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Abstract: The Global Human Settlement Layer (GHSL) produces new global spatial information, 

evidence-based analytics and knowledge describing the human presence on the planet based mainly 

on two quantitative factors: i) the spatial distribution (density) of built-up structures and ii) the spatial 

distribution (density) of resident people. Both factors are observed in the long-term temporal domain 

and per uniform surface units in order to support the analysis of trends and indicators for monitoring 

the implementation of international framework agreements. The GHSL uses various input data 

including global, multi-temporal archives of fine-scale satellite imagery, census data, and 

volunteered geographic information.  

In this paper, we reflect on the characteristics of GHSL information to demonstrate how original 

frameworks of data and tools rooted on Earth Observation could support Sustainable Development 

Goals monitoring. In particular, we demonstrate the reach of gridded, open and free, local yet 

globally consistent, multi-temporal data in filling the data gap for the Sustainable Development Goal 

11. Our experiments produce a global estimate for the Land Use Efficiency indicator (SDG 11.3.1) for 

circa 10,000 urban centers, calculating the ratio of land consumption rate to population growth rate 

that took place between 1990 and 2015. 

The results of our research demonstrate that there is a potential to lift SDG 11.3.1 from a Tier II 

classification as GHSL provides a global baseline for the essential variables called by the SDG 11.3.1 

metadata. 
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1. Introduction 

With the unanimous adoption of the United Nations (UN) General Assembly resolution 70/1 

“Transforming our World: the 2030 Agenda for Sustainable Development” Member States agreed 

upon a framework of 17 Sustainable Development Goals (SDG) to guide societal development. The 

action plan, building on the experience of the Millennium Development Goals intertwines 

aspirational goals with an ambitious monitoring framework composed of 169 targets to monitor 

progress made in meeting the SDGs. The capacity to monitor such progress is reported to be 

entangled by the lack of data and statistical capacity to support the monitoring framework [1]–[4]. 

In this framework, a multi-level governance of information gathering reaching across 

intergovernmental institutions, national agencies, and civil society has formed. The global 

partnership articulates from the UN Statistical Commission –with the mandate to coordinate the 

work to implement the indicator framework and the review of SDG and targets [3], the Inter-Agency 

Expert Group on SDG Indicators, the UN Statistical Division hosting the Committee of Experts on 

Global Geospatial Information Management (UN-GGIM), and Non-Governmental Organizations. 

This latter major group of stakeholders includes the Group on Earth Observations and the Committee 
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on Earth Observation Satellites that work to promote the integration of statistical, geospatial and 

other big data to equip the SDG monitoring framework with the necessary data and making SDG 

reporting possible and as complete as possible. In order to map the capacity to monitor SDG 

indicators, the Inter-Agency Expert Group on SDG Indicators developed a 3 Tier classification for the 

indicators. The classification criteria are based on the simultaneous availability of an internationally 

agreed methodology and standard to monitor the indicator, and the presence of data produced by 

countries covering at least half the countries and representing half the population of a region. As 

result of the 7th Inter-Agency Expert Group on SDG Indicators meeting in spring 2018 

(https://unstats.un.org/sdgs/iaeg-sdgs/tier-classification/), 93 indicators are classified Tier I, 72 Tier II 

and 62 Tier III.  Alternative and innovative sources of data, especially derived Earth Observation 

(EO) offer significant information, and especially data to support the SDG reporting [5]–[7]. Since the 

early XXI century, the human society is predominantly urban as more than half of global population 

lives in cities [8]. In recognition of this trait of human development, the 2030 Development Agenda 

devoted to cities a specific Goal, SDG 11 that aspires to “Make cities and human settlements inclusive, 

safe, resilient and sustainable”. Despite the human nature is so intertwined with the urban condition 

[9], mankind is currently able to monitor less than half of the SDG 11 indicators for its own man-

made artificial environment. Many SDG 11 indicators require fine scale local data that are to be 

sourced locally, making it more difficult to reach adequate data availability –especially in countries 

in transitions and data-poor territories.  

Against this condition, remote sensing and EO are capable to collect information, at a large scale, 

at high degree of spatial resolution, repeatedly over time, and over wide geographical areas serving 

multiple applications [10], [11], especially in the SDG framework [6], [12], [13], or for generic urban 

development indicators [14]. 

