

1 Research manuscript

2 Use of ^{18}F -FDG PET/CT Imaging for Radiotherapy 3 Target Volume Delineation after Induction 4 Chemotherapy and for Prognosis of Locally Advanced 5 Squamous Cell Carcinoma of the Head and Neck (LA- 6 SCCHN)

7 **Viktoras Rudžianskas¹, Erika Korobeinikova^{1*}, Milda Rudžianskiénė¹, Evelina Jaselskė², Diana
8 Adliénė², Severina Šedienė¹, Ilona Kulakiénė¹, Evaldas Padervinskis¹, Nemira Jurkienė¹, Elona
9 Juozaitytė¹**

10 ¹ Oncology Institute of Lithuanian University of Health Sciences, Eivenių g. 2, 50009 Kaunas, Lithuania;
11 viktoras.rudzianskas@lsmuni.lt (V.R.); severina.sediene@lsmuni.lt (S.Š.); kulakiene@dr.com (I.K.);
12 milda.rudzianskiene@lsmuni.lt (M.R.); evaldas.padervinskis@lsmuni.lt (E.P.);
13 nemira.jurkiene@lsmuni.lt (N.J.); elona.juozaityte@lsmuni.lt (E.J.)

14 ² Kaunas University of Technology, Studentų g. 50, 51368 Kaunas, Lithuania; evelina.jaselske@ktu.edu
15 (E.J.A.); diana.adliene@ktu.lt (D.A.)

16 * Correspondence: erika.korobeinikova@lsmuni.lt; Tel.: +370-6963-6121

17 **Abstract:** *Background and objectives:* Induction chemotherapy (ICT) before definitive chemoradiation (CRT)
18 gives high response rates in LA-SCCHN. However, pre-ICT gross tumour volume (GTV) for radiotherapy
19 (RT) planning is still recommended. As ^{18}F -FDG PET/CT has an advantage of biological tumour
20 information comparing to standard imaging methods, we aimed to evaluate the feasibility of ^{18}F -FDG
21 PET/CT-based post-ICT GTV delineation for RT planning in LA-SCCHN and to assess the prognostic value
22 of PET parameters: maximum standardized uptake value (SUV_{max}), metabolic tumour volume (MTV) and
23 total lesion glycolysis (TLG). *Methods:* 47 LA-SCCHN patients were treated with 3 cycles of ICT (docetaxel,
24 cisplatin, and 5-fluorouracil) followed by CRT (70 Gy in 35 fractions with weekly cisplatin). Pre- and post-
25 ICT PET/CT examinations were acquired. Planning CT was co-registered with post-ICT PET/CT and RT
26 target volumes were contoured according to post-ICT PET. Post-ICT percentage decrease of SUV_{max}, MTV
27 and TLG in primary tumour and metastatic regional lymphnodes (LN) was counted. Loco-regional failure
28 patterns, 3-year progression free (PFS) and overall survival (OS) were evaluated. *Results:* 3-year PFS and
29 OS rates for study population were 67% and 61% respectively. 31.9% of patients progressed loco-regionally.
30 All progresses were localised in high-to-intermediate dose (60 - 70Gy) RT volumes and none in low dose
31 (50 Gy) volumes. Decrease of SUV_{max} \geq 74% (p = 0.03), MTV \geq 68% (p = 0.04), TLG \geq 76% (p = 0.02) in primary
32 tumour, and LN TLG decrease \geq 74% (p = 0.03) were associated with PFS. Decrease of primary tumour
33 SUV_{max} \geq 74% (p = 0.04), MTV \geq 69% (p = 0.04), TLG \geq 74% (p = 0.02) and LN TLG \geq 73% (p = 0.02) were
34 prognostic factors for OS. *Conclusions:* According to our results, ^{18}F -FDG PET/CT-based post-ICT GTV
35 delineation is feasible strategy without negative impact on loco-regional control and survival. Percentage
36 decrease of metabolic PET parameters SUV_{max}, MTV and TLG has a prognostic value in LA-SCCHN.

37 **Keywords:** head and neck cancer; induction chemotherapy; ^{18}F -FDG PET/CT; target volume delineation

38

39 1. Introduction

40 Despite the absence of definitive scientific evidence, induction chemotherapy (ICT) for locally advanced
41 squamous cell carcinoma of the head and neck (LA-SCCHN) is often used in clinical practice [1]. Up to 80
42 - 90% of patients with LA-SCCHN respond to cisplatin-based ICT and 20 - 40% of them achieve complete
43 response (CR) [2]. Although several studies reported no benefit of ICT in terms of survival [2-4], it has a
44 role in selected cases if there is likely to be a delay between diagnosis and starting definitive
45 chemoradiotherapy (CRT) and in organ preservation strategies [5]. The current guidelines suggest that pre-
46 ICT primary site and nodal gross tumour volumes (GTV) should be used for radiotherapy (RT) planning
47 in cases when ICT is given [6-8]. However, possible superiority of post-ICT over pre-ICT GTV is now under
48 investigation [9,10]. The potential advantages of using post-ICT imaging for target volume delineation
49 include reduction of GTV due to tumour shrinkage and possibility to spare normal tissues. However, it
50 bears a potential risk of missing partial tumour volume and, in some cases, difficulties in GTV delineation
51 due to metabolic switch [9,11]. Contrast-enhanced computed tomography and/or magnetic resonance
52 imaging are the standard methods for evaluating tumour response to ICT, and are mostly used for GTV
53 delineation in LA-SCCHN. Recent studies report an emerging role of positron emission tomography (PET)
54 with ¹⁸Fluorine-labeled 2-fluoro-2-deoxyglucose integrated with computed tomography (¹⁸F-FDG PET/CT)
55 in RT planning for head and neck cancers due to the added biological tumour information. However, there
56 is a lack of knowledge whether the use of ¹⁸F-FDG PET/CT based post-ICT GTV delineation in RT planning
57 is a feasible approach. Furthermore, earlier clinical studies demonstrated, that some parameters of ¹⁸F-FDG
58 PET/CT may predict the tumour chemosensitivity and LA-SCCHN patient survival [12-14]. Such ¹⁸F-FDG
59 PET/CT parameters as maximum standard uptake value (SUV_{max}), metabolic tumour volume (MTV) and
60 total lesion glycolysis (TLG) have been shown to correlate with LA-SCCHN patient outcome [15-17].
61 However, the prognostic value of the percentage decrease of these FDG uptake parameters from baseline
62 to post-ICT is unknown.

63 The aims of our prospective phase II study were:

- 64 1. To evaluate the feasibility of ¹⁸F-FDG PET/CT-based post-ICT GTV delineation strategy for LA-
65 SCCHN RT planning by analysing patterns of local and/or nodal disease failure after CRT and
66 assessing progression free survival (PFS) overall survival (OS) and treatment safety;
- 67 2. To assess the correlation of post-ICT percentage decrease of three metabolic ¹⁸F-FDG PET/CT
68 parameters SUV_{max}, MTV and TLG in primary tumour and metastatic nodes with radiological
69 response to ICT, PFS and OS.

70 71 2. Material and methods**72 2.1 Study design and patient selection**

73 Between September 2013 and January 2016, patients affected by LA-SCCHN were enrolled in this phase
74 2 prospective cohort study. All subjects signed the informed consent form. The study was conducted in
75 accordance with the Declaration of Helsinki, and the protocol was approved by the Lithuanian Bioethics
76 Committee (No. BE-2-51) and was registered at www.clinicaltrials.gov (identification no. NCT02047201).
77 All patients have been validated by the multidisciplinary team for ICT followed by CRT. The eligibility
78 criteria were as follows: histologically confirmed locally advanced (stage III and IV) head and neck
79 squamous cell carcinoma, Eastern Cooperative Oncology Group performance status (ECOG) 0 or 1, signed
80 written informed consent. Patients with a known history of another cancer or suspected metastatic lesions
81 were excluded.

