temporal data in filling the data gap for the Sustainable Development Goal
11. Our experiments produce a global estimate for the Land Use Efficiency indicator (SDG 11.3.1) for
circa 10,000 urban centers, calculating the ratio of land consumption rate to population growth rate
that took place between 1990 and 2015.

The results of our research demonstrate that there is a potential to lift SDG 11.3.1 from a Tier II
classification as GHSL provides a global baseline for the essential variables called by the SDG 11.3.1
metadata.

Keywords: SDG11; Land Use Efficiency; Open Data, GHSL; Landsat; Urbanization; Urban
expansion; Population mapping

1. Introduction

With the unanimous adoption of the United Nations (UN) General Assembly resolution 70/1
“Transforming our World: the 2030 Agenda for Sustainable Development” Member States agreed
upon a framework of 17 Sustainable Development Goals (SDG) to guide societal development. The
action plan, building on the experience of the Millennium Development Goals intertwines
aspirational goals with an ambitious monitoring framework composed of 169 targets to monitor
progress made in meeting the SDGs. The capacity to monitor such progress is reported to be
entangled by the lack of data and statistical capacity to support the monitoring framework [1]-[4].

In this framework, a multi-level governance of information gathering reaching across
intergovernmental institutions, national agencies, and civil society has formed. The global
partnership articulates from the UN Statistical Commission —with the mandate to coordinate the
work to implement the indicator framework and the review of SDG and targets [3], the Inter-Agency
Expert Group on SDG Indicators, the UN Statistical Division hosting the Committee of Experts on
Global Geospatial Information Management (UN-GGIM), and Non-Governmental Organizations.
This latter major group of stakeholders includes the Group on Earth Observations and the Committee
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on Earth Observation Satellites that work to promote the integration of statistical, geospatial and
other big data to equip the SDG monitoring framework with the necessary data and making SDG
reporting possible and as complete as possible. In order to map the capacity to monitor SDG
indicators, the Inter-Agency Expert Group on SDG Indicators developed a 3 Tier classification for the
indicators. The classification criteria are based on the simultaneous availability of an internationally
agreed methodology and standard to monitor the indicator, and the presence of data produced by
countries covering at least half the countries and representing half the population of a region. As
result of the 7% Inter-Agency Expert Group on SDG Indicators meeting in spring 2018
(https://unstats.un.org/sdgs/iaeg-sdgs/tier-classification/), 93 indicators are classified Tier I, 72 Tier II
and 62 Tier IIl. Alternative and innovative sources of data, especially derived Earth Observation
(EO) offer significant information, and especially data to support the SDG reporting [5]-[7]. Since the
early XXI century, the human society is predominantly urban as more than half of global population
lives in cities [8]. In recognition of this trait of human development, the 2030 Development Agenda
devoted to cities a specific Goal, SDG 11 that aspires to “Make cities and human settlements inclusive,
safe, resilient and sustainable”. Despite the human nature is so intertwined with the urban condition
[9], mankind is currently able to monitor less than half of the SDG 11 indicators for its own man-
made artificial environment. Many SDG 11 indicators require fine scale local data that are to be
sourced locally, making it more difficult to reach adequate data availability —especially in countries
in transitions and data-poor territories.

Against this condition, remote sensing and EO are capable to collect information, at a large scale,
at high degree of spatial resolution, repeatedly over time, and over wide geographical areas serving
multiple applications [10], [11], especially in the SDG framework [6], [12], [13], or for generic urban
development indicators [14].

In this contribution we reflect on the ways in which the above support can be enacted. In the
paper we reflect on the principles and the architecture of the Global Human Settlement Layer (GHSL)
and the application of GHSL in service to the SDG 11.3. The GHSL is a framework of data and tools
developed from EO, census data and volunteered geographic information that produces global maps
of built-up areas, resident population and settlement typologies for four epochs (1975, 1990, 2000 and
2015). GHSL layers have global coverage and are released as open and free data. GHSL data and
derived scientific information to inform policy were released in 2016 at the Habitat III conference
with the auspice to support the 2030 Development Agenda and its thematic agreements (Sendai
Framework for Disaster Risk Reduction, United Nations Framework Convention on Climate Change,
and the New Urban Agenda). GHSL information are particularly salient in the disciplinary contexts
of disaster risk reduction, urbanization and human settlements dynamics, where fine scale
information on the presence of people and built-up areas are of high importance [15]. GHSL data
served to quantify the process of urbanization [16], observe population density [17], and inform
policy making on 40 years of human settlements development [18] and exposure to natural hazards
[19]. In this paper the GHSL is applied to estimate SDG 11.3.1 that aims at measuring the “ratio of
land consumption rate to population growth rate”. This indicator requires data on the spatial extent
of the settlement and its population. Furthermore, information is needed with a fine scale level of
detail, and most of all it has to be consistent across places of the world and epochs to make a
comprehensive global overview possible. The article focuses on the Tier II nature of SDG 11.3.1, for
which an agreed methodology exists. However, it is not implemented as data to run it are not
established. With the use of GHSL data we provide evidences to suggest that SDG 11.3.1 could be
lifted from its Tier II classification.