In this contribution we reflect on the ways in which the above support can be enacted. In the 

paper we reflect on the principles and the architecture of the Global Human Settlement Layer (GHSL) 

and the application of GHSL in service to the SDG 11.3. The GHSL is a framework of data and tools 

developed from EO, census data and volunteered geographic information that produces global maps 

of built-up areas, resident population and settlement typologies for four epochs (1975, 1990, 2000 and 

2015). GHSL layers have global coverage and are released as open and free data. GHSL data and 

derived scientific information to inform policy were released in 2016 at the Habitat III conference 

with the auspice to support the 2030 Development Agenda and its thematic agreements (Sendai 

Framework for Disaster Risk Reduction, United Nations Framework Convention on Climate Change, 

and the New Urban Agenda). GHSL information are particularly salient in the disciplinary contexts 

of disaster risk reduction, urbanization and human settlements dynamics, where fine scale 

information on the presence of people and built-up areas are of high importance [15]. GHSL data 

served to quantify the process of urbanization [16], observe population density [17], and inform 

policy making on 40 years of human settlements development [18] and exposure to natural hazards 

[19]. In this paper the GHSL is applied to estimate SDG 11.3.1 that aims at measuring the “ratio of 

land consumption rate to population growth rate”. This indicator requires data on the spatial extent 

of the settlement and its population. Furthermore, information is needed with a fine scale level of 

detail, and most of all it has to be consistent across places of the world and epochs to make a 

comprehensive global overview possible. The article focuses on the Tier II nature of SDG 11.3.1, for 

which an agreed methodology exists. However, it is not implemented as data to run it are not 

established. With the use of GHSL data we provide evidences to suggest that SDG 11.3.1 could be 

lifted from its Tier II classification. 

2. Materials and Methods 

In section 2.1 we briefly introduce the GHSL concept, its three geospatial layers that map built-

up areas (GHS-BUILT), resident population (GHS-POP) and settlement typologies (GHS-SMOD), 

and recall salient GHSL derived analytics. In section 2.2 we present the methodology applied in this 

study to estimate SDG 11.3.1 according to the internationally agreed methodology. 
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2.1 The Global Human Settlement Layer Data 

The GHSL concept was introduced by the European Commission (EC), Joint Research Centre 

(JRC) during the years 2008-2011, in the frame of the program named “Information Support for Effective 

and Rapid External Action” (ISFEREA), developing new image information mining technologies in 

support to geo-spatial information analysis for global security and stability [20]. The notion of the 

basic categories and information abstractions used by the GHSL, such as the notion of “built-up area” 

were introduced after a critical revision of the available satellite-derived information products (land-

use/land-cover) when applied to the quantification of the presence of built-up structures in support 

to spatial modelling and assessment activities [21], [22]. In particular, the application areas setting the 

requirements for the GHSL were identified as post-natural-disaster and post-conflict damage, needs 

and reconstruction assessment, including refugee camps and temporary, rapidly-changing human 

settlement monitoring [23]–[25]. The data and semantic requirements of these initial application areas 

largely influenced the design of the GHSL information production system. In particular, regarding 

the attention devoted to providing automatic image information mining methods designed under 

pragmatic assumptions: a) of robustness against real-world big data scenarios involving large-

volume, largely heterogeneous/unstructured data sources (incl. remote sensing and other data) and 

rapidly changing data specifications, b) of robustness against multi-stakeholder scenarios potentially 

leading to irreconcilable data-derived outputs, focused on different political/economic priorities, c) 

of effectiveness in providing output analytics in the severe time constraints and limited 

computational resources as the ones set by crisis management applications. 

In parallel to the Post-2015 process the experience made in mapping global human settlements 

using European medium resolution ENVISAT ASAR for the delineation of built-up surfaces was 

transferred to prototype automatic recognition of built-up areas over more than 50 millions square 

kilometers of Earth land surface, using in input a heterogeneous set of data collected from optical 

sensors ranging from 0.5 to 10 meters of spatial resolution, with a large variety of sensor spectral 

characteristics demonstrating the sensor-agnostic nature of the GHSL remote sensing data processing 

paradigm [22] –the workflow was tasked to produce the first seamless pan-European settlement layer 

at 2.5 m of spatial resolution in support to the European Cohesion policy [26].  

The aim of the GHSL was to provide a prototype of an open, public platform that facilitates the 

knowledge sharing and the discussion in complex, multilateral processes. In order to achieve this, 

the GHSL information production system was set-up in a full open and free domain in line with the 

suggestions of the inter-ministerial Group of Earth Observation (GEO) and the Global Earth 

Observation System of Systems (GEOSS) [27]. During 2015 a refined (beta) release of the Landsat-

derived GHSL was produced and shared among the GEO partners together with new GHSL 

population grids produced through a partnership with the Center for International Earth Science 

Information Network (CIESIN –http://www.ciesin.org/) of the Columbia University [28], [29]. The 

first public release of the GHSL was announced at the Habitat III conference of Quito, in October 

2016. The data is freely accessible from the JRC Open Data Portal (https://data.jrc.ec.europa.eu/) and 

the GEOSS portal (http://www.geoportal.org). Since 2017, the GHSL data and tools contribute to the 

GEO Human Planet Initiative, supporting the GEO Strategic Plan 2016-2025. 