82 2.2 *ICT delivery and evaluation of response to ICT*

83 Patients received three cycles of docetaxel, cisplatin, and 5-FU (TPF) ICT consisting of docetaxel (75
84 mg/m²) and cisplatin (75 mg/m²) administered as a 1-hour infusion on a day 1 and 5-fluorouracil (5-FU)
85 (750 mg/m²) administered by continuous infusion on days 1–5 [18]. Cycles were administered every 3-
86 weeks. The reductions of the docetaxel, cisplatin and 5-FU doses were planned depending on the individual
87 treatment tolerance and toxicity.

88 According to post-ICT ¹⁸F-FDG PET, patients were classified into: ICT-responders – patients with ≥50%
89 hypermetabolic tumour volume reduction, and ICT-non-responders – <50% reduction.

90 2.3 *¹⁸F-FDG PET/CT examination and GTV delineation*

91 Two ¹⁸F-FDG PET/CT examinations were performed for each patient. The first one was whole-body
92 ¹⁸F-FDGPET/CT prior ICT during initial staging, another one 14±2 days after the last cycle of ICT including
93 only head and neck region for therapeutic evaluation and CRT planning [7,11,13]. Post-ICT scan was
94 acquired in intensity modulated radiation therapy (IMRT) treatment position with the five-point fixation
95 thermoplastic mask. All ¹⁸F-FDGPET/CT studies were performed on GE Discovery XCT (General Electric
96 Healthcare system, United States of America) scanner. All PET/CT images were reconstructed with the
97 ordered subset expectation maximization (OSEM) iterative algorithm using scatter correction with the 5
98 mm Gaussian filter on 128 x 128 and 256 x 256 matrixes. All acquired data was transferred to radiotherapy
99 treatment planning system Eclipse (version v8.6) and registered by aligning the centres of the datasets.
100 Planning CT was rigidly co-registered with post-ICT ¹⁸F-FDGPET/CT for delineation of treatment volumes.
101 The gross tumour volume GTV70 and gross nodal volume GTV60 were manually contoured using a visual
102 interpretation technique on post-ICT PET images by radiation oncologist in collaboration with an
103 experienced nuclear medicine physician. Clinical target volumes (CTV) of primary tumour CTV70 obtained
104 by adding 5 mm margin to GTV70. CTV60 involved GTV70 and GTV60 plus 5mm margin. The elective
105 CTV (CTV50) included CTV70, CTV60 and bilateral elective lymph nodes. The margin of 3 mm was added
106 for each CTV to create the planning target volumes (PTV) PTV70, PTV60 and PTV50 (during RT delivery
107 daily cone-beam CT (CBCT) for image guidance was used). For high-risk volumes PTV70 and PTV60 the
108 prescribed doses were 70 Gy and 60 Gy respectively, for PTV50 – 50 Gy. Three metabolic parameters
109 (SUV_{max}, MTV and TLG) were measured in pre-ICT and post-ICT ¹⁸F-FDGPET/CT scans for both primary
110 tumour and metastatic regional lymphnodes.

111 2.4 *Chemoradiotherapy*

112 CRT consisted of cisplatin 40 mg/m² weekly concomitant with conventionally fractionated RT (2 Gy
113 per once-daily fraction, 5 days a week until the total prescribed dose of 70 Gy will be collected) [19, 20]. The
114 cisplatin dose was individually modified according to the level of hematologic toxicity, hepatic and renal
115 function and the infectious diseases. Non-completion of prescribed radiotherapy dose was related to
116 individual patient tolerance.

117 2.5 *End points*

118 PFS and OS were used as the clinical endpoints to evaluate the feasibility of ¹⁸F-FDG PET/CT-based
119 post-ICT GTV delineation and the prognostic value of the ¹⁸F-FDG PET metabolic parameters. PFS was
120 defined as the time from day 1 of the ICT first cycle until disease progression or death from any reason. OS
121 was defined as the period from day 1 of the ICT first cycle until death from any reason. Furthermore, to

122 evaluate the safety of new target volume delineation technique, treatment toxicity during ICT and CRT
123 was weekly evaluated according to the National Cancer Institute Common Toxicity Criteria (NCI CTCAE)
124 v.4.0. Late adverse events related with RT were assessed every three months after CRT using RTOG
125 (Radiation Therapy Oncology Group) /EORT (European Organization for Research and Treatment of
126 Cancer) toxicity criteria.

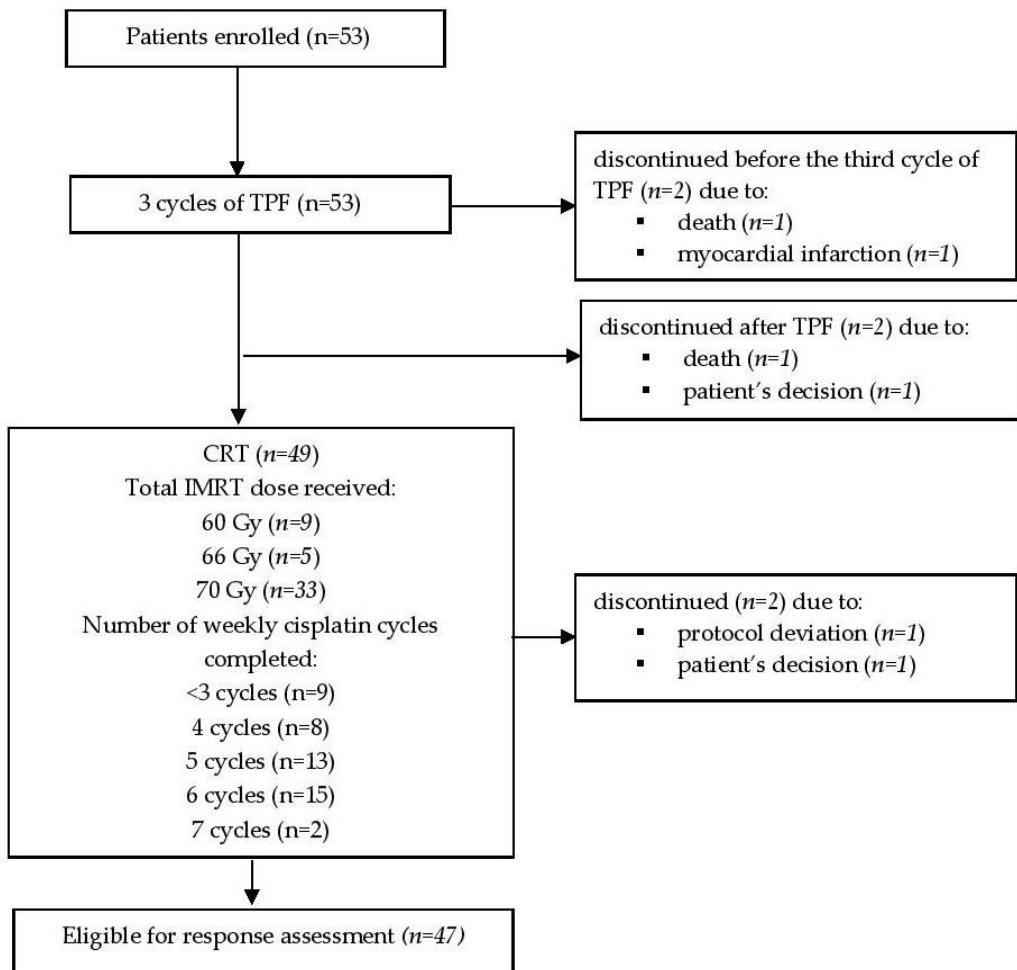
127 **2.6 Analysis of loco-regional failure patterns**

128 Diagnostic CT or PET/CT documenting recurrence was co-registered with planning CT using rigid
129 image registration technique. Loco-regional failures were classified depending on the percentage volume
130 which received in total 95% of prescribed dose: failures were classified as "in-field" (>95%), "marginal"
131 ($\geq 20\%$; $\leq 95\%$) and "out-field" ($<20\%$) [21, 22]. Mean dose and maximum dose to the failure volume were
132 estimated.