2. Materials and Methods

In section 2.1 we briefly introduce the GHSL concept, its three geospatial layers that map built-
up areas (GHS-BUILT), resident population (GHS-POP) and settlement typologies (GHS-SMOD),
and recall salient GHSL derived analytics. In section 2.2 we present the methodology applied in this
study to estimate SDG 11.3.1 according to the internationally agreed methodology.
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2.1 The Global Human Settlement Layer Data

The GHSL concept was introduced by the European Commission (EC), Joint Research Centre
(JRC) during the years 2008-2011, in the frame of the program named “Information Support for Effective
and Rapid External Action” (ISFEREA), developing new image information mining technologies in
support to geo-spatial information analysis for global security and stability [20]. The notion of the
basic categories and information abstractions used by the GHSL, such as the notion of “built-up area”
were introduced after a critical revision of the available satellite-derived information products (land-
use/land-cover) when applied to the quantification of the presence of built-up structures in support
to spatial modelling and assessment activities [21], [22]. In particular, the application areas setting the
requirements for the GHSL were identified as post-natural-disaster and post-conflict damage, needs
and reconstruction assessment, including refugee camps and temporary, rapidly-changing human
settlement monitoring [23]-[25]. The data and semantic requirements of these initial application areas
largely influenced the design of the GHSL information production system. In particular, regarding
the attention devoted to providing automatic image information mining methods designed under
pragmatic assumptions: a) of robustness against real-world big data scenarios involving large-
volume, largely heterogeneous/unstructured data sources (incl. remote sensing and other data) and
rapidly changing data specifications, b) of robustness against multi-stakeholder scenarios potentially
leading to irreconcilable data-derived outputs, focused on different political/economic priorities, c)
of effectiveness in providing output analytics in the severe time constraints and limited
computational resources as the ones set by crisis management applications.

In parallel to the Post-2015 process the experience made in mapping global human settlements
using European medium resolution ENVISAT ASAR for the delineation of built-up surfaces was
transferred to prototype automatic recognition of built-up areas over more than 50 millions square
kilometers of Earth land surface, using in input a heterogeneous set of data collected from optical
sensors ranging from 0.5 to 10 meters of spatial resolution, with a large variety of sensor spectral
characteristics demonstrating the sensor-agnostic nature of the GHSL remote sensing data processing
paradigm [22] —the workflow was tasked to produce the first seamless pan-European settlement layer
at 2.5 m of spatial resolution in support to the European Cohesion policy [26].

The aim of the GHSL was to provide a prototype of an open, public platform that facilitates the
knowledge sharing and the discussion in complex, multilateral processes. In order to achieve this,
the GHSL information production system was set-up in a full open and free domain in line with the
suggestions of the inter-ministerial Group of Earth Observation (GEO) and the Global Earth
Observation System of Systems (GEOSS) [27]. During 2015 a refined (beta) release of the Landsat-
derived GHSL was produced and shared among the GEO partners together with new GHSL
population grids produced through a partnership with the Center for International Earth Science
Information Network (CIESIN -http://www.ciesin.org/) of the Columbia University [28], [29]. The
first public release of the GHSL was announced at the Habitat III conference of Quito, in October
2016. The data is freely accessible from the JRC Open Data Portal (https://data.jrc.ec.europa.eu/) and
the GEOSS portal (http://www.geoportal.org). Since 2017, the GHSL data and tools contribute to the
GEO Human Planet Initiative, supporting the GEO Strategic Plan 2016-2025.