2.1.1 GHSL data layers 

 The GHSL suite contains three main grid-based layers (Table 1) that cover four epochs: 1975-

1990-2000-2015. GHS-BUILT [30] (Figure 1, a) is an EO derived product, mapping built-up areas 

(density). The information is extracted from 40 years of Landsat imagery archives [31], through 

Symbolic Machine Learning workflows [22], [29], [32]. The process is based on a training set owning 

heterogeneous completeness (geographical and temporal coverage), thematic definitions and 

reliability. The training set includes MERIS Globe Cover [33], LandScan population grids [34], Open 

Street Map, GeoNames and MODIS 500 [35]. The result is a series of global maps of built-up areas in 

grid format for the four epochs in World Mollweide projection (EPSG: 54009): 

• at 250m resolution in which values are expressed as decimals from 0 to 1 (density);  
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• at 1km resolution in which values are expressed as decimals from 0 to 1 (density);  

• at 38m resolution in Spherical Mercator (EPSG: 3857), a multi-temporal layer where the presence 

of built-up areas per epoch is classified in numbers ranging 6 (built-up area mapped 1975) to 3 

(built-up area mapped in 2015) with additional classes for the non-built-up land (2), presence of 

water (1) and no data (0). 

Table 1. Synthesis and features of GHSL data  

Name Semantic 
Grid 

Resolution 
Epoch 1 

Main Input 

Data 

GHS-BUILT Density of built-up area per grid cell 
30m, 250m, 

1km 
2015, 

2000, 

1990, 

1975  

Satellite 

imagery 

GHS-POP Population counts per grid cell 250m, 1km 
Census data, 

GHS-BUILT 

GHS-SMOD 

Classification of each grid cell into one of the 

Settlement Model classes: high density cluster, 

low density cluster, and rural cells 

1-km 
GHS-BUILT, 

GHS-POP 

1 Temporal dimension 

 

Figure 1. Example of GHSL data, GHS-BUILT (a), GHS-POP (b), GHS-SMOD (c) displayed at 1km 

spatial resolution in the area of Tokyo (Japan) and compared to the imagery base map. 

GHS-POP [36] maps estimated resident population on the basis of built-up areas presence 

(Figure 1, b). It is based CIESIN GPWv4 to source demographic data (derived from census or 

administrative units) and population is distributed using GHS-BUILT. GHS-POP is available at two 

resolutions for the four epochs in World Mollweide (EPSG: 54009): 

• at 250m resolution;  

• at 1km resolution. In both layers the value of each grid cell reports the absolute number of 

inhabitants in the cell (density, as float). 

GHS-SMOD (Figure 1, c) [37] combines GHS-BUILT and GHS-POP to port the Degree of 

Urbanisation [38] into the GHSL environment. In the GHS-SMOD grid cells are classified in three 

classes: Urban Centre, Urban Cluster, Rural Area according to population density and population 

thresholds (of individual cells and group of cells) [39]. GHS-SMOD is accessible at 1km resolution for 

the four epochs, in World Mollweide (EPSG: 54009). In the layer cells are classified as rural cells (1), 

urban cluster (2), and urban centers (3). In particular, urban centers are the human settlements with 
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more than 50,000 inhabitants. The population of our dataset consists of the circa 10,000 urban centers 

from the GHS-SMOD layer for the epoch 2015. 

In 2017, a revised image processing workflow was implemented in the JRC Earth Observation 

Data and Processing Platform (JEODPP), and applied to the Landsat multi-temporal imagery 

collection. As a result, an updated version of the GHSL (GHS-BUILT, GHS-POP and GHS-SMOD) 

[40] was released in the community of the GEO Human Planet Initiative and it has been tested in this 

study. 

The GHSL framework serves multiple applications and analytics methods. GHSL baseline data, 

GHS-BUILT and GHS-POP are especially used as exposure layers in the disaster risk reduction sector 

in support to emergency management services (i.e. Copernicus EMS) [41], alert systems [42], risk 

management decision support indexes (i.e. INFORM) [43]. GHS-POP and GHS-SMOD were applied 

to estimate carbon footprints of human settlements [44], travel time to major cities [45] and global 

patterns of human domination [46] and presence on the planet [18]. Through these applications GHSL 

has established as source to support studies on the human interaction with and modification of the 

environment over time. More importantly the GHSL baseline data, comprehensively GHS-BUILT, 

GHS-POP and GHS-SMOD can be injected in Sustainable Development Goals metadata to estimate 

SDG indicators. Below we explore the use of GHSL to estimate the SDG 11.3.1. 

