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 8 
Abstract: The expression "Follow the water" is used in order to recognize inside the universe, life as it 9 
exists on Earth. It is shown here that the expression "Follow the water in its high-subcritical state" can 10 
be used in order to recognize the components of life which form prior to the emergence of life. This 11 
specific state of water leaves signatures inside the minerals which are produced during high-12 
subcritical water/rock interaction.  13 
 14 
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oxides; ferric silicates; amorphous silica; origin of life; fluid inclusions; geobiotropy;  16 
 17 

1. Introduction 18 

 Liquid water being an essential component of living organisms and of their environment, the 19 
strategy for the search for life in the universe is currently summarized in the expression "follow the 20 
water" which was chosen by NASA in the year circa 2000 as the new scientific approach for Mars 21 
exploration 1. Recently I published an article which demonstrates that the specific state of water 22 
called high-subcritical has to be considered in the synthesis of molecules which constitute the living 23 
organisms and that it can be recognized in the evolution of the minerals 2. After a study of liquid 24 
water 3 and refs herein and envisioning that not only water in its liquid state, but water in its 25 
different states can be the appropriate medium to conduct chemical reactions which finally lead to 26 
biological molecules, I became interested in the structure of water under pressure and in the 27 
supercritical state 4-6 and I started to visualize rocks as reactants and not only as catalysts 6. In 28 
2008, I proposed experiments considering the rock peridotite or its constituents olivine and pyroxene, 29 
and the dissolution of apolar molecules in supercritical water 7. Since 2013, I consider the state of 30 
water which is called high-subcritical and I present a new path for the synthesis of ferric minerals in 31 
anoxic conditions and for the concomitant chemistry which leads to macromolecules of life 8. I 32 
conclude here in the present new article, that part of the search for life and its components can be 33 
specified in the expression "follow the water in its high-subcritical state". The interaction of water in 34 
this high-subcritical state and not above, with ferrous silicates containing rocks, produces ferric 35 
oxides, ferric silicates and molecular hydrogen, which form in anoxic conditions and at alkaline pH. 36 
When water contains carbon dioxide and dinitrogen, macromolecules of amino-acids and 37 
components of life can form. Therefore, the observation of such ferric minerals with an anoxic origin 38 
can lead to the conclusion that molecules of life were possibly synthesized in a chemical path which 39 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2018                   doi:10.20944/preprints201810.0137.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201810.0137.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 7 

 

was concomitant to the evolution of the rock and that I conceptualize with the term geobiotropy 9, 40 
10. 41 

2. Methods and Materials  42 

As I show below in the paragraph on the third process, in the section 3, CO appears to be the 43 
essential starting molecule for the synthesis of biological molecules. While trying to answer the 44 
question "how CO is produced within the geological world?" I realized in 2009, that CO can be obtained 45 
from hydrogenation of CO2 not only in the gas phase, but also in high-subcritical water. The question 46 
became "how H2 is produced in high-subcritical water?"and in my role of a physical-chemist I conducted 47 
a bibliographical search for Pourbaix E-pH diagrams which could have been drawn for this state of 48 
water. In 2013, I presented my analysis of such diagrams 8. The conclusion was that H2 and thus 49 
CO can form following the hydrolysis of the iron endmembers of olivine and pyroxene and also that 50 
ferric minerals can form without the presence of oxygen which is a breakthrough in the 51 
understanding of minerals which form in anoxic conditions as on Early Earth or extraterrestrial 52 
objects. In my OLEB'2018 article, I introduce in this context of the formation of ferric minerals, the 53 
analysis of diagrams drawn for the solubility of quartz, around the critical point of water. The present 54 
article is a summary of part of my precedent articles and presentations, with the goal of searching for 55 
life in the universe with the consideration of water in its high-subcritical state.  56 

Therefore, the method is a logical association and composition of my theoretical analyses of 57 
diagrams which are based on experimental results and published by other scientists.   58 

