

1 *Review*2

Catalytic/Protective Properties of Martian Minerals 3 and Implications for Possible Origin of Life on Mars

4 **Teresa Fornaro ^{1,*}, Andrew Steele ¹ and John Robert Brucato ²**5 ¹ Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington,
6 DC 20015, USA; tfornaro@carnegiescience.edu; asteale@carnegiescience.edu7 ² INAF-Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy; jbrucato@arcetri.astro.it

8 * Correspondence: tfornaro@carnegiescience.edu; Tel.: +1-202-478-8967

9 Received: date; Accepted: date; Published: date

10 **Abstract:** Minerals might have played critical roles for the origin and evolution of possible life forms
11 on Mars. The study of the interactions between “building blocks of life” and minerals relevant to
12 Mars mineralogy under conditions mimicking the harsh Martian environment may provide key
13 insight into possible prebiotic processes. Therefore, this contribution aims at reviewing the most
14 important investigations carried out so far about the catalytic/protective properties of Martian
15 minerals toward molecular biosignatures under Martian-like conditions. Overall, it turns out that
16 the fate of molecular biosignatures on Mars depends on a delicate balance between multiple
17 preservation and degradation mechanisms often regulated by minerals, which may take place
18 simultaneously. Such a complexity requires more efforts in simulating realistically the Martian
19 environment in order to better inspect plausible prebiotic pathways and shed light on the nature of
20 the organic compounds detected both in meteorites and on the surface of Mars through *in situ*
21 analysis.22 **Keywords:** Mars; minerals; biomarkers; catalysis; preservation; ionizing radiations.
2324

1. Introduction

25 The past and current exploration missions of the planet Mars have by now ascertained its past
26 habitability ^{1,2}, i.e., Mars possessed the geochemical complexity necessary for life to be maintained if
27 present. The presence of mineral phases like phyllosilicates, sulfates and opals ^{3–6}, tell us a story of
28 aqueous alteration processes occurred on early Mars. Moreover, the great variety of oxidation states
29 of the Martian mineral deposits points to intense redox chemistry ⁷. Overall, the geochemical diversity
30 observed on Mars suggests that this planet supported multiple habitable environments during its
31 first billion years. Massive ancient sea-floor hydrothermal deposits have been postulated within the
32 Eridania basin on southern Mars, which if confirmed would be evidence of a deep, long-lived sea
33 and a deep-sea hydrothermal environment existing 3.7 billion years ago ⁸. Observations from the
34 NASA 2001 Mars Odyssey and the European Space Agency (ESA) Mars Express spacecraft revealed
35 a current water content of the Martian regolith up to 2 – 15 wt % in the equatorial region ^{9,10}, but the
36 very low surface temperatures of Mars, ranging from 145 K during the polar night to 300 K on the
37 equator at midday at the closest point in Mars’ orbit around the Sun ¹¹, cause the formation of a
38 several kilometers thick cryosphere where water is frozen. Nevertheless, recent results from the Mars
39 Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board the ESA
40 Mars Express spacecraft point to a present-day subglacial salty lake of liquid water 20 kilometers
41 across, located 1.5 kilometers beneath the ice at Planum Australe in correspondence with Mars’ South
42 Pole ¹². This new discovery suggests that liquid water has had a long and significant impact on Mars.43 Mars appears to meet also all the other requirements postulated for the origin of life and known
44 for its sustenance, i.e., the availability of energy sources for driving chemical processes, catalysts, and
45 nutrients ¹³. Possible energy sources are radiations, geothermal heat and a broad coupled redox
46 chemistry. The chemical elements – carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur –

47 have all been detected on Mars. Carbon is found as gaseous carbon dioxide in the atmosphere, carbon
48 dioxide ice, organic carbon and carbonate minerals^{14–17}. Complex refractory organic carbon has been
49 discovered inside meteorites dating from 4.0 billion to 130 million years old as well as in the 3.2 billion
50 year old Gale crater on Mars¹⁸. Therefore, complex organic molecules have been present and possibly
51 available for most of Mars history. Hydrogen is currently present in hydrated minerals, as well as in
52 water ice, organics, vapor, and liquid water as recently detected in correspondence with the South
53 Pole¹², and there is ample evidence of a much higher abundance of water on Mars in the past as
54 already mentioned. Nitrogen constitutes only the 2.7 % of the Martian atmosphere and, in general, it
55 is scarce on Mars likely due to its high volatility and the low reactivity of molecular nitrogen, which
56 makes very difficult reactions with other chemicals to form new compounds. However, nitrates have
57 been detected on Mars and some nitrogen-bearing organic and inorganic compounds have been
58 found in Martian meteorites^{19–22}. Oxygen is an important element of minerals like oxides, silicates,
59 sulfates, constituting the oxidized Martian crust. It can be found in water, in the carbon dioxide that
60 dominates the Martian atmosphere, as well as being present as carbonyl and carboxylate groups in
61 organic phases identified in meteorites. Phosphorus is also present on Mars in minerals like apatite,
62 which is a hydrous phase identified in all Martian meteorites recognized so far. The apatite content
63 of Martian meteorites have been used to quantify the presence of water in the Martian mantle,
64 estimated as 100 part per million (ppm), and revealed a close association between magmatic and
65 hydrothermal activity on Mars²³. Interestingly, Martian apatite has shown to be rich in chlorine,
66 which determines higher solubility in aqueous solutions with respect to the typical fluorine-rich
67 apatite of terrestrial basalts and, hence, greater availability of phosphate for prebiotic processes^{24,25}.
68 Chlorine has also been reported bound to carbon in the detection of chloromethane and
69 benzochlorine species by the Sample Analysis at Mars (SAM) instrument on board the NASA Mars
70 Science Laboratory's (MSL) Curiosity rover²⁶. Sulfur is present in minerals like sulfates and sulfides,
71 in the Martian atmosphere²⁷, as well as in organic compounds both in meteorites and on Mars
72 (dimethylsulfide, methanethiol, and a range of thiophenes and derivatives)¹⁸. Other metals with
73 central roles in terrestrial biology like sodium, potassium, magnesium, and calcium, as well as
74 transition metals, can be also found in Martian rocks (see section 2).

75 The most interesting question at this point is: Did these known habitable environments on Mars
76 lead to the emergence of life? If yes, assuming the emergence and evolution of a similar biochemistry
77 on both early Earth and Mars, then we would expect that, in absence of intense resurfacing processes
78 on Mars, the exploration of its pristine habitable locations might shed light into the early life forms
79 on Earth, whose biosignatures have been almost completely cancelled from our geological record due
80 to metamorphism, overprinting by younger organisms and weathering^{28,29}.

81 Important clues for addressing such issues can be found in the organic material detected so far
82 in the Martian meteorites^{21,30} and directly on the surface of Mars through *in situ* exploration^{18,26,31}. It
83 has been verified that the nature of the organic inventory found in the Martian meteorites is abiotic.
84 Beyond the exogenous carbonaceous material delivered on Mars by meteorites^{32,33} and interplanetary
85 dust particles³⁴, the organic matter detected in the Martian meteorites derives also from a variety of
86 endogenous igneous and secondary processes likely occurred for most of the geological history of
87 the planet^{21,30,35,36}.

88 Ancient organic molecules have also been recently discovered *in situ* by the Curiosity rover in
89 the top five centimeters of the Martian regolith and within drilled mudstones, despite the current
90 harsh conditions of the surface of Mars^{18,21,26,31}. This discovery bodes well for the preservation of
91 organics in more protected environments within the subsurface. Such environments will be explored
92 by the upcoming ESA ExoMars 2020 mission³⁷ using a rover equipped with a drill capable of
93 collecting samples up to a depth of two meters, where the radiation conditions are likely less extreme.

94 Understanding the origin of the organic molecules detected on Mars is not trivial because of
95 possible transformations occurring inside the instrument used for their detection. Specifically, the
96 Curiosity rover has used the SAM instrument³⁸, which can heat up to 875°C the samples collected
97 from the Martian regolith and monitor the volatiles released from the samples using a mass
98 spectrometer. Firstly, it observed small organic molecules, such as chlorobenzene and C₂ to C₄

99 dichloroalkanes, coming off as detectable gases at temperatures below 400°C^{26,31,39}. Subsequently, it
100 has been possible to detect also fragments of refractory material heating above 500°C, which indicates
101 the presence of much larger organic macromolecules originally present in the Martian samples¹⁸.
102 This more complex material constitutes the dominant component of the total organic content of the
103 samples analyzed. Such a high level, along with the observation that the overall geochemistry of the
104 regolith at Gale crater is quite similar to the one of other sites on Mars like Gusev crater and Meridiani
105 Planum, corroborate the hypothesis of a widely distribution of this kind of material on Mars at a
106 global scale, which has definitely been one of the astrobiologically most relevant news by MSL.
107 However, the organic compounds detected by SAM are generally only fragments deriving from the
108 decomposition by high temperature pyrolysis of the original material, which has likely been
109 subjected to additional complex chemical phenomena such as chlorination, sulfurization, cyclization
110 and condensation, caused by the interaction with perchlorates/oxychlorine, sulfur dioxide or other
111 inorganic materials present in the Martian samples^{18,26,31,39-41}. Thus, based on SAM analyses alone it
112 is not possible to recognize the nature of the original organic matter and distinguish among
113 exogenous abiotic organics delivered by meteorites and interplanetary dust particles, or abiotic
114 material formed through endogenous processes on Mars, or even ancient biotic material formed as
115 consequence of life activity on Mars. Nevertheless, the discovery of these molecules in SAM data was
116 due to work on a range of organics discovered in Martian meteorites and there is a direct similarity
117 in concentration and molecular speciation seen between the meteorites and SAM data⁴².
118 Undoubtedly, some transformation has taken place during SAM analysis but this similarity lends
119 credence to the hypothesis that the organics are from an indigenous Martian abiotic pool. It is worthy
120 of note that the organic molecules analyzed both in meteorites and by SAM represent those released
121 at temperatures greater than ~600°C and therefore represent a refractory pool. More labile sub ~600°C
122 organic species (other than chloromethane) must be present on Mars but are overprinted by terrestrial
123 contamination in the Martian meteorites, and by background in the SAM instrument^{26,31}. It is these
124 organics that represent the forefront of research into the presence or absence of life on Mars. In this
125 temperature range falls the nucleic and amino acids, phosphate bearing energy molecules such as
126 ATP and their diagenetic products.

127 Beyond the transformation occurred inside the SAM instrument, the original material might
128 have been subjected to previous processing acting over geological time throughout Mars history,
129 caused by several factors that may include: (i) deposition and subsequent diagenesis in lake
130 sediments from water, heat and pressure; (ii) physical weathering by dissolution, water and wind
131 agitation and fragmentation, particle collisions, abrasion, glacial processes, volcanism, and impact
132 shocks; (iii) chemical weathering through irradiation and oxidation degradation⁴³. The most
133 dramatic degradation should have occurred during the most recent Amazonian period, due to the
134 shutting down of the planet geodynamo and the erosion of the atmosphere by the solar wind, which
135 resulted in high irradiation at the surface by galactic cosmic rays, energetic solar protons and
136 ultraviolet (UV) photons⁴⁴⁻⁵¹, along with the formation of strong oxidants in the soil driven by
137 photochemical processes⁵²⁻⁵⁴. Currently, Mars is not very geologically active, so the primary
138 mechanism of physical weathering is aeolian erosion caused by the collision of particles moved by
139 the wind. The physical weathering causes the exposition of fresh material to radiation, which is then
140 subjected to chemical weathering. Another current significant degradation agent is constituted by the
141 presence of oxidants in the regolith, such as perchlorates, that have been detected by both orbital
142 remote sensing techniques and instruments on board the NASA Phoenix Lander and the Curiosity
143 rover⁵²⁻⁵⁵. SAM measurements suggest a concentration of chlorate/perchlorate in the range 0.05 - 1.05
144 wt. %⁵⁶, although oxidants should be absent yet at a depth of 2 – 4 meters in the subsurface, according
145 to a model developed by Patel et al.⁴⁶.

146 Minerals played a crucial role in most of the above-mentioned processes experienced by organic
147 molecules on Mars, influencing their chemical evolution, with implications in the possible origin of
148 life on this planet⁵⁷. Indeed, mineral surfaces provide a solid support to concentrate organic
149 molecules from dilute aqueous environments through chemisorption or physisorption^{58,59}, and the
150 structure of some minerals may act as templates for prebiotic reactions⁶⁰. The molecule-mineral

151 interactions may favor molecular self-organization and catalyze reactions toward more complex
152 species^{59,61,62}. Chemical reactions catalysed by minerals include^{63–66}: the Strecker synthesis, in which
153 ammonia, hydrogen cyanide, and aldehydes react to produce amino acids and related products; the
154 Fischer-Tropsch process, which is a high-temperature reaction of carbon monoxide and hydrogen to
155 give hydrocarbons; FeS-driven organic synthesis; water-rock reactions like the serpentinization
156 process, where water oxides iron(II) present in olivine to iron(III) producing molecular hydrogen,
157 which in turn may react with carbon dioxide forming hydrocarbons and reduce nitrogen to ammonia;
158 or photo-catalytic processes like the transformation of formamide in the presence of a mixture of TiO₂
159 and ZnO metal oxides that produce carboxylic acids, amino acids and nucleic acid bases.
160 Furthermore, some minerals may play a role in enhancing degradation of specific organic molecules,
161 while other minerals, on the contrary, favor preservation^{57,67}. For these reasons, it is fundamental to
162 investigate the roles of the Martian minerals in the physico-chemical processes that might have
163 occurred on the planet in the past or that may currently take place, in order to validate possible
164 scenarios about the nature of the organic compounds detected so far on Mars. In particular, relevant
165 aspects that we will explore in this contribution concern the possible roles of minerals in
166 degradation/preservation processes relevant to the origin and evolution of life on Mars. Firstly, we
167 will provide a brief summary of the main classes of minerals identified on Mars (section 2) and the
168 organic compounds detected so far both through *in situ* exploration of Mars and Earth-based
169 laboratory analyses of Martian meteorites (section 3). Furthermore, we will discuss the
170 catalytic/protective properties of minerals relevant to Mars' mineralogy under Martian-like
171 conditions, with a specific focus on their interactions with molecular biosignatures, the so called
172 biomarkers (section 4). Finally, we will provide a summary of the results and take-home messages in
173 section 5, and the implications for future Martian missions in section 6.
174
175

176 2. Martian minerals

177 The landed and orbital data sets gathered so far have provided us with a wide mapping of Mars
178 mineralogy⁶⁸, showing that the most abundant minerals on Mars are silicates, oxides and sulfides,
179 followed by carbonates, sulfates, chlorides and perchlorates, summarized in Table 1.

180 Among the Martian minerals, the “water-signature” ones draw interest for potential prebiotic
181 processes and preservation of biostructures. Specifically, phyllosilicates, sulfates and opals, have
182 been widely identified through remote sensing and *in situ* measurements^{6,69–72}, and represent striking
183 evidence of a past aqueous activity on Mars. The characterization of these minerals on Mars and their
184 distribution gives key information about near-surface aqueous alteration processes on ancient Mars.

185 Phyllosilicates formation requires abundant surface liquid water and/or hydrothermal activity,
186 and a chemical environment alkaline to neutral. This occurred during the most ancient and
187 flourishing geological era in Mars' history, the so called Noachian (~4.1 to 3.7 billion years ago), as
188 consequence of weathering of the basaltic crust by liquid water. Therefore, phyllosilicates can be
189 found in the oldest mineral deposits on Mars.

190 A subgroup of phyllosilicates particularly interesting in the prebiotic context is the clay minerals,
191 due to their large surface area and optimal interlayer sites for the concentration and preservation of
192 organic compounds when rapidly deposited under reducing chemical conditions⁷³. These minerals
193 have been detected at several locations on Mars^{4,74–82}, including Echus Chasma, Mawrth Vallis,
194 Eridania basin, the Memnonia quadrangle, the Elysium quadrangle, Nili Fossae, and the large Argyre
195 Planitia area. Most of these clays derive from surface alteration, indicating that there was on Mars an
196 active hydrosphere and atmosphere, whereas only a small part comes from subsurface alteration. A
197 high abundance of clay minerals, especially ferrian saponite, was also discovered by the Curiosity
198 rover in fluvio-lacustrine sedimentary rocks at Gale crater dating back to ~3.5 billion years ago^{1,81,83}.
199 During its traverse of Gale crater, the rover detected at different locations a diversity of clay minerals,
200 such as a mixture of aluminium-rich dioctahedral and magnesium-rich trioctahedral smectites or
201 micas and pyrophyllite-talc, with evidence of redox stratification and pH variations^{84,85}. It also

202 observed changes in minerals that are highly sensitive to the environment, specifically an overall
203 reduction in the quantity of reactive mafic minerals like pyroxene and olivine, a transition from
204 magnetite to hematite as the main iron oxide, and increasing abundances of calcium sulfates that
205 indicate near-surface evaporative processes and neutral or mildly alkaline conditions of the soil. The
206 features of the sediments together with these mineralogical trends denote a very dynamic aqueous
207 environment in the lake characterized by shallowing and episodic desiccation processes, and indicate
208 that near-surface aqueous alteration continued into the Early Hesperian (Bristow et al. 2018 ⁸⁶ and
209 references therein). These kind of processes might have played a fundamental role in possible
210 biogeochemical cycles developed on early Mars. The great variety of chemicals identified at Gale
211 crater, characterized by different oxidation degree, might have provided a sort of chemoautotrophic
212 energy gradient capable of supporting life, based on the redox couples $\text{Fe}^{3+}/^{2+}$, $\text{Mn}^{4+}/^{2+}$, $\text{S}^{6+}/^{2-}$.

213 The NASA Mars Exploration Rovers (MER) Spirit and Opportunity also found strong evidence
214 of liquid water on the surface, but in places on the planet that were highly acidic and salty. Combining
215 the observations of the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard
216 the NASA Mars Reconnaissance Orbiter (MRO) and the ones from the Opportunity rover, it was
217 possible to detect clay minerals in various locations along Endeavour's western rim, including the
218 smectites montmorillonite and nontronite in Marathon Valley, which showed to possess still a
219 basaltic composition with relatively low water to rock ratios. Thus, their formation should have been
220 associated with a low amount of water and likely occurred under mildly acidic conditions on early
221 Mars, consistently with the lack of extensive formation of carbonate deposits ⁷².

222 Interestingly, lots of evaporites (chloride salts) have been detected spread all over Mars, likely
223 formed after the deposition of phyllosilicates, covering the clay-bearing material especially in the
224 southern highlands within Noachian-aged terrains ⁸⁷⁻⁸⁹. These evaporites may form *in situ* in chemical
225 environments that range from alkaline to acidic. Their formation may occur in a variety of geological
226 settings from brine to fluvial valleys and requires limited amount of liquid water, that can derive
227 from surface runoff due to ice/snow melt, precipitation, and/or groundwater upwelling. Chlorides
228 are commonly the uppermost mineral in a Martian stratigraphic column, and show rarely traces of
229 erosion and degradation. It might be possible that such a chloride-rich upper layer aids preservation
230 of biosignatures on Mars.

231 The second major class of hydrated minerals mapped by the ESA Mars Express OMEGA
232 instrument and detected by the NASA rovers is sulfates ^{69,90,91}, including magnesium sulfates (such
233 as kieserite) and calcium sulfates (such as gypsum). They have been found in locations like Gale
234 crater, Endeavor crater and at the North and South Poles of Mars. These kinds of minerals formed
235 during an acid wet phase, due to volcanic outgassing of volatiles including sulfur, from the
236 evaporation of salty and sometimes acidic water.

237 The MRO has also discovered opaline deposits across large regions of Mars ⁷⁰, including the
238 large Martian canyon system called Valles Marineris and the Home Plate in Gusev crater. Opalines
239 are the youngest hydrated mineral ever detected on Mars and provide indications of the presence of
240 liquid water as recently as two billion years ago. Opalines can be formed by aqueous alteration of
241 materials created by volcanic activity or meteorite impact, or hydrothermal activity as interpreted in
242 the case of Gusev crater ⁹². In some locations around dry river channels, opaline deposits have been
243 found in association with iron sulfates, revealing that acidic water remained on the Martian surface
244 for a long time ⁹³.

245 Another primary class of minerals detected on Mars by *in situ* measurements of both Viking
246 Landers (Chryse Planitia and Utopia Planitia in 1976), Mars Pathfinder (Ares Vallis in 1997), and
247 Spirit and Opportunity rovers (in Gusev Crater and Meridiani Planum, respectively) is anhydrous
248 ferric oxides, which are responsible for the typical red color of the Martian surface. These minerals
249 formed in the most recent geological era beginning about 3.5 billion years ago through a slow
250 superficial weathering process ⁶⁹. The most stable iron oxide in the current Martian conditions is
251 hematite ⁹⁴, whose spectral signature was detected by the infrared spectrometer on board the NASA
252 Mars Global Surveyor (MGS) and 2001 Mars Odyssey spacecraft in orbit around Mars in several
253 locations ^{95,96} like Terra Meridiani, Valles Marineris, Aureum Chaos, Columbia Hills, etc. *In situ*

analyses at Terra Meridiani by the Opportunity rover showed a significant amount of hematite in the form of small spherules, nicknamed as “blueberries”, which are apparently concretions formed as consequence of precipitation from iron-rich water^{97–100}. Hematite can be considered another “water-signature” mineral, since it can be formed by hydrothermal processes⁹⁸ and palagonitisation (aqueous alteration at low temperature) of volcanic ashes or glass¹⁰¹, and be collected in layers at the bottom of lakes, springs, or other standing water environments. Hematite can also form without intervention of water as secondary mineral by meteoric weathering processes in the soil^{102,103}. As previously mentioned, the Curiosity rover found at Gale crater patterns of change in rock composition at higher, younger layers of Aeolis Mons, better known as Mount Sharp, observing that hematite replaced less-oxidized magnetite as the dominant iron oxide, which suggests warmer and more oxidizing conditions, or more interaction between the atmosphere and the sediments¹⁰⁴.

Regarding mafic minerals, OMEGA and previous instruments have revealed that pyroxene and olivine are still present at the surface in the older terrains, included within sand dunes, associated to ancient Noachian crustal rocks and early Hesperian volcanism^{105,106}. However, much of the younger surface, particularly within the large lowlands of the northern hemisphere, does not exhibit mafic spectral signatures. The exposed original materials have been heavily chemically altered or covered by heavily altered dust^{105–107}.