2.2 SDG 11.3.1 methodology 

The methodology for SDG 11.3.1 is established and referenced in the SDG indicators Metadata 

Repository managed by UNDESA (https://unstats.un.org/sdgs/metadata). To perform our 

experiments we applied the established methodology using GHSL as input data. LUE monitors the 

“Ratio of land consumption rate to population growth rate” and it is entrusted to quantify the wise 

use of land consequence of urban expansion pressures [47] –demographic and economic ones [48]. 

To estimate LUE, first it is necessary to quantify the rate of land consumption (LCR) and the 

population growth rate (PGR) in a given spatial unit over a time span. The two rates (LCR and PGR) 

are computed as follows: 

LCR= 
LN (

Urbt+n
Urbt

⁄ )

y
      PGR= 

LN (
Pop

t+n
Pop

t
⁄ )

y
 (1) 

where Urbt and Urbt+n reflect the total areal extent of the land consumed (extent of the human 

settlement) at the initial reference year (t) and at the final reference year (t+n) respectively, Popt and 

Popt+n input the total population of the spatial unit at the initial reference year (t) and at the final 

reference year (t+n) respectively, and y is the number of years between t and t+n. The estimate of the 

ratio of land consumption rate to population growth rate (LCRPGR or LUE), is obtained with: 

LUE (LCRPGR) = 
LCR

PGR
 (2) 

In our research we used GHS-SMOD to delineate the extent of urban areas in 2015 (using grid 

cells classified as Urban Centres), in GIS environment we injected GHS-BUILT epoch 1990 and 2015 to 

generate statistics of built-up areas for the corresponding epochs and to derive the LCR value. 

Similarly we injected GHS-POP epoch 1990 and 2015 to derive PGR. Then we statistically computed 

LUE (LCRPGR) as presented in equation 2. 

GHSL derived urban centers were classified in regions of the world according to the aggregation 

of countries from the Global Administrative Map (V2.8 –https://gadm.org/data.html) following the 

categories (Region) of the UN World Urbanization Prospects 2018 [49]. The extraction of statistics on 

built-up areas and population was implemented in Geographic Information System environment 

(ArcGIS) through zonal statistics operations. 

3. Results 
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The analysis of spatial expansion and demographic change in urban centers focuses on three 

aspects addressed in specific sub-sections below. First, the extent and demographics of urban centers 

is reported between 1990 and 2015 (in 3.1); second, the latter development trajectory is analyzed with 

the Land Use Efficiency indicator sourcing the LUE value at urban centers level (in 3.2); third, we 

propose some considerations on the differentiation of built-up areas per capita across regions of the 

world clustering urban centers in classes LUE value (in 3.3). LUE has been estimated in circa 10,000 

urban centers defined in the GHS-SMOD. As comprehensive overview of the SDG 11.3.1 quantified 

with GHSL data over the 25 years between 1990 and 2015, it results that urban centers follow a 

development trajectory in which the rate of population growth prevailed over that of spatial 

expansion, with a LUE equivalent to 0.72. In absolute terms urban centers expanded globally over a 

land surface equivalent to almost 67,800 km2 (approximately the surface of Ireland) to settle about 1.1 

billion new people (almost the population of India in 2015). 

3.1 Spatial expansion and demographic growth in urban centers 

According to GHSL data, urban centers account in 2015 a population exceeding 3.53 billion 

people and their built-up areas extend over almost 295 thousand km2 (Figure 3). In urban centers 

built-up areas expanded in 25 years (1990-2015) by 30% and population increased by 44%. Trajectories 

of growth follow clear regional dynamics whereas: the highest demographic change in size and 

absolute spatial expansion takes place in Asia (+637 million inhabitants and +35.7 thousand km2), 

while most significant population growth has occurred in Africa (population of urban centers has 

almost doubled). 

The interdependence between spatial expansion and demographic change manifests in terms of 

change in population density in urban centers. Population density has globally increased by 11% 

moving from 10,800 inhabitants per km2 to 12,000 inhabitants per km2 in 2015. Most significant 

processes of densification took place in Africa (+40%) and Oceania (+36%). Population density is 

stable in Asia (+1% and equivalent to 17,000 inhabitants per km2 in 2015). Modest changes towards 

density reduction took place in Europe (-6% and 6,300 inhabitants per km2 in 2015) and towards 

density increase in Northern America (+4% and 2,500 inhabitants per km2) and Latin America and 

the Caribbean (+8% and 12,192 inhabitants per km2).  