2.1.1 GHSL data layers

The GHSL suite contains three main grid-based layers (Table 1) that cover four epochs: 1975-
1990-2000-2015. GHS-BUILT [30] (Figure 1, a) is an EO derived product, mapping built-up areas
(density). The information is extracted from 40 years of Landsat imagery archives [31], through
Symbolic Machine Learning workflows [22], [29], [32]. The process is based on a training set owning
heterogeneous completeness (geographical and temporal coverage), thematic definitions and
reliability. The training set includes MERIS Globe Cover [33], LandScan population grids [34], Open
Street Map, GeoNames and MODIS 500 [35]. The result is a series of global maps of built-up areas in
grid format for the four epochs in World Mollweide projection (EPSG: 54009):

e  at 250m resolution in which values are expressed as decimals from 0 to 1 (density);
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e  at 1km resolution in which values are expressed as decimals from 0 to 1 (density);

e  at38m resolution in Spherical Mercator (EPSG: 3857), a multi-temporal layer where the presence
of built-up areas per epoch is classified in numbers ranging 6 (built-up area mapped 1975) to 3
(built-up area mapped in 2015) with additional classes for the non-built-up land (2), presence of
water (1) and no data (0).

Table 1. Synthesis and features of GHSL data

Grid Main Input
Name Semantic Epoch 1
Resolution Data
30m, 250m, Satellite
GHS-BUILT Density of built-up area per grid cell
1km imagery
2015,
Census data,
GHS-POP Population counts per grid cell 250m, 1km 2000,
GHS-BUILT
1990,
Classification of each grid cell into one of the
1975 GHS-BUILT,
GHS-SMOD Settlement Model classes: high density cluster, 1-km
GHS-POP

low density cluster, and rural cells

1 Temporal dimension
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Figure 1. Example of GHSL data, GHS-BUILT (a), GHS-POP (b), GHS-SMOD (c) displayed at 1km
spatial resolution in the area of Tokyo (Japan) and compared to the imagery base map.

GHS-POP [36] maps estimated resident population on the basis of built-up areas presence
(Figure 1, b). It is based CIESIN GPWv4 to source demographic data (derived from census or
administrative units) and population is distributed using GHS-BUILT. GHS-POP is available at two
resolutions for the four epochs in World Mollweide (EPSG: 54009):

e at 250m resolution;
e at 1km resolution. In both layers the value of each grid cell reports the absolute number of
inhabitants in the cell (density, as float).

GHS-SMOD (Figure 1, c) [37] combines GHS-BUILT and GHS-POP to port the Degree of
Urbanisation [38] into the GHSL environment. In the GHS-SMOD grid cells are classified in three
classes: Urban Centre, Urban Cluster, Rural Area according to population density and population
thresholds (of individual cells and group of cells) [39]. GHS-SMOD is accessible at 1km resolution for
the four epochs, in World Mollweide (EPSG: 54009). In the layer cells are classified as rural cells (1),
urban cluster (2), and urban centers (3). In particular, urban centers are the human settlements with
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more than 50,000 inhabitants. The population of our dataset consists of the circa 10,000 urban centers
from the GHS-SMOD layer for the epoch 2015.

In 2017, a revised image processing workflow was implemented in the JRC Earth Observation
Data and Processing Platform (JEODPP), and applied to the Landsat multi-temporal imagery
collection. As a result, an updated version of the GHSL (GHS-BUILT, GHS-POP and GHS-SMOD)
[40] was released in the community of the GEO Human Planet Initiative and it has been tested in this
study.

The GHSL framework serves multiple applications and analytics methods. GHSL baseline data,
GHS-BUILT and GHS-POP are especially used as exposure layers in the disaster risk reduction sector
in support to emergency management services (i.e. Copernicus EMS) [41], alert systems [42], risk
management decision support indexes (i.e. INFORM) [43]. GHS-POP and GHS-SMOD were applied
to estimate carbon footprints of human settlements [44], travel time to major cities [45] and global
patterns of human domination [46] and presence on the planet [18]. Through these applications GHSL
has established as source to support studies on the human interaction with and modification of the
environment over time. More importantly the GHSL baseline data, comprehensively GHS-BUILT,
GHS-POP and GHS-SMOD can be injected in Sustainable Development Goals metadata to estimate
SDG indicators. Below we explore the use of GHSL to estimate the SDG 11.3.1.

2.2 SDG 11.3.1 methodology

The methodology for SDG 11.3.1 is established and referenced in the SDG indicators Metadata
Repository managed by UNDESA (https://unstats.un.org/sdgs/metadata). To perform our
experiments we applied the established methodology using GHSL as input data. LUE monitors the
“Ratio of land consumption rate to population growth rate” and it is entrusted to quantify the wise
use of land consequence of urban expansion pressures [47] —demographic and economic ones [48].
To estimate LUE, first it is necessary to quantify the rate of land consumption (LCR) and the
population growth rate (PGR) in a given spatial unit over a time span. The two rates (LCR and PGR)
are computed as follows:

U I'b t+n

Pop m
LN ( LN( Pt /popg

y

Urb; )