Another significant component of the Martian regolith recently discovered by the Curiosity rover at Gale crater is amorphous material. Unfortunately, due to its low crystallinity, such a material is poorly characterized by the instruments available on board the Curiosity’s payload. However, the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument has been able to provide some indications about individual phases within the amorphous material like volcanic (or impact) glass, hisingerite (or silica + ferrihydrite), amorphous sulfates (or adsorbed SO₄²⁻), and nanophasic ferric oxides^{86,108}. This material draws particular attention for the preservation of organic matter¹⁰⁹, and its in-depth characterization remains one of the challenges of the next missions.

Table 1. Relevant minerals detected on Mars, along with the region of discovery on Mars and the corresponding mission.

Minerals	Region of discovery on Mars	Mars mission
Phyllosilicates such as clay minerals (aluminium-rich dioctahedral and magnesium-rich trioctahedral smectites, kaolinite, illite, pyrophyllite-talc), micas (muscovite) and chamosite chlorite.	Echus Chasma, Mawrth Vallis, Eridania basin, Memnonia quadrangle, Elysium quadrangle, Nili Fossae, Argyre Planitia, Gale crater, and Marathon Valley.	ESA Mars Express, NASA Mars Exploration Rovers, NASA Mars Reconnaissance Orbiter, and NASA Mars Science Laboratory ^{1,4,71–80} .
Evaporites (chloride salts).	Southern highlands within Noachian-aged terrains.	NASA 2001 Mars Odyssey ^{87–89} .
Sulfates (magnesium sulfates like kieserite, and calcium sulfates like gypsum).	Gale crater, Endeavor crater, the North and South Poles of Mars.	ESA Mars Express and NASA Mars Science Laboratory ^{69,90,91} .
Opaline silica.	Valles Marineris, Gusev crater, and Gale crater.	NASA Mars Reconnaissance Orbiter and NASA Mars Science Laboratory ^{67,89,90} .
Ferric oxides like hematite and goethite.	Chryse Planitia, Utopia Planitia, Ares Vallis, Gusev Crater, Meridiani Planum, Terra Meridiani, Valles Marineris, Aureum Chaos, Columbia Hills, Gale crater.	NASA Viking Landers, NASA Mars Global Surveyor, NASA Mars Pathfinder, NASA 2001 Mars Odyssey, and NASA Mars Exploration Rovers ^{66,92,93,101} .
Mafic minerals such as pyroxene and olivine.	Mainly in older terrains, included within sand dunes,	ESA Mars Express ^{105,106} .

	associated to ancient Noachian crustal rocks and early Hesperian volcanism in the southern hemisphere.	
Amorphous material.	Gale crater.	NASA Mars Science Laboratory ^{86,108} .

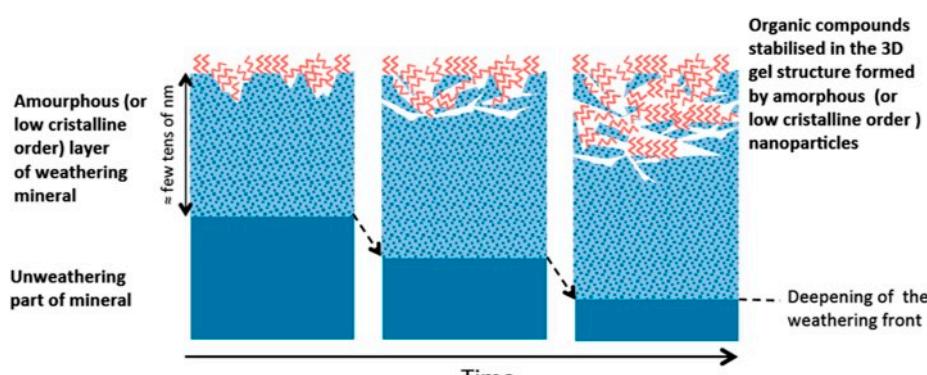
282

283

284 **3. Organics detected on the surface of Mars and in Martian meteorites**

285 Steele et al. have undertaken a comprehensive review of organics discovered in Martian
286 meteorites²¹. To summarize this review, every class of Martian meteorites has been shown to contain
287 a high temperature release (> 600 °C) organic carbon inventory that is indigenous to the meteorite.
288 There are variations among meteorites in the concentration of reduced carbon released, but there is
289 no systematic trend associated with meteorite type. This high temperature reduced carbon inventory
290 contain ~ 18±26 ppm of reduced carbon with an average $\delta^{13}\text{C}$ of ~ -19.1±4.5 ‰ (an anomalously high
291 measurement of 52.8 ppm carbon in Zagami contributes to the large standard deviation in the
292 reported carbon abundances in Martian rocks)^{30,110}. Interestingly, the data collected by the SAM
293 instrument on high temperature released organics (> 500 °C) show an average of 11.15±6.86 ppm
294 across the Murray and Sheepbed mudstones¹⁸. The nature of the high temperature release organics
295 on Mars show thiophenes, aromatics, aliphatics and thiol derivatives. A similar distribution has been
296 shown in organics released during the analysis of the Tissint meteorite¹⁸. One disparity between
297 meteorites and *in situ* observations is the lack of organic nitrogen compounds discovered in the
298 Curiosity dataset. Analysis of Tissint meteorite shows the presence of aliphatic and aromatic nitrogen
299 containing organic molecules such as pyrole²². The origin of the organics analyzed by Curiosity is
300 the subject of some debate with two main sources; indigenous synthesis or meteoritic infall. However,
301 the provenance of organics in Martian meteorites shows definitive evidence for organic synthesis in
302 these rocks that reveal a similar organic distribution to that seen by Curiosity^{30,111,112}. Beyond the
303 carbonaceous material delivered by steady in-fall of interplanetary dust particles and carbonaceous
304 meteorites, Martian meteorites show definitive evidence for abiotic organic synthesis occurred in
305 these rocks through different mechanisms, including²¹: 1) impact-generated graphite (possibly
306 diamond) in Tissint meteorite and magnetite/macromolecular carbon (MMC) clusters not contained
307 within carbonate globules in ALH 84001 meteorite; 2) secondary hydrothermally generated
308 MMC/graphite in ALH 84001 meteorite; 3) primary igneous reduced carbon; 4) possible primary
309 hydrothermally formed nitrogen-bearing organic compounds. The study of reduced carbon in
310 Martian meteorites indicates that Mars has produced reduced carbon/organic carbon for most of its
311 geologic history. The most parsimonious explanation for this is that the Curiosity analysis most likely
312 sampled organics synthesized on Mars. Therefore, even though some transformation has
313 undoubtedly taken place during SAM analysis, the direct similarity in concentration and molecular
314 speciation denoted between the analyses of Martian meteorites and SAM data lends credence to the
315 hypothesis that the organics detected so far are from an indigenous Martian abiotic pool. More
316 recently, Steele et al.⁴² have shown a novel organic synthesis mechanism involving the
317 electrochemical reduction of CO₂ to organic material in Mars meteorites, which may constitute a
318 plausible endogenous route for producing on Mars organic molecules that are building blocks of life.
319 Exploring the catalytic properties of Martian minerals under conditions reproducing Mars' early
320 environment appears fundamental to shed light on the possible prebiotic pathways that might have
321 brought to the emergence of life on this planet.

322


323 4. Preservation of biosignatures

324 Based on observations of terrestrial analog sites, it seems that sediments, evaporites and
 325 hydrothermal systems feature the highest preservation potential for biosignatures ¹¹³.

326 On Earth, entombment of biosignatures within mineral matrices constitutes one of the most
 327 efficient preservation mechanisms against degradation of both microorganisms and organic
 328 molecules. Entombment occurs through mineralization processes including the ones driven by
 329 evaporation and precipitation, concentration of brine solutions by freezing, supersaturation due to
 330 cooling or changes in pressure, and diffusion-driven reactions leading to formation of concretions.
 331 Another important mechanism for preservation is the enrichment inside mineral matrices as denoted
 332 in sedimentary rocks and phyllosilicate minerals like clays. The reduced permeability characterizing
 333 fine-grained sediments and precipitates limits the exposure of entrapped organics to migrating fluids
 334 and gas. Sedimentation may enhance biosignature preservation by accumulating and burying
 335 biomass. Marine sediments on Earth have been found to protect organic molecules through their
 336 sorption into mineral matrix of clays and metal oxides ¹¹⁴. Specifically, iron oxides show a strong
 337 affinity for organics, forming stable complexes that can persist for thousands of years in anoxic
 338 sediments at depths of up to 5 meters ¹¹⁵. Sediments on Earth have shown to preserve also
 339 morphological biosignatures such as trace fossils, wrinkle marks, stromatolites, and microbialites.
 340 However, the long-term preservation of terrestrial biosignatures in several paleo-environments on
 341 Earth depends on the persistence of the sedimentary material itself ¹¹⁶. As analyzed in detail by
 342 Farmer and Des Marais ¹¹⁶, phosphates and silica, followed by clay-rich fine-grained sediments,
 343 carbonates and metallic oxides, present the highest preservation potential, and terrestrial
 344 biosignatures can be affected only by deep burial and recrystallization during metamorphism or by
 345 dissolution. Metallic sulfides are more sensitive to oxidation. Halides and sulfate matrices are
 346 susceptible to dissolution. Ice appears to be the less effective protector since it is easily perishable by
 347 climatic warming.

348 In regard to molecular biosignatures, molecular binding to minerals like phyllosilicates ^{60,73,74} and
 349 Al-Fe oxyhydroxides ¹¹⁵ has shown to enhance preservation. Amorphous materials have also
 350 demonstrated some preservation potential that can be ascribed to the possibility to incorporate and
 351 protect molecules within their porous structure. An example is the study by Biondi et al. about the
 352 stability of RNA molecules adsorbed on opals. Results showed that the interaction with opal
 353 considerably stabilizes RNA against alkaline degradation with respect to the case of free molecules
 354 in aqueous solution at pH 9.5 ¹¹⁷. Moreover, a preservation mechanism that may be particularly
 355 relevant for Mars is the one observed by amorphous materials derived from weathering of surface
 356 rocks ¹⁰⁹. The weathering of volcanic rocks rapidly produces poorly crystallized nanometric-sized
 357 surface secondary phases (allophane type), consisting mainly of hydrolyzed Al, Si, and Fe, which are
 358 characterized by large surface area (and, consequently, great affinity to organic compounds) and high
 359 surface reactivity. It has been observed that, in any soil, secondary nanosized phases newly formed
 360 by the weathering of surface minerals may give rise to nanosized organo-mineral complexes and
 361 stabilize organic compounds embedded into the 3D gel structure formed by the amorphous
 362 nanoparticles (Figure 1).

363

364

365 **Figure 1.** Model for the stabilization of organic compounds by amorphous material (Adapted with
366 permission from Basile-Doelsch et al. 2015¹⁰⁹. Copyright 2015, American Chemical Society).

367

368 Phyllosilicate, iron oxyhydroxide, and amorphous materials are the dominant mineral species
369 detected in all the mudstones investigated *in situ* by the Curiosity rover at Gale crater^{84,85}. Moreover,
370 the lower stratigraphy of Mount Sharp shows a transition from clay-bearing to sulfate-bearing strata
371¹¹⁸. Such a change likely occurred in the Late Noachian until the Hesperian due to the drop of the
372 Martian atmospheric pressure and consequent increase in the amount of sulfur dioxide degassed
373 from lavas¹¹⁹. The high abundance of thiophenic and total organic sulfur detected in Mojave and
374 Confidence Hills samples drilled in the Murray formation mudstones suggests that sulfurization of
375 organic materials prior to deposition and during early diagenesis is another potential preservation
376 mechanism on Mars, that might have occurred during early diagenesis in the presence of reduced
377 sulfur (HS- or H₂S) gas more than 3 billion years ago¹⁸. Furthermore, sulfur-bearing organics have
378 also been observed in carbonaceous meteorites¹²⁰ and there is indication of their presence in the
379 Tissint Martian meteorite^{18,42}. Natural vulcanization on Earth results in an enhanced refractory state
380 for organic materials because sulfur is able to reduce reactive functional groups and add cross links
381 between small unstable molecules thereby converting them into recalcitrant macromolecules. In
382 addition, sulfur may provide an additional oxidative sink for degradation reactions during
383 diagenesis, so the iron sulfides detected in the Sheepbed mudstone⁸¹ and suspected in the original
384 Murray mudstone detritus^{84,85} might have helped organic matter preservation. Interestingly,
385 terrestrial sulfate minerals have shown to efficiently trap and preserve organic molecules within their
386 structure^{121,122}. Notable ability to preserve organic molecules has been observed also in terrestrial
387 analog sites characterized by halite- and perchlorate-rich hypersaline subsurface deposits¹²³, which
388 are widespread on Mars.

389 Given Mars' mineralogy and lithology, it appears that a number of diverse environments exist
390 on Mars where the likelihood of preservation of biomarkers can be rather significant. In such
391 locations, prebiotic processes might have taken place leading to the emergence of a complex
392 biochemistry.

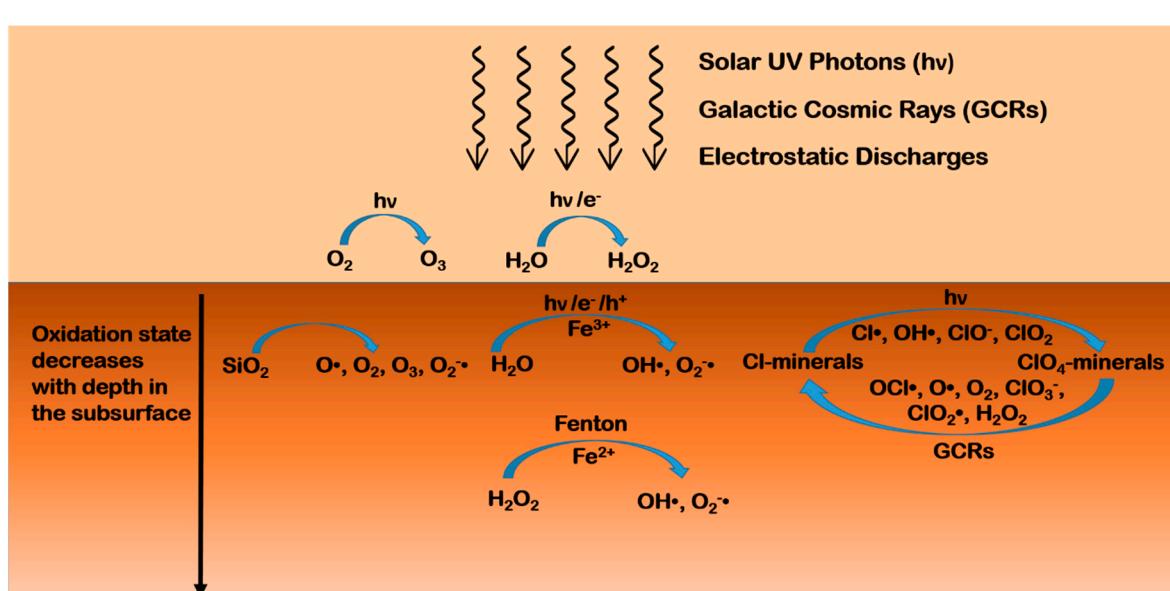
393 In order to explore the mechanisms that might have or might not have led to the origin and
394 evolution of life on Mars, it is fundamental to deepen the roles of Martian minerals in the multiple
395 complex processes of preservation/degradation contributing to the final fate of possible
396 biosignatures. These investigations would be key also to shed light on the possible biogenicity of the
397 organic compounds detected so far on Mars. In general, preservation of biosignatures on Mars
398 depends on numerous factors, such as the hydrogeological and atmospheric setting, the physico-
399 chemical properties of mineral matrices, the kind of biosignature, etc.⁴³. Minerals and chemical
400 biosignatures can be affected by temperature and pressure changes, along with migrating fluids,
401 which can modify the mineral phases, as well as dissolution, oxidation/reduction. Stable isotopic
402 patterns can be altered by diagenesis, dissolution/recrystallization, and thermal processing. Organic
403 compounds are easily degraded through: (i) oxidation, which is a chemical reaction transforming
404 reduced carbon structures into carbon dioxide and water by progressively introduction of oxygen;
405 (ii) photolysis/radiolysis, which is a decomposition of the molecules induced by light/ionizing
406 radiations; (iii) thermal processing that may determine bond breakage and loss of molecular
407 functional groups, as well as structural rearrangements towards higher thermodynamic stability¹²⁴.

408 In the following, we will mainly focus on the role of minerals in the possible
409 preservation/degradation mechanisms of molecular biosignatures, the so called biomarkers, under
410 Martian conditions, considering the effects of oxidants and ionizing radiations. On Mars, thermal
411 processing is not really an issue due the low temperatures, which instead favor preservation. Thus,
412 thermal processing will not be discussed in this contribution.

413

414 **4.1. Oxidants on Mars**

415 The failure of the Viking program in the late seventies to detect organic molecules on the surface
416 of Mars was promptly attributed to the existence of powerful oxidizing agents in the regolith.


417 Perchlorate ions (ClO_4^-) in salts in the regolith and hydrogen peroxide (H_2O_2) in the atmosphere have
418 been identified as the main oxidants on Mars¹²⁵. Their presence may have important astrobiological
419 implications because oxidants can increase the reactivity of the soil, oxidize organic matter, and lower
420 the freezing point of water allowing for liquid brines to exist at the surface¹²⁶ or liquid water in the
421 subsurface¹².

422 Perchlorates are generally highly soluble, so they can be found only in locations characterized
423 by low water content. The Phoenix Lander was the first to detect calcium, magnesium and sodium
424 perchlorates in the Martian regolith at a concentration of 0.4 - 0.6 wt %^{53,127}. The further detection by
425 the Curiosity rover at Gale crater at a concentration of 0.05 - 1.05 wt. %⁵⁶ and in the Martian meteorite
426 EETA79001 with a concentration of 0.6 ± 0.1 ppm by mass¹²⁸ corroborated the hypothesis that they
427 are widespread on Mars. The formation of perchlorates might have happened in the atmosphere,
428 driven by UV radiation, in the presence of hydrochloric acid gas, emitted by past volcanism, released
429 by aerosols present in Mars' atmosphere, or through reactions between water ice and oxychlorine
430 radicals produced by the atmospheric oxidation of chlorine (more details can be found in Lasne et.
431 al.¹²⁵, and references therein). However, mechanisms requiring atmospheric chlorine are insufficient
432 to explain the concentrations measured on Mars¹²⁹. Other mechanisms likely involve photochemical
433 production by irradiation of chlorine-bearing regolith¹³⁰, or electrochemical processes during dust
434 events¹³¹. The presence of perchlorates in the regolith would not affect the stability of organic
435 compounds at the typical low temperatures on Mars, due to the low reactivity of perchlorate at low
436 temperature and the very slow oxidation kinetics expected for molecules like amino acids, purines
437 and pyrimidines¹³², while the thermal decomposition of perchlorates significantly disturbs the
438 detection of organics in the Martian soil through *in situ* measurements based on pyrolysis¹²⁵.
439 However, ionizing radiations can decompose perchlorate even at low temperatures producing
440 several lower oxidation state oxychlorine species like chlorate (ClO_3^-), hypochlorite (ClO^-) and
441 chlorine dioxide (ClO_2), as well as molecular oxygen that remains trapped in the salt crystal¹³³ and
442 atomic oxygen¹³⁴, or chlorite radicals ($\text{ClO}_2\bullet$)¹³⁵. Such reactive species, in turn, may be responsible
443 for the degradation of organic matter^{133,136-138}. Interestingly, the SAM instrument indicated the
444 presence of oxychlorine phases in Gale Crater, but the *CheMin* X-ray diffractometer was not able to
445 detect them¹³⁹. This observation can be explained if the oxychlorine in Gale Crater is poorly
446 crystalline, or its concentration is below the 1 wt % detection limit of *CheMin*, which means that the
447 concentration of oxychlorine species may vary across the planet. Unfortunately, only a few studies
448 have been reported in the literature about the effect of irradiation on the stability of organic molecules
449 in the presence of perchlorates^{136,137}, while many studies have tried to reproduce the pyrolysis results
450 of the Viking, Phoenix and MSL missions (see Lasne et. al.¹²⁵, and references therein).

451 Hydrogen peroxide has been detected so far only in the atmosphere of Mars, at levels ranging
452 from 18 to maximum 40 part per billion (ppb), with seasonal variations depending on the abundance
453 of atmospheric water vapor and water ice clouds¹⁴⁰⁻¹⁴². The formation of hydrogen peroxide in the
454 atmosphere has been predicted considering photochemical processes¹⁴³ and electrochemical
455 reactions during dust devils and storms¹⁴³⁻¹⁴⁵. Even though there is no direct detection of hydrogen
456 peroxide in the regolith, its diffusion in the Martian subsurface has been theoretically predicted up
457 to a maximum depth of a few centimeters, or hundreds of meters in the presence of impact gardening
458¹⁴⁶⁻¹⁴⁸. A plausible route for production of hydrogen peroxide directly in the Martian regolith is based
459 on water-mineral interactions, through dissociative chemisorption of water molecules onto the
460 mineral surfaces followed by redox formation and combination of hydroxyl radicals¹⁴⁹⁻¹⁵¹.
461 Furthermore, a recent study by Crandall et al. reveals a formation mechanism by which hydrogen
462 peroxide and other potential oxidants can be generated via irradiation of perchlorate by cosmic rays
463¹³⁴. The mix of iron, water, and hydrogen peroxide on Mars may result in a high oxidizing potential,
464 due to the production of reactive radical species through processes like the Haber-Weiss cycle. Lasne
465 et. al.¹²⁵ describe such processes in detail, and propose a scheme of the oxidation state of the various
466 layers that compose the Martian regolith, where the most oxidized superficial layer contains
467 superoxide ion ($\text{O}_2\bullet$) and hydroxyl ($\text{OH}\bullet$) radicals originating from the interaction between the
468 regolith, the atmosphere, and UV radiation^{55,152}. Plausible mechanisms include the photo-induced

469 decomposition of hydrogen peroxide adsorbed on oxide minerals, and the photo-induced electron
 470 transfer from the surface of oxide minerals to water or oxygen molecules adsorbed on the surface as
 471 well as structural water molecules embedded into the crystal lattice. Transition metal oxides widely
 472 present on Mars feature small gaps between the valence and the conduction band, and can act as
 473 semiconductors by absorbing radiation and creating electron-hole pairs called excitons. Insulators
 474 like feldspars and zeolites may show a similar behavior⁶⁷ thanks to defects in their crystal structure,
 475 which change their electronic properties¹⁵². The excitons may recombine or diffuse inside the mineral
 476 grains and reach adsorbed molecules promoting redox reactions. In the presence of molecular oxygen
 477 or water molecules adsorbed on the mineral surfaces, excitons may lead to production of reactive
 478 oxygen species like superoxide radical anions ($O_2^{\cdot-}$), hydroxyl radicals (OH^{\cdot}) and hydroperoxyl
 479 radicals (HO_2^{\cdot}), which in turn may degrade adsorbed organic molecules. The adsorption of oxygen
 480 and water onto mineral surfaces is quite plausible. Indeed, oxygen is present in the Martian
 481 atmosphere with an abundance of 0.13 %, and models predict¹⁵²⁻¹⁵⁴ the ubiquitous presence of a few
 482 monolayers of water on exposed Martian surfaces. In the case of minerals with high iron content,
 483 water adsorbed at the mineral surface can leach soluble species from the rock, leading to favorable
 484 conditions for Fenton and photo-Fenton reactions that may contribute to molecular degradation¹⁵⁵.