 

Figure 2. Multi-temporal global extent of built-up areas and population in urban centers at 

corresponding epochs as estimated from GHSL data (GHS-POP and GHS-BUILT) 
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3.2 LUE in 10,000 urban centers 

To synthetically report on the LUE trajectories of this vast dataset, we clustered urban centers in 

5 classes of LUE: LUE≤-1; -1<LUE≤0; 0<LUE≤1; 1<LUE≤2; LUE>2. Figure 3 below displays the 

geographical distribution of urban centers and their related LUE class (1990-2015). It emerges that 

13% of the centers in the globe developed between 1990 and 2015 with a substantially negative LUE 

value (<-1) in particular in countries in central and western Europe, central China and south India. 

Values in the range -1<LUE≤0 are accounted in 6% of urban centers of the globe, this share reaches 

21% in Europe (especially in Eastern Europe and Russia), and 18% in Asia (mainly Japan). Most 

frequent LUE class across the globe is the one ranging 0<LUE≤1 (39% of the centers in the dataset). 

On a regional basis, this class represents 65% of the centers in Africa, more than half the ones in Latin 

America and the Caribbean, 39% the centers in Oceania, and almost 1/3 the ones in Asia and Europe. 

The class 1<LUE≤2 includes 20% of the centers in the globe, but almost 1/3 the ones in Latin America 

and the Caribbean, ¼ the ones in Northern America and 22% of the ones in Africa. The last class 

(LUE>2) globally accounts 22% of the centers, the share increases in Asia –31% especially including 

centers in India and north-east and south China. 

 

 Figure 3. Comprehensive visualization of the LUE value in the circa 10,000 urban centers computed in the 

period 1990-2015. 

3.3 Built-up areas per capita and Land Use Efficiency 

The LUE indicator (that is a dimensionless value) has been further characterized observing the 

built-up area per capita in the year 2015 in the LUE classes considered in the previous sub-section, 

this operation presents an example of the spatial implications of the LUE indicator (Figure 4). The 

following arguments are based on the average built-up areas per capita calculated for each of the 

10,000 urban centers and then averaged by regional collocation of the center. Results demonstrate 

that in regions like Europe and Northern America in the class of LUE>2, in which spatial expansion 

takes place at a rate at least double the one of population growth, built-up areas per capita exceed 

respectively 180 and 490 m2 per inhabitant. Great variations are also observed comparing the built-

up area per capita in the same LUE class across regions. In the case of a development trajectory of 

population densification (0<LUE<1), built-up areas per capita range from almost 450 m2 per person 

in Northern America, 175 m2 per person in Europe, and it drops by almost half in Latin America and 

the Caribbean (90 m2 per person), to almost 70 m2 per person in Asia and to 52 m2 per person in centers 

in Africa. 
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In terms of average change of built-up areas per capita between 1990 and 2015, values are also 

diverse. In the class 0<LUE<1, built-up areas per capita shrink between 10% (in Europe) and 26% (in 

Africa). In the class of LUE>2 built-up areas per capita more than doubled in Latin America and the 

Caribbean, Asia and Africa, increased by half in Northern America, by 15% in Europe and by 6% in 

Oceania. 

 

 

Figure 4. Regional comparison of built-up areas per capita  

4. Discussion 

In the following section we develop two main strands of arguments. One reflects on the 

principles and architecture of GHSL and its fitness for purpose to support SDG indicators and 

intergovernmental agreements with open data to fill present gaps. In 4.1 we discuss about the GHSL 

architecture and design features that enable an action-oriented support to SDG monitoring, in 

particular thanks to a full open and free data cycle (input data, methods, output/results), and the 

capacity to handle and make sense of big-data scenarios harmonizing data across space and time. 

The other argument focuses on the implications of the empirical findings of this research in 

contributing to selected intergovernmental policy literature on urban development (4.2).  

4.1 GHSL principles 

The GHSL concept is framed around three general goals or requirements: a) operation in an open 

and free data and methods access policy (open input, open method, open output); b) aim for 

reproducible, scientifically defendable, fine-scale, synoptic, complete, planetary-size, and cost-

effective information production; and c) aim to facilitate information sharing and multilateral 

democratization of the information production, and collective knowledge building. The general 

requirements b and c, call for automatic information production methods being able to process 

systematically the large mass of baseline data (satellite imagery, and population census information) 

supporting the output analytics and to lower down the cost of the information production. 

GHSL framework production was enabled by the definition of a new artificial intelligence 

approach for the satellite data classification process named “Symbolic Machine Learning” (SML), and 

working with the similar principles used in genomics for the DNA sequences characterization [32]. 

The SML approach allows machines to learn efficiently new association rules between satellite data 

instances and target abstraction classes used by the GHSL as for example “built-up areas”. Through 

the SML it was possible to design a robust supervised data classification process using available 
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global data as training examples just approximating the scale and thematic requirements of the 

information retrieval tasks. This fact allowed a drastic reduction of the human labor traditionally 

needed for the training set collection tasks.  