133 **2.7 Statistics**

134 Means of pre-ICT, post-ICT and percentage decrease of SUV_{max} , MTV and TLG were compared between
135 ICT-responder versus ICT-non-responder groups using Mann-Whitney U-test. ROC curve analysis was
136 applied to identify the best discriminating cut-off values for SUV_{max} , MTV, and TLG to predict PFS and OS.
137 Appropriate cut-off was defined as the point on the curve nearest to the upper left corner of the receiver
138 operating characteristics (ROC) graph. The area under the curve (AUC) was used to evaluate the accuracy
139 of the metabolic parameters as a prognostic factor. A Cox proportional hazards regression model was
140 applied to determine the effect of potential factors that were found significant on univariate and
141 multivariate analysis. All tests were two-sided, and the significance threshold was set at $p < 0.05$. All
142 statistical analyses were performed using IBM SPSS 22.0 (Statistical Package for Social Sciences 22.0 for
143 Windows) statistical software.

144 **3. Results**


145 **3.1 Patient characteristics**

146 In total 53 patients (50 males and 3 females) with mean age at diagnosis of 55.8 ± 8.9 (range 30 - 71)
147 years were enrolled in this study. As demonstrated in flow diagram of study participants (Figure 1), 47
148 patients completed ICT and CRT and were eligible for further analysis. 21 (44.7%) of analysed patients had
149 primary hypopharyngeal carcinoma and 26 (55.3%) - oropharyngeal carcinoma (all cases negative for
150 human papillomavirus). Patient characteristics at the time of diagnosis are listed in Table 1.

151 **Figure 1.** Flow diagram of study participants

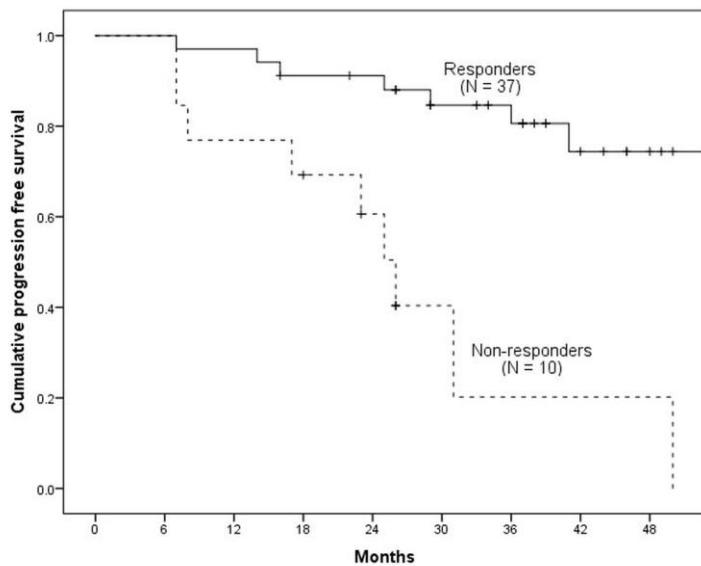
152

153

154

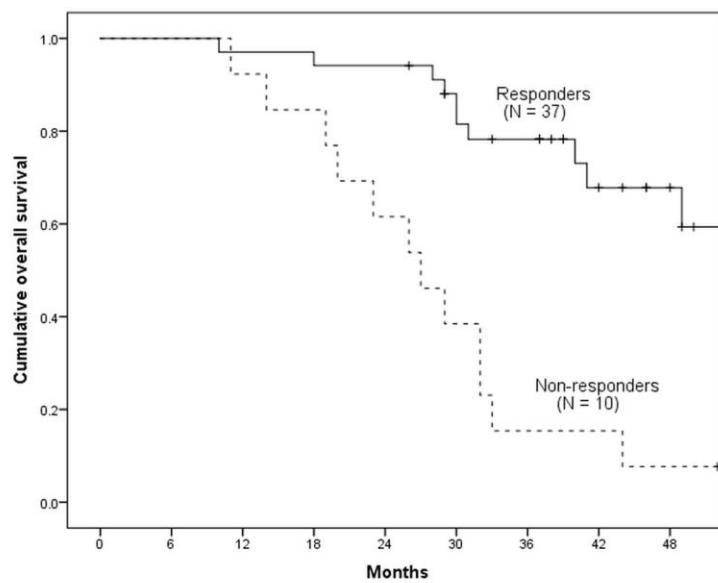
155 TPF – induction chemotherapy consisting of docetaxel, cisplatin, and 5-fluorouracil (5-FU); IMRT –
 156 intensity modulated radiation therapy; CRT – chemoradiotherapy.

157 **Table 1.** Baseline patient and tumour characteristics


Characteristics	n (%)
Age (years)	
Median (range)	55.5 (30-71)
Sex	
Male	45 (95.7%)
Female	2 (4.3%)
ECOG	
0	30 (63.8%)
1	17 (36.2%)
Primary tumour site	
Oropharynx	26 (55.3%)
Hypopharynx	21 (44.7%)

Tumour status (T)	
T1	0
T2	14 (29.8%)
T3	9 (19.1%)
T4	24 (51.1%)
Lymph node status (N)	
N0	3 (6.4%)
N1	9 (19.1%)
N2	32 (68.1%)
N3	3 (6.4%)
Tumour stage	
III	7 (14.9%)
IV	40 (85.1%)
Histological grade	
G1	1 (2.1%)
G2	27 (57.4%)
G3	19 (40.5%)
G4	0

158 ECOG - Eastern Cooperative Oncology Group performance status.


159 **3.2 Clinical outcome of ^{18}F -FDG PET/CT-based post-ICT GTV delineation strategy**

160 Median follow-up of patients was 36.4 months (range: 9.7 - 57.2). 3-year PFS and OS rates for all study
 161 population were 67% and 61% respectively. According to post-ICT ^{18}F -FDG PET/CT, 10 (21.3%) patients
 162 were ICT-non-responders and 37 (78.7%) - ICT-responders. The 3-year PFS for ICT-non-responders was
 163 20%, comparing with 84% for ICT-responders (Hazard ratio (HR) = 6.5, 95% CI 2.33-18.7; $p = 0.001$) (Figure
 164 2). The 3-year OS for ICT-non-responders was 16% vs. 78% for ICT-responders (HR = 5.47, 95% CI 2.33-
 165 12.83; $p = 0.001$) (Figure 3). The median PFS and OS were not reached.

166

167 **Figure 2.** Comparison of PFS between ICT-responders and non-responders

168

169 **Figure 3.** Comparison of OS between ICT-responders and non-responders170 **3.3 Patterns of loco-regional failures**

171 Loco-regional disease failure occurred in 15 patients (31.9%) (7 in ICT-responder group and 8 in ICT-
 172 non-responder group). For 5 patients (10.6%) it was allocated at the primary tumour site, 7 patients (14.9%)
 173 had local control but regional failure and 3 patients (6.4%) had both primary and nodal failure. These 15
 174 patients with 32 failures were analysed. Relative to the percentage target volume that received 95% of the
 175 prescribed dose for specific PTV, total of 19 (59.3%) failures were classified as in-field, 7 (21.9%) failures
 176 were defined as marginal and 6 (18.8%) failures as out-field. The average mean (\pm standard deviation (SD)),
 177 minimum, maximum dose and dose to 95% of planning target volume (D95) delivered to all failures were
 178 63.7 ± 4.9 , 59.7 ± 8 , 68 ± 3.3 and 62 ± 7.6 .