485 The diffusion depth of hydrogen peroxide determines the thickness of the mildly oxidized layer,
 486 but the uncertainty about the hydrogen peroxide content in the regolith reflects on the results of the
 487 models, thus estimating an oxidant extinction depth between a few centimeters to hundreds of meters
 488^{146,147,152}. The penetration depth of perchlorates is also currently unknown. If their formation
 489 mechanisms include only UV radiation or electrostatic discharge in the atmosphere, and there is no
 490 replenishment in the subsurface, then perchlorates should concentrate mainly near the surface and
 491 their decomposition by cosmic rays should limit their diffusion at depths no more than a few meters.
 492 A simplified scheme of the oxidation environment of the Martian regolith is depicted in Figure 2.
 493

494
 495 **Figure 2.** Simplified scheme of the oxidation environment of the Martian regolith.
 496

497 Given the spreading of oxidants on the surface and in the subsurface of Mars, it is fundamental
 498 to investigate their possible effects on organic matter under simulated Martian conditions. Mancinelli
 499¹⁵⁶ and McDonald et al.¹⁵⁷ obtained interesting results studying the stability of organic
 500 macromolecules, such as tholins and humic acid, subjected to an aqueous solution of hydrogen
 501 peroxide at different temperatures. Specifically, their data suggest that some organic macromolecules
 502 may be stable against oxidation on the Martian surface, at least in the polar regions, over the entire
 503 history of Mars. Dionysis et al.¹⁵⁸ evaluated the oxidation effect of dissolved hydrogen peroxide on
 504 the kinetics of formic acid decarboxylation in the presence of iron oxides, conducting a series of flow-
 505 through hydrothermal experiments at temperatures ranging from 80 to 150 °C and pressures of 172-

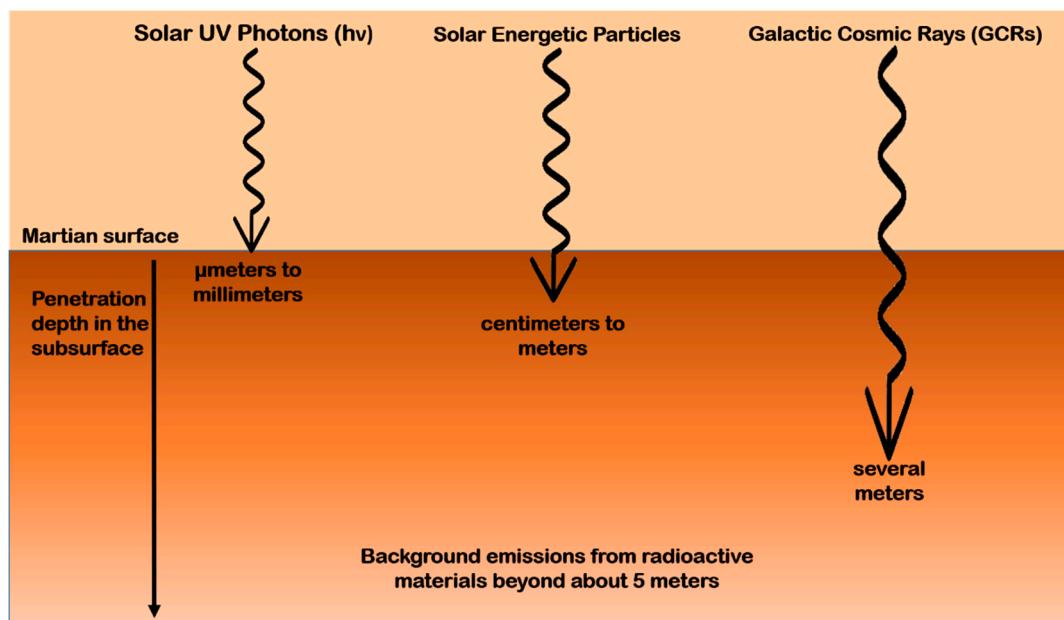
506 241 bar. Their data revealed an increase in hydrogen peroxide decomposition in the presence of
507 magnetite likely related to the production of hydroxyl radicals through Fenton processes. However,
508 the presence of magnetite slightly slows down the decarboxylation kinetics of formic acid in an
509 aqueous solution of hydrogen peroxide. This behavior has been attributed to the possible formation
510 of Fe-bearing hydroxyl formate aqueous species that could serve as stable transition states leading to
511 a decrease in the activation entropy of formic acid decomposition.

512 From these results, we can infer that the degradation processes of organic matter caused by
513 oxidants are rather complex and understanding the underlying mechanisms is far from
514 straightforward. In the case of Mars, it is also fundamental to figure out the interplay among oxidants,
515 minerals and ionizing radiations in order to comprehensively address the problem of preservation of
516 organic compounds. In the next section, we will review some of the most relevant studies regarding
517 the stability of organic compounds under Martian-like conditions.

518
519

520 4.2. Photodegradation processes of organic matter on Mars

521


522 4.2.1. Radiation environment on Mars

523 Several studies have been performed so far to investigate the radiation environment on Mars,
524 which has critical implications in the emergence and evolution of possible life forms on the planet.
525 The current very thin (~6 mbar) atmosphere of Mars, dominated by carbon dioxide (CO₂), is capable
526 of absorbing photons of wavelengths shorter than 190 nm ^{47,159}, with absorption cross section for
527 carbon dioxide of the order of 10⁻²³ cm² at 195 nm, 10⁻¹⁸ cm² in the range 130-150 nm and 10⁻¹⁷ cm² in
528 the range 98-120 nm ^{159,160}, and also does not allow efficient penetration of X-rays ^{11,161,162}. Thus, only
529 mid- and near UV may cause degradation of organic compounds at the surface, and the respective
530 fluxes have been both modelled and measured *in situ* (for more detail, see references ^{46-50,163,164}).

531 Gamma-rays and other high-energy heavy particles from cosmic rays, instead, are capable of
532 penetrating the Martian atmosphere and the subsurface ^{165,166}. Dartnell et al. ¹⁶⁶ calculated the dose-
533 depth profile from galactic cosmic rays in the Martian subsurface considering a variety of factors like
534 variations of surface composition (dry regolith, ice, layered permafrost), solar minimum and
535 maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude),
536 and increasing atmospheric thickness over geological history. Matthiä et al. provided the most recent
537 overview of model calculations about the highly energetic primary cosmic radiation at the Martian
538 surface and comparison to *in situ* measurements by the MSL-Radiation Assessment Detector (MSL-
539 RAD) on board the Curiosity rover ¹⁶⁷. Specifically, model estimates for the dose rate reach from 171
540 µGy/d to 307 µGy/d compared to a measured value of 233 ± 12 µGy/d ¹⁶⁷.

541 The effects of such ionizing radiations depend on the penetration depth in the Martian
542 subsurface, estimated as up to two meters for X-rays and energetic solar particles *vs.* a few microns
543 or millimeters for UV radiation ^{67,168-173}. Under a layer of snow or of H₂O/CO₂ ice, instead, it seems
544 that also UV radiation can penetrate up to meters according to radiative transfer models and
545 laboratory experiments ^{174,175}. As depicted in Figure 3, molecules within a micrometer to a millimeter
546 of the Martian surface may be likely altered by UV solar photons ^{176,177}. From few millimeters to a few
547 centimeters or even a meter, degradation may be caused by solar energetic particles ¹⁷¹. From at least
548 a meter to several meters, galactic cosmic rays and their secondary electrons may be responsible for
549 degradation. At higher depths like 4-5 meters, radionuclides in the ground provide the most
550 significant source of ionizing radiations ¹⁶⁵.

551

552
553 **Figure 3.** Penetration depths of different kinds of radiation in the near-surface of Mars.
554
555

4.2.2. Laboratory simulations of Martian conditions

556 The stability of organic molecules under high-irradiation environments has been widely
557 investigated (see ten Kate 2010¹⁷⁸ and references therein). However, studies not taking into account
558 the effects of mineral phases cannot be considered a realistic simulation of the Martian conditions,
559 since the interactions of organic molecules with minerals may completely change their reaction
560 pathways⁵⁷. Minerals can mediate or enhance the effects of ionizing radiations, and it is extremely
561 important to figure out the roles of minerals in the variety of photoprocesses that may occur on Mars
562 in order to investigate the preservation of possible biomarkers.

563 Table 2 summarizes some of the most relevant studies carried out so far about the stability of
564 organic molecules in the presence of minerals simulating Martian conditions.
565

Table 2. Summary of the most relevant studies about the stability of organic molecules in the presence of minerals under Martian-like conditions.

Reference	Sample/Preparation method	Irradiation Source/Spectral range	Temperature	Pressure/Atmospheric Composition	Oxidants	<i>In situ/ ex situ</i> analysis	Analytical Techniques
Oro & Holzer 1979 ¹⁷⁹	Adenine, glycine and naphthalene impregnated on powdered quartz at various concentration from 0.01% to 0.2%/Murchison meteorite	Mercury-Xenon lamp/200-300 nm	-10 to 25 °C	1 mbar N ₂ /various O ₂ -content	None	<i>Ex situ</i>	Ion exchange chromatography for glycine, UV-vis spectrophotometry for adenine, Gas chromatography for naphthalene and Murchison
Stoker & Bullock 1997 ¹⁷⁷	Glycine powder mixed with palagonite at 1% concentration	Xenon lamp/ 210-710 nm	Room temperature	100 mbar, 95.59% CO ₂ , 4.21% Ar, 0.11% O ₂ , 0.09% CO	None	<i>In situ</i>	Gas chromatography
Scappini et al. 2004 ¹⁸⁰	Aqueous suspension of DNA and montmorillonite and kaolinite (20 µg DNA and 2 mg clay in 2 mL water)	Nd:YAG pulsed laser/266 nm	Room temperature	Terrestrial ambient conditions	None	<i>Ex situ</i>	Biological transformation
Ciaravella et al. 2004 ¹⁸¹	Aqueous suspension of DNA and montmorillonite and kaolinite (10 µg DNA and 2 mg clay in 1.4 mL water)	Electron impact X-ray source/Monochromatic X-rays of 1.49, 4.51, and 8.04 keV	Room temperature	Vacuum	None		Biological transformation
Garry et al. 2006 ¹⁸²	JSC Mars-1 and Salten Skov Martian soil analogs containing native amino acids	Deuterium lamp/ 190-325 nm	Room temperature (Experiment I and II)/-63°C (Experiment III)	1×10 ⁻⁵ mbar (Experiment I and II)/7 mbar CO ₂ (Experiment III)	None	<i>Ex situ</i>	HPLC
Biondi et al. 2007 ¹⁸³	Aqueous suspension of RNA and montmorillonite (2.25×10 ⁻¹⁰ moles RNA and 1.3 mg montmorillonite in 75 µL water)	Atlas Germicidal Lamp (15 W)/254 nm	Room temperature	Terrestrial ambient conditions	None	<i>Ex situ</i>	Analysis of self-cleavage activity

Shkrob & Chemerisov 2009 ¹⁸⁴	Aqueous suspensions of carboxylic, hydroxycarboxylic, and aminocarboxylic acids, carboxylated aromatics, amino acids and peptides with anatase, goethite, and hematite	Nd:YAG pulsed laser/355 nm	-196 to -73 °C/ 22°C	1 bar, N ₂	None	<i>Ex situ</i>	EPR/transient absorption spectroscopy
Shkrob et al. 2010 ¹⁸⁵	Aqueous suspensions of carboxylic, hydroxycarboxylic, and aminocarboxylic acids, carboxylated aromatics, amino acids and peptides with anatase, goethite, and hematite	Nd:YAG pulsed laser/355 nm	-196°C	1 bar, N ₂	None	<i>Ex situ</i>	EPR
Stalport et al. 2010 ¹⁸⁶	Carboxylic acids α -aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimesic acid directly deposited on quartz windows or underneath a layer of JSC Mars-1	Solar radiation >200 nm	Temperature at low Earth orbit	Pressure at low Earth orbit	None	<i>Ex situ</i>	IR spectroscopy
Johnson & Pratt 2010 ¹⁸⁷	Amino acids glycine, L-alanine, L-valine, L-glutamic acid, and L-aspartic acid in metal-rich sulfate brines (1 mM amino acid concentration)	Xenon lamp/ 250-700 nm	-40 to 20 °C	7 to 15 mbar, 95.3% CO ₂ , 2.7% N ₂ , 1.6% Ar, and 0.13% O ₂	None	<i>Ex situ</i>	XRD, HPLC
Johnson & Pratt 2011 ¹⁸⁸	Amino acids L-Alanine, L-valine, L-aspartic acid, L-glutamic acid, and glycine inoculated into I-MAR Martian regolith simulant at 0.01% concentration	Xenon lamp/ 210-900 nm	-40.4 to 24 °C (on average -17.6 °C)	10 ⁻²² mbar (on average 13.3 mbar), 48.6% CO ₂ , 50% Ar, 1.4% N ₂ , 0.07% O ₂ , 0.04% CO, 0.02% H ₂ O, 0.01 % H ₂	None	<i>Ex situ</i>	HPLC
Shkrob et al. 2011 ¹⁸⁹	Aqueous suspensions of nucleic acid components with anatase, goethite, and hematite	Nd:YAG pulsed laser/355 nm	-196°C	1 bar, N ₂	None	<i>Ex situ</i>	EPR
Fornaro et al. 2013 ¹⁶⁹	Nucleobases adenine, uracil, cytosine and hypoxanthine adsorbed on magnesium oxide and forsterite at concentrations in the range 0.1-10%	Mercury-Xenon lamp/185-2000 nm	25°C	Vacuum (~10 ⁻² -10 ⁻³ mbar)	None	<i>In situ</i>	Diffuse Reflectance Fourier Transform Infrared (DRIFT) spectroscopy

Poch et al. 2015 ¹⁷³	Glycine, urea, and adenine co-deposited with nontronite with high molecule-mineral mass ratio (from 1.0 to 3.6)	Xenon lamp/ 190-400 nm	-55 °C	6±1 mbar, N ₂	None	<i>In situ</i>	IR spectroscopy
dos Santos et al. 2016 ¹⁹⁰	25 amino acids spiked onto augite, enstatite, goethite, gypsum, hematite, jarosite, labradorite, montmorillonite, nontronite, olivine, saponite, and a basaltic lava, at various concentration (approx. 0.001% to 0.1%)	Xenon lamp/ 200-400 nm	-80 to 20 °C	6 mbar, 95% CO ₂ , 5% N ₂	None	<i>Ex situ</i>	GC-MS
Ertem et al. 2017 ¹⁹¹	Purine, pyrimidine and uracil impregnated on ferric oxide, calcite, calcium sulphate, kaolinite, clay-bearing Atacama desert soil at 0.0025% concentration	Xenon lamp/200-400 nm (Experiment I); Gamma Cell 40 from a ¹³⁷ Cs source/Gamma rays 3 Gy (Experiment II)	-196 to 25 °C (Experiment I); 25°C (Experiment II)	15-25 mbar/Ambient pressure, 95.3% CO ₂ , 2.7% N ₂ , 0.13 O ₂ (Experiment I); Ambient pressure, 95.3% CO ₂ , 2.7% N ₂ , 0.13 O ₂ (Experiment II)	0.6% NaClO ₄	<i>Ex situ</i>	HPLC
Fornaro et al. 2018 ⁶⁷	AMP and UMP adsorbed on lizardite, antigorite, labradorite, natrolite, hematite, apatite, forsterite at 5% concentration	Xenon lamp/200-930 nm (Experiment I); Xenon lamp/180-900 nm (Experiment II)	25°C (Experiment I); -20°C (Experiment II)	Terrestrial ambient conditions (Experiment I); 6 mbar CO ₂ (Experiment II)	None	<i>In situ</i> (Experiment I); <i>ex situ</i> (Experiment II)	Diffuse Reflectance Fourier Transform Infrared (DRIFT) spectroscopy

568

569

570

571 **4.2.2.1. Early investigations**

572 In 1979 Oró and Holzer reported one of the first studies about the effects of Martian UV
573 irradiation on biomarkers¹⁷⁹. In this study, adenine, glycine and naphthalene were adsorbed on
574 powdered quartz (SiO_2) and irradiated with mid-UV light both in a dry nitrogen (N_2) atmosphere
575 and at various oxygen (O_2) concentrations and exposure times, along with the Murchison meteorite.
576 Under an N_2 atmosphere, adenine and glycine were very photostable during the entire duration of
577 the irradiation experiment, while naphthalene and the volatilizable and pyrolyzable content of the
578 Murchison meteorite showed degradation. In the presence of O_2 , instead, a significant increase in the
579 degradation rate was observed for all samples, suggesting that oxidizing species may have an
580 important role in the degradation of organic compounds. Subsequently, Stoker and Bullock measured
581 the rate of photodecomposition of glycine mixed with a palagonitic regolith under a simulated
582 Martian atmosphere and observed that this significantly exceeds the rate of organic deposition on
583 Mars by meteoritic infall¹⁷⁷. Specifically, they estimated a quantum efficiency for the decomposition
584 of glycine in the spectral range 200-240 nm of $1.46 \pm 1.0 \times 10^{-6}$ molecules/photon, corresponding to a
585 destruction rate on Mars of $2.24 \pm 1.2 \times 10^{-4}$ g m⁻² per year¹⁷⁷.

586 ten Kate et al. investigated the stability of thin films of glycine and D-alanine subjected to far
587 and mid-UV light under vacuum (4×10^{-6} mbar) at room temperature, finding half-lifetimes of 22 ± 5
588 hours and 3 ± 1 hours, respectively, and predicted that the half-lifetimes of the amino acids are
589 extended to the order of 10^7 years when embedded into regolith with a mixing ratio of 1 ppb¹⁷⁶. The
590 latter is in agreement with the results of Oró and Holzer for glycine decomposition in the presence of
591 low levels of oxygen¹⁷⁹, suggesting that radical-induced decomposition mechanisms may have also
592 played a role in the experiments performed by ten Kate et al. due to, for example, the incorporation
593 of limited amount of water in the amino acid thin films during deposition and/or irradiation that may
594 generate reactive radicals upon irradiation.

595 However, it is worth noting that each one of these laboratory studies lack some of the factors
596 that allow to properly simulate Martian environment. For example, experiments at room temperature
597 may overestimate destruction rates with respect to low temperatures currently existing on Mars,
598 while different results may be obtained at different atmospheric conditions or in the absence of
599 minerals simulating the Martian regolith.

600

601 **4.2.2.2. Effects of atmosphere and temperature**

602 In a subsequent investigation, ten Kate et al. inspected separately the effects of a CO_2 atmosphere
603 and low temperature on the destruction rate of glycine irradiated with mid-UV light, but without
604 minerals¹⁹². The results show that the presence of a 7 mbar CO_2 atmosphere does not affect the
605 destruction rate of glycine compared to vacuum conditions, while a temperature of -63°C
606 (representing the average Martian temperature) slows down the degradation by a factor of 7 due to
607 a slower reaction kinetics. Scaling to Martian UV flux at noontime, they estimated a half-lifetime of
608 250 hours for cold thin films of glycine, which is about one order of magnitude longer than previously
609 evaluated¹⁷⁶ due to a temperature decrease of approximately 90°C . This value of half-lifetime is also
610 in agreement with subsequent studies performed by Stalport et al.¹⁹³ and Poch et al.¹⁹⁴. ten Kate et al.
611 explained the negligible effect of the 7 mbar CO_2 atmosphere in their experiments based on the
612 observation that the UV flux of their lamp was much higher than the rates of formation of oxygen
613 radicals and UV extinction through scattering and absorption by CO_2 over the full spectral range of
614 their lamp¹⁹². The effect of temperature was completely attributed to a slower degradation kinetics
615 at lower temperatures, ruling out any involvement of the water accreted onto the glycine film at -63°C ,
616 since that amount of water was too small to justify a significant UV absorption or production
617 of hydroxyl radicals in the mid-UV spectral range in the absence of minerals¹⁹².

618 Another study by Garry et al. highlighted that water condensed onto minerals at low
619 temperature may enhance degradation of amino acids¹⁸². Specifically, they investigated the stability
620 of native amino acids of two analogs of Martian soil, JSC Mars-1 and Salten Skov. In experiment I and
621 II, samples were exposed for 24 hours and 7 days, respectively, to mid-UV irradiation in vacuum at

622 room temperature. In experiment III, new samples of the same materials were irradiated for 7 days
623 at low temperature (-63°C) in a 7 mbar CO₂ atmosphere. Experiments I and II revealed a slight
624 increase in the concentration of amino acids, such as L-aspartic acid, L-leucine, L-glutamic acid and
625 L-alanine, probably due to the degradation of microorganism contaminations in the soils. At the low
626 temperatures of experiment III, instead, the destruction of amino acids was observed, supporting the
627 idea that the condensation of water onto the soil may be responsible for the production of reactive
628 radical species, which in turn may be involved in the degradation of organics.