4.1.1  Real-world (big) data scenario 

The GHSL approach was developed with real-world big-data scenarios calling for a pragmatic, 

adaptive approach in complex data, information and stakeholder/users scenarios with planetary-size, 

multi-temporal, fine-scale data that generate large volumes of information. These complex scenarios 

coupled with fast technological development generates rapidly changing data specifications and 

contradictory semantics and assumptions. Furthermore, and paradoxically, more detailed data 

produce larger relative inconsistencies: assuming any given level of effort/cost for data 

harmonization, the relative across-data inconsistencies grow by a multiplicative pattern when the 

spatial and thematic detail of the data is increased linearly. In these conditions, the adoption of a strict 

normative approach would easily lead to irrelevance and failure of the system with respect to the 

reality check. The GHSL takes instead a pragmatic adaptive perspective. Artificial intelligence is used 

to find relevant associations between different data streams at different level of abstraction/semantics 

and different scales with the minimal set possible of assumptions. In this perspective, the whole 

universe of data shall be used for testing hypothesis and efficient computational machine learning 

methods should allow to discover on-the-fly association between any given data and information at 

any collected sensor/data parameters conditions, with no need for model transfer [22], [29], [50], [51]. 

4.1.2  Evidence-based output analytics 

Global policy frameworks outcome of the Post-2015 process such as the New Urban Agenda, the 

Sendai Framework for Disaster Risk Reduction, the United Nations Framework Convention on 

Climate Change, and the overarching 2030 Development Agenda architecture is linked to national 

and multi-national (as in the case of the European Union) policy processes driven by decision makers 

operating at various levels of governance. Data and evidences are sought to inform this policy process 

[52] by providing indicators that focus on measurable outcomes and allow to evaluate, compare and 

benchmark alternative programs of action (i.e. policy and plans). Policy processes are negotiation 

processes [53]. With data and the data-derived analytics becoming relevant in the policy process, 

monitoring frameworks become integrated with the negotiation [54]. As a consequence, data, the 

data-derived information and the devolution of influence to epistemic communities may lead to 

prejudice in support to specific political and/or economical interest [55]. This condition may lead to 

a situation where most of the human efforts are devoted to the scrutiny and discussion about the 

assumptions embedded in the system generating the analytical results, and in the collective 

discussion about the possible way forward, in lieu of understanding the results. In order to mitigate 

that risk, the output categories generated by the GHSL system are designed with a modular 

abstraction schema [21]. 

At the basis of the GHSL classification schema there are low-level-of-abstraction categories as 

for instance “built-up areas”. They include a minimal set of expert assumptions [29] and are derived 

from the most independent, consistent and extensive data handled by the system, i.e. the remote 

sensing imagery, making the concept prone for consideration as “evidence” from the different 

stakeholders involved in the policy processes. At the top of the GHSL classification schema there are 

high-level-of-abstraction categories as “urban vs. suburban vs. rural” areas discrimination (as 

provided in the GHS-SMOD). These include the maximum level of theoretical assumptions and have 

a direct impact on the calculation of indicators. The ways in which urban areas are defined directly 

affect the sourcing of data, and so the results. This argument is evident observing data on urban 

demography that are compiled by the United Nations Department for Economic and Social Affairs 

(UNDESA) in the periodic updates of the World Urbanization Prospects. The Prospects UNDESA 

produces include data sourced from member States that are often compiled using heterogeneous 

motives to classify urban areas [56]–[59], so to report about urban population, making consistency of 

the data across territories limited. While alternative ways to define urban areas are being proposed 
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[38], [60], [61] it is of high disciplinary and policy relevance to reaffirm that the definition of 

boundaries for spatial information collection is a key step for the measurement [62] [63]. Data 

framework that are grid based and possess high spatial resolution (of 250m and 1km) –like GHSL, 

are capable to adapt to a great variety of spatial aggregations (cities, small regions, large geographical 

areas, till the wall to wall global coverage). 

 4.1.3  Full repeatability 

Repeatability of measurements refers to the ability to repeat measurements made on the same 

subject under identical conditions [64]. Variability in measurements made on the same subject under 

identical conditions can be attributed to errors originated by the measurement process itself. The 

measurements generated by the GHSL system are fully repeatable. The same input data and the same 

information extraction method produces identical numerical result. This is a requirement needed to 

maintain full control of data, methods and results lineages in the “Real-word (Big) Data Scenarios” 

as described in the first principle above. Moreover, full repeatability increases trust in the new 

data/analytics generated by new technologies, especially if non-experts are involved in the evaluation 

of the results. A corollary of this principle is that GHSL avoids the use of Artificial Intelligence 

methods based on random iterative optimization processes. 