179 The primary tumour persisted or recurred at the site of high-dose GTV (GTV70) and high-dose CTV
 180 (CTV70) in 7 (87.5%) cases, and 1 (12.5%) case occurred in high-dose PTV (PTV70). The failure of LN
 181 observed in intermediate-dose GTV (GTV60) and intermediate-dose CTV (CTV60) in 21 (87.5%) cases, and
 182 3 (12.5%) cases in intermediate-dose PTV (PTV60). No failures were observed in prophylactic dose PTV
 183 (PTV50) (Table 2).

184 **Table 2.** Sites of loco-regional failures and RT doses

Characteristic	Failures (%)		Doses average (\pm SD)			
	Primary site	LN	Mean dose	Minimum dose	Maximum dose	D95
Type						
In-field	5 (62.5%)	14 (58.3%)	65.1 ± 3.50	62.7 ± 3.6	68.1 ± 3.3	64.05 ± 3.8
Marginal	1 (12.5%)	7 (29.2%)	60.1 ± 8.50	54.2 ± 12	69.1 ± 3.0	57.22 ± 12.8
Out-field	2 (25%)	3 (12.5%)	63.0 ± 3.14	56.3 ± 10	66.7 ± 3.5	60.34 ± 9

Localisation						
GTV */**	5 (62.5%)*	14 (58.3%)**	65.4 ± 3.5	63.5 ± 3.8	67.9 ± 3.1	64.60 ± 3.8
CTV */**	2 (25%)*	6 (25%)**	65.8 ± 3.4	57.7 ± 9.1	67.3 ± 3.3	61.47 ± 8.24

PTV */**	1 (12.5)**	4 (16.7)**	53.8 ± 8.5	50.0 ± 13.1	66.9 ± 3.4	53.10 ± 14.1
----------	------------	------------	------------	-------------	------------	--------------

185 *high-dose (70Gy) GTV, CTV and PTV of primary site failures; **intermediate-dose (60Gy) GTV, CTV and
 186 PTV of lymph nodes failures; LN - regional lymph nodes

187 Our study demonstrates that GTV or CTV (GTV + 5mm) encompasses the vast majority of failures.

188 3.4 Toxicities

189 During CRT the rates of grade 3 - 4 dermatitis, mucositis, anaemia, leukopenia and thrombocytopenia
 190 were 27.6%, 21.2%, 6.4%, 6.4% and 6.4%, respectively. No grade 3 or 4 xerostomia or body-weight loss were
 191 observed. The incidence of grade 3 - 4 late toxicities was: 1 (2.1%) patient developed osteoradionecrosis, 1
 192 (2.1%) developed trismus, 2 (4.3%) dysphagia and 1 (2.1%) bleeding.

193 3.5 ROC Curve analysis, AUC and cut-off values of the metabolic parameters

194 The mean of SUV_{max} percentage decrease of the primary lesions after ICT was $58.9 \pm 24.7\%$ and the
 195 mean of MTV and TLG percentage decrease of the primary lesions were $63.4 \pm 33.6\%$ and $66.3 \pm 41.2\%$
 196 respectively. The mean of SUV_{max} , MTV and TLG percentage decrease of metastatic LN were $38.5 \pm 32.8\%$,
 197 $38.5 \pm 32.8\%$ and $64.9 \pm 34.6\%$ respectively. The abilities of the SUV_{max} , MTV, and TLG post-ICT percentage
 198 decrease values to predict PFS and OS were calculated by ROC curves. AUC of the tested parameters, their
 199 optimal cut-off values for PFS and OS are demonstrated in Table 3.

200 **Table 3.** AUC and cut-off values of metabolic parameters

Parameter	PFS			OS			
	AUC	Optimal cut-off	Sensitivity/ Specificity	AUC	Optimal cut-off	Sensitivity/ Specificity	
Primary tumour percentage decrease of:	SUV_{max}	0.79	74%	68% / 88%	0.70	74%	69% / 67%
	MTV	0.83	68%	71% / 88%	0.76	69%	76% / 78%
	TLG	0.78	76%	74% / 88%	0.78	74%	74% / 81%
Metastatic LN percentage decrease of:	SUV_{max}	0.72	68.%	68% / 89%	0.68	69%	69% / 67%
	MTV	0.58	-	-	0.50	-	-
	TLG	0.79	74%	62% / 87%	0.71	73%	72% / 69%

201 AUC - area under the curve; LN – regional lymphnodes; PFS – progression-free survival; OS – overall
 202 survival.

203 3.6 Prognostic value of the metabolic parameters

204 Associations of three metabolic ^{18}F -FDG PET/CT parameters SUV_{max} , MTV and TLG in primary tumour
 205 and metastatic nodes with post-ICT tumour volume reduction are demonstrated in the Table 4 and Table
 206 5. Tumour response was associated with primary tumour parameters: pre-ICT MTV ($p<0.001$) and TLG
 207 ($p=0.02$); post-ICT SUV_{max} ($p=0.004$), MTV ($p<0.001$) and TLG ($p<0.001$); percentage decrease of SUV_{max}
 208 ($p=0.027$) and MTV ($p=0.001$). Tumour response was also statistically significantly linked with metastatic
 209 LN parameters: pre-ICT MTV ($p<0.001$) and TLG ($p<0.001$); post-ICT MTV ($p=0.006$) and TLG ($p<0.001$).
 210 Percentage decrease of LN metabolic parameters was not associated with tumour response.

211 **Table 4.** Associations of ^{18}F -FDG PET/CT metabolic parameters with tumour response to ICT in primary
 212 tumour

Parameter of the primary tumour		Total Mean ± SD	ICT-Responders Mean ± SD	ICT-Non- responders Mean ± SD	p value
Pre-ICT	SUV _{max}	17.9 ± 5.8	17.6 ± 1.1	18.9 ± 1.4	0.910
	MTV	34.6 ± 26.6	27.7 ± 3.3	52.7 ± 9.7	<0.001
	TLG	232.3 ± 209.2	178 ± 24.1	372 ± 77.5	0.020
Post-ICT	SUV _{max}	7.2 ± 5.02	3.1 ± 0.9	5.9 ± 3.5	0.004
	MTV	11.8 ± 15.7	6.04 ± 6.9	27.04 ± 21.7	<0.001
	TLG	60.05 ± 91.11	27.2 ± 56.2	146 ± 110	<0.001
Percentage decrease (%)	SUV _{max}	58.9 ± 24.7	68.3 ± 2.7	34.6 ± 7.2	0.027
	MTV	63.4 ± 33.6	74.4 ± 3.2	34.7 ± 12.2	0.001
	TLG	66.3 ± 41.2	68.3 ± 2.7	34.6 ± 7.2	0.950

213 SUV_{max} – maximum standard uptake value; MTV - metabolic tumour volume; TLG - total lesion glycolysis;
 214 SD – standard deviation; ICT – induction chemotherapy.