629 The catalytic activity of the Mars analog soil JSC Mars-1 was pointed out also during the
630 UVolution experiment flown on board the Biopan ESA module in 2007, in which the carboxylic acids
631 α -aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimesic acid were exposed to space
632 conditions (UV radiation >200 nm) in low Earth orbit for 12 days both directly and underneath a layer
633 of the Martian soil analog JSC Mars-1¹⁸⁶. In the absence of JSC Mars-1, the half-lifetimes extrapolated
634 to the Martian UV flux were in the range of 44-1062, 218-925, 122-317, and 19-169 hours, for AIB,
635 phthalic, trimesic, and mellitic acids, respectively. In the presence of JSC Mars-1, the photodestruction
636 rate increased, giving half-lifetimes of 643 \pm 317 and 506 \pm 64 hours for AIB and phthalic acid,
637 respectively. No data are available for mixtures of trimesic acid and martian soil analogue, as the
638 authors failed to prepare suitable samples in due time before the mission. Mellitic acid showed
639 instability in the presence of the soil, producing a non-radiotolerant compound. Stalport et al.
640 explained these results based on the catalytic activity of the titanium dioxide contained in the JSC
641 Mars-1 soil¹⁸⁶. Titanium dioxide (TiO₂) may be involved in a variety of photochemical processes such
642 as the production of reactive oxygen species, like superoxides and hydroxyl radicals capable of
643 degrading organic compounds¹⁵², and the photocatalytic synthesis of prebiotic organic molecules
644 including carboxylic acids, amino acids, nucleobases and intermediates of the citric acid cycle^{66,195,196}.
645 A recent study about rutile, the most common and stable form of TiO₂ that is ubiquitous on Earth and
646 Mars, demonstrated that natural rutile with impurities and oxygen vacancies has a narrowed band
647 gap and several intermediate levels in the forbidden band¹⁹⁷. Therefore, it is able to create excitons
648 also under the exposure to visible light, which explains the high photocatalytic activity of natural
649 rutile under solar irradiation. The conduction band electrons and valence band holes may enable
650 processes like the photo-reduction of CO₂ to organic molecules (e.g., acetic acid and CH₄) and the
651 photo-oxidative generation of oxidants (e.g., OH[•], O₂ and ClO₄⁻) via rutile photocatalysis¹⁹⁷.
652

653 4.2.2.3. Degradation power of water

654 Johnson and Pratt investigated the effects of UV radiation and ions of magnesium, calcium,
655 sodium and iron, with respect to the rates of diagenesis of amino acids like glycine, L-alanine, L-
656 valine, L-glutamic acid, and L-aspartic acid in metal-rich sulfate brines analogous to the Martian ones
657¹⁸⁷. This study was supposed to mimic saline systems that could have existed during warmer and
658 wetter periods of Mars' history or later periods of diagenesis when saline groundwater percolated
659 through the Martian bedrock. Results revealed that, when exposed to metal-rich brine solutions, the
660 amino acids would undergo rapid oxidation and racemization on time scales of a few years. Such
661 investigation allowed to analyze both oxidation and racemization mechanisms. Regarding oxidation,
662 they estimated very similar oxidation rates for all amino acids, despite the differential stability of the
663 free radical alpha amino acids that are intermediate in the oxidation process¹⁹⁸. Indeed, one would
664 expect a lower destruction rate for glycine based on its less-stable primary radical intermediate with
665 respect to secondary or tertiary alpha amino acids. These results were ascribed to a greater binding
666 efficiency of glycine to metals in solution¹⁹⁹ and/or preferential incorporation within precipitates²⁰⁰.
667 Similarly, Johnson and Pratt argued that the rates of oxidation of alanine and valine should be lower
668 relative to aspartic and glutamic acids due to the poor electron-withdrawing nature of their aliphatic
669 side-chain constituents, as observed in stabilization of carbanion intermediates during racemization
670²⁰¹. However, they found oxidation rates for alanine, valine, and aspartic acid within the range of
671 1 \times 10⁻³ and 4 \times 10⁻³ hours⁻¹ in all sample brines studied, except for glutamic acid in which oxidation
672 doubles those values in the presence of iron. The greater oxidation of glutamic acid was not
673 interpreted as the effect of photo-Fenton processes, which should actually favor oxidation of smaller,

more aliphatic compounds like alanine and valine^{202,203}, but other phenomena were considered like differences in chelation due to the carboxylic acid side-chain constituent and correlation with the molecular weight. At the solution pH, glutamic acid has the possibility to form chelates both as a mono- and a bi-dentate species through the α -COO- and γ -COOH groups²⁰⁴, thus possibly increasing electron transfer with the metal centers. This is true also for aspartic acid, but a previous research has shown positive correlation between molecular weight and degradation after exposure to ionizing radiation¹⁷¹, which would explain the lower oxidation rate of aspartic acid with respect to glutamic acid. Lower molecular weight amino acids showed slightly increased oxidation with iron in solution but only when exposed to UV radiation, which is indicative of a synergistic photo-Fenton oxidation mechanism. Regarding racemization, one would expect a trend similar to oxidation, since it occurs via the abstraction of the alpha carbon proton, forming a planar carbanion structure that can be re-protonated in either enantiomeric configuration²⁰⁵. However, overall, all amino acids showed a similar range of racemization rates indicative of a similar metal-catalyzed reaction scheme. The racemization rates, on average, were estimated as an order of magnitude lower than oxidation rates, indicating a greater susceptibility of amino acids to radiolytic oxidation relative to racemization. Moreover, experimental outcomes revealed that the extent of racemization is independent both from the presence of iron and UV radiation. In the case of aspartic and glutamic acid, the observed increase in racemization in iron brines was attributed to increased complexation with metals. The general trend emerging from these experiments is that the interaction with metals in solution can considerably increase both oxidation and racemization rates, likely due to iron and non-iron metals forming Fenton-type reaction pathways in such highly mineralized solutions²⁰¹. These results imply that high water activity on Mars might have caused rapid oxidation of biologically relevant molecules within very short geological timescales, contrary to the classical “follow the water” principle which Mars exploration missions have been based on. Nevertheless, preserved organic compounds might be found on Mars if they precipitated rapidly from source brines, experiencing minimal interaction with water, and were sequestered within “protective” mineral matrices before complete oxidation.

Similarly, Johnson and Pratt attested the “degradation power” of water also in another study of mid-UV irradiation under Martian-like atmosphere of L-alanine, L-valine, L-aspartic acid, L-glutamic acid, and glycine inoculated into a Martian regolith simulant, namely the Indiana-Mars Analog Regolith (I-MAR) mimicking high-silica andesitic basalts¹⁸⁸. Analysis of amino acid recovery from the I-MAR samples pointed to a limited effect of UV radiation below the uppermost few millimeters of regolith. Using the model by Garry et al. for irradiation of a column of regolith¹⁸², they estimated a penetration depth of 56 μ m. The decrease in amino acid concentration at depths below the UV penetration depth was ascribed to processes different from photolytic oxidation. Specifically, at depths below 2 cm, they observed a delay in the amino acid concentration loss, both in the irradiated and dark samples, which implies a diffusion-controlled mechanism for the oxidation of these compounds, migrating downward through the regolith during the course of the experiment. Interestingly, the rate of loss of these compounds appeared to be very similar to the ones for photolytic or radiolytic oxidation (10^{-7} - 10^{-8} s⁻¹)^{171,176}, suggesting a similar reaction mechanism like the formation of hydrogen peroxide and hydroxyl radicals by the diffusion and accumulation of atmospheric water vapor condensed at mineral grain boundaries during low temperature cycles in the experiments. Hurowitz et al. observed as the reaction of basaltic surfaces with minor amounts of water can produce measurable quantities of hydrogen peroxide in the absence of UV radiation or gas phases¹⁵⁰. Johnson and Pratt calculated that in their experiments the regolith surface might have equilibrated approximately with a uniform, single layer of water molecules¹⁸⁸, similarly to the predictions of a few monolayers of water adsorbed permanently to the Martian regolith²⁰⁶. They concluded that amino acid oxidation would thus be dependent on the rate of water vapor diffusion into the regolith and the availability of reactive basaltic surfaces.

723

724

725

726

4.2.2.4. Photocatalysis

727 Photocatalytic activity has been denoted also in the case of the hydrated metal oxides anatase,
728 goethite, and hematite toward degradation of carboxylic, hydroxycarboxylic, and aminocarboxylic
729 acids, carboxylated aromatics, amino acids and peptides in aqueous suspensions ¹⁸⁴.

730 In particular, Shkrob and Chemerisov carried out irradiation experiments both at room (22°C)
731 and low temperature (from -196 to -73°C) using a UV wavelength of 355 nm, which is absorbed only
732 by the oxide mineral particles. At low temperatures, a more efficient photocatalytic decomposition of
733 the carboxylated molecules was observed due to more favorable binding to mineral surface sites.
734 Data indicated that the main photodegradation path is decarboxylation initiated by charge transfer
735 from the metal oxide to the adsorbate, and anatase (TiO₂), goethite (FeO(OH)), and hematite (Fe₂O₃)
736 feature a similar photocatalytic activity for aromatic, carboxylic, and hydroxycarboxylic acids, while
737 for α -amino acids and peptides hematite has reduced activity. Further investigations indicated the
738 formation of carbon dioxide and methane during the process of photocatalytic decarboxylation via
739 the photo-Kolbe reaction ¹⁸⁵, which is easily initiated through absorption of UVA (315-400 nm) by
740 oxide minerals and takes place at low temperature. This kind of processes likely occurs on Mars at
741 the surface of particulate iron(III) oxides abundant in the Martian regolith, and provides a viable
742 route for seasonally variable methane production on Mars.

743 Shkrob et al. also inspected the photocatalytic oxidation of aqueous suspensions of nucleic acid
744 components with anatase (TiO₂), goethite (FeO(OH)), and hematite (Fe₂O₃) ¹⁸⁹. Purine radical cations
745 and sugar-phosphate radicals formed as consequence of the oxidation of purine nucleotides, while
746 in the case of pyrimidine nucleotides other than thymine only the sugar-phosphate moiety
747 underwent oxidation. The oxidation of the thymine derivatives resulted in deprotonation from the
748 methyl group of the base. A difference was denoted between some single-stranded (ss)
749 oligoribonucleotides and wild-type ss RNA that were oxidized at purine sites, and double-stranded
750 (ds) oligoribonucleotides and DNA that conversely showed high stability against oxidation. These
751 observations imply that duplex DNA would be better preserved on Mars since it is more resistant to
752 oxidative diagenesis. From a prebiotic point of view, ds DNA might have been naturally selected as
753 the “molecule of life” for its polymer morphology and radical chemistry favorable to withstand
754 oxidative stress with respect to ss RNA, provided that metal oxides served as a template for synthesis
755 of polynucleotides.

756

4.2.2.5. Clay minerals

757 Photoprotective properties, instead, have been shown in several studies involving clay minerals.

758 Scappini et al. investigated the effect of UV radiation at 266 nm on aqueous solutions of free and
759 clay-adsorbed DNA ¹⁸⁰. It turned out that the clay minerals montmorillonite
760 ($(\text{Na},\text{Ca})_{0.3}(\text{Al},\text{Mg})_2\text{Si}_4\text{O}_{10}(\text{OH})_2 \cdot n(\text{H}_2\text{O})$) and kaolinite ($\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$) are able to protect DNA,
761 reducing the radiation damage with respect to free DNA. They argued that such a photoprotective
762 effect should not be associated to a mechanical shielding because the adsorption of the nucleic acids
763 takes place only on the surface of the clay mineral ²⁰⁷. Morphological and chemical factors should be
764 involved, instead, like a change in DNA configuration from B to A when adsorbed on the mineral
765 surface. The B configuration is much more compact and its binding to the surface sites may take place
766 through electrostatic and/or hydrogen bonds likely stabilizing the molecule. With a similar
767 experiment, Biondi et al. demonstrated the ability of montmorillonite to protect the catalytic RNA
768 molecule ADHR1 (Adenine Dependent Hairpin Ribozyme 1) from UV-induced damages ¹⁸³.

769 Ciaravella et al. observed a similar photoprotective effect also exposing aqueous suspensions of
770 DNA, montmorillonite and kaolinite to soft X-rays (1.49, 4.51 and 8.04 keV) for exposure times
771 ranging from 2 minutes up to 16 hours ¹⁸¹. Specifically, they proved that free DNA is damaged by X-
772 rays at a level depending on the energy dose rather than the hardness of the radiation. On the
773 contrary, in the presence of clay minerals, DNA is not damaged by X-rays for energy doses up to
774 5.8×10^4 erg.

775 Poch et al. carried out mid-UV irradiation experiments under Martian-like temperature and
776 pressure on glycine and adenine molecules co-deposited with the iron(III)-smectite clay nontronite

777

778 ((CaO_{0.5},Na)_{0.3}Fe³⁺₂(Si,Al)₄O₁₀(OH)₂·nH₂O) from aqueous solution, at very high molecule-mineral
779 mass ratio (from 1.0 to 3.6) to simulate evaporation of small, warm ponds of liquid water containing
780 a high concentration of organics¹⁷³. Such a high concentration of organics is not ideal when interested
781 in studying the catalytic/protective properties of minerals, since only a part of the total organic
782 molecules can establish direct physico-chemical interactions with the mineral surface sites while the
783 other molecules form multilayers on the surface, which make more difficult dissecting between
784 multiple possible effects. In fact, in this situation photolysis of the molecules directly exposed to the
785 UV radiation can occur simultaneously to photoprotection mechanisms provided by the mineral or
786 by the molecules adsorbed in the upper layers, as well as transformation processes of the molecules
787 consequently to their interaction with the mineral, which can act as either a photocatalyst or a
788 stoichiometric reagent. The results of their study revealed a reduction of the efficiencies of
789 photodecomposition of glycine and adenine by a factor of 5 in the presence of nontronite, along with
790 additional photoprotection by a factor of 5 doubling the amount of nontronite in the sample of
791 glycine. These observations strongly suggest that the photoprotection provided by nontronite is not
792 only due to mechanical shielding, but also a sort of stabilizing molecule-mineral interactions takes
793 place, such as electrostatic interactions of the molecules in the interlayers and/ or on the edges of
794 nontronite allowing a more efficient energy dissipation and/or easier recombination for the fragments
795 of the photo-dissociated molecules. Neither formation of photoproducts nor catalytic or
796 stoichiometric degradation caused by surface groups of the mineral matrix were observed. However,
797 nontronite showed to promote an acceleration of the dissociation of urea, maybe due to its greater
798 ability to chelate Fe³⁺ ions with respect to glycine and adenine, which may be responsible for a more
799 efficient photo-oxidation and decomposition.

800 The catalytic behavior of clay minerals was evidenced also by Otroshchenko and Vasilyeva with
801 another singular experiment in which a dry powder of montmorillonite
802 ((Na,Ca)_{0.3}(Al,Mg)₂Si₄O₁₀(OH)₂·n(H₂O)) was first irradiated with UV light at ambient conditions for 6
803 hours, and then mixed with an acidic aqueous solution of adenosine monophosphate (AMP)²⁰⁸. The
804 suspension was kept under stirring at 4-5 °C for 24 hours, followed by centrifugation and extraction
805 of the molecules from the clay. The analysis of the extract showed the formation of tetranucleotides.
806 Therefore, Otroshchenko and Vasilyeva observed that adsorption of AMP on preliminarily UV-
807 irradiated clay can initiate the formation of oligonucleotides that have linear chains with the typical
808 3'-5' inter-nucleotide bonds of natural nucleic acids. The authors stated that similar results were
809 obtained also upon the irradiation of SiO₂ or volcanic ashes, and using guanosine monophosphate
810 (GMP), but they did not show the relative data²⁰⁸. The suggested mechanism of formation of
811 oligonucleotides involves the photolysis of the water molecules bound to the minerals in the presence
812 of UV radiation. This results in the formation of hydrogen peroxide that, in turn, decomposes to give
813 reactive radicals eventually attacking the weakest 2' and 3' sites of the ribose cycle and forming the
814 inter-nucleotide linkage. This hypothesis was verified by incubating for 24 hours at 4 °C a non-
815 irradiated sample of AMP adsorbed onto montmorillonite in a solution containing hydrogen
816 peroxide, and observing the formation of more complex species²⁰⁸. However, the authors did not
817 provide detailed data, so the mechanism remains unclear.

818 An important highlight of these studies is that a straightforward classification of Martian
819 minerals as catalytic or protective ones is not possible, since the behavior of minerals under Martian
820 conditions may depend on the specific organic molecules involved and their specific interactions with
821 the mineral surface sites. This points out the need for a scrutinized systematic study of a variety of
822 mineral matrices in combination with many organic compounds belonging to a wide range of
823 molecular classes under simulated Martian conditions.

824

825 4.2.2.6. Towards realistic simulations of Martian environment

826 dos Santos et al. studied the preservation under simulated Mars conditions of 25 amino acids
827 spiked onto several Mars-relevant minerals like olivine ((Mg,Fe)₂SiO₄), enstatite (MgSiO₃), goethite
828 (FeO(OH)), hematite (Fe₂O₃), gypsum (CaSO₄·2H₂O), jarosite (KFe³⁺₃(OH)₆(SO₄)₂), labradorite
829 ((Ca,Na)(Si,Al)₄O₈), augite ((Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)₂O₆), the smectites montmorillonite

830 ((Na,Ca)_{0.3}(Al,Mg)₂Si₄O₁₀(OH)₂·n(H₂O)), nontronite ((CaO_{0.5},Na)_{0.3}Fe³⁺₂(Si,Al)₄O₁₀(OH)₂·nH₂O) and
831 saponite (Ca_{0.25}(Mg,Fe)₃((Si,Al)₄O₁₀)(OH)₂·n(H₂O)), as well as a basaltic lava ¹⁹⁰. Their results
832 confirmed that clay minerals feature protective properties towards amino acids. This behavior was
833 explained based on typical features of clay minerals like their high surface areas, which favor
834 molecular adsorption, their small pore sizes that limits the penetration of radiations, and their
835 optimal interlayer sites for accommodation of organic compounds, creating a shielded environment
836 against external agents. The sulfates gypsum and jarosite also showed to protect amino acids, likely
837 due to their low UV absorbance or entrapment of amino acids upon recrystallization of partially
838 dissolved sulfate. On the other hand, as previously reported, minerals containing iron(II) like augite,
839 enstatite, hematite and basaltic lava, demonstrated photocatalytic activity. The high amino acid
840 preservation observed for olivine in comparison to augite, enstatite and basaltic lava, was ascribed to
841 the low content of iron(II) as measured by XRD ¹⁹⁰. Their data also highlighted that degradation of
842 both D- and L-amino acids takes place at the same rate, and there is a correlation between
843 preservation/degradation of amino acids in the presence of UV radiation and their molecular
844 structure; specifically, the amino acids with alkyl substitution in the α -carbon feature a greater
845 photostability. Moreover, they observed that amino acid preservation increases as the amino acid
846 concentration increases. This trend may be due to stabilizing inter-molecular interactions, or
847 formation of molecular aggregates in which some molecules are directly exposed to radiation while
848 others are covered and more protected, or occupation of less exposed mineral sites.

849 Other relevant studies on an important class of biomarkers, namely the nucleic acid components,
850 have been recently performed by Ertem et al. ¹⁹¹ and Fornaro et al. ⁶⁷.

851 Ertem et al. analyzed the photostability of purine, pyrimidine and uracil under conditions
852 mimicking Martian mid-UV irradiation, atmosphere, and the presence of oxidants like sodium
853 perchlorate (NaClO₄) ¹⁹¹. They pointed out some protection capability of the minerals calcite (CaCO₃),
854 calcium sulfate (CaSO₄), kaolinite (Al₂Si₂O₅(OH)₄) and clay-bearing Atacama desert soil. In the
855 presence of these minerals, they observed molecular degradation of only 1-2% in contrast to complete
856 degradation in the absence of the minerals when molecules were subjected directly to a UV flux
857 equivalent to only 5 Martian day's exposure. These organic compounds appeared to be very unstable
858 also in the presence of ferric oxide decomposing completely before UV irradiation into products
859 without any chromophore group. Noteworthy, the presence of 0.6% sodium perchlorate did not
860 cause any effect on the degradation outcomes. Similarly, results of the UV irradiation experiment
861 carried out at 15-25 mbar and at ambient pressure were comparable and demonstrated that pressure
862 has no significant effect on the irradiation products, accordingly with previous studies by Horneck
863 et al. ²⁰⁹ and Schuerger et al. ^{210,211}.