4.1.3  Multi-temporal and spatial harmonization of information 

GHSL layers are continuous global raster with information on the spatial footprint of settlements 

–built-up areas, that are processed using Landsat imagery at corresponding epochs and population 

that is modelled on the basis of the Gridded Population of the World (GPW). The information on 

built-up areas is extracted through the open workflow [29] and it is fed with multi-temporal imagery 

from Landsat at corresponding epochs [31], [65]. Information on population is derived from GPW 

that is a fine scale spatially disaggregated layer produced from population and housing censuses 

from which estimates for past epochs are derived and made consistent with and adjusted to United 

Nations World Population Prospects [66]. The availability of consistent and harmonized data across 

the globe and epochs makes possible to analyze the long term process of human settlement changes 

(1975 – 2015) providing valuable tools for urban development analytics including a new lens to 

observe planetary urbanization [16]. 

4.1.4  Open data and tools filling gaps of a Tier II indicator 

The action oriented outcome of the GHSL framework architecture demonstrated by our results 

is that indicator 11.3.1 was estimated for the year 0 of the 2030 Development Agenda (2015) against 

25 years of spatial and demographic change in urban centers.  

In practice, using open and free data it could be possible to lift SDG 11.3.1 from its Tier II status 

using the GHSL approach to fill the present data gap. With respect to UNDESA metadata, the GHSL 

operationalization of the SDG 11.3.1 estimation has been performed with two key premises. First, the 

adoption of the Degree of Urbanisation people based “Global Harmonized Definition of Cities and 

Settlements" allowed to delineate the spatial units of analysis (the urban centers). Second, LCR and 

PGR were defined respectively as the change in the built-up areas (from GHS-BUILT derived from 

Landsat) and in population (from GHS-POP) between epochs in these spatial units.  

This is a pragmatic (evidence based, replicable and multi-temporal) approach to implement the 

conceptual definition of “land consumption” intended as “the expansion of built-up area which can 

be directly measured” (SDG 11.3.1 metadata, p.2). Further to the above motives, the GHSL framework 

offers a suite of free tools, especially the MASADA (Massive Spatial Automatic Data Analytics), DUG 

(Degree of Urbanisation Grid) and LUE (Land Use Efficiency) tools. The MASADA Tool is developed 

to support production of local and regional settlement layers by automatic classification of satellite 

imagery (both high and very high resolution data). Using as training set a land cover information or 

a coarse settlement map (to incorporate in the workflow radiometric, textural and morphological 

features) a supervised classification of remotely sensed data (through SML classifier) extracts built-
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up areas information. The tool is primarily devoted to the extraction of built-up areas with a preset 

of workflows for SPOT-5, SPOT-6/7, RapidEye and CBERS-4, yet it can be applied to other imagery 

sources (i.e. GeoEye-1, WorldView-2/3, Pléiades and Quickbird) to derive other land cover maps –

provided that the appropriate training set is given in input. The second tool supporting SDG estimate 

is dedicated to the delineation of urban areas as defined in the Degree of Urbanisation definition [38]. 

Urban centers, urban clusters and rural areas can be delineated using the DUG tool. The tool is 

designed to work with GHS-BUILT and GHS-POP but other spatial and demographic layers could 

also be used. With this tool the user is free to use proprietary data on built-up and population and 

set ad hoc population criteria and threshold to define settlement typologies. The LUE Tool (a Qgis 

plugin) [67] enables the estimation of the SDG 11.3.1 in GIS environment with an input of spatial 

multi-temporal information on the spatial extent of the settlement and its demography at the 

corresponding epochs.  

The GHSL suite of data and tools seems to encompass a wide spectrum of functionalities to 

support the SDG monitoring, both within its own resources (especially data) but also by offering free 

tools to users empowering them to use third party or proprietary information sources, especially in 

the context of SDG 11.3.1. In particular, the GHSL architecture retains potential for the estimation of 

LUE to 2030. With the entry into service of the Sentinel-1 and Sentinel-2 constellations and the 

conception of workflows to process their data for built-up areas extraction in GHSL environment 

[68], [69] it is to foresee a community-based capacity to periodically update LCR estimates for the 

entire Earth. 

4.2 EO derived information on human settlements 

In recent times the remote sensing and EO technology to acquire, process and manage data has 

significantly improved. In particular, significant advances took place in the instruments to source 

information from space, whereas the spatial resolution of new sensors has increased. Early EO 

derived products to map the extent of human settlement did rely on coarse resolution imagery 

(MODIS or Landsat 1-3 MSS) or on a combination of the latter and night time lights (i.e. DMSP/OLS). 

Recent platforms equipped high-resolution (i.e. Sentinel-2) and very-high-resolution optical (i.e. 