LCR= PGR= (1

where Urbt and Urben reflect the total areal extent of the land consumed (extent of the human
settlement) at the initial reference year (t) and at the final reference year (t+n) respectively, Pop: and
Popen input the total population of the spatial unit at the initial reference year (t) and at the final
reference year (t+n) respectively, and y is the number of years between t and t+n. The estimate of the
ratio of land consumption rate to population growth rate (LCRPGR or LUE), is obtained with:

LCR
LUE (LCRPGR) = 5= )

In our research we used GHS-SMOD to delineate the extent of urban areas in 2015 (using grid
cells classified as Urban Centres), in GIS environment we injected GHS-BUILT epoch 1990 and 2015 to
generate statistics of built-up areas for the corresponding epochs and to derive the LCR value.
Similarly we injected GHS-POP epoch 1990 and 2015 to derive PGR. Then we statistically computed
LUE (LCRPGR) as presented in equation 2.

GHSL derived urban centers were classified in regions of the world according to the aggregation
of countries from the Global Administrative Map (V2.8 —https://gadm.org/data.html) following the
categories (Region) of the UN World Urbanization Prospects 2018 [49]. The extraction of statistics on
built-up areas and population was implemented in Geographic Information System environment
(ArcGIS) through zonal statistics operations.

3. Results

d0i:10.20944/preprints201810.0085.v1
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The analysis of spatial expansion and demographic change in urban centers focuses on three
aspects addressed in specific sub-sections below. First, the extent and demographics of urban centers
is reported between 1990 and 2015 (in 3.1); second, the latter development trajectory is analyzed with
the Land Use Efficiency indicator sourcing the LUE value at urban centers level (in 3.2); third, we
propose some considerations on the differentiation of built-up areas per capita across regions of the
world clustering urban centers in classes LUE value (in 3.3). LUE has been estimated in circa 10,000
urban centers defined in the GHS-SMOD. As comprehensive overview of the SDG 11.3.1 quantified
with GHSL data over the 25 years between 1990 and 2015, it results that urban centers follow a
development trajectory in which the rate of population growth prevailed over that of spatial
expansion, with a LUE equivalent to 0.72. In absolute terms urban centers expanded globally over a
land surface equivalent to almost 67,800 km? (approximately the surface of Ireland) to settle about 1.1
billion new people (almost the population of India in 2015).

3.1 Spatial expansion and demographic growth in urban centers

According to GHSL data, urban centers account in 2015 a population exceeding 3.53 billion
people and their built-up areas extend over almost 295 thousand km? (Figure 3). In urban centers
built-up areas expanded in 25 years (1990-2015) by 30% and population increased by 44%. Trajectories
of growth follow clear regional dynamics whereas: the highest demographic change in size and
absolute spatial expansion takes place in Asia (+637 million inhabitants and +35.7 thousand km?),
while most significant population growth has occurred in Africa (population of urban centers has
almost doubled).

The interdependence between spatial expansion and demographic change manifests in terms of
change in population density in urban centers. Population density has globally increased by 11%
moving from 10,800 inhabitants per km? to 12,000 inhabitants per km? in 2015. Most significant
processes of densification took place in Africa (+40%) and Oceania (+36%). Population density is
stable in Asia (+1% and equivalent to 17,000 inhabitants per km? in 2015). Modest changes towards
density reduction took place in Europe (-6% and 6,300 inhabitants per km?in 2015) and towards
density increase in Northern America (+4% and 2,500 inhabitants per km?) and Latin America and
the Caribbean (+8% and 12,192 inhabitants per km?).

Spatial and demographic change in urban centers

1990-2015
4 _
350 2015
2
o
<
g
& 3L
= 2000
£
&
= 250
1990
2L
1.5 1 1 1 1 ]
15 2 25 3 35 4

Built-up areas 10° km?

Figure 2. Multi-temporal global extent of built-up areas and population in urban centers at
corresponding epochs as estimated from GHSL data (GHS-POP and GHS-BUILT)
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3.2 LUE in 10,000 urban centers

To synthetically report on the LUE trajectories of this vast dataset, we clustered urban centers in
5 classes of LUE: LUE<-1; -1<LUE<0; 0<LUE<1; 1<LUE<2; LUE>2. Figure 3 below displays the
geographical distribution of urban centers and their related LUE class (1990-2015). It emerges that
13% of the centers in the globe developed between 1990 and 2015 with a substantially negative LUE
value (<-1) in particular in countries in central and western Europe, central China and south India.
Values in the range -1<LUE<0 are accounted in 6% of urban centers of the globe, this share reaches
21% in Europe (especially in Eastern Europe and Russia), and 18% in Asia (mainly Japan). Most
frequent LUE class across the globe is the one ranging 0<LUE<1 (39% of the centers in the dataset).
On a regional basis, this class represents 65% of the centers in Africa, more than half the ones in Latin
America and the Caribbean, 39% the centers in Oceania, and almost 1/3 the ones in Asia and Europe.
The class 1<LUE<2 includes 20% of the centers in the globe, but almost 1/3 the ones in Latin America
and the Caribbean, % the ones in Northern America and 22% of the ones in Africa. The last class
(LUE>2) globally accounts 22% of the centers, the share increases in Asia -31% especially including
centers in India and north-east and south China.