864 Fornaro et al. carried out a series of *in situ* and *ex situ* mid-UV irradiation experiments about the
865 preservation of nucleic acid components in different conditions: (i) 25°C/vacuum (~10⁻²-10⁻³ mbar);
866 (ii) ambient terrestrial temperature and pressure; (iii) -20°C/6 mbar CO₂ ^{67,169}. In particular, the
867 nucleobases adenine, uracil, cytosine, and hypoxanthine were irradiated with mid-UV light *in situ* at
868 25°C under vacuum, both as pure solid powder and adsorbed on the minerals magnesium oxide
869 (MgO) and forsterite (Mg₂SiO₄) ¹⁶⁹. Results showed that cytosine and hypoxanthine have a greater
870 photostability compared to adenine and uracil, because no evidence of significant degradation was
871 observed under the experimental conditions, both in the case of pure compounds and nucleobases
872 adsorbed onto magnesium oxide and forsterite. In the case of adenine and adenine adsorbed on the
873 minerals, slight degradation was observed, while significant changes in the infrared spectra during
874 UV irradiation were denoted for uracil both pure and adsorbed on the minerals. Comparison of the
875 degradation kinetics of the same vibrational modes for the pure nucleobases and the nucleobases
876 adsorbed on the minerals showed that minerals make degradation faster and more probable (the half-
877 lifetimes of degradation decrease and the degradation cross sections increase), as acting as catalysts.
878 In the case of uracil, new IR features indicative of possible photoproducts appeared during UV
879 irradiation. These new bands appeared at exactly the same wavenumbers both for pure uracil and
880 uracil adsorbed on forsterite, but their formation was faster in the presence of the mineral. A
881 reevaluation of these data in light of new experiments ⁶⁷ allowed to assign these features to a cis-syn

882 cyclobutane dimer, whose formation occurs through a [2+2] cycloaddition of the C5C6 double bonds
883 of adjacent pyrimidine bases. Forsterite is supposed to catalyze such a reaction by concentrating the
884 molecules on a local scale through adsorption and inducing the correct orientation of reactive groups
885 of neighboring molecules through specific molecule-mineral interactions. Thus, this kind of catalytic
886 activity is likely related to a proximity effect. The same photoproduct was also observed upon *in situ*
887 UV irradiation of uridine 5'-monophosphate (UMP) under terrestrial ambient conditions ⁶⁷.
888 Consistently with studies reported in the literature, adenine and adenosine 5'-monophosphate
889 (AMP) proved to be more stable in the presence of UV radiation thanks to the electronic structure of
890 their chromophore, which determines an extremely efficient relaxation of the excited state ²¹² and
891 proves more resistance to oxidation ²¹³. The photodynamics of the pyrimidine bases is much richer
892 and the deactivation time from the excited state to the ground state is also much longer as compared
893 to the purine bases, increasing the probability of photochemical reactions ²¹⁴. Interestingly, irradiating
894 AMP and UMP adsorbed on the serpentine mineral lizardite ($Mg_3Si_2O_5(OH)_4$) under terrestrial
895 ambient conditions, no new IR features ascribable to cis-syn cyclobutane dimers were detected, but
896 a new peak at 2164 cm^{-1} appeared, which was assigned to a cyanate molecular fragment OCN^- . Such
897 a species has some relevance in the prebiotic context because cyanate may be involved in the synthesis
898 of key biomolecules like amino acids and polypeptides. It is worth noting that only in the presence
899 of atmospheric oxygen there was evidence of its formation, maybe due to the action of reactive
900 oxygen radicals produced by UV-photolysis of O_2 . Different outcomes were obtained at $-20^\circ C$ under
901 a 6 mbar CO_2 atmosphere; specifically, the degradation kinetics was on average 3 order of magnitude
902 slower than estimated under terrestrial ambient conditions, with half-lifetimes of the order of 50-100
903 Martian years for UMP and AMP both pure and adsorbed on lizardite, and no cyanate spectroscopic
904 feature was observed. This suggests that current Martian conditions of temperature below $0^\circ C$ and 6
905 mbar carbon dioxide atmosphere aid to stabilize important "building blocks of life" such as
906 nucleotides subjected to UV irradiation, likely due to the absence of reactive molecular oxygen and
907 slower degradation kinetics. The temperature effect has been already verified by ten Kate et al. ¹⁹²,
908 who observed half-lifetimes for glycine about one order of magnitude longer than previously
909 evaluated ¹⁷⁶ due to a temperature decrease of roughly $90^\circ C$. In the study of Fornaro et al. ⁶⁷ one would
910 expect even a less significant effect since the temperature variation was only of $45^\circ C$. Hence, the 3-
911 orders of magnitude difference should be partly attributed also to the different atmospheric
912 conditions. ten Kate et al. ¹⁹² argued that CO_2 has no effect with respect to vacuum on the degradation
913 kinetics, but this new study indicates that there is definitely a remarkable difference between an
914 oxygenated and a non-oxygenated atmosphere. Consistently with previous experiments under
915 terrestrial conditions and in vacuum, there were spectroscopic changes for pure UMP (not mixed
916 with mineral) also under CO_2 atmosphere at $-20^\circ C$ ascribable to the formation of cyclobutane dimers.
917 Hence, the formation of cyclobutane dimers appears to be independent on the environmental
918 conditions. This confirms the intrinsic higher photoreactivity of the uracil derivatives that might have
919 been not selected in DNA, the "molecule of life", due to their greater inclination to other reaction
920 pathways. Fornaro et al. also compared the catalytic/protective properties of a variety of minerals
921 relevant to Mars mineralogy ⁶⁷. They observed that labradorite ($(Ca,Na)(Si,Al)_4O_8$) and natrolite
922 ($Na_2Al_2Si_3O_{10}\cdot 2H_2O$) feature a remarkable catalytic activity, likely due to photo-ionization
923 phenomena that may occur inside the mineral matrix promoting redox processes. Hematite (Fe_2O_3)
924 and forsterite (Mg_2SiO_4) showed an intermediate behavior, maybe caused by the predominance of
925 the effect related to the opacity of iron to UV radiation over the typical high reactivity of iron-bearing
926 minerals. Apatite ($Ca_5(PO_4)_3(F,Cl,OH)$), lizardite ($Mg_3Si_2O_5(OH)_4$) and antigorite
927 ($(Mg,Fe^{++})_3Si_2O_5(OH)_4$) did not show any significant catalytic effect. In the case of apatite, the
928 photoprotection mechanism may be related to its capability to absorb UV radiation and efficiently
929 dissipate energy via radiative decay. The serpentine minerals lizardite and antigorites are
930 phyllosilicates characterized by high surface areas and optimal interlayer sites for adsorption and
931 shielding of organic molecules. These findings are in agreement with the UV irradiation studies of
932 amino acids adsorbed on various minerals under Martian-like conditions carried out by dos Santos

933 et al.¹⁹⁰, revealing an overall greater preservation potential in the case of phyllosilicate minerals with
934 respect to iron oxides (e.g., hematite) and feldspars (e.g., labradorite).

935

936 4.2.2.7. Effects of galactic cosmic rays and solar energetic particles

937 Galactic cosmic rays and solar energetic particles represent other important degrading agents
938 for organic matter on Mars.

939 Pavlov et al.²¹⁵ and Dartnell et al.^{165,166} have suggested that their influence extends much more
940 in the subsurface than UV radiation, reaching a depth of several meters.

941 Clark²¹⁶ showed that cosmic rays may reach depths of 9 meters on Mars based on its atmospheric
942 column density that is only 16-27 g cm⁻² at normal incidence (much lower than Earth's atmospheric
943 shield of 1000 g cm⁻²). However, despite their much higher penetration depth, laboratory experiments
944 show that amino acids like glycine, alanine and phenylalanine, both in the presence and absence of
945 water ice, would have a half-lifetime due to proton bombardment on the surface of Mars of about 10⁸
946 years (without taking into account additional effects, such as photolysis by UV photons)^{170,217}.

947 Similarly, Kmínek and Bada showed that gamma radiations cause degradation of simple organic
948 molecules like the amino acids L-aspartic acid, L-glutamic acid, glycine, L-alanine and γ -amino-n-
949 butyric acid, as well as methylamine and ethylamine, on timescales of hundreds of millions of years,
950 and below a radiation shielding depth of 400-500 g cm⁻², amino acids would not be substantially
951 degraded due to the relatively low radiation dose from radioactive decay¹⁷¹.

952 Conversely, other experiments of gamma irradiation of amino acids adsorbed on clay showed a
953 low yield of recovery for tryptophan, aspartic acid, and glutamic acid by using the same source of
954 gamma rays, radiation doses 2 orders of magnitude smaller but doubling the dose rate²¹⁸.
955 Montmorillonite ((Na,Ca)_{0.3}(Al,Mg)₂Si₄O₁₀(OH)₂·n(H₂O)) demonstrated some protection behavior
956 against molecular decomposition with respect to the case of the pure amino acids in aqueous
957 solutions but not at high extent. Greater photoprotection was observed in the case of adenine, which
958 showed to resist high-radiation doses without transformation inside the clay²¹⁹. In aqueous solution,
959 the decomposition of the target compounds and the synthesis of other molecules by
960 deamination/hydroxylation reactions may be promoted by the products deriving from water
961 radiolysis.

962 Another study about the effects of gamma radiation on mixtures of purine and uracil with
963 calcium carbonate (CaCO₃) reports a 10-13% loss of organics upon exposure to 3 Gy gamma rays that
964 correspond to approximately 22 Martian years¹⁹¹.

965 The presence of oxidants in the Martian soil also may have a great impact on the fate of organics
966 irradiated with gamma rays or energetic solar particles.

967 Quinn et al. observed that calcium perchlorate exposed to gamma rays decomposes in a CO₂
968 atmosphere to form hypochlorite (ClO), chlorine dioxide (ClO₂), and trapped oxygen (O₂), which is
969 an oxidizing species¹³³. Gobi et al. explored the radiolytic decomposition of glycine under simulated
970 Martian conditions in the presence of perchlorates by energetic electrons at 10, 160, 210, and 260 K,
971 mimicking secondary electrons originating from the interaction of galactic cosmic rays with the
972 Martian regolith in the first 5-10 cm depths over about 250 million years¹³⁷. The experimental
973 outcomes revealed that the presence of perchlorate has a significant effect on the decomposition rates
974 of glycine, which increase by a factor of about two with respect to pure glycine. This indicates that,
975 in the presence of perchlorates, two degradation mechanisms take place simultaneously: radiolysis
976 by the electrons and oxidation by the oxygen atoms released from the perchlorate.

977 Gobi et al. also highlighted that the degradation rates are independent on temperature (at least
978 within the range of temperature relevant for Mars, i.e., 160-260 K)¹³⁷. Furthermore, they observed
979 that the degradation rates of glycine are significantly higher than the formation rates of CO₂ and CO,
980 suggesting the occurrence of additional degradation pathways such as a polymerization of glycine.

981 In a subsequent study, Goby et al. unraveled the degradation mechanism for glycine, observing
982 that the decarboxylation is exclusively the first decay step during irradiation regardless of the
983 presence of perchlorate anions²²⁰. In addition, they detected in pure glycine samples the
984 decarboxylation co-product methylamine (CH₃NH₂) and its radiolytic decay product ammonia

985 (NH₃). In the presence of perchlorates, partial oxidation of methylamine may occur, which makes
986 irreversible the decarboxylation equilibrium reaction of glycine. Thus, the depletion of the
987 decarboxylation co-product methylamine results in an overall 10-fold increase in the formation rate
988 of CO₂ and its elevated concentrations in the perchlorate-containing irradiated samples.

989 Goby et al. further explored the effects of irradiation with energetic electrons on the stability of
990 adenine mixed with magnesium perchlorate (Mg(ClO₄)₂)¹³⁶. Also in this case, the results indicated an
991 increase of the destruction rate of adenine in the presence of perchlorate. This is likely due to the
992 opening of alternative reaction channels, including the concurrent radiolysis/oxidation of the sample,
993 resulting in a lot of radiolysis products like carbon dioxide (CO₂), isocyanic acid (HNCO), isocyanate
994 (OCN⁻), carbon monoxide (CO), and nitrogen monoxide (NO), an oxidation product containing
995 carbonyl groups (R₁R₂-C=O) with a constrained five-membered cyclic structure, and cyanamide
996 (H₂N-C≡N).

997

998

999 **5. Summary of the results and take-home messages**

1000 Understanding the catalytic/protective behavior of Martian minerals is fundamental in order to
1001 unravel the possible prebiotic processes that might have led to the origin of life on Mars. Several
1002 experiments have been conducted to simulate the harsh Martian environment, especially by using
1003 UV sources or oxidants. This contribution has provided a review of the most relevant studies about
1004 the roles of minerals in the preservation of biomarkers under Martian-like conditions.

1005 Table 3 specifically summarizes the irradiation experiments carried out so far on varied
1006 molecule-mineral complexes, along with the supposed mechanism of protection/catalysis, in the mid-
1007 UV spectral range that is the most relevant for Mars and produces effects on very short timescales.
1008

1009
1010**Table 3.** Supposed mechanisms of preservation/degradation of biomarkers due to the interactions with minerals under mid-UV irradiation.

MINERAL	BIOMARKER	RADIATION	PROTECTION/PRESERVATION	CATALYSIS/DEGRADATION	SUPPOSED MECHANISM
Quartz	Adenine	200-300 nm	Under N ₂	Under O ₂	Photo-oxidation by O ₂ (Oro & Holzer 1979).
Quartz	Glycine	200-300 nm	Under N ₂	Under O ₂	Photo-oxidation by O ₂ (Oro & Holzer 1979).
Quartz	Naphthalene	200-300 nm	✗	Under O ₂ /N ₂	Photo-oxidation by O ₂ (Oro & Holzer 1979).
Murchison meteorite	Indigenous organics	200-300 nm	✗	Under O ₂ /N ₂	Photo-oxidation by O ₂ (Oro & Holzer 1979).
Palagonite	Glycine	210-710 nm	✗	Under Martian-like atmosphere	Photolysis into CH ₄ , C ₂ H ₆ , C ₂ H ₄ (Stoker & Bullock 1997).
JSC Mars-1 and Sølten Skov Martian soil analogs	Indigenous amino acids	190-325 nm	✗	Under Martian-like atmosphere	Decomposition induced by radicals produced by photolysis of water condensed onto minerals (Garry et al. 2006).
JSC Mars-1 Martian soil analog	Carboxylic acids α -aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimelic acid	Solar radiation > 200 nm	✗	Under low Earth orbit conditions	Decomposition induced by radicals/oxidants produced by TiO ₂ -photocatalysis (Stalport et al. 2010).
I-MAR Martian regolith simulant	Amino acids L-Alanine, L-valine, L-aspartic acid, L-glutamic acid, and glycine	210-900 nm	✗	Under Martian-like atmosphere	Photolytic oxidation up to UV penetration depth, then decomposition induced by radicals formed from condensed atmospheric water vapor diffused into the regolith (Johnson & Pratt 2011).
Aqueous suspensions of anatase, goethite, and hematite	Carboxylic, hydroxycarboxylic, and aminocarboxylic acids, carboxylated aromatics, amino acids and peptides	355 nm	✗	Under N ₂	Decarboxylation initiated by charge transfer from the metal oxide to the adsorbate. Specifically, anatase, goethite, and hematite feature a similar photocatalytic activity for aromatic, carboxylic, and hydroxycarboxylic acids, while for α -amino acids and peptides hematite has reduced activity (Shkrob et al. 2010).
Aqueous suspensions of anatase, goethite, and hematite	Nucleic acid components	355 nm	Only for double-stranded oligoribonucleotides and DNA	Under N ₂	Oxidation of purine nucleotides leads to formation of purine radical cations and sugar-phosphate radicals. In the case of pyrimidine nucleotides other than thymine only the sugar-phosphate moiety undergoes oxidation, while deprotonation from the methyl group of the base occurs for thymine derivatives. Single-stranded (ss) oligoribonucleotides and wild-type ss RNA are oxidized at purine sites, while double-stranded (ds) oligoribonucleotides and DNA show high stability against oxidation (Shkrob et al. 2011).
Aqueous suspensions of montmorillonite and kaolinite	DNA	266 nm	Under terrestrial ambient conditions	✗	Photoprotection due to specific molecule-mineral interactions; specifically, a change in DNA configuration from B to A when adsorbed on the mineral surface, which is more compact and its binding to the surface sites may take place through electrostatic and/or hydrogen bonds likely stabilizing the molecule (Scappini et al. 2004).
Aqueous suspensions of montmorillonite	RNA molecule ADHR1	254 nm	Under terrestrial ambient conditions	✗	Photoprotection due to specific molecule-mineral interactions (Biondi et al. 2007).
Nontronite	Glycine and adenine	190-400 nm	Under N ₂	✗	Photoprotection is not only due to mechanical shielding, but also stabilizing molecule-mineral interactions, such as electrostatic interactions of the molecules in the interlayers and/or on the edges of nontronite allowing a more efficient energy dissipation and/or easier recombination for the fragments of the photo-dissociated molecules (Poch et al. 2015).
Nontronite	Urea	190-400 nm	✗	Under N ₂	Catalysis in urea photo-oxidation and decomposition, maybe due to chelation with Fe ²⁺ ions (Poch et al. 2015).
Smectites montmorillonite, nontronite and saponite	25 Amino acids	200-400 nm	Under Martian-like conditions	✗	Photoprotection by mechanical shielding effect (dos Santos et al. 2016).
Sulfates gypsum and jarosite	25 Amino acids	200-400 nm	Under Martian-like conditions	✗	Photoprotection due to low UV absorbance of sulfates or entrapment of amino acids upon recrystallization of partially dissolved sulfate (dos Santos et al. 2016).
Augite, enstatite, hematite and basaltic lava	25 Amino acids	200-400 nm	✗	Under Martian-like conditions	Photocatalytic activity due to iron(II) reactions (dos Santos et al. 2016).
Calcite, calcium sulphate, kaolinite, clay-bearing Atacama desert soil + 0.6% NaClO ₄	Purine, pyrimidine and uracil	200-400 nm	Under Martian-like conditions	✗	Photoprotection mechanism not specified (Ertem et al. 2017).
Ferric oxide + 0.6% NaClO ₄	Purine, pyrimidine and uracil	200-400 nm	✗	Under Martian-like conditions	Complete decomposition before UV irradiation (Ertem et al. 2017).
Magnesium oxide and forsterite	Adenine, uracil, cytosine, and hypoxanthine	185-2000 nm	✗	Under vacuum	Catalysis likely due to a proximity effect (Fornaro et al. 2013).
Lizardite, antigorite and apatite	AMP and UMP	200-930 nm	Under Martian-like conditions	✗	Various photoprotection mechanisms: mechanical shielding/stabilizing molecule-mineral interactions for lizardite and antigorite, photo-luminescence for apatite (Fornaro et al. 2018).
Labradorite, natrolite, hematite, forsterite	AMP and UMP	200-930 nm	✗	Under Martian-like conditions	Remarkable catalytic activity of labradorite and natrolite, likely due to photo-ionization phenomena that may occur inside the mineral matrix promoting redox processes. For hematite and forsterite the catalytic activity is not so high, maybe due to the opacity of iron to UV radiation (Fornaro et al. 2018).

1011
10121013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

From these investigations it turns out that establishing the conditions for preservation of organics on Mars is very challenging because the behavior of a mineral as catalyst or protector strongly depends on the nature of the biomarker, the characteristics of the mineral itself, and the experimental conditions (e.g., molecule-mineral ratio, presence of oxidants, atmosphere, pressure, temperature, source of radiation, and so on). In general, the electronic structure of the molecules adsorbed on a mineral surface changes, influencing as a consequence the possible reaction pathways ²²¹. Photocatalytic minerals accelerate degradation of adsorbed molecules or catalyze radiation-driven reactions towards more complex species ⁵⁷. For instance, molecular photolysis may be favored by adsorption on the mineral surfaces because molecule-mineral interactions can weaken intramolecular bonds. The catalytic activity of some minerals may be related to a proximity effect, i.e., their ability to increase the local concentration of molecules through adsorption onto the mineral surfaces and, consequentially, the probability of molecular self-association and chemical reactions ⁵⁷. Moreover, molecular adsorption may take place with a configuration that facilitates interactions between reactive functional groups of molecules close to each other on the surface. Other minerals possess catalytic sites like transition metals, which are extremely active in electron transfer thanks to their *d* orbitals only partially filled, thus may be easily involved in redox reactions. Indeed, such minerals undergo electron-hole separation upon absorption of photons, which can be followed by electron transfer to adsorbed molecules ²²¹. Furthermore, Fenton and photo-Fenton processes may occur with iron-bearing minerals. On the other hand, some minerals may provide preservation thanks to their

1032 structural properties, as observed in the case of phyllosilicates that feature optimal interlayer sites for
1033 molecular adsorption and mechanical shielding of organic compounds. Other minerals feature
1034 photoprotective properties based on peculiar electronic and optical features like opacity to radiation,
1035 luminescence, low refractive index, etc., which reduce the damaging effects of ionizing radiations on
1036 adsorbed molecules^{67,173,180,183,222}.

1037 Beyond UV irradiation, which produces significant effects at the surface, it has been shown that
1038 other ionizing radiations and energetic solar particles cause effects deeper in the subsurface of Mars,
1039 where a complex oxidation chemistry can take place. Therefore, in the actual Martian environment,
1040 various mechanisms play simultaneously and the overall stability of biomarkers under Martian
1041 conditions results from a subtle balance among them.

1042 One of the important take-home messages is that it is extremely difficult to come up with a
1043 general mechanism to predict the behavior of the most relevant Martian minerals. Nevertheless,
1044 accurate investigations taking into account all the key factors for a realistic simulation of the Martian
1045 environment would provide an essential contribution to understand the trends.

1046 In particular, from this review it appears clear that laboratory simulations need to consider the
1047 presence of mineral phases and oxidizing agents representative of Martian regolith, the right source
1048 of ionizing radiations to reproduce the Martian irradiation environment, the right temperatures,
1049 pressures and atmospheric compositions, which influence the reaction kinetics, the chemical stability
1050 and the physical state of the products^{67,192,223}.

1051 Regarding ionizing radiations, the studies reported in the literature evidence the need to inspect
1052 the effects of UV radiation, since the degradation of organic compounds induced by UV light occurs
1053 much more rapidly, in days or months, with respect to higher-energy radiations and energetic solar
1054 particles, which take hundreds of millions of years, even though the penetration depth into the
1055 Martian regolith estimated for X-rays and energetic solar particles is much higher than UV, as
1056 previously mentioned^{67,168-173}. The use of Xenon arc discharge lamps as UV irradiation source has
1057 proven to better reproduce the energy and relative abundance of the UV photons in the spectral range
1058 190-400 nm that is most relevant for Mars, compared to mercury, hydrogen or deuterium lamps that
1059 poorly match the solar irradiance at these wavelengths^{169,210}.