3. Results and Discussions:  Four processes in high-subcritical water 59 

 Four processes which all occur in high-subcritical water contribute to produce both the ferric 60 
minerals which are observed in Archean rocks and the related geobiotropic molecules of life. 61 
  62 
 First, the oxidation of ferrous iron into ferric iron can occur at alkaline pH, 9.5 to 14, when water 63 
reaches temperatures 300°C - 350°C and pressures 10 - 25 MPa. The combination of these values is 64 
called high-subcritical. They are below the supercritical point of water which has the values 374°C 65 
and 22.1 MPa for pure water. At these conditions, the density of water is ca 700 – 600 kg/m3. I conclude 66 
in this possible chemical process through the analysis of Pourbaix diagrams which are drawn for the 67 
system Fe-H2O at 10-6 and 10-8 mol/kg concentrations of dissolved ionic species, by W. Cook and R. 68 
Olive in 2012 11. The calculations of the thermodynamic parameters used for these diagrams are 69 
based on the revised Helgeson-Kirkham-Flowers, R-HKF, model extended to water densities as low 70 
as 200kg/m3 11 & refs herein. The Pourbaix diagrams which are drawn for supercritical water at 71 
400°C, 25 MPa, 10-6, 10-8 and 10-11 mol/kg of dissolved ionic species and 167 kg/m3 density, does not 72 
show this ferrous oxidation.  73 
 Concomitant to the oxidation of iron in high-subcritical water, molecular hydrogen is released. 74 
In other words, the production of ferric iron in high-subcritical water and not above, does not require 75 
to consume oxygen, instead it is hydrogen which is produced.  76 
 77 
 Second, the solubility of SiO2 shows a turn-over at the critical point of water. Calculations based 78 
on the Fournier & Potter 1982 equation show that at 23 MPa "the SiO2 solubility increases to a value of 79 
0.087 wt% at 350°C and drastically decreases to 0.0081 wt% at 450°C" as described by R. Smith and Z. 80 
Fang in 2011 12 & refs herein. This abrupt change is observed in earlier diagrams for the solubility 81 
of quartz in water, drawn with experimental data and the R-HKF equations of state 13 & refs herein.  82 
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 High-subcritical water also controls the content in amorphous silica versus quartz. Indeed, as 83 
shown by P. Karasek et al. in 2013, at 23 MPa, the solubilities of amorphous and crystalline silica both 84 
increase with T with an abrupt decrease at the critical point. However, at the critical point of water, 85 
the solubility of amorphous silica appears to approximately double the solubility of quartz, while at 86 
25°C, the ratio of amorphous silica to quartz seems to be ca 18 Fig.3&4 in 14. 87 
 88 
 Third, the hydrogenation of CO2 by molecular hydrogen occurs not only in the gas phase as 89 
described by P. Sabatier in 1902 15 but also in high-subcritical water, producing dissolved carbon 90 
monoxide, CO, at 250°C-300°C and 25MPa, as shown in the experiment conducted by Q. Fu and W. 91 
Seyfried in 2009 16.  92 
 This CO is the necessary element in the synthesis of macromolecules of amino-acids in anoxic 93 
conditions, as observed by G. Schlesinger and S. Miller in 1983 17 and by K. Kobayashi et al. in 1990 94 
18. In the continuation of Kobayashi experiments, in 2004, Y. Takano irradiated, with 3 MeV protons 95 
at room temperature, a gas mixture of 350 torr CO, 350 torr N2 and 20 torr H2O provided by an under 96 
layer of liquid water 19. A transmission electron microscopy, TEM, image of the dried irradiated 97 
products, scaled at 0.5 m, shows aggregated particles Fig.2 in 19. "Following irradiation, products 98 
were recovered in 5 mL of pure water and subsequently freeze dried." The ca 0.3 mg yellow-brown residue 99 
was pyrolyzed in helium at 765°C for 10 s and afterwards analyzed with GC-MS and SIM. The most 100 
intense peaks of the gas chromatogram correspond to urea (NH2)2CO, acetamide CH3CONH2, 2-101 
butanamine C2H5CH(NH2)CH3, guanidine (NH2)2C=NH, and to the branched cyclic compounds: 102 
dimethylpyrazine C6H8N2, imidazole or pyrrazole C3H4N2, 2-furanone C4H4O2, pyridinecarbonitrile 103 
C6H4N2, ethenylpyridine C7H7N, 1H-pyrrole-3-carbonitrile C5H4N2, methylpyrimidine C5H6N2, 104 
aniline? C6H7N, benzonitrile C6H5CN, styrene C8H8… A list of 36 identified compounds is given by 105 
Takano et al. 19.   106 
 The same irradiation experiment was conducted in 2012 by Kurihara et al. 20. An aqueous 107 
solution of the irradiated products was injected in a flow reactor at temperatures 150°, 200°, 250°, 108 
300°, 350°, 400°C and 25 MPa and quenched in cold water at 0°C. Aggregates, 10 m in size, start to 109 
form at 200°C and are mainly observed at 250°C and above, with larger-sized aggregates at 300°C 110 
and above. For the 300°C products, the carbon X-ray absorption near-edge structure (XANES) and 111 
the nitrogen XANES spectra, recorded at the Lawrence Berkeley National Laboratory, show the peak 112 
of aromatic carbon and imine which do not appear for the room temperature product. Both 300°C 113 
and room temperature spectra show the peaks of nitrile, carbonyl in amide, carbonyl in ester, amide 114 
or amino groups.  115 
 In 2012, Y. Takano observed the dried yellow-brown irradiated products, with scanning electron 116 
microscopy, SEM, and atomic force microscopy, AFM. The SEM image, scaled at 1 m, shows micro- 117 
and submicro-structures including filaments and aggregated spheres. Analyses were conducted on 118 
the hydrolyzed fraction obtained at ambient temperature. They show a great variety of amino-acids 119 
and a racemic mixture of D,L-alanine, which proves the absence of biotic contamination. The analysis 120 
is discussed by M.-P. Bassez in 21. 121 
 Carbon monoxide was also used in 2012 by S. Pizzarello in a mixture of CO, NH3 and H2 at 370°C 122 
to synthesize amino-acids 22 and in 2003 by H. Hill and J. Nuth in a mixture of CO, N2, H2 at 300°C 123 
to synthesize precursors of amino-acids 23 as described in 2.  124 
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 Therefore, organic functional groups which are necessary for the chemistry of the components 125 
of life are present in high-subcritical conditions, 300°C & 25 MPa as demonstrated by the above 126 
described experiments. Since fluid inclusions inside rocks are closed thermodynamic systems which 127 
permit the concentration of the molecules H2O, H2, CO2, N2 and their chemical reactions, I propose 128 
an hypothesis for the synthesis of the components of life as follows: when water is enclosed in the 129 
inclusion at high-subcritical conditions, CO can be synthesized. Macromolecules essential for the 130 
components of life can afterwards form, as described above, either with heat or through excitation 131 
with gamma rays from rocks which contain radioactive elements and which are located in the vicinity 132 
of the inclusion.  133 