180°00" 140°00"W 100°00"W 60°00"W 20°00°W  0°0°0" 20°0'0"E 60°0'0"E 100°0°0"E 140°0'0"F 180°0°0"
1 \ 1 1 I 1 1 1 1 1 1 1 1 1 1 1

(I

LUE value
® LUE<-

-1<LUE<0
1 @ 0<LUE<1
® 1<LUEs2 -
® LUE>2 : : | &

180°0'0" 140°0'0"W 100°0'0"W °0'0" 20°00"W 0°0'0" 20°0'0"E 100°0°0"E 140°0°0"E 180°0'0"

Figure 3. Comprehensive visualization of the LUE value in the circa 10,000 urban centers computed in the
period 1990-2015.

3.3 Built-up areas per capita and Land Use Efficiency

The LUE indicator (that is a dimensionless value) has been further characterized observing the
built-up area per capita in the year 2015 in the LUE classes considered in the previous sub-section,
this operation presents an example of the spatial implications of the LUE indicator (Figure 4). The
following arguments are based on the average built-up areas per capita calculated for each of the
10,000 urban centers and then averaged by regional collocation of the center. Results demonstrate
that in regions like Europe and Northern America in the class of LUE>2, in which spatial expansion
takes place at a rate at least double the one of population growth, built-up areas per capita exceed
respectively 180 and 490 m? per inhabitant. Great variations are also observed comparing the built-
up area per capita in the same LUE class across regions. In the case of a development trajectory of
population densification (0<LUE<1), built-up areas per capita range from almost 450 m? per person
in Northern America, 175 m?per person in Europe, and it drops by almost half in Latin America and
the Caribbean (90 m? per person), to almost 70 m? per person in Asia and to 52 m? per person in centers
in Africa.
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In terms of average change of built-up areas per capita between 1990 and 2015, values are also
diverse. In the class 0<LUE<1, built-up areas per capita shrink between 10% (in Europe) and 26% (in
Africa). In the class of LUE>2 built-up areas per capita more than doubled in Latin America and the
Caribbean, Asia and Africa, increased by half in Northern America, by 15% in Europe and by 6% in
Oceania.

Average built-up areas per capita per LUE class
in regions of the world

Africa
Asia

Europe

Latin America
and the Caribbean

rWﬂP"”'

Northern America

Oceania
1 1 1 1 1 1 ]

0 100 200 300 400 500 600 700
Built-up areas per capita m?

[LUE<-1 | -1<LUE<0 B 0<LUE<1 [ 1<LUE<2 [jj] LUE >2
Figure 4. Regional comparison of built-up areas per capita
4. Discussion

In the following section we develop two main strands of arguments. One reflects on the
principles and architecture of GHSL and its fitness for purpose to support SDG indicators and
intergovernmental agreements with open data to fill present gaps. In 4.1 we discuss about the GHSL
architecture and design features that enable an action-oriented support to SDG monitoring, in
particular thanks to a full open and free data cycle (input data, methods, output/results), and the
capacity to handle and make sense of big-data scenarios harmonizing data across space and time.

The other argument focuses on the implications of the empirical findings of this research in
contributing to selected intergovernmental policy literature on urban development (4.2).

4.1 GHSL principles

The GHSL concept is framed around three general goals or requirements: a) operation in an open
and free data and methods access policy (open input, open method, open output); b) aim for
reproducible, scientifically defendable, fine-scale, synoptic, complete, planetary-size, and cost-
effective information production; and c) aim to facilitate information sharing and multilateral
democratization of the information production, and collective knowledge building. The general
requirements b and c, call for automatic information production methods being able to process
systematically the large mass of baseline data (satellite imagery, and population census information)
supporting the output analytics and to lower down the cost of the information production.

GHSL framework production was enabled by the definition of a new artificial intelligence
approach for the satellite data classification process named “Symbolic Machine Learning” (SML), and
working with the similar principles used in genomics for the DNA sequences characterization [32].
The SML approach allows machines to learn efficiently new association rules between satellite data
instances and target abstraction classes used by the GHSL as for example “built-up areas”. Through
the SML it was possible to design a robust supervised data classification process using available
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global data as training examples just approximating the scale and thematic requirements of the
information retrieval tasks. This fact allowed a drastic reduction of the human labor traditionally
needed for the training set collection tasks.