1060 As regards the possible effects of temperature, at the typical low temperatures on Mars, the
1061 condensation of water vapor on the regolith can supposedly give contrasting effects: inhibition of
1062 degradation of possible organic compounds thanks to UV absorption by the ice layer, or its
1063 enhancement thanks to the formation of radical species by water photodecomposition. It is worth
1064 noting that photodestruction of water into hydroxyl radicals does not occur at wavelengths above
1065 190 nm²²⁴, which are relevant for Mars surface photochemistry. Efficient photodecomposition of
1066 water is likely to occur only in the upper atmospheric layers of Mars, while production of reactive
1067 radical species due to mid-UV irradiation of water vapor close to the surface should not be significant.
1068 Nevertheless, it is not possible to exclude potential decomposition processes of water adsorbed on
1069 the Martian regolith, since the interaction of mid-UV with specific photocatalytic mineral may open
1070 new reaction pathways leading to the formation of reactive radicals like the hydroxyl ones. Hydroxyl
1071 radicals, in turn, can dimerize to give a strong oxidant like hydrogen peroxide, which may be stable
1072 at significant depths within Martian regolith¹⁴⁶ and efficiently oxidize organic matter even at low
1073 temperatures thanks to its low thermal stability. Möhlmann^{153,154} theoretically predicted the
1074 ubiquitous presence of a few monolayers of water on exposed Martian surfaces. Yen et al.⁵⁵ observed
1075 that superoxide radicals are formed through UV irradiation of feldspars under Martian-like
1076 conditions (-30 °C), in the presence of free oxygen and low concentrations of water. The quantum
1077 efficiency for this process has been estimated as 10⁻⁶ radicals/photon, corresponding to a production
1078 rate of 10⁷ cm⁻² s⁻¹. Moreover, in the case of iron-bearing minerals, as already mentioned, water
1079 adsorbed at the surface can leach soluble species like Fe²⁺ ions that may react with hydrogen peroxide
1080 in the presence of UV radiation through a photo-Fenton process generating hydroxyl radicals.
1081 Therefore, organic degradation mechanisms driven by hydroxyl radicals produced by photolysis of
1082 water adsorbed on minerals can be considered plausible on Mars.

1083 The presence of a CO₂ atmosphere also may influence the stability of organics on Mars. CO₂
1084 efficiently absorbs far UV (below 190 nm), while for mid-UV it presents a discrete absorption in the
1085 range 190–203 nm, between 203 nm and 220 nm both scattering and absorption take place, and above
1086 200 nm scattering becomes the dominant process ^{225,226}. The absorption of UV light above 167 nm may
1087 cause the dissociation of CO₂ in carbon monoxide (CO) and oxygen radicals (O•), with a significant
1088 quantum yield only in the spectral range 190–200 nm ²²⁴. Given the low absorption of CO₂ in this UV
1089 range, the upper limit for the formation rate of oxygen radicals is only of 10⁹ s⁻¹, which may result in
1090 a small effect on the overall molecular photostability. Conversely, it has been shown that CO₂ can act
1091 as scavenger of free radicals in specific conditions ²²⁷.

1092 It would be also highly desirable to perform *in situ* analysis to avoid any alteration due to
1093 changes in environmental conditions, e.g. heating upon return to room temperature and pressure or
1094 contact with atmospheric oxygen and water vapor.

1095 Moreover, since every analytical technique has its limitations and specificity, the use of only one
1096 analytical technique does not allow in-depth understanding of the ongoing complicated mechanisms.
1097 Therefore, it would be worth developing new experimental apparatuses to perform *in situ*
1098 investigations with multiple analytical techniques.
1099

1100 6. Implications for future Martian missions

1101 Laboratory simulations of Martian conditions are essential to make predictions about the
1102 mineral deposits with the highest preservation potential on Mars and, hence, select the most
1103 interesting sampling sites for future life detection missions on Mars.

1104 Based on observations of terrestrial analog sites, the preferable locations to search for traces of
1105 life are sediments, evaporites and hydrothermal systems because they are able to concentrate and
1106 better preserve biosignatures ¹¹³.

1107 The long-term preservation of terrestrial biosignatures in several paleo-environments on Earth
1108 depends on the persistence of sedimentary materials; specifically, phosphates and silica, followed by
1109 clay-rich fine-grained sediments, carbonates and metallic oxides, feature the highest preservation
1110 potential ¹¹⁶.

1111 All candidate landing sites for the upcoming NASA Mars 2020 mission –i.e., Columbia Hills,
1112 Jezero crater, Northeast (NE) Syrtis and NE Syrtis-Midway– show the presence of sedimentary rocks
1113 or possibly hydrothermal deposits, which may be favorable for preservation of biomarkers ^{92,228–230}.
1114 Jezero and NE Syrtis present a high mineralogical diversity, including Mg-carbonates, pyroxenes,
1115 olivines, sulfates, Al-phyllosilicates and clays such as Fe/Mg smectites. Columbia Hills contains
1116 olivine materials, possible evaporates, ferric and calcium sulfates, Al-phyllosilicates, Mg/Fe
1117 carbonates, and opaline silica. Based on their mineralogy and lithology, all candidate landing sites
1118 can be considered plausible locations for the occurrence of prebiotic processes and possible
1119 emergence of complex biochemistry.

1120 For the ESA ExoMars mission, the two candidate landing sites are ²³¹: 1) Oxia Planum, which
1121 features rather immature layers of vermiculite/di-tri octahedral Fe/Mg clays; and 2) Mawrth Vallis,
1122 which is characterized by a mature (almost lateritic) soil, a complex mixture comprising
1123 montmorillonite, beidellite, nontronite smectite, poorly crystalline aluminosilicate phases
1124 (allophane), and hydrated silica. Recent work has shown that organics may be particularly well
1125 stored in the topmost layer of the kind of soil present at Mawrth Vallis, within mixtures of oxides and
1126 allophane with Al-rich clays ¹⁰⁹.

1127 This study will also significantly benefit the 2020 Emirates Mars Mission (EMM) ²³², the China's
1128 2020 Mars mission ²³³, the 2022 India's Mars Orbiter Mission 2 (also called Mangalyaan 2) ²³⁴ and the
1129 JAXA Martian Moons Explorer (MMX) mission in 2024 ²³⁵. Noteworthy, the MMX mission will collect
1130 samples from Phobos to return to Earth, which will be fundamental to determine the genesis of the
1131 Martian moons (specifically, whether they were once a part of Mars), and potentially contribute as
1132 another source of Martian biosignature information.

1133 **Conflicts of Interest:** The authors declare no conflict of interest.

1134 **References**

1135 (1) Grotzinger, J. P.; Sumner, D. Y.; Kah, L. C.; Stack, K.; Gupta, S.; Edgar, L.; Rubin, D.; Lewis, K.; Schieber,
1136 J.; Mangold, N.; et al. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars.
1137 *Science* **2014**, *343* (6169), 1242777.

1138 (2) Arvidson, R. E.; Squyres, S. W.; Bell III, J. F.; Catalano, J. G.; Clark, B. C.; Crumpler, L. S.; de Souza Jr., P.
1139 A.; Fairén, A. G.; Farrand, W. H.; Fox, V. K.; et al. Ancient Aqueous Environments at Endeavour Crater,
1140 Mars. *Science* **2014**, *343* (6169), 1248097.

1141 (3) Sun, V. Z.; Milliken, R. E. Ancient and Recent Clay Formation on Mars as Revealed from a Global Survey
1142 of Hydrous Minerals in Crater Central Peaks. *J. Geophys. Res. Planets* **2015**, *120* (12), 2293–2332.

1143 (4) Carter, J.; Poulet, F.; Bibring, J. P.; Mangold, N.; Murchie, S. Hydrous Minerals on Mars as Seen by the
1144 CRISM and OMEGA Imaging Spectrometers: Updated Global View. *J. Geophys. Res. E Planets* **2013**, *118*
1145 (4), 831–858.

1146 (5) Carter, J.; Poulet, F.; Bibring, J.-P.; Murchie, S.; Langevin, Y.; Mustard, J. F.; Gondet, B. Phyllosilicates
1147 and Other Hydrated Minerals on Mars: Global Distribution as Seen by MEx/OMEGA. *40th Lunar Planet.
Sci. Conf.* **2009**.

1148 (6) Carter, J.; Loizeau, D.; Mangold, N.; Poulet, F.; Bibring, J.-P. Widespread Surface Weathering on Early
1149 Mars: A Case for a Warmer and Wetter Climate. *Icarus* **2015**, *248*, 373–382.

1150 (7) L'Haridon, J.; Mangold, N.; Meslin, P.-Y.; Johnson, J. R.; Rapin, W.; Forni, O.; Cousin, A.; Payré, V.;
1151 Dehouck, E.; Nachon, M.; et al. Chemical Variability in Mineralized Veins Observed by ChemCam on
1152 the Lower Slopes of Mount Sharp in Gale Crater, Mars. *Icarus* **2018**, *311*, 69–86.

1153 (8) Michalski, J. R.; Dobrea, E. Z. N.; Niles, P. B.; Cuadros, J. Ancient Hydrothermal Seafloor Deposits in
1154 Eridania Basin on Mars. *Nat. Commun.* **2017**, *8*, 15978.

1155 (9) Feldman, W. C.; Prettyman, T. H.; Maurice, S.; Plaut, J. J.; Bish, D. L.; Vaniman, D. T.; Mellon, M. T.;
1156 Metzger, A. E.; Squyres, S. W.; Karunatillake, S.; et al. Global Distribution of Near-Surface Hydrogen on
1157 Mars. *J. Geophys. Res.* **2004**, *109* (E9), E09006.

1158 (10) Milliken, R. E.; Mustard, J. F.; Poulet, F.; Jouget, D.; Bibring, J.-P.; Gondet, B.; Langevin, Y. Hydration
1159 State of the Martian Surface as Seen by Mars Express OMEGA: 2. H₂O Content of the Surface. *J. Geophys.
1160 Res.* **2007**, *112* (E8), E08S07.

1161 (11) Smith, M. D.; Wolff, M. J.; Lemmon, M. T.; Spanovich, N.; Banfield, D.; Budney, C. J.; Clancy, R. T.;
1162 Ghosh, A.; Landis, G. A.; Smith, P.; et al. First Atmospheric Science Results from the Mars Exploration
1163 Rovers Mini-TES. *Science* **2004**, *306* (5702), 1750–1753.

1164 (12) Orosei, R.; Lauro, S. E.; Pettinelli, E.; Cicchetti, A.; Coradini, M.; Cosciotti, B.; Di Paolo, F.; Flamini, E.;
1165 Mattei, E.; Pajola, M.; et al. Radar Evidence of Subglacial Liquid Water on Mars. *Science* **2018**, *361*, 490–
1166 493.

1167 (13) Fisk, M. R.; Giovannoni, S. J. Sources of Nutrients and Energy for a Deep Biosphere on Mars. *J. Geophys.
1168 Res. Planets* **1999**, *104* (E5), 11805–11815.

1169 (14) McKay, D. S.; Gibson, E. K.; Thomas-Keprta, K. L.; Vali, H.; Romanek, C. S.; Clemett, S. J.; Chillier, X. D.;
1170 Maechling, C. R.; Zare, R. N. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian
1171 Meteorite ALH84001. *Science* **1996**, *273* (5277), 924–930.

1172 (15) Morris, R. V.; Ruff, S. W.; Gellert, R.; Ming, D. W.; Arvidson, R. E.; Clark, B. C.; Golden, D. C.; Siebach,
1173 K.; Klingelhöfer, G.; Schröder, C.; et al. Identification of Carbonate-Rich Outcrops on Mars by the Spirit
1174 Rover. *Sci.* **2010**, *329* (5990), 421–424.

1175 (16) Boynton, W. V.; Ming, D. W.; Kounaves, S. P.; Young, S. M. M.; Arvidson, R. E.; Hecht, M. H.; Hoffman,

1177 J.; Niles, P. B.; Hamara, D. K.; Quinn, R. C.; et al. Evidence for Calcium Carbonate at the Mars Phoenix
1178 Landing Site. *Science* **2009**, *325* (5936), 61–64.

1179 (17) Ehmann, B. L.; Mustard, J. F.; Murchie, S. L.; Poulet, F.; Bishop, J. L.; Brown, A. J.; Calvin, W. M.; Clark,
1180 R. N.; Marais, D. J. Des; Milliken, R. E.; et al. Orbital Identification of Carbonate-Bearing Rocks on Mars.
1181 *Science* **2008**, *322* (5909), 1828–1832.

1182 (18) Eigenbrode, J. L.; Summons, R. E.; Steele, A.; Freissinet, C.; Millan, M.; Navarro-gonzález, R.; Sutter, B.;
1183 Mcadam, A. C.; Conrad, P. G.; Hurowitz, J. A.; et al. Organic Matter Preserved in 3-Billion-Year-Old
1184 Mudstones at Gale Crater, Mars. *Science* **2018**, *360*, 1096–1101.

1185 (19) Stewart, R. F.; Jensen, L. H. Redetermination of the Crystal Structure of Uracil. *Acta Crystallogr.* **1967**, *23*
1186 (6), 1102–1105.

1187 (20) Stern, J. C.; Sutter, B.; Freissinet, C.; Navarro-González, R.; McKay, C. P.; Archer, P. D.; Buch, A.; Brunner,
1188 A. E.; Coll, P.; Eigenbrode, J. L.; et al. Evidence for Indigenous Nitrogen in Sedimentary and Aeolian
1189 Deposits from the Curiosity Rover Investigations at Gale Crater, Mars. *Proc. Natl. Acad. Sci. U. S. A.* **2015**,
1190 *112* (14), 4245–4250.

1191 (21) Steele, A.; McCubbin, F. M.; Fries, M. D. The Provenance, Formation, and Implications of Reduced
1192 Carbon Phases in Martian Meteorites. *Meteorit. Planet. Sci.* **2016**, *51* (11), 2203–2225.

1193 (22) Fogel, M. L.; Steele, A. Nitrogen in Extraterrestrial Environments: Clues to the Possible Presence of Life.
1194 *Elements* **2013**, *9* (5), 367–372.

1195 (23) McCubbin, F. M.; Jones, R. H. Extraterrestrial Apatite: Planetary Geochemistry to Astrobiology. *Elements*
1196 **2015**, *11* (3), 183–188.

1197 (24) Pownar, M. W.; Gerland, B.; Sutherland, J. D. Synthesis of Activated Pyrimidine Ribonucleotides in
1198 Prebiotically Plausible Conditions. *Nature* **2009**, *459* (7244), 239–242.

1199 (25) Szostak, J. W. Origins of Life: Systems Chemistry on Early Earth. *Nature* **2009**, *459* (7244), 171–172.

1200 (26) Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A.
1201 E.; Buch, A.; Szopa, C.; Archer, P. D.; et al. Organic Molecules in the Sheepbed Mudstone, Gale Crater,
1202 Mars. *J. Geophys. Res. Planets* **2015**, *120* (3), 495–514.

1203 (27) Farquhar, J.; Savarino, J.; Jackson, T. L.; Thiemens, M. H. Evidence of Atmospheric Sulphur in the
1204 Martian Regolith from Sulphur Isotopes in Meteorites. *Nature* **2000**, *404* (6773), 50–52.

1205 (28) Vago, J. L.; Westall, F.; Cavalazzi, B.; Team, T. E. S. W. Searching for Signs of Life on Other Planets: Mars
1206 a Case Study. In *Biosignatures for Astrobiology*; Cavalazzi B., W. F., Ed.; Springer, Cham, 2019; pp 283–
1207 300.

1208 (29) Westall, F.; Bost, N.; Vago, J. L.; Kmínek, G.; Campbell, K. A. Biosignatures on Mars: What, Where, and
1209 How? Implications for the Search for Martian Life. *Astrobiology* **2015**, *15* (11), 998–1029.

1210 (30) Steele, A.; McCubbin, F. M.; Fries, M.; Kater, L.; Boctor, N. Z.; Fogel, M. L.; Conrad, P. G.; Glamoclija,
1211 M.; Spencer, M.; Morrow, A. L.; et al. A Reduced Organic Carbon Component in Martian Basalts. *Science*
1212 **2012**, *337* (6091), 212–215.

1213 (31) Glavin, D. P.; Freissinet, C.; Miller, K. E.; Eigenbrode, J. L.; Brunner, A. E.; Buch, A.; Sutter, B.; Archer, P.
1214 D.; Atreya, S. K.; Brinckerhoff, W. B.; et al. Evidence for Perchlorates and the Origin of Chlorinated
1215 Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater. *J. Geophys. Res. E Planets*
1216 **2013**, *118* (10), 1955–1973.

1217 (32) Flynn, G. J. The Delivery of Organic Matter from Asteroids and Comets to the Early Surface of Mars.
1218 *Earth, Moon Planets* **1996**, *72* (1–3), 469–474.

1219 (33) Frantseva, K.; Mueller, M.; ten Kate, I. L.; Van der Tak, F. F. S.; Greenstreet, S. Delivery of Organics to

1220 Mars through Asteroid and Comet Impacts. *Icarus* **2018**, *in press*.

1221 (34) Flynn, G. J.; Nittler, L. R.; Engrand, C. Composition of Cosmic Dust: Sources and Implications for the
1222 Early Solar System. *Elements* **2016**, *12* (3), 177–183.

1223 (35) Grady, M. M.; Verchovsky, A. B.; Wright, I. P. Magmatic Carbon in Martian Meteorites: Attempts to
1224 Constrain the Carbon Cycle on Mars. *Int. J. Astrobiol.* **2004**, *3* (2), 117–124.

1225 (36) Wright, I. P.; Grady, M. M.; Pillinger, C. T. Chassigny and the Nakhrites: Carbon-Bearing Components
1226 and Their Relationship to Martian Environmental Conditions. *Geochim. Cosmochim. Acta* **1992**, *56* (2), 817–
1227 826.

1228 (37) Vago, J.; Witasse, O.; Svedhem, H.; Baglioni, P.; Haldemann, A.; Gianfiglio, G.; Blancquaert, T.; McCoy,
1229 D.; de Groot, R. ESA ExoMars Program: The next Step in Exploring Mars. *Sol. Syst. Res.* **2015**, *49* (7), 518–
1230 528.

1231 (38) Mahaffy, P. R.; Webster, C. R.; Cabane, M.; Conrad, P. G.; Coll, P.; Atreya, S. K.; Arvey, R.; Barciniak, M.;
1232 Benna, M.; Bleacher, L.; et al. The Sample Analysis at Mars Investigation and Instrument Suite. *Space Sci.
Rev.* **2012**, *170* (1–4), 401–478.

1233 (39) Millan, M.; Szopa, C.; Buch, A.; Coll, P.; Glavin, D. P.; Freissinet, C.; Navarro-Gonzalez, R.; Francois, P.;
1234 Coscia, D.; Bonnet, J. Y.; et al. In Situ Analysis of Martian Regolith with the SAM Experiment during the
1235 First Mars Year of the MSL Mission: Identification of Organic Molecules by Gas Chromatography from
1236 Laboratory Measurements. *Planet. Space Sci.* **2016**, *129*, 88–102.

1237 (40) Miller, K. E.; Eigenbrode, J. L.; Freissinet, C.; Glavin, D. P.; Kotrc, B.; Francois, P.; Summons, R. E.
1238 Potential Precursor Compounds for Chlorohydrocarbons Detected in Gale Crater, Mars, by the SAM
1239 Instrument Suite on the Curiosity Rover. *J. Geophys. Res. Planets* **2016**, *121* (3), 296–308.

1240 (41) Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.;
1241 Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; et al. Large Sulfur Isotope Fractionations in Martian
1242 Sediments at Gale Crater. *Nat. Geosci.* **2017**, *10* (9), 658–662.

1243 (42) Steele, A.; Benning, L. G.; Wirth, R.; Siljeström, S.; Fries, M. D.; Hauri, E.; Conrad, P. G.; Rogers, K.;
1244 Eigenbrode, J.; Schreiber, A.; et al. Organic Synthesis on Mars by Electrochemical Reduction of CO₂. *Sci.
Adv.* **2018**, *in press*.

1245 (43) Mustard, J.; Adler, M.; Allwood, A.; Bass, D.; Beaty, D.; Bell III, J.; Brinckerhoff, W.; Carr, M.; Des Marais,
1246 D.; Drake, B.; et al. *Report of the Mars 2020 Science Definition Team*; 2013.

1247 (44) Córdoba-Jabonero, C.; Lara, L. ; Mancho, A. ; Márquez, A.; Rodrigo, R. Solar Ultraviolet Transfer in the
1248 Martian Atmosphere: Biological and Geological Implications. *Planet. Space Sci.* **2003**, *51* (6), 399–410.

1249 (45) Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.;
1250 Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; et al. The Modern Near-Surface Martian
1251 Climate: A Review of In-Situ Meteorological Data from Viking to Curiosity. *Space Sci. Rev.* **2017**, *212*,
1252 295–338.

1253 (46) Patel, M. R.; Bérçes, A.; Kolb, C.; Lammer, H.; Rettberg, P.; Zarnecki, J. C.; Selsis, F. Seasonal and Diurnal
1254 Variations in Martian Surface Ultraviolet Irradiation: Biological and Chemical Implications for the
1255 Martian Regolith. *Int. J. Astrobiol.* **2003**, *2* (1), 21–34.

1256 (47) Patel, M. R.; Zarnecki, J. C.; Catling, D. C. Ultraviolet Radiation on the Surface of Mars and the Beagle 2
1257 UV Sensor. *Planet. Space Sci.* **2002**, *50* (9), 915–927.

1258 (48) Vicente-Retortillo, Á.; Lemmon, M. T.; Martínez, G. M.; Valero, F.; Vázquez, L.; Martín, L. Seasonal and
1259 Interannual Variability of Solar Radiation at Spirit, Opportunity and Curiosity Landing Sites. **2016**, *28*,
1260 111–127.

1261

1262

1263 (49) Vicente-Retortillo, Á.; Martínez, G. M.; Renno, N. O.; Lemmon, M. T.; de la Torre-Juárez, M.
1264 Determination of Dust Aerosol Particle Size at Gale Crater Using REMS UVS and Mastcam
1265 Measurements. *Geophys. Res. Lett.* **2017**, *44* (8), 3502–3508.

1266 (50) Vicente-Retortillo, Á.; Valero, F.; Vázquez, L.; Martínez, G. M. A Model to Calculate Solar Radiation
1267 Fluxes on the Martian Surface. *J. Sp. Weather Sp. Clim.* **2015**, *5*, A33.

1268 (51) Matthiä, D.; Ehresmann, B.; Lohf, H.; Köhler, J.; Zeitlin, C.; Appel, J.; Sato, T.; Slaba, T.; Martin, C.; Berger,
1269 T.; et al. The Martian Surface Radiation Environment – a Comparison of Models and MSL/RAD
1270 Measurements. *J. Sp. Weather Sp. Clim.* **2016**, *6*, A13.

1271 (52) Clark, B. C.; Kounaves, S. P. Evidence for the Distribution of Perchlorates on Mars. *Int. J. Astrobiol.* **2016**,
1272 *15* (4), 311–318.