215

216 **Table 5.** Associations of ¹⁸F-FDG PET/CT metabolic parameters with tumour response to ICT in metastatic
 217 LN

Parameter of the metastatic LN		Total Mean ± SD	ICT-Responders Mean ± SD	ICT-Non- responders Mean ± SD	p value
Pre-ICT	SUV _{max}	13.02 ± 6.4	12.4 ± 1.1	14.9 ± 1.9	0.820
	MTV	19.3 ± 28.2	12.1 ± 2.4	40.9 ± 13	<0.001
	TLG	140.3 ± 234.9	77.1 ± 15	330.2 ± 109.7	<0.001
Post-ICT	SUV _{max}	7.5 ± 5.7	3.3 ± 1.8	5.5 ± 2.5	0.115
	MTV	50.5 ± 129.2	24.1 ± 58.5	129.54 ± 227.2	0.006
	TLG	60.05 ± 91.11	27.2 ± 56.2	146 ± 110	<0.001
Percentage decrease (%)	SUV _{max}	38.5 ± 32.8	44 ± 5.7	22.2 ± 7.3	0.340
	MTV	38.5 ± 32.8	62 ± 4.7	39.1 ± 12.2	0.211
	TLG	64.9 ± 34.6	72.3 ± 4.3	42.9 ± 13.4	0.090

218 SUV_{max} – maximum standard uptake value; MTV - metabolic tumour volume; TLG - total lesion glycolysis;
 219 SD – standard deviation; LN – regional lymphnodes.

220 According to the univariate Cox regression analysis (Table 6 and Table 7), percentage decrease of
 221 primary tumour SUVmax ≥74%, MTV ≥69%, TLG ≥74%, metastatic LN SUVmax ≥68% and TLG ≥74% and
 222 lymphnode status N were significant prognostic factors for both PFS and OS.

223 In multivariate analysis (Table 6 and Table 7) primary tumour SUVmax decrease ≥74% (HR = 2.7; 95%
 224 CI 1.3-5.7; p = 0.03), primary tumour MTV decrease ≥68% (HR = 1.7; 95% CI 0.5-5.4; p = 0.04), primary
 225 tumour TLG decrease ≥76% (HR = 3.7; 95% CI 1.2-11.7; p = 0.02), LN TLG decrease ≥74% (HR = 2.8; 95% CI
 226 0.6-6.9; p = 0.03) and N stage (HR = 2.8; 95% CI 0.6-7.2; p = 0.03) remained significantly associated with PFS.
 227 Moreover, ≥74% decrease in primary tumour SUVmax (HR = 2.1; 95% CI 0.9-8.7; p = 0.04), ≥69% decrease
 228 in primary tumour MTV (HR = 2; 95% CI 0.4-8.2; p = 0.04), ≥74% decrease in primary tumour TLG (HR =

229 3.2; 95% CI 0.8-11.4; $p = 0.02$), $\geq 73\%$ decrease in LN TLG (HR = 2.6; 95% CI 0.2-6.2; $p = 0.02$) and N stage (HR
 230 = 2.2; 95% CI 0.7-6.1; $p = 0.02$) remained independent prognostic factors for OS.

231 **Table 6.** Univariate and multivariate Cox proportional hazards regression analysis for PFS

Parameter	Cut-off value	Univariate			Multivariate		
		HR	95%CI	p value	HR	95%CI	p value
Primary tumour percentage decrease of: of: TLG	$\text{SUV}_{\max} < 74 \text{ vs. } \geq 74\%$	2.7	0.7 - 4.2	0.02	2.7	1.3 - 5.7	0.03
	$\text{MTV} < 68 \text{ vs. } \geq 68\%$	1.5	1.3 - 9.5	0.01	1.7	0.5 - 5.4	0.04
	$\text{TLG} < 76 \text{ vs. } \geq 76\%$	4.9	1.8 - 13.6	0.002	3.7	1.2 - 11.7	0.02
Metastatic LN percentage decrease of: of: TLG	$\text{SUV}_{\max} < 68 \text{ vs. } \geq 68\%$	1.2	0.5 - 2.7	0.04	0.7	0.2 - 2.7	NS
	* -	-	-	-	-	-	-
	$\text{TLG} < 74 \text{ vs. } \geq 74\%$	1.6	0.6 - 3.7	0.03	2.8	0.6 - 6.9	0.03
Tumour status (T)	T2+T3 vs. T4	0.9	0.5 - 2.3	NS	-	-	-
Lymphnode status (N)	N0-1 vs. N2-3	1.8	0.7 - 1.8	0.02	2.8	0.6 - 7.2	0.03
Tumour site	Oropharynx vs. hypopharynx	0.7	0.3 - 1.7	NS	-	-	-
Histological grade	G1-2 vs. G3	0.3	0.24-1.4	NS	-	-	-

232 SUV_{\max} – maximum standard uptake value; MTV - metabolic tumour volume; TLG - total lesion glycolysis;
 233 LN – regional lymphnodes; * - no optimal cut-off value; NS – not significant.

234

235 **Table 7.** Univariate and multivariate Cox proportional hazards regression analysis for OS

Parameter	Cut-off value	Univariate			Multivariate		
		HR	95%CI	p value	HR	95%CI	p value
Primary tumour percentage decrease of: of: TLG	$\text{SUV}_{\max} < 74 \text{ vs. } \geq 74\%$	2.5	1 - 6.2	0.03	2.1	0.9 - 8.7	0.04
	$\text{MTV} < 69 \text{ vs. } \geq 69\%$	1.9	0.8 - 5.2	0.04	2	0.4 - 8.2	0.04
	$\text{TLG} < 74 \text{ vs. } \geq 74\%$	3.2	1.3 - 7.7	0.01	3.2	0.8 - 11.4	0.02
Metastatic LN percentage decrease of: of: TLG	$\text{SUV}_{\max} < 69 \text{ vs. } \geq 69\%$	1.4	0.5 - 3.2	0.02	0.8	0.9 - 4.0	NS
	* -	-	-	-	-	-	-
	$\text{TLG} < 73 \text{ vs. } \geq 73\%$	2.2	0.9 - 6.6	0.02	2.6	0.2 - 6.2	0.02
Tumour status (T)	T2+T3 vs. T4	0.8	0.6 - 3.4	NS	-	-	-
Lymphnode status (N)	N0-1 vs. N2-3	1.8	0.6 - 5.4	0.03	2.2	0.7 - 6.1	0.02
Tumour site	Oropharynx vs. hypopharynx	0.7	0.3 - 1.7	NS	-	-	-
Histological grade	G1-2 vs. G3	0.6	0.2 - 1.4	NS	-	-	-

236 SUV_{\max} – maximum standard uptake value; MTV - metabolic tumour volume; TLG - total lesion glycolysis;
 237 LN – regional lymphnodes; * - no optimal cut-off value.

238 **4. Discussion**

239 Our study is the first to investigate the feasibility of target volume delineation based on post-ICT ^{18}F -
 240 FDG PET/CT images for LA-SCCHN IMRT planning. The rationale for this approach is the potential
 241 reduction of GTV after ICT leading to mitigation of RT toxicities by sparing normal tissues. Several authors
 242 in their publications have discussed post-ICT imaging-based target volume delineation strategy [6,8,9,23].

243 However, due to the lack of supportive data they still recommend the use of pre-induction primary tumour
 244 and nodal GTVs but further clinical research is needed.