4.1.1 Real-world (big) data scenario

The GHSL approach was developed with real-world big-data scenarios calling for a pragmatic,
adaptive approach in complex data, information and stakeholder/users scenarios with planetary-size,
multi-temporal, fine-scale data that generate large volumes of information. These complex scenarios
coupled with fast technological development generates rapidly changing data specifications and
contradictory semantics and assumptions. Furthermore, and paradoxically, more detailed data
produce larger relative inconsistencies: assuming any given level of effort/cost for data
harmonization, the relative across-data inconsistencies grow by a multiplicative pattern when the
spatial and thematic detail of the data is increased linearly. In these conditions, the adoption of a strict
normative approach would easily lead to irrelevance and failure of the system with respect to the
reality check. The GHSL takes instead a pragmatic adaptive perspective. Artificial intelligence is used
to find relevant associations between different data streams at different level of abstraction/semantics
and different scales with the minimal set possible of assumptions. In this perspective, the whole
universe of data shall be used for testing hypothesis and efficient computational machine learning
methods should allow to discover on-the-fly association between any given data and information at
any collected sensor/data parameters conditions, with no need for model transfer [22], [29], [50], [51].

412 Evidence-based output analytics

Global policy frameworks outcome of the Post-2015 process such as the New Urban Agenda, the
Sendai Framework for Disaster Risk Reduction, the United Nations Framework Convention on
Climate Change, and the overarching 2030 Development Agenda architecture is linked to national
and multi-national (as in the case of the European Union) policy processes driven by decision makers
operating at various levels of governance. Data and evidences are sought to inform this policy process
[52] by providing indicators that focus on measurable outcomes and allow to evaluate, compare and
benchmark alternative programs of action (i.e. policy and plans). Policy processes are negotiation
processes [53]. With data and the data-derived analytics becoming relevant in the policy process,
monitoring frameworks become integrated with the negotiation [54]. As a consequence, data, the
data-derived information and the devolution of influence to epistemic communities may lead to
prejudice in support to specific political and/or economical interest [55]. This condition may lead to
a situation where most of the human efforts are devoted to the scrutiny and discussion about the
assumptions embedded in the system generating the analytical results, and in the collective
discussion about the possible way forward, in lieu of understanding the results. In order to mitigate
that risk, the output categories generated by the GHSL system are designed with a modular
abstraction schema [21].

At the basis of the GHSL classification schema there are low-level-of-abstraction categories as
for instance “built-up areas”. They include a minimal set of expert assumptions [29] and are derived
from the most independent, consistent and extensive data handled by the system, i.e. the remote
sensing imagery, making the concept prone for consideration as “evidence” from the different
stakeholders involved in the policy processes. At the top of the GHSL classification schema there are
high-level-of-abstraction categories as “urban vs. suburban vs. rural” areas discrimination (as
provided in the GHS-SMOD). These include the maximum level of theoretical assumptions and have
a direct impact on the calculation of indicators. The ways in which urban areas are defined directly
affect the sourcing of data, and so the results. This argument is evident observing data on urban
demography that are compiled by the United Nations Department for Economic and Social Affairs
(UNDESA) in the periodic updates of the World Urbanization Prospects. The Prospects UNDESA
produces include data sourced from member States that are often compiled using heterogeneous
motives to classify urban areas [56]-[59], so to report about urban population, making consistency of
the data across territories limited. While alternative ways to define urban areas are being proposed
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[38], [60], [61] it is of high disciplinary and policy relevance to reaffirm that the definition of
boundaries for spatial information collection is a key step for the measurement [62] [63]. Data
framework that are grid based and possess high spatial resolution (of 250m and 1km) -like GHSL,
are capable to adapt to a great variety of spatial aggregations (cities, small regions, large geographical
areas, till the wall to wall global coverage).

413 Full repeatability

Repeatability of measurements refers to the ability to repeat measurements made on the same
subject under identical conditions [64]. Variability in measurements made on the same subject under
identical conditions can be attributed to errors originated by the measurement process itself. The
measurements generated by the GHSL system are fully repeatable. The same input data and the same
information extraction method produces identical numerical result. This is a requirement needed to
maintain full control of data, methods and results lineages in the “Real-word (Big) Data Scenarios”
as described in the first principle above. Moreover, full repeatability increases trust in the new
data/analytics generated by new technologies, especially if non-experts are involved in the evaluation
of the results. A corollary of this principle is that GHSL avoids the use of Artificial Intelligence
methods based on random iterative optimization processes.