SPOT ) or synthetic-aperture radar technology (i.e. TerraSAR-X and Sentinel-1) were proved effective 

for delivering maps of human settlements [26], [68] [69], [70]. 

This new generation of information support researchers and policymakers in the understanding 

of the new geographies of human settlements in the era of a predominantly urban society. Our 

research findings support rationales on urbanization that allege that urban areas are efficient in terms 

of use of land resources [71], and that urban development is considerably unequal across regions of 

the world [72]. Estimating a LUE<1 corresponding to 25 years of urban development (1990-2015) we 

empirically illustrate that the rate of demographic growth in urban centers has been dominant over 

the growth in space. Although this value could validate a dense/compact pattern of development that 

imply population densification, the diversity of LUE values across regions of the world and the 

corresponding built-up areas per capita may reinforce the signals of widening urban divide, in terms 

of inequality in development. In particular the comparison of built-up areas per capita in 2015 

broken-down into LUE classes and regions of the world manifests the traits of unfairness. 

Considering the least efficient LUE class (LUE>2) built-up areas per capita in urban centers in 

Northern America is 10 times the one of that in centers in Africa. Similar patterns are found in the 

other LUE classes too. This fact implies substantially heterogeneous patterns of development to be 

captured by comparable –yet same- LUE values. By formulation the LUE indicator does not retain a 

spatially explicit nature (dimensionless) it could be a proxy for a spatial and demographic trajectory 

of change. The Land Use Efficiency estimates seem to suggest that several territories encountering 

extensive population growth (i.e. Sub-Saharan Africa, and South-East Asia) develop with LUE values 

between 0 and 1, corresponding to population densification, while negative LUE values (LUE<-1) is 

frequent in countries with low –or even negative- population growth rates (i.e. Eastern Europe, Japan 

and some converging regions of the European Union). 
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5. Conclusion 

 In this article we provide a concrete example of the contribution of Earth Observation and 

innovative geospatial-remote sensing derived data in support to the Sustainable Development Goals. 

The SDG were negotiated in parallel to a comprehensive and ambitious monitoring framework. This 

framework is currently pressured by shortcomings in data availability and statistical capacity for its 

monitoring, with only 93 indicators with a Tier I classification. Earth Observations set out as a key 

source of information to service SDG monitoring: by improving the availability of required data, 

supplying suitable and accurate data that cover long time series, have wide/planetary geographical 

scope are compatible/complimentary with traditional statistical methods. 

To provide a practical application of this service we estimated at global level Land Use Efficiency 

(SDG indicator 11.3.1) currently classified as Tier II indicator due to the presence of an internationally 

agreed methodology but in absence of data. The GHSL serves the purpose as it offers harmonized 

data in space and time on the spatial distribution of built-up areas (GHS-BUILT), population (GHS-

POP) and settlement typologies (GHS-SMOD) fulfilling the UNDESA metadata requirements for the 

indicator. In addition to the above, we also discussed the principles and architecture of the Global 

Human Settlement Layer that by design embraces an open input, open method, open output policy, 

has a modular hierarchical structure of information, tests and applies real-word (big) data scenarios, 

produces evidence based output analytics, and facilitates the repeatability of results. In particular, 

we emphasize the role of multi-temporal and spatial harmonization of information to enable 

comparative studies and analyses on development trajectories. 

The quantitative results of the experimental application of GHSL data in support to SDG 

indicator 11.3.1 show that urban centers developed between 1990 and 2015 with a LUE equivalent to 

0.72, whereas the rate of population growth has been higher than the one of spatial expansion. In 

absolute terms urban centers expanded over a land surface equivalent to almost 67,800 km2 

(approximately the surface of Ireland) to settle almost 1.1 billion new people (almost the population 

of India in 2015). To further characterize LUE, we compared built-up areas per capita in the epoch 

2015 achieved in centers that developed in common LUE classes in various regions of the world. It 

emerges that there might be inequalities in the trajectories of development of centers that develop 

with comparable LUE values but are located in different geographical areas. This is perceived in 

particular comparing the changes in built-up areas per capita between 1990 and 2015. 

With the estimate of the LUE, we enacted UNGGIM instruction to test GHSL for the purpose. In 

this context it is to reaffirm that while GHSL data could support data-poor territories, they could also 

back data-rich parties for harmonization and comparison purposes. Our research concludes that the 

GHSL framework, with its tools and data enables users to generate built-up areas layers that could 

be used directly with UNDESA compiled demographic data to quantify LUE. A further perspective 

is proposed by new satellites (Sentinel constellation) and the workflows generated in GHSL 

environment that open the possibility to secure the estimation of the Land Consumption Rate to 2030 

with open data and open tools. 
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