 134 
The fourth process to consider is the interaction of alkaline high-subcritical anoxic water with 135 

rocks which contain ferrous silicates. This interaction combines the three above processes. The 136 
oxidation of ferrous iron occurs with release of H2, and SiO2 dissolves. I show since 2013 that the rocks 137 
which contain ferrous silicates evolve in alkaline high-subcritical anoxic water and produce ferric 138 
minerals such as ferric trihydroxide, the ferric oxide hydroxides goethite and lepidocrocite, the ferric 139 
oxide hematite and ferric silicates such as greenalite. Minnesotaite is the iron analog of talc which 140 
forms by dehydration of the Mg-serpentine chrysotile in a solution supersaturated in silica. As talc, 141 
minnesotaite can form by dehydration of the Fe-serpentine greenalite in a solution supersaturated in 142 
silica. Since high-subcritical water dissolves easily silica, it can become saturated in silica and induce 143 
the dehydration of greenalite into minnesotaite. Stilpnomelane and riebeckite which contain much 144 
less (-OH) groups than minnesotaite can most probably form also through further dehydration of 145 
greenalite. Thus, high-subcritical water appears to be the adequate medium to produce ferric oxides 146 
hydroxides, ferric oxides, ferric silicates, amorphous silica and quartz with a ratio of amorphous 147 
silica/quartz up to 2. The concomitant production of H2 can be used to form CO and components of 148 
life as in the third process.  149 

 150 
 Therefore, the state of water which is basic (pH ~9.5–14) and high-subcritical (300 °C–350 °C, 10–151 
25 MPa) appears to permit the transformation of the rocks which contain ferrous iron, into ferric 152 
minerals and associated biological molecules. Anoxic alkaline water in its high-subcritical state seems 153 
to be an essential component for the synthesis of ferric minerals in anoxic conditions and to the 154 
concomitant synthesis of components of life inside fluid inclusions located within the rocks. It is 155 
important to notice that this process occurs in the absence of oxygen. The above described four 156 
chemical processes are summarized in the concept of geobiotropy which is visualized in Fig.1 and 157 
which leads to the expression "Follow the water in its high-subcritical sate".  Indeed, water has to be 158 
followed in order to recognize, in the universe, life as it exists on Earth, and water in its high-159 
subcritical state has to be followed in order to recognize the components of life which form prior to 160 
the emergence of life. 161 

 162 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2018                   doi:10.20944/preprints201810.0137.v1

http://dx.doi.org/10.20944/preprints201810.0137.v1


 5 of 7 

 

 163 
Figure 1. The concept of geobiotropy which represents the transformation of ferrous silicates containing rocks 164 
in alkaline high-subcritical anoxic water, for the production of ferric minerals and macromolecules of amino-165 
acids. The equations show the dissolved products, but are not all equilibrated. 166 
 167 
4. Conclusion 168 
   169 
 With the four chemical processes described above, I try to demonstrate that the specific state of water 170 
which is called high-subcritical leaves signatures inside the minerals which are produced during high-subcritical 171 
water/rock interaction. In other words, the interaction of alkaline high-subcritical anoxic water with rocks which 172 
contain ferrous silicates composes a mineralogy and biology oeuvre for the synthesis of ferric minerals and 173 
components of life. From the numbers emerges the form. Observations of these mineral signatures inside rocks, 174 
lead to the conclusion that components of life may have formed at that location, thus preceding the emergence 175 
of life.  176 
 177 
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