413 Multi-temporal and spatial harmonization of information

GHSL layers are continuous global raster with information on the spatial footprint of settlements
—built-up areas, that are processed using Landsat imagery at corresponding epochs and population
that is modelled on the basis of the Gridded Population of the World (GPW). The information on
built-up areas is extracted through the open workflow [29] and it is fed with multi-temporal imagery
from Landsat at corresponding epochs [31], [65]. Information on population is derived from GPW
that is a fine scale spatially disaggregated layer produced from population and housing censuses
from which estimates for past epochs are derived and made consistent with and adjusted to United
Nations World Population Prospects [66]. The availability of consistent and harmonized data across
the globe and epochs makes possible to analyze the long term process of human settlement changes
(1975 — 2015) providing valuable tools for urban development analytics including a new lens to
observe planetary urbanization [16].

414 Open data and tools filling gaps of a Tier II indicator

The action oriented outcome of the GHSL framework architecture demonstrated by our results
is that indicator 11.3.1 was estimated for the year 0 of the 2030 Development Agenda (2015) against
25 years of spatial and demographic change in urban centers.

In practice, using open and free data it could be possible to lift SDG 11.3.1 from its Tier II status
using the GHSL approach to fill the present data gap. With respect to UNDESA metadata, the GHSL
operationalization of the SDG 11.3.1 estimation has been performed with two key premises. First, the
adoption of the Degree of Urbanisation people based “Global Harmonized Definition of Cities and
Settlements" allowed to delineate the spatial units of analysis (the urban centers). Second, LCR and
PGR were defined respectively as the change in the built-up areas (from GHS-BUILT derived from
Landsat) and in population (from GHS-POP) between epochs in these spatial units.

This is a pragmatic (evidence based, replicable and multi-temporal) approach to implement the
conceptual definition of “land consumption” intended as “the expansion of built-up area which can
be directly measured” (SDG 11.3.1 metadata, p.2). Further to the above motives, the GHSL framework
offers a suite of free tools, especially the MASADA (Massive Spatial Automatic Data Analytics), DUG
(Degree of Urbanisation Grid) and LUE (Land Use Efficiency) tools. The MASADA Tool is developed
to support production of local and regional settlement layers by automatic classification of satellite
imagery (both high and very high resolution data). Using as training set a land cover information or
a coarse settlement map (to incorporate in the workflow radiometric, textural and morphological
features) a supervised classification of remotely sensed data (through SML classifier) extracts built-
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up areas information. The tool is primarily devoted to the extraction of built-up areas with a preset
of workflows for SPOT-5, SPOT-6/7, RapidEye and CBERS-4, yet it can be applied to other imagery
sources (i.e. GeoEye-1, WorldView-2/3, Pléiades and Quickbird) to derive other land cover maps —
provided that the appropriate training set is given in input. The second tool supporting SDG estimate
is dedicated to the delineation of urban areas as defined in the Degree of Urbanisation definition [38].
Urban centers, urban clusters and rural areas can be delineated using the DUG tool. The tool is
designed to work with GHS-BUILT and GHS-POP but other spatial and demographic layers could
also be used. With this tool the user is free to use proprietary data on built-up and population and
set ad hoc population criteria and threshold to define settlement typologies. The LUE Tool (a Qgis
plugin) [67] enables the estimation of the SDG 11.3.1 in GIS environment with an input of spatial
multi-temporal information on the spatial extent of the settlement and its demography at the
corresponding epochs.

The GHSL suite of data and tools seems to encompass a wide spectrum of functionalities to
support the SDG monitoring, both within its own resources (especially data) but also by offering free
tools to users empowering them to use third party or proprietary information sources, especially in
the context of SDG 11.3.1. In particular, the GHSL architecture retains potential for the estimation of
LUE to 2030. With the entry into service of the Sentinel-1 and Sentinel-2 constellations and the
conception of workflows to process their data for built-up areas extraction in GHSL environment
[68], [69] it is to foresee a community-based capacity to periodically update LCR estimates for the
entire Earth.

4.2 EO derived information on human settlements

In recent times the remote sensing and EO technology to acquire, process and manage data has
significantly improved. In particular, significant advances took place in the instruments to source
information from space, whereas the spatial resolution of new sensors has increased. Early EO
derived products to map the extent of human settlement did rely on coarse resolution imagery
(MODIS or Landsat 1-3 MSS) or on a combination of the latter and night time lights (i.e. DMSP/OLS).
Recent platforms equipped high-resolution (i.e. Sentinel-2) and very-high-resolution optical (i.e.
SPOT) or synthetic-aperture radar technology (i.e. TerraSAR-X and Sentinel-1) were proved effective
for delivering maps of human settlements [26], [68] [69], [70].