1273 (53) Kounaves, S. P.; Chaniotakis, N. A.; Chevrier, V. F.; Carrier, B. L.; Folds, K. E.; Hansen, V. M.; McElhoney,
1274 K. M.; O’Neil, G. D.; Weber, A. W. Identification of the Perchlorate Parent Salts at the Phoenix Mars
1275 Landing Site and Possible Implications. *Icarus* **2014**, *232*, 226–231.

1276 (54) Georgiou, C. D.; Sun, H. J.; McKay, C. P.; Grintzalis, K.; Papapostolou, I.; Zisisopoulos, D.; Panagiotidis,
1277 K.; Zhang, G.; Koutsopoulou, E.; Christidis, G. E.; et al. Evidence for Photochemical Production of
1278 Reactive Oxygen Species in Desert Soils. *Nat. Commun.* **2015**, *6*, 7100.

1279 (55) Yen, A. S.; Kim, S. S.; Hecht, M. H.; Frant, M. S.; Murray, B. Evidence That the Reactivity of the Martian
1280 Soil Is Due to Superoxide Ions. *Science* **2000**, *289* (5486), 1909–1912.

1281 (56) Sutter, B.; McAdam, A. C.; Mahaffy, P. R.; Ming, D. W.; Edgett, K. S.; Rampe, E. B.; Eigenbrode, J. L.;
1282 Franz, H. B.; Freissinet, C.; Grotzinger, J. P.; et al. Evolved Gas Analyses of Sedimentary Rocks and Eolian
1283 Sediment in Gale Crater, Mars: Results of the Curiosity Rover’s Sample Analysis at Mars Instrument
1284 from Yellowknife Bay to the Namib Dune. *J. Geophys. Res. Planets* **2017**, *122* (12), 2574–2609.

1285 (57) Brucato, J. B.; Fornaro, T. Role of Mineral Surfaces in Prebiotic Processes and Space-like Conditions. In
1286 *Biosignatures for Astrobiology*; Cavalazzi, B., Westall, F., Eds.; Springer Int. Pub., 2018; pp 183–204.

1287 (58) Fornaro, T.; Brucato, J. R.; Branciamore, S.; Pucci, A. Adsorption of Nucleic Acid Bases on Magnesium
1288 Oxide (MgO). *Int. J. Astrobiol.* **2013**, *12* (01), 78–86.

1289 (59) Fornaro, T.; Brucato, J. R.; Feuillie, C.; Sverjensky, D. A.; Hazen, R. M.; Brunetto, R.; D’Amore, M.; Barone,
1290 V. Binding of Nucleic Acid Components to the Serpentinite-Hosted Hydrothermal Mineral Brucite.
1291 *Astrobiology* **2018**, *18* (8), 989–1007.

1292 (60) Lambert, J.-F. Origins of Life: From the Mineral to the Biochemical World. *BIO Web Conf.* **2015**, *4*, 00012.

1293 (61) Hazen, R. M.; Sverjensky, D. A. Mineral Surfaces, Geochemical Complexities, and the Origins of Life.
1294 *Cold Spring Harb. Perspect. Biol.* **2010**, *2* (5), 815–824.

1295 (62) Hazen, R. M. Mineral Surfaces and the Prebiotic Selection and Organization of Biomolecules. *Am.
1296 Mineral.* **2006**, *91* (11–12), 1715–1729.

1297 (63) Wächtershäuser, G. Evolution of the First Metabolic Cycles. *Proc. Natl. Acad. Sci.* **1990**, *87* (1), 200–204.

1298 (64) Hazen, R. M. *Genesis: The Scientific Quest for Life’s Origin*; Joseph Henry Press: Washington, D.C., 2005.

1299 (65) Brandes, J. A.; Boctor, N. Z.; Cody, G. D.; Cooper, B. A.; Hazen, R. M.; Yoder, H. S. Abiotic Nitrogen
1300 Reduction on the Early Earth. *Nature* **1998**, *395*, 365–367.

1301 (66) Botta, L.; Bizzarri, B. M.; Piccinino, D.; Fornaro, T.; Brucato, J. R.; Saladino, R. Prebiotic Synthesis of
1302 Carboxylic Acids, Amino Acids and Nucleic Acid Bases from Formamide under Photochemical
1303 Conditions. *Eur. Phys. J. Plus* **2017**, *132* (7), 317.

1304 (67) Fornaro, T.; Boosman, A.; Brucato, J. R.; ten Kate, I. L.; Siljeström, S.; Poggiali, G.; Steele, A.; Hazen, R.
1305 M. UV Irradiation of Biomarkers Adsorbed on Minerals under Martian-like Conditions: Hints for Life

1306 Detection on Mars. *Icarus* **2018**, *313*, 38–60.

1307 (68) Ehlmann, B. L.; Edwards, C. S. Mineralogy of the Martian Surface. *Annu. Rev. Earth Planet. Sci.* **2014**, *42*, 291–315.

1309 (69) Bibring, J. P.; Langevin, Y.; Mustard, J. Global Mineralogical and Aqueous Mars History Derived from 1310 OMEGA/Mars Express Data. *Science* **2006**, *312* (5772), 400–404.

1311 (70) Milliken, R. E.; Swayze, G. A.; Arvidson, R. E.; Bishop, J. L.; Clark, R. N.; Ehlmann, B. L.; Green, R. O.; 1312 Grotzinger, J. P.; Morris, R. V.; Murchie, S. L.; et al. Opaline Silica in Young Deposits on Mars. *Geology* 1313 **2008**, *36* (11), 847–850.

1314 (71) Mustard, J. F.; Murchie, S. L.; Pelkey, S. M.; Ehlmann, B. L.; Milliken, R. E.; Grant, J. A.; Bibring, J.; Poulet, 1315 F.; Bishop, J.; Dobrea, E. N.; et al. Hydrated Silicate Minerals on Mars Observed by the Mars 1316 Reconnaissance Orbiter CRISM Instrument. *Nature* **2008**, *454* (7202), 305–309.

1317 (72) Murchie, S. L.; Mustard, J. F.; Ehlmann, B. L.; Milliken, R. E.; Bishop, J. L.; McKeown, N. K.; Noe Dobrea, 1318 E. Z.; Seelos, F. P.; Buczkowski, D. L.; Wiseman, S. M.; et al. A Synthesis of Martian Aqueous Mineralogy 1319 after 1 Mars Year of Observations from the Mars Reconnaissance Orbiter. *J. Geophys. Res.* **2009**, *114* (E2), 1320 E00D06.

1321 (73) Negron-Mendoza, A.; Ramos-Bernal, S. The Role of Clays in the Origin of Life. In *Origins. Cellular Origin, 1322 Life in Extreme Habitats and Astrobiology*; Seckbach J., Ed.; Springer, Dordrecht: Dordrecht, 2004; pp 181– 1323 194.

1324 (74) Ehlmann, B. L.; Mustard, J. F.; Fassett, C. I.; Schon, S. C.; Head III, J. W.; Des Marais, D. J.; Grant, J. A.; 1325 Murchie, S. L. Clay Minerals in Delta Deposits and Organic Preservation Potential on Mars. *Nat. Geosci.* 1326 **2008**, *1* (6), 355–358.

1327 (75) Ehlmann, B. L.; Mustard, J. F.; Swayze, G. A.; Clark, R. N.; Bishop, J. L.; Poulet, F.; Des Marais, D. J.; 1328 Roach, L. H.; Milliken, R. E.; Wray, J. J.; et al. Identification of Hydrated Silicate Minerals on Mars Using 1329 MRO-CRISM: Geologic Context near Nili Fossae and Implications for Aqueous Alteration. *J. Geophys. 1330 Res.* **2009**, *114* (E2), E00D08.

1331 (76) Ehlmann, B. L.; Mustard, J. F.; Murchie, S. L.; Bibring, J.-P.; Meunier, A.; Fraeman, A. A.; Langevin, Y. 1332 Subsurface Water and Clay Mineral Formation during the Early History of Mars. *Nature* **2011**, *479* (7371), 1333 53–60.

1334 (77) Ehlmann, B. L.; Mustard, J. F.; Clark, R. N.; Swayze, G. A.; Murchie, S. L. Evidence for Low-Grade 1335 Metamorphism, Hydrothermal Alteration, and Diagenesis on Mars from Phyllosilicate Mineral 1336 Assemblages. *Clays Clay Miner.* **2011**, *59* (4), 359–377.

1337 (78) Bishop, J. L.; Dobrea, E. Z. N.; McKeown, N. K.; Parente, M.; Ehlmann, B. L.; Michalski, J. R.; Milliken, 1338 R. E.; Poulet, F.; Swayze, G. A.; Mustard, J. F.; et al. Phyllosilicate Diversity and Past Aqueous Activity 1339 Revealed at Mawrth Vallis, Mars. *Science* **2008**, *321* (5890), 830–833.

1340 (79) Noe Dobrea, E. Z.; Wray, J. J.; Calef, F. J.; Parker, T. J.; Murchie, S. L. Hydrated Minerals on Endeavour 1341 Crater's Rim and Interior, and Surrounding Plains: New Insights from CRISM Data. *Geophys. Res. Lett.* 1342 **2012**, *39* (23), L23201.

1343 (80) Adeli, S.; Hauber, E.; Le Deit, L.; Jaumann, R. Geologic Evolution of the Eastern Eridania Basin: 1344 Implications for Aqueous Processes in the Southern Highlands of Mars. *J. Geophys. Res. E Planets* **2015**, 1345 *120*, 1774–1799.

1346 (81) Vaniman, D. T.; Bish, D. L.; Ming, D. W.; Bristow, T. F.; Morris, R. V.; Blake, D. F.; Chipera, S. J.; Morrison, 1347 S. M.; Treiman, A. H.; Rampe, E. B.; et al. Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, 1348 Mars. *Science* **2014**, *343* (6169), 1243480.

1349 (82) Michalski, J. R.; Cuadros, J.; Bishop, J. L.; Darby Dyar, M.; Dekov, V.; Fiore, S. Constraints on the Crystal-
1350 Chemistry of Fe/Mg-Rich Smectitic Clays on Mars and Links to Global Alteration Trends. *Earth Planet. Sci. Lett.* **2015**, *427*, 215–225.

1352 (83) Bristow, T. F.; Bish, D. L.; Vaniman, D. T.; Morris, R. V.; Blake, D. F.; Grotzinger, J. P.; Rampe, E. B.; Crisp, J. A.; Achilles, C. N.; Ming, D. W.; et al. The Origin and Implications of Clay Minerals from Yellowknife Bay, Gale Crater, Mars. *Am. Mineral.* **2015**, *100* (4), 824–836.

1355 (84) Hurowitz, J. A.; Grotzinger, J. P.; Fischer, W. W.; McLennan, S. M.; Milliken, R. E.; Stein, N.; Vasavada, A. R.; Blake, D. F.; Dehouck, E.; Eigenbrode, J. L.; et al. Redox Stratification of an Ancient Lake in Gale Crater, Mars. *Science* **2017**, *356* (6341), eaah6849.

1358 (85) Rampe, E. B.; Ming, D. W.; Blake, D. F.; Bristow, T. F.; Chipera, S. J.; Grotzinger, J. P.; Morris, R. V.; Morrison, S. M.; Vaniman, D. T.; Yen, A. S.; et al. Mineralogy of an Ancient Lacustrine Mudstone Succession from the Murray Formation, Gale Crater, Mars. *Earth Planet. Sci. Lett.* **2017**, *471*, 172–185.

1361 (86) Bristow, T. F.; Rampe, E. B.; Achilles, C. N.; Blake, D. F.; Chipera, S. J.; Craig, P.; Crisp, J. A.; Des Marais, D. J.; Downs, R. T.; Gellert, R.; et al. Clay Mineral Diversity and Abundance in Sedimentary Rocks of Gale Crater, Mars. *Sci. Adv.* **2018**, *4* (6), eaar3330.

1364 (87) Osterloo, M. M.; Hamilton, V. E.; Bandfield, J. L.; Glotch, T. D.; Baldridge, A. M.; Christensen, P. R.; Tornabene, L. L.; Anderson, F. S. Chloride-Bearing Materials in the Southern Highlands of Mars. *Science* **2008**, *319*, 1651–1654.

1367 (88) Osterloo, M. M.; Anderson, F. S.; Hamilton, V. E.; Hynek, B. M. Geologic Context of Proposed Chloride-Bearing Materials on Mars. *J. Geophys. Res.* **2010**, *115* (E10), E10012.

1369 (89) Glotch, T. D.; Bandfield, J. L.; Wolff, M. J.; Arnold, J. A.; Che, C. Constraints on the Composition and Particle Size of Chloride Salt-Bearing Deposits on Mars. *J. Geophys. Res. Planets* **2016**, *121*, 454–471.

1371 (90) Squyres, S. W. In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars. *Science* **2004**, *306* (5702), 1709–1714.

1373 (91) McAdam, A. C.; Franz, H. B.; Sutter, B.; Jr, P. D. A.; Freissinet, C.; Eigenbrode, J. L.; Ming, D. W.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; et al. Sulfur-bearing Phases Detected by Evolved Gas Analysis of the Rocknest Aeolian Deposit, Gale Crater, Mars. *J. Geophys. Res. Planets* **2014**, *119* (2), 373–393.

1376 (92) Ruff, S. W.; Farmer, J. D. Silica Deposits on Mars with Features Resembling Hot Spring Biosignatures at El Tatio in Chile. *Nat. Commun.* **2016**, *7*, 13554.

1378 (93) Viviano-Beck, C. E.; Seelos, F. P.; Murchie, S. L.; Kahn, E. G.; Seelos, K. D.; Taylor, H. W.; ...& Morgan, M. F. Revised CRISM Spectral Parameters and Summary Products Based on the Currently Detected Mineral Diversity on Mars. *J. Geophys. Res. Planets* **2014**, *119* (6), 1403–1431.

1381 (94) Gooding, J. L. Chemical Weathering on Mars Thermodynamic Stabilities of Primary Minerals (and Their Alteration Products) from Mafic Igneous Rocks. *Icarus* **1978**, *33*, 483–513.

1383 (95) Christensen, P. R.; Bandfield, J. L.; Clark, R. N.; Edgett, K. S.; Hamilton, V. E.; Hoefen, T.; Kieffer, H. H.; Kuzmin, R. O.; Lane, M. D.; Malin, M. C.; et al. Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-Surface Water. *J. Geophys. Res. Planets* **2000**, *105* (E4), 9623–9642.

1387 (96) Christensen, P. R.; Morris, R. V.; Lane, M. D.; Bandfield, J. L.; Malin, M. C. Global Mapping of Martian Hematite Mineral Deposits: Remnants of Water-Driven Processes on Early Mars. *J. Geophys. Res. Planets* **2001**, *106* (E10), 23873–23885.

1390 (97) Arvidson, R. E.; Poulet, F.; Morris, R. V.; Bibring, J.-P.; Bell, J. F.; Squyres, S. W.; Christensen, P. R.; Bellucci, G.; Gondet, B.; Ehlmann, B. L.; et al. Nature and Origin of the Hematite-Bearing Plains of Terra

1392 Meridiani Based on Analyses of Orbital and Mars Exploration Rover Data Sets. *J. Geophys. Res. Planets*
1393 2006, 111 (E12).

1394 (98) Catling, D. C.; Moore, J. M. The Nature of Coarse-Grained Crystalline Hematite and Its Implications for
1395 the Early Environment of Mars. *Icarus* 2003, 165 (2), 277–300.

1396 (99) Klingelhöfer, G.; Morris, R. V.; Bernhardt, B.; Schröder, C.; Rodionov, D. S.; de Souza, P. A.; Yen, A.;
1397 Gellert, R.; Evlanov, E. N.; Zubkov, B.; et al. Jarosite and Hematite at Meridiani Planum from
1398 Opportunity's Mössbauer Spectrometer. *Science* 2004, 306 (5702), 1740–1745.

1399 (100) Souza-Egipsy, V.; Ormö, J.; Bowen, B. B.; Chan, M. A.; Komatsu, G. Ultrastructural Study of Iron Oxide
1400 Precipitates: Implications for the Search for Biosignatures in the Meridiani Hematite Concretions, Mars.
1401 *Astrobiology* 2006, 6 (4), 527–545.

1402 (101) Bishop, J. L.; Fröschl, H.; Mancinelli, R. L. Alteration Processes in Volcanic Soils and Identification of
1403 Exobiologically Important Weathering Products on Mars Using Remote Sensing. *J. Geophys. Res. Planets*
1404 1998, 103 (E13), 31457–31476.

1405 (102) Koch, C. B.; Mørup, S.; Madsen, M. B.; Vistisen, L. Iron-Containing Weathering Products of Basalt in a
1406 Cold, Dry Climate. *Chem. Geol.* 1995, 122 (1–4), 109–119.

1407 (103) Schwertmann, U. The Effect of Pedogenic Environments on Iron Oxide Minerals. In *Advances in Soil
1408 Science*; Springer, New York, NY, 1958; pp 171–200.

1409 (104) Fraeman, A. A.; Arvidson, R. E.; Catalano, J. G.; Grotzinger, J. P.; Morris, R. V.; Murchie, S. L.; Stack, K.
1410 M.; Humm, D. C.; McGovern, J. A.; Seelos, F. P.; et al. A Hematite-Bearing Layer in Gale Crater, Mars:
1411 Mapping and Implications for Past Aqueous Conditions. *Geology* 2013, 41 (10), 1103–1106.

1412 (105) Ody, A.; Poulet, F.; Bibring, J. P.; Loizeau, D.; Carter, J.; Gondet, B.; Langevin, Y. Global Investigation of
1413 Olivine on Mars: Insights into Crust and Mantle Compositions. *J. Geophys. Res. E Planets* 2013, 118 (2),
1414 234–262.

1415 (106) Ody, A.; Poulet, F.; Langevin, Y.; Bibring, J. P.; Bellucci, G.; Altieri, F.; Gondet, B.; Vincendon, M.; Carter,
1416 J.; Manaud, N. Global Maps of Anhydrous Minerals at the Surface of Mars from OMEGA/MEx. *J.
1417 Geophys. Res. E Planets* 2012, 117 (9), 1–14.

1418 (107) Bibring, J.-P.; Langevin, Y.; Gendrin, A.; Gondet, B.; Poulet, F.; Berthé, M.; Soufflot, A.; Arvidson, R.;
1419 Mangold, N.; Mustard, J.; et al. Mars Surface Diversity as Revealed by the OMEGA/Mars Express
1420 Observations. *Science* 2005, 307 (5715), 1576–1581.

1421 (108) Dehouck, E.; McLennan, S. M.; Meslin, P.-Y.; Cousin, A. Constraints on Abundance, Composition, and
1422 Nature of X-Ray Amorphous Components of Soils and Rocks at Gale Crater, Mars. *J. Geophys. Res. Planets*
1423 2014, 119 (12), 2640–2657.

1424 (109) Basile-Doelsch, I.; Balesdent, J.; Rose, J. Are Interactions between Organic Compounds and Nanoscale
1425 Weathering Minerals the Key Drivers of Carbon Storage in Soils? *Environ. Sci. Technol.* 2015, 49 (7), 3997–
1426 3998.

1427 (110) Grady, M. M.; Wright, I. P.; Pillinger, C. T. A Carbon and Nitrogen Isotope Study of Zagami. *J. Geophys.
1428 Res. Planets* 1997, 102 (E4), 9165–9173.

1429 (111) Steele, A.; Fries, M. D.; Amundsen, H. E. F.; Mysen, B. O.; Fogel, M. L.; Schweizer, M.; Boctor, N. Z.
1430 Comprehensive Imaging and Raman Spectroscopy of Carbonate Globules from Martian Meteorite ALH
1431 84001 and a Terrestrial Analogue from Svalbard. *Meteorit. Planet. Sci.* 2007, 42 (9), 1549–1566.

1432 (112) Steele, A.; McCubbin, F. M.; Fries, M. D.; Golden, D. C.; Ming, D. W.; Benning, L. G. Graphite in the
1433 Martian Meteorite Allan Hills 84001. *Am. Mineral.* 2012, 97 (7), 1256–1259.

1434 (113) Committee on an Astrobiology Strategy for the Exploration of Mars. An Astrobiology Strategy for the

1435 Exploration of Mars. In *National Research Council*; 2007; p 130.

1436 (114) Hedges, J. I.; Keil, R. G. Sedimentary Organic Matter Preservation: An Assessment and Speculative
1437 Synthesis. *Mar. Chem.* **1995**, *49* (2–3), 81–115.

1438 (115) Lalonde, K.; Mucci, A.; Ouellet, A.; Gélinas, Y. Preservation of Organic Matter in Sediments Promoted
1439 by Iron. *Nature* **2012**, *483*, 198–200.

1440 (116) Farmer, J. D.; Des Marais, D. J. Exploring for a Record of Ancient Martian Life. *J. Geophys. Res. Planets*
1441 **1999**, *104* (E11), 26977–26995.

1442 (117) Biondi, E.; Howell, L.; Benner, S. A. Opal Absorbs and Stabilizes RNA – A Hierarchy of Prebiotic Silica
1443 Minerals Opal Absorbs and Stabilizes RNA – A Hierarchy of Prebiotic Silica Minerals. *Synlett* **2016**, *27*,
1444 A-E.

1445 (118) Grotzinger, J. P.; Crisp, J.; Vasavada, A. R.; Anderson, R. C.; Baker, C. J.; Barry, R.; Blake, D. F.; Conrad,
1446 P.; Edgett, K. S.; Ferdowski, B.; et al. Mars Science Laboratory Mission and Science Investigation. *Space*
1447 *Sci. Rev.* **2012**, *170* (1–4), 5–56.

1448 (119) Gaillard, F.; Michalski, J.; Berger, G.; McLennan, S. M.; Scaillet, B. Geochemical Reservoirs and Timing
1449 of Sulfur Cycling on Mars. *Space Sci. Rev.* **2013**, *174* (1–4), 251–300.

1450 (120) Sephton, M. A. Organic Compounds in Carbonaceous Meteorites. *Nat. Prod. Rep.* **2002**, *19* (3), 292–311.

1451 (121) Kotler, J. M.; Hinman, N. W.; Yan, B.; Stoner, D. L.; Scott, J. R. Glycine Identification in Natural Jarosites
1452 Using Laser Desorption Fourier Transform Mass Spectrometry: Implications for the Search for Life on
1453 Mars. *Astrobiology* **2008**, *8* (2), 253–266.