245 Survival data from our study cannot be directly compared with the results of other authors because
 246 there are no completed clinical trials analysing post-ICT PET/CT based RT planning. For indirect
 247 comparison patients' outcomes of several clinical studies, where ICT plus CRT approach was used for LA-
 248 SCCHN treatment are presented in Table 8. One of the earliest published studies analysing LA-SCCHN
 249 patients treated with ICT (TPF) plus CRT was TAX-324 [24]. In this study 3-year PFS and OS rates were
 250 50% and 62% respectively. In the PARADIGM study published by Haddad et al., patients in ICT arm
 251 received 3 cycles of TPF plus CRT with weekly carboplatin, 67% of patients were progress free and 73%
 252 were alive in 3 years after treatment [4]. Takacs-Nagy et al. in phase II clinical trial involving 66 LA-SCCHN
 253 patients demonstrated that after 2 cycles of TPF followed by CRT (total dose of 70 Gy in 7 weeks with 3
 254 concurrent cycles of cisplatin on days 1, 22 and 43 of radiotherapy) 3-year PFS rate was 41% and OS rate -
 255 43% [25]. Ghi et al. analysed 208 patients randomised for either CRT with cisplatin (n=129) or radiotherapy
 256 with cetuximab (n=79) after initial 3 cycles of TPF [26]. 3-year PFS and OS rates were 47% and 57.5%
 257 respectively. In our study, involving 47 patients treated with 3 cycles of TPF plus CRT (70 Gy in 7 weeks
 258 with weekly cisplatin 40 mg/m²), we demonstrated 3-year PFS rates of 67% and 3-year OS rates of 61%.
 259 Summarizing the data, 3-year PFS and OS rates in our study were non-inferior comparing to survival
 260 results in studies with the standard treatment approach.

261 **Table 8.** Patient survival data in previous studies with ICT plus CRT approach and in our study

Study	Eligibility	Patients	Study design	3-year OS rates	3-year PFS rates
Lorch et al. [24]	Stage III-IV	501	TPFx3, SRT+CBP weekly vs. CP/5-Fu, SRT+CBP weekly	62%	50%
Haddad et al. [4]	Stage III-IV	145	TPFx3, SRT+CBP weekly vs. HRT+CPx2	73%	67%
Takacs-Nagy et al. [25]	Stage III-IV	66	TPFx2, SRT+CPx3 vs. CRT	43%	41%
Ghi et al. [26]	Stage III-IV	413	TPFx3, SRT+CPx2 vs. SRT+CTX	57.5%	47%
Our study	Stage III-IV	47	TPFx3, SRT+CP weekly	61%	67%

262 TPF: docetaxel, cisplatin, 5-Fluorouracil; SRT: single daily fraction radiotherapy; HRT: hyperfractionated
 263 radiotherapy; CBP: carboplatin; CP: cisplatin; CTX: cetuximab; CRT: chemoradiotherapy; 5-FU: 5-
 264 fluorouracil.

265 According to the survival data presented above, we suggest that 18F-FDG PET/CT scan obtained after
 266 TPF-based ICT might be used for LA-SCCHN IMRT planning. Loco-regional failure analysis also supports
 267 this approach. In our study 15 patients (31.9%) developed loco-regional disease progression with a total of
 268 32 progressive lesions. 8 lesions were in the primary tumour site and 24 in the regional lymphnode sites.
 269 90.6% of progresses were in-field with highest levels localised in high-to-intermediate risk volumes GTV70
 270 (87.5%) and CTV60 (87.5%) and none in PTV50 volume. For comparison, De Felice et al. presented the
 271 retrospective analysis of 56 patients who were diagnosed with loco-regional progress of LA-SCCHN after
 272 ICT plus CRT [21]. In total 68 sites of progression were analysed, of them 35 were in primary tumour site
 273 and 33 in regional nodes. 95.6% of progressive lesions were in-field, 82.9% in high-dose primary tumour
 274 CTV (GTV + 10 mm), and 72.7% in nodal high-dose CTV. Similar results were demonstrated by Baymanet
 275 al. [27]. Study involved 136 patients with carcinoma of the head and neck. 29 (21%) patients were treated

276 with ICT plus CRT. 16 (12%) of patients progressed, all in high-dose region. The main difference between
277 the studies mentioned above and our study is GTV to CTV margin. In both earlier studies CTV was defined
278 as GTV plus 10mm margin and PTV – CTV plus 4mm. In our study smaller 5mm GTV to CTV margin and
279 3mm CTV to PTV margin (accounting for daily CBCT image guidance) was used. We want to point-out
280 that despite the smaller margins, results of loco-regional control were similar to previous studies, therefore
281 we suggest that 5mm CTV and 3mm PTV margins (with daily CBCT image guidance) might be considered
282 for ¹⁸F-FDG PET/CT based IMRT planning after ICT for LA-SCCHN patients.

283 In recent years several authors demonstrated a prognostic value of ¹⁸F-FDG PET/CT metabolic
284 parameters in LA-SCCHN [15,16,28-30]. In publication by Paidpally et al. SUVmax, MTV and TLG were
285 proposed as non-invasive prognostic factors usable in management of LA-SCCHN [28]. These parameters
286 might be used for disease response evaluation, RT planning and follow-up. David et al. analysed 74 LA-
287 SCCHN patients with N2 or N3 nodal status [15]. SUVmax, SUVpeak (mean SUV within a 1-cm sphere
288 centered on SUVmax) of the primary tumour and LN were evaluated before and after treatment. Neither
289 initial nor post-treatment SUVmax and SUVpeak were associated with disease outcome. Choosing the
290 different approach and analysing the dynamics of SUVmax (percentage decrease of the value after ICT) on
291 patient survival, we provide new evidence that the decrease of primary tumour SUVmax by at least 74%
292 and LN SUVmax by 68-69% may be used as independent LA-SCCHN prognostic factors. However, our
293 results contradict with the results of Yu et al., who did not find an association between SUVmax percentage
294 decrease and LA-SCCHN patient survival [16].

295 Few authors also investigated the prognostic value of MTV and TLG. In the study of David et al., pre-
296 treatment MTV value was linked with PFS and OS [15]. Yu et al. found that post-ICT MTV percentage
297 decrease by more than 42% and TLG by more than 55% significantly prolonged event-free survival [16]. In
298 our study it was found that larger percentage decrease of MTV and TLG in primary tumour and TLG in
299 regional LN correlate with better 3-year PFS and OS rates, however different cut-off points were
300 established. MTV percentage decrease cut-off point for PFS prediction was 68%, for OS 69%. Only primary
301 tumour MTV decrease was significantly associated with disease outcome. As for TLG better PFS was
302 observed in patients with $\geq 76\%$ primary tumour TLG decrease and $\geq 74\%$ nodal TLG decrease with similar
303 results for OS - $\geq 74\%$ and $\geq 73\%$ decrease respectively.

304 Results of this phase II cohort study demonstrate that post-ICT ¹⁸F-FDG PET/CT based RT planning has
305 no negative impact on loco-regional recurrence rates comparing with the patterns to pre-ICT imaging-
306 based treatment planning (demonstrated by others authors). In order to improve the analysis of loco-
307 regional progression and assess the future possibility of dose escalation in high-risk volumes we are
308 initiating a 3D-printed phantom prototype filled with radiosensitive gels-based dosimetry for individual
309 patient dosimetry according to RT plans. After completion of pre-planned investigations, we hope to
310 propose more biologically adapted radiation therapy techniques for LA-SCCHN patients expecting for
311 better loco-regional control and individually advanced patient dosimetry. Further prospective studies with
312 larger sample sizes are warranted to confirm the ¹⁸F-FDG-PET/CT based post-ICT target volume
313 delineation technique before its use in clinical practice. Also, we encourage larger validation studies of
314 metabolic ¹⁸F-FDG-PET/CT prognostic markers.

315 **5. Acknowledgements**

316 This work was performed in the frame of the project “Development of 3D phantom for individualized
317 dosimetry in radiotherapy” (No. S-MIP-17-104) and was partly supported by the research grant of
318 Lithuanian Research Council.

319 **6. Author contributions**

320 Conceptualization V.R., M.R.; Methodology V.R., S.Š. and I.K.; Investigation V.R., E.K., S.Š., E.P., N.J. and
321 E.J.A.; Data curation V.R., M.R., E.K., E.P. and S.Š.; Original Draft Preparation V.R., E.K., E.J.A., D.A., N.J.;
322 Review and Editing I.K.; D.A., E.J.; Supervision; I.K., D.A., E.J.; All authors read and approved the final
323 manuscript.