This new generation of information support researchers and policymakers in the understanding
of the new geographies of human settlements in the era of a predominantly urban society. Our
research findings support rationales on urbanization that allege that urban areas are efficient in terms
of use of land resources [71], and that urban development is considerably unequal across regions of
the world [72]. Estimating a LUE<1 corresponding to 25 years of urban development (1990-2015) we
empirically illustrate that the rate of demographic growth in urban centers has been dominant over
the growth in space. Although this value could validate a dense/compact pattern of development that
imply population densification, the diversity of LUE values across regions of the world and the
corresponding built-up areas per capita may reinforce the signals of widening urban divide, in terms
of inequality in development. In particular the comparison of built-up areas per capita in 2015
broken-down into LUE classes and regions of the world manifests the traits of unfairness.
Considering the least efficient LUE class (LUE>2) built-up areas per capita in urban centers in
Northern America is 10 times the one of that in centers in Africa. Similar patterns are found in the
other LUE classes too. This fact implies substantially heterogeneous patterns of development to be
captured by comparable —yet same- LUE values. By formulation the LUE indicator does not retain a
spatially explicit nature (dimensionless) it could be a proxy for a spatial and demographic trajectory
of change. The Land Use Efficiency estimates seem to suggest that several territories encountering
extensive population growth (i.e. Sub-Saharan Africa, and South-East Asia) develop with LUE values
between 0 and 1, corresponding to population densification, while negative LUE values (LUE<-1) is
frequent in countries with low —or even negative- population growth rates (i.e. Eastern Europe, Japan
and some converging regions of the European Union).
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5. Conclusion

In this article we provide a concrete example of the contribution of Earth Observation and
innovative geospatial-remote sensing derived data in support to the Sustainable Development Goals.
The SDG were negotiated in parallel to a comprehensive and ambitious monitoring framework. This
framework is currently pressured by shortcomings in data availability and statistical capacity for its
monitoring, with only 93 indicators with a Tier I classification. Earth Observations set out as a key
source of information to service SDG monitoring: by improving the availability of required data,
supplying suitable and accurate data that cover long time series, have wide/planetary geographical
scope are compatible/complimentary with traditional statistical methods.

To provide a practical application of this service we estimated at global level Land Use Efficiency
(SDG indicator 11.3.1) currently classified as Tier Il indicator due to the presence of an internationally
agreed methodology but in absence of data. The GHSL serves the purpose as it offers harmonized
data in space and time on the spatial distribution of built-up areas (GHS-BUILT), population (GHS-
POP) and settlement typologies (GHS-SMOD) fulfilling the UNDESA metadata requirements for the
indicator. In addition to the above, we also discussed the principles and architecture of the Global
Human Settlement Layer that by design embraces an open input, open method, open output policy,
has a modular hierarchical structure of information, tests and applies real-word (big) data scenarios,
produces evidence based output analytics, and facilitates the repeatability of results. In particular,
we emphasize the role of multi-temporal and spatial harmonization of information to enable
comparative studies and analyses on development trajectories.

The quantitative results of the experimental application of GHSL data in support to SDG
indicator 11.3.1 show that urban centers developed between 1990 and 2015 with a LUE equivalent to
0.72, whereas the rate of population growth has been higher than the one of spatial expansion. In
absolute terms urban centers expanded over a land surface equivalent to almost 67,800 km?
(approximately the surface of Ireland) to settle almost 1.1 billion new people (almost the population
of India in 2015). To further characterize LUE, we compared built-up areas per capita in the epoch
2015 achieved in centers that developed in common LUE classes in various regions of the world. It
emerges that there might be inequalities in the trajectories of development of centers that develop
with comparable LUE values but are located in different geographical areas. This is perceived in
particular comparing the changes in built-up areas per capita between 1990 and 2015.

With the estimate of the LUE, we enacted UNGGIM instruction to test GHSL for the purpose. In
this context it is to reaffirm that while GHSL data could support data-poor territories, they could also
back data-rich parties for harmonization and comparison purposes. Our research concludes that the
GHSL framework, with its tools and data enables users to generate built-up areas layers that could
be used directly with UNDESA compiled demographic data to quantify LUE. A further perspective
is proposed by new satellites (Sentinel constellation) and the workflows generated in GHSL
environment that open the possibility to secure the estimation of the Land Consumption Rate to 2030
with open data and open tools.
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