324 **7. Conflicts of interest**

325 The authors declare no conflict of interests. The funding sponsors had no role in the design of the study;
326 in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to
327 publish the results.

328 **References**

- 329 1. Benasso, M. Induction chemotherapy for squamous cell head and neck cancer: A never ending
330 story? *Oral Oncol* **2013**, *49*, pp. 747-752, DOI: 10.1093/annonc/mdt461.
- 331 2. Hitt, R.; Grau, J.J.; López-Pousa, A.; Berrocal, A.; García-Girón, C.; Irigoyen, A.; Sastre, J.;
332 Martínez-Trufero, J.; Brandariz Castelo, J.A.; Verger, E.; Cruz-Hernández, J.J.; Spanish Head
333 and Neck Cancer Cooperative Group (TTCC). A randomized phase III trial comparing
334 induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as
335 treatment of unresectable head and neck cancer. *Ann Oncol* **2014**, *25*, pp. 216-225, DOI:
336 10.1093/annonc/mdt461.
- 337 3. Cohen, E.E.W.; Garrison, T.; Kocherginsky, M.; Mueller, J.; Egan, R.; Huang, C.H.; Brockstein,
338 B.E.; Agulnik, M.B.; Mittal, B.B.; Yunus, F.; Samant, S.; Raez, L.E.; Mehra, R.; Kumar, P.; Ondrey
339 ,F.; Marchand, P.; Braegas, B.; Seiwert, T.Y.; Villaflor, V.M.; Haraf, D.J.; Vokes, E.E. Phase III
340 randomized trial of induction chemotherapy in patients with N2 or N3 locally advanced head
341 and neck cancer. *J Clin Oncol* **2014**, *32*, pp. 2735-2743, DOI: 10.1200/JCO.2013.54.6309.
- 342 4. Haddad, R.I.; Rabinowitz, G.; Tishler, R.; Khuri, F.; Adkins, D.; Clark, J.; Sarlis, N.; Lorch, J.;
343 Beitler, J.J.; Limaye, S.; Riley, S.; Posner, M. Induction chemotherapy followed by concurrent
344 chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy
345 alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial.
346 *Lancet Oncol* **2013**, *14*, pp. 257-264, DOI: 10.1016/S1470-2045(13)70011-1.
- 347 5. Powell, C.; Schmidt, M.; Borri, M.; Koh, D.M.; Partridge, M.; Riddell, A.; Cook, G.; Bhide, S.A.;
348 Nutting, C.M.; Harrington, K.J.; Newbold, K.L. Changes in functional imaging parameters
349 following induction chemotherapy have important implications for individualized patient-
350 based treatment regimens for advanced head and neck cancer. *Radiother Oncol* **2013**, *106*,
351 pp.112-117, DOI: 10.1016/j.radonc.2012.09.009.
- 352 6. Salama, J.K.; Haddad, R.I.; Kies, M.S.; Busse, P.M.; Dong, L.; Brizel, D.M.; Eisbruch, A.; Tishler,
353 R.B.; Trott, A.M.; Garden, A.S. Clinical practice guidance for radiotherapy planning after
354 induction chemotherapy in locoregionally advanced head-and-neck cancer. *Int J Radiat Oncol
355 Biol Phys* **2009**, *75*, pp. 725-733, DOI: 10.1016/j.ijrobp.2008.11.059.

356 7. Vicente, A.M.G.; Castrejón, A.S.; Londoño, G.A.J. PET/CT in radiotherapy planning in head
357 and neck cancers. *Médecine Nucléaire* **2015**, *39*, pp. 465-470, DOI: 10.1016/j.mednuc.2015.06.001.

358 8. Grégoire, V.; Evans, M.; Le, Q.T.; Bourhis, J.; Budach, V.; Chen, A.; Eisbruch, A.; Feng, M.;
359 Giralt, J.; Gupta, T.; Hamoir, M.; Helito, J.K.; Hu, C.; Hunter, K.; Johansen, J.; Kaanders, J.;
360 Laskar, S.G.; Lee, A.; Maingon, P.; Mäkitie, A.; Micciche', F.; Nicolai, P.; O'Sullivan, B.; Poitevin,
361 A.; Porceddu, S.; Składowski, K.; Tribius, S.; Waldron, J.; Wee, J.; Yao, M.; Yom, S.S.;
362 Zimmerman, F.; Grau, C. Delineation of the primary tumour Clinical Target Volumes (CTV-
363 P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma:
364 AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT,
365 LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG
366 consensus guidelines. *Radiother Oncol* **2018**, *126*, pp. 3-24, DOI: 10.1016/j.radonc.2017.10.016.

367 9. Francesca, De F.; Daniela, M.; Vincenzo, T. Target volume delineation after induction
368 chemotherapy in locally advanced head and neck cancer. *Oral oncol* **2015**, *51*, pp. e81, DOI:
369 10.1016/j.oraloncology.2015.09.005.

370 10. Doornaert, P.; Dahele, M.; Verbakel, W.F.; Bohoudi, O.; Slotman, B.J.; Langendijk, J.A. The
371 effect of induction chemotherapy on tumor volume and organ-at-risk doses in patients with
372 locally advanced oropharyngeal cancer. *Radiother Oncol* **2013**, *109*, pp. 269-274, DOI:
373 10.1016/j.radonc.2013.07.016.

374 11. Newbold, K.; Powell, C. PET/CT in radiotherapy planning for head and neck cancer. *Front
375 Oncol* **2012**, *2*, pp. 189, DOI: 10.3389/fonc.2012.00189.

376 12. Kawakita, D.; Masui, T.; Hanai, N.; Ozawa, T.; Hirakawa, H.; Terada, A.; Nishio, M.; Hosoi, H.;
377 Hasegawa, Y. Impact of positron emission tomography with the use of fluorodeoxyglucose on
378 response to induction chemotherapy in patients with oropharyngeal and hypopharyngeal
379 squamous cell carcinoma. *Acta Otolaryngol* **2013**, *133*, pp. 523-530, DOI:
380 10.3109/00016489.2012.733411.

381 13. Abgral, R; Le Roux, P.Y.; Keromnes, N.; Rousset, J.; Valette, G.; Gouders, D.; Leleu, C.; Mollon,
382 D.; Nowak, E.; Querellou, S.; Salaün, P.Y. Early prediction of survival following induction
383 chemotherapy with DCF (docetaxel, cisplatin, 5-fluorouracil) using FDG PET/CT imaging in
384 patients with locally advanced head and neck squamous cell carcinoma. *Eur J Nucl Med Mol
385 Imaging* **2012**, *39*, pp.1839-1847, DOI: 10.1007/s00259-012-2213-x.

386 14. Gavid, M.; Prevot-Bitot, N.; Timoschenko, A.; Gallet, P.; Martin, C.; Prades, J.M. [18F]-FDG
387 PET-CT prediction of response to induction chemotherapy in head and neck squamous cell
388 carcinoma: preliminary findings. *Eur AnnOtorhinolaryngol Head Neck Dis* **2015**, *132*, pp. 3-7,
389 DOI: 10.1016/j.anorl.2014.01.009.

390 15. Schwartz, D.L.; Harris, J.; Yao, M; Rosenthal, D.I.; Opanowski, A.; Levering, A.; Ang, K.K.;
391 Trotti, A.M.; Garden, A.S.; Jones, C.U.; Harari, P.; Foote, R.; Holland, J.; Zhang, Q.; Le, Q.T.
392 Metabolic tumor volume as a prognostic imaging-based biomarker for head-and-neck cancer:
393 pilot results study from radiation therapy oncology group protocol 0522. *Int J Radiat Oncol Biol
394 Phys* **2015**, *91*, pp. 721-729.

395 16. Yu, J.; Cooley, T.; Truong, M.T.; Mercier, G.; Subramaniam, R.M. Head and neck squamous cell
396 cancer (stages III and IV) induction chemotherapy assessment: value of FDG volumetric
397 imaging parameters. *J Med Imaging RadiatOncol* **2014**, *58*, pp. 18-24, DOI: 10.1111/1754-
398 9485.12081.

399 17. Yoon, D.H.; Cho, Y.; Kim, S.Y.; Nam, S.Y.; Choi, S.H.; Roh, J.L.; Lee, S.W.; Song, S.Y.; Lee, J.H.;
400 Kim, J.S.; Cho, K.J.; Kim, S.B. Usefulness of interim FDG-PET after induction chemotherapy in
401 patients with locally advanced squamous cell carcinoma of the head and neck receiving
402 sequential induction chemotherapy followed by concurrent chemoradiotherapy. *Int J
403 Radiat Oncol Biol Phys* **2011**, *81*, pp.118-125, DOI: 10.1016/j.ijrobp.2010.04.034.

404 18. Vermorken, J.B.; Remenar, E.; Herpen, C.; Gorlia, T.; Mesia, R.; Degardin, M.; Stewart, J.S.; Jelic,
405 S.; Betka, J.; Preiss, J.H.; van den Weyngaert, D.; Awada, A.; Cupissol, D.; Kienzer, H.R.; Rey,
406 A.; Desaunois, I.; Bernier, J.; Lefebvre, J.L.; EORTC 24971/TAX 323 Study Group. Cisplatin,
407 Fluorouracil, and Docetaxel in Unresectable Head and Neck Cancer. *N Engl J Med* **2007**, *357*,
408 pp. 1695-1704, DOI: 10.1056/NEJMoa071028.

409 19. Homma, A.; Inamura, N.; Oridate, N.; Suzuki, S.; Hatakeyama, H.; Mizumachi, T.; Kano, S.;
410 Sakashita, T.; Onimaru, R.; Yasuda, K.; Shirato, H.; Fukuda, S. Concomitant Weekly Cisplatin
411 and Radiotherapy for Head and Neck Cancer. *Jpn J Clin Oncol* **2011**, *41*, pp. 980-986, DOI:
412 10.1093/jco/hyr086.

413 20. Steinmann, D.; Cerny, B.; Karstens, J.H.; Bremer, M. Chemoradiotherapy with Weekly
414 Cisplatin 40 mg/m² in 103 Head-and-Neck Cancer Patients. *Strahlenther Onkol*, **2009**, *185*,
415 pp.682-688.

416 21. De Felice, F.; Thomas, C.; Barrington, S.; Pathmanathan, A.; Lei, M.; Urbano, T.G. Analysis of
417 loco-regional failures in head and neck cancer after radical radiation therapy. *Oral Oncol* **2015**,
418 *51*, pp. 1051-1055, DOI: 10.1016/j.oraloncology.2015.08.004.

419 22. Studer, G.; Luetolf, U.M.; Glanzmann, C. Locoregional failure analysis in head-and- neck
420 cancer patients treated with IMRT. *Strahlenther Onkol* **2007**, *183*, pp. 417-423, DOI:
421 10.1007/s00066-007-1663-8.

422 23. Eisbruch, A.; Grégoire, V. Balancing risk and reward in target delineation for highly conformal
423 radiotherapy in head and neck cancer. *Semin Radiat Oncol* **2009**, *19*, pp. 43-52, DOI:
424 10.1016/j.semradonc.2008.09.008.

425 24. Lorch, J.H.; Goloubeva, O.; Haddad, R.I.; Cullen, K.; Sarlis, N.; Tishler, R.; Tan, M.; Fasciano,
426 J.; Sammartino, D.E.; Posner, M.R. Long term results of TAX324, a randomized phase III trial
427 of sequential therapy with TPF versus PF in locally advanced squamous cell cancer of the head
428 and neck. *Lancet Oncol* **2011**, *12*, pp. 153-159, DOI: 10.1016/S1470-2045(10)70279-5.

429 25. Takacs-Nagy, Z.; Hitre, E.; Remenar, E.; Oberna, F.; Polgár, C.; Major, T.; Gödény, M.; Fodor,
430 J.; Kásler, M. Docetaxel, cisplatin and 5-fluorouracil induction chemotherapy followed by
431 chemoradiotherapy or chemoradiotherapy alone in stage III-IV unresectable head and neck
432 cancer: Results of a randomized phase II study. *Strahlenther Onkol* **2015**, *191*, pp. 635-641, DOI:
433 10.1007/s00066-015-0829-z.

434 26. Ghi, M.G.; Paccagnella, A.; Ferrari, D.; Foa, P.; Alterio, D.; Codecà, C.; Nolè, F.; Verri, E.;
435 Orecchia, R.; Morelli, F.; Parisi, S.; Mastromauro, C.; Mione, C.A.; Rossetto, C.; Polzinelli, M.;
436 Koussis, H.; Loreggian, L.; Bonetti, A.; Campostrini, F.; Azzarello, G.; D'Ambrosio, C.; Bertoni,
437 F.; Casanova, C.; Emiliani, E.; Guaraldi, M.; Bunkheila, F.; Bidoli, P.; Niespolo, R.M.; Gava, A.;
438 Massa, E.; Frattegiani, A.; Valduga, F.; Pieri, G.; Cipani, T.; Da Corte, D.; Chiappa, F.; Rulli, E.;
439 GSTTC (Gruppo di Studio Tumori della Testa e del Collo) Italian Study Group. Induction TPF
440 followed by concomitant treatment versus concomitant treatment alone in locally advanced
441 head and neck cancer. A phase II-III trial. *Ann Oncol* **2017**, *28*, pp. 2206-2212, DOI:
442 10.1093/annonc/mdx299.

443 27. Bayman, E.; Prestwich, R.J.; Speight, R.; Aspin, L.; Garratt, L.; Wilson, S.; Dyker, K.E.; Sen, M.
444 Patterns of failure after intensity-modulated radiotherapy in head and neck squamous cell
445 carcinoma using compartmental clinical target volume delineation. *Clin Oncol (R Coll Radiol)*
446 **2014**, *26*, pp. 636-642, DOI: 10.1016/j.clon.2014.05.001.

447 28. Paidpally, V.; Chirindel, A.; Lam, S.; Agrawal, N.; Quon, H.; Subramaniam, R.M. FDG-PET/CT
448 imaging biomarkers in head and neck squamous cell carcinoma. *Imaging Med* **2012**, *4*, pp. 633-
449 647, DOI: 10.2217/iim.12.60.

450 29. Min, M.; Lin, P.; Lee, M.; Shon, I.H.; Lin, M.; Forstner, D.; Tieu, M.T.; Chicco, A.; Bray, V.;
451 Fowler, A. 18F-FDG PET-CT performed before and during radiation therapy of head and neck
452 squamous cell carcinoma: Are they independent or complementary to each other? *J Med*
453 *Imaging Radiat Oncol* **2016**, *60*, pp. 433-440, DOI: 10.1111/1754-9485.12439.

454 30. Šedienė, S.; Kulakienė, I.; Rudžianskas, V.; Ambrazienė, R. The Role of 18-Fluoro-2-Deoxy-
455 Glucose Positron Emission Tomography/Computed Tomography as Response and Prognosis
456 Predictive Factor of Concurrent Chemoradiotherapy after InductionChemotherapy in Head
457 and Neck Squamous Cell Carcinoma: A Prospective Study. *Medicina* **2018**, *54*, pp. 1-13, DOI:
458 10.3390/medicina54020031.