1454 (122) Aubrey, A.; Cleaves, H. J.; Chalmers, J. H.; Skelley, A. M.; Mathies, R. A.; Grunthaner, F. J.; Ehrenfreund,
1455 P.; Bada, J. L. Sulfate Minerals and Organic Compounds on Mars. *Geology* **2006**, *34* (5), 357–360.

1456 (123) Fernández-Remolar, D. C.; Chong-Díaz, G.; Ruiz-Bermejo, M.; Harir, M.; Schmitt-Kopplin, P.; Tziotis,
1457 D.; Gómez-Ortíz, D.; García-Villadangos, M.; Martín-Redondo, M. P.; Gómez, F.; et al. Molecular
1458 Preservation in Halite- and Perchlorate-Rich Hypersaline Subsurface Deposits in the Salar Grande Basin
1459 (Atacama Desert, Chile): Implications for the Search for Molecular Biomarkers on Mars. *J. Geophys. Res.*
1460 *Biogeosciences* **2013**, *118* (2), 922–939.

1461 (124) Macko, S. A.; Engel, M. H.; Parker, P. L. Early Diagenesis of Organic Matter in Sediments. In *Organic*
1462 *Geochemistry*; Springer, Boston, MA, 1993; pp 211–224.

1463 (125) Lasne, J.; Noblet, A.; Szopa, C.; Navarro-González, R.; Cabane, M.; Poch, O.; Stalport, F.; François, P.;
1464 Atreya, S. K.; Coll, P. Oxidants at the Surface of Mars: A Review in Light of Recent Exploration Results.
1465 *Astrobiology* **2016**, *16* (12), 977–996.

1466 (126) Chevrier, V. F.; Hanley, J.; Altheide, T. S. Stability of Perchlorate Hydrates and Their Liquid Solutions at
1467 the Phoenix Landing Site, Mars. *Geophys. Res. Lett.* **2009**, *36* (10), 1–6.

1468 (127) Hecht, M. H.; Kounaves, S. P.; Quinn, R. C.; West, S. J.; Young, S. M. M.; Ming, D. W.; Catling, D. C.;
1469 Clark, B. C.; Boynton, W. V.; Hoffman, J.; et al. Detection of Perchlorate and the Soluble Chemistry of
1470 Martian Soil at the Phoenix Lander Site. *Science* **2009**, *325* (5936), 64–67.

1471 (128) Kounaves, S. P.; Carrier, B. L.; O'Neil, G. D.; Stroble, S. T.; Claire, M. W. Evidence of Martian Perchlorate,
1472 Chlorate, and Nitrate in Mars Meteorite EETA79001: Implications for Oxidants and Organics. *Icarus*
1473 **2014**, *229*, 206–213.

1474 (129) Smith, M. L.; Claire, M. W.; Catling, D. C.; Zahnle, K. J. The Formation of Sulfate, Nitrate and Perchlorate
1475 Salts in the Martian Atmosphere. *Icarus* **2014**, *231* (0), 51–64.

1476 (130) Carrier, B. L.; Kounaves, S. P. The Origins of Perchlorate in the Martian Soil. *Geophys. Res. Lett.* **2015**, *42*
1477 (10), 3739–3745.

1478 (131) Wang, A.; Jacson, A.; Yan, Y. C.; Houghton, J. (Per)Chlorate Formation Through Electrochemistry in
1479 Martian Atmosphere-Surface Interaction. In *49th Lunar and Planetary Science Conference*; 2018.

1480 (132) Kolb, V. M. Oxidation of Organic Materials with Perchlorates: Relevance to the Chemistry on the Martian
1481 Surface; Hoover, R. B., Levin, G. V., Rozanov, A. Y., Retherford, K. D., Eds.; International Society for
1482 Optics and Photonics, 2009; Vol. 7441, p 74410E.

1483 (133) Quinn, R. C.; Martucci, H. F. H.; Miller, S. R.; Bryson, C. E.; Grunthaner, F. J.; Grunthaner, P. J. Perchlorate
1484 Radiolysis on Mars and the Origin of Martian Soil Reactivity. *Astrobiology* **2013**, *13* (6), 515–520.

1485 (134) Crandall, P. B.; Góbi, S.; Gillis-Davis, J.; Kaiser, R. I. Can Perchlorates Be Transformed to Hydrogen
1486 Peroxide (H₂O₂) Products by Cosmic Rays on the Martian Surface? *J. Geophys. Res. Planets* **2017**, *122* (9),
1487 1880–1892.

1488 (135) Góbi, S.; Bergantini, A.; Kaiser, R. I. In Situ Detection of Chlorine Dioxide (ClO₂) in the Radiolysis of
1489 Perchlorates and Implications for the Stability of Organics on Mars. *Astrophys. J.* **2016**, *832* (2), 164.

1490 (136) Góbi, S.; Bergantini, A.; Kaiser, R. I. Degradation of Adenine on the Martian Surface in the Presence of
1491 Perchlorates and Ionizing Radiation: A Reflectron Time-of-Flight Mass Spectrometric Study. *Astrophys.*
1492 *J.* **2017**, *838* (2), 84.

1493 (137) Góbi, S.; Abplanalp, M. J.; Kaiser, R. I. Effect of Perchlorates on Electron Radiolysis of Glycine with
1494 Application to Mars. *Astrophys. J.* **2016**, *822* (1), 8.

1495 (138) Turner, A. M.; Abplanalp, M. J.; Kaiser, R. I. Mechanistic Studies on the Radiolytic Decomposition of
1496 Perchlorates on the Martian Surface. *Astrophys. J.* **2016**, *820* (2), 127.

1497 (139) Sutter, B.; Quinn, R. C.; Archer, P. D.; Glavin, D. P.; Glotch, T. D.; Kounaves, S. P.; Osterloo, M. M.;
1498 Rampe, E. B.; Ming, D. W. Measurements of Oxychlorine Species on Mars. *Int. J. Astrobiol.* **2017**, *16* (03),
1499 203–217.

1500 (140) Clancy, R. ; Sandor, B. ; Moriarty-Schieven, G. . A Measurement of the 362 GHz Absorption Line of
1501 Mars Atmospheric H₂O₂. *Icarus* **2004**, *168* (1), 116–121.

1502 (141) Encrenaz, T.; Greathouse, T. K.; Lefèvre, F.; Atreya, S. K. Hydrogen Peroxide on Mars: Observations,
1503 Interpretation and Future Plans. *Planet. Space Sci.* **2012**, *68* (1), 3–17.

1504 (142) Encrenaz, T.; Greathouse, T. K.; Lefèvre, F.; Montmessin, F.; Forget, F.; Fouchet, T.; Dewitt, C.; Richter,
1505 M. J.; Lacy, J. H.; Bézard, B.; et al. Astrophysics Seasonal Variations of Hydrogen Peroxide and Water
1506 Vapor on Mars: Further Indications of Heterogeneous Chemistry. *A&A* **2015**, *578*, A127.

1507 (143) Hunten, D. M. Possible Oxidant Sources in the Atmosphere and Surface of Mars. *J. Mol. Evol.* **1979**, *14*,
1508 71–78.

1509 (144) Atreya, S. K.; Wong, A.-S.; Renno, N. O.; Farrell, W. M.; Delory, G. T.; Sentman, D. D.; Cummer, S. A.;
1510 Marshall, J. R.; Rafkin, S. C. R.; Catling, D. C. Oxidant Enhancement in Martian Dust Devils and Storms:
1511 Implications for Life and Habitability. *Astrobiology* **2006**, *6* (3), 439–450.

1512 (145) Delory, G. T.; Farrell, W. M.; Atreya, S. K.; Renno, N. O.; Wong, A.-S.; Cummer, S. A.; Sentman, D. D.;
1513 Marshall, J. R.; Rafkin, S. C. R.; Catling, D. C. Oxidant Enhancement in Martian Dust Devils and Storms:
1514 Storm Electric Fields and Electron Dissociative Attachment. *Astrobiology* **2006**, *6* (3), 451–462.

1515 (146) Bullock, M. A.; Stoker, C. R.; McKay, C. P.; Zent, A. P. A Coupled Soil-Atmosphere Model of H₂O₂ on
1516 Mars. *Icarus* **1994**, *107* (1), 142–154.

1517 (147) Hartman, H.; McKay, C. P. Oxygenic Photosynthesis and the Oxidation State of Mars. *Planet. Space Sci.*
1518 **1995**, *43* (1–2), 123–128.

1519 (148) Zent, A. P. On the Thickness of the Oxidized Layer of the Martian Regolith. *J. Geophys. Res. Planets* **1998**,
1520 103 (E13), 31491–31498.

1521 (149) Huguenin, R. L.; Miller, K. J.; Harwood, W. S. Frost-Weathering on Mars: Experimental Evidence for
1522 Peroxide Formation. *J. Mol. Evol.* **1979**, *14* (1–3), 103–132.

1523 (150) Hurowitz, J. A.; Tosca, N. J.; McLennan, S. M.; Schoonen, M. A. A. Production of Hydrogen Peroxide in
1524 Martian and Lunar Soils. *Earth Planet. Sci. Lett.* **2007**, *255* (1–2), 41–52.

1525 (151) Davila, A. F.; Fairén, A. G.; Gago-Dupont, L.; Stoker, C.; Amils, R.; Bonaccorsi, R.; Zavaleta, J.; Lim, D.;
1526 Schulze-Makuch, D.; McKay, C. P. Subsurface Formation of Oxidants on Mars and Implications for the
1527 Preservation of Organic Biosignatures. *Earth Planet. Sci. Lett.* **2008**, *272* (1–2), 456–463.

1528 (152) Zent, A. P.; Ichimura, A. S.; Quinn, R. C.; Harding, H. K. The Formation and Stability of the Superoxide
1529 Radical (O₂•) on Rock-Forming Minerals: Band Gaps, Hydroxylation State, and Implications for Mars
1530 Oxidant Chemistry. *J. Geophys. Res.* **2008**, *113* (E9), E09001.

1531 (153) Möhlmann, D. T. . Water in the Upper Martian Surface at Mid- and Low-Latitudes: Presence, State, and
1532 Consequences. *Icarus* **2004**, *168* (2), 318–323.

1533 (154) Möhlmann, D. T. F. The Influence of van Der Waals Forces on the State of Water in the Shallow
1534 Subsurface of Mars. *Icarus* **2008**, *195* (1), 131–139.

1535 (155) Benner, S. a; Devine, K. G.; Matveeva, L. N.; Powell, D. H. The Missing Organic Molecules on Mars. *Proc.*
1536 *Natl. Acad. Sci. U. S. A.* **2000**, *97* (6), 2425–2430.

1537 (156) Mancinelli, R. L. Peroxides and the Survivability of Microorganisms on the Surface of Mars. *Adv. Sp. Res.*
1538 **1989**, *9* (6), 191–195.

1539 (157) McDonald, G. D.; de Vanssay, E.; Buckley, J. R. Oxidation of Organic Macromolecules by Hydrogen
1540 Peroxide: Implications for Stability of Biomarkers on Mars. *Icarus* **1998**, *132* (1), 170–175.

1541 (158) Fouustoukos, D. I.; Stern, J. C. Oxidation Pathways for Formic Acid under Low Temperature
1542 Hydrothermal Conditions: Implications for the Chemical and Isotopic Evolution of Organics on Mars.
1543 *Geochim. Cosmochim. Acta* **2012**, *76*, 14–28.

1544 (159) Kuhn, W. R.; Atreya, S. K. Solar Radiation Incident on the Martian Surface. *J. Mol. Evol.* **1979**, *14* (1–3),
1545 57–64.

1546 (160) Huestis, D. L.; Bouger, S. W.; Fox, J. L.; Galand, M.; Johnson, R. E.; Moses, J. I.; Pickering, J. C. Cross
1547 Sections and Reaction Rates for Comparative Planetary Aeronomy. *Space Sci. Rev.* **2008**, *139* (1–4), 63–
1548 105.

1549 (161) Smith, D. S.; Scalo, J. Solar X-Ray Flare Hazards on the Surface of Mars. *Planet. Space Sci.* **2007**, *55* (4),
1550 517–527.

1551 (162) Jain, R.; Awasthi, A. K.; Tripathi, S. C.; Bhatt, N. J.; Khan, P. A. Influence of Solar Flare X-Rays on the
1552 Habitability on the Mars. *Icarus* **2012**, *220* (2), 889–895.

1553 (163) Vicente-Retortillo, Á.; Martínez, G. M.; Renno, N. O.; Lemmon, M. T.; de la Torre-Juárez, M.
1554 Determination of Dust Aerosol Particle Size at Gale Crater Using REMS UVS and Mastcam
1555 Measurements. *Geophys. Res. Lett.* **2017**, *44* (8), 3502–3508.

1556 (164) Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P. The Ultraviolet
1557 Environment of Mars: Biological Implications Past, Present, and Future. *Icarus* **2000**, *146*, 343–359.

1558 (165) Dartnell, L. R.; Desorgher, L.; Ward, J. M.; Coates, A. J. Modelling the Surface and Subsurface Martian
1559 Radiation Environment: Implications for Astrobiology. *Geophys. Res. Lett.* **2007**, *34* (2), L02207.

1560 (166) Dartnell, L. R.; Desorgher, L.; Ward, J. M.; Coates, A. J. Martian Sub-Surface Ionising Radiation:
1561 Biosignatures and Geology. *Biogeosciences Discuss.* **2007**, *4* (1), 455–492.

1562 (167) Matthiä, D.; Hassler, D. M.; de Wet, W.; Ehresmann, B.; Firat, A.; Flores-McLaughlin, J.; Guo, J.;
1563 Heilbronn, L. H.; Lee, K.; Ratliff, H.; et al. The Radiation Environment on the Surface of Mars - Summary

1564 of Model Calculations and Comparison to RAD Data. *Life Sci. Sp. Res.* **2017**, *14*, 18–28.

1565 (168) Schuerger, A. C.; Golden, D. C.; Ming, D. W. Biotoxicity of Mars Soils: 1. Dry Deposition of Analog Soils
1566 on Microbial Colonies and Survival under Martian Conditions. *Planet. Space Sci.* **2012**, *72* (1), 91–101.

1567 (169) Fornaro, T.; Brucato, J. R.; Pace, E.; Cestelli-Guidi, M.; Branciamore, S.; Pucci, A. Infrared Spectral
1568 Investigations of UV Irradiated Nucleobases Adsorbed on Mineral Surfaces. *Icarus* **2013**, *226* (1), 1068–
1569 1085.

1570 (170) Gerakines, P. A.; Hudson, R. L. Glycine's Radiolytic Destruction in Ices: First *in Situ* Laboratory
1571 Measurements for Mars. *Astrobiology* **2013**, *13* (7), 647–655.

1572 (171) Kminek, G.; Bada, J. L. The Effect of Ionizing Radiation on the Preservation of Amino Acids on Mars.
1573 *Earth Planet. Sci. Lett.* **2006**, *245* (1–2), 1–5.

1574 (172) Poch, O.; Kaci, S.; Stalport, F.; Szopa, C.; Coll, P. Laboratory Insights into the Chemical and Kinetic
1575 Evolution of Several Organic Molecules under Simulated Mars Surface UV Radiation Conditions. *Icarus*
1576 **2014**, *242*, 50–63.

1577 (173) Poch, O.; Jaber, M.; Stalport, F.; Nowak, S.; Georgerlin, T.; Lambert, J.-F.; Szopa, C.; Coll, P. Effect of
1578 Nontronite Smectite Clay on the Chemical Evolution of Several Organic Molecules under Simulated
1579 Martian Surface Ultraviolet Radiation Conditions. *Astrobiology* **2015**, *15* (3), 221–237.

1580 (174) Córdoba-Jabonero, C.; Zorzano, M.-P.; Selsis, F.; Patel, M. R.; Cockell, C. S. Radiative Habitable Zones in
1581 Martian Polar Environments. *Icarus* **2005**, *175* (2), 360–371.

1582 (175) France, J. L.; King, M. D.; MacArthur, A. A Photohabitable Zone in the Martian Snowpack? A Laboratory
1583 and Radiative-Transfer Study of Dusty Water-ice Snow. *Icarus* **2010**, *207* (1), 133–139.

1584 (176) ten Kate, I. L.; Garry, J. R. C.; Peeters, Z.; Quinn, R.; Foing, B.; Ehrenfreund, P. Amino Acid Photostability
1585 on the Martian Surface. *Meteorit. Planet. Sci.* **2005**, *40* (8), 1185–1193.

1586 (177) Stoker, C. R.; Bullock, M. A. Organic Degradation under Simulated Martian Conditions. *J. Geophys. Res.*
1587 *Planets* **1997**, *102* (E5), 10881–10888.

1588 (178) ten Kate, I. L. Organics on Mars? *Astrobiology* **2010**, *10* (6), 589–603.

1589 (179) Oró, J.; Holzer, G. The Photolytic Degradation and Oxidation of Organic Compounds under Simulated
1590 Martian Conditions. *J. Mol. Evol.* **1979**, *14* (1–3), 153–160.

1591 (180) Scappini, F.; Casadei, F.; Zamboni, R.; Franchi, M.; Gallori, E.; Monti, S. Protective Effect of Clay Minerals
1592 on Adsorbed Nucleic Acid against UV Radiation: Possible Role in the Origin of Life. *Int. J. Astrobiol.* **2004**,
1593 *3*, 17–19.

1594 (181) Ciaravella, A.; Scappini, F.; Franchi, M.; Cecchi-Pestellini, C.; Barbera, M.; Candia, R.; Gallori, E.; Micela,
1595 G. Role of Clays in Protecting Adsorbed DNA against X-Ray Radiation. *Int. J. Astrobiol.* **2004**, *3* (1), 31–
1596 35.

1597 (182) Garry, J. R. C.; Ten Kate, I. L.; Martins, Z.; Nørnberg, P.; Ehrenfreund, P. Analysis and Survival of Amino
1598 Acids in Martian Regolith Analogs. *Meteorit. Planet. Sci.* **2006**, *405* (3), 391–405.

1599 (183) Biondi, E.; Branciamore, S.; Maurel, M.-C.; Gallori, E. Montmorillonite Protection of an UV-Irradiated
1600 Hairpin Ribozyme: Evolution of the RNA World in a Mineral Environment. *BMC Evol. Biol.* **2007**, *7* (2),
1601 S2.

1602 (184) Shkrob, I. A.; Chemerisov, S. D. Light Induced Fragmentation of Polyfunctional Carboxylated
1603 Compounds on Hydrated Metal Oxide Particles: From Simple Organic Acids to Peptides. *J. Phys. Chem.*
1604 *C* **2009**, *113* (39), 17138–17150.

1605 (185) Shkrob, I. A.; Chemerisov, S. D.; Marin, T. W. Photocatalytic Decomposition of Carboxylated Molecules
1606 on Light-Exposed Martian Regolith and Its Relation to Methane Production on Mars. *Astrobiology* **2010**,

1607 10 (4), 425–436.

1608 (186) Stalport, F.; Guan, Y. Y.; Coll, P.; Szopa, C.; Macari, F.; Raulin, F.; Chaput, D.; Cottin, H. UVolution, a
1609 Photochemistry Experiment in Low Earth Orbit: Investigation of the Photostability of Carboxylic Acids
1610 Exposed to Mars Surface UV Radiation Conditions. *Astrobiology* **2010**, *10* (4), 449–461.

1611 (187) Johnson, A. P.; Pratt, L. M. Metal-Catalyzed Degradation and Racemization of Amino Acids in Iron
1612 Sulfate Brines under Simulated Martian Surface Conditions. *Icarus* **2010**, *207* (1), 124–132.

1613 (188) Johnson, A. P.; Pratt, L. M.; Vishnivetskaya, T.; Pfiffner, S.; Bryan, R. A.; Dadachova, E.; Whyte, L.;
1614 Radtke, K.; Chan, E.; Tronick, S.; et al. Extended Survival of Several Organisms and Amino Acids under
1615 Simulated Martian Surface Conditions. *Icarus* **2011**, *211*, 1162–1178.

1616 (189) Shkrob, I. A.; Marin, T. M.; Adhikary, A.; Sevilla, M. D. Photooxidation of Nucleic Acids on Metal
1617 Oxides: Physicochemical and Astrobiological Perspectives. *J. Phys. Chem. C* **2011**, *115* (8), 3393–3403.

1618 (190) dos Santos, R.; Patel, M.; Cuadros, J.; Martins, Z. Influence of Mineralogy on the Preservation of Amino
1619 Acids under Simulated Mars Conditions. *Icarus* **2016**, *277*, 342–353.

1620 (191) Ertem, G.; Ertem, M. C.; McKay, C. P.; Hazen, R. M. Shielding Biomolecules from Effects of Radiation
1621 by Mars Analogue Minerals and Soils. *Int. J. Astrobiol.* **2017**, *16* (3), 280–285.

1622 (192) ten Kate, I. L.; Garry, J. R. C.; Peeters, Z.; Foing, B.; Ehrenfreund, P. The Effects of Martian near Surface
1623 Conditions on the Photochemistry of Amino Acids. *Planet. Space Sci.* **2006**, *54* (3), 296–302.

1624 (193) Stalport, F.; Coll, P.; Szopa, C.; Raulin, F. Search for Organic Molecules at the Mars Surface: The “Martian
1625 Organic Material Irradiation and Evolution” (MOMIE) Project. *Adv. Sp. Res.* **2008**, *42* (12), 2014–2018.

1626 (194) Poch, O.; Noblet, A.; Stalport, F.; Correia, J. J.; Grand, N.; Szopa, C.; Coll, P. Chemical Evolution of
1627 Organic Molecules under Mars-like UV Radiation Conditions Simulated in the Laboratory with the
1628 “Mars Organic Molecule Irradiation and Evolution” (MOMIE) Setup. *Planet. Space Sci.* **2013**, *85*, 188–197.

1629 (195) Onoe, J.; Kawai, T.; Kawai, S. Peptide Formation from Amino Acid with Particulate Semiconductor
1630 Photocatalysts. *Chem. Lett.* **1985**, *14* (11), 1667–1670.

1631 (196) Saladino, R.; Brucato, J. R.; De Sio, A.; Botta, G.; Pace, E.; Gambicorti, L. Photochemical Synthesis of Citric
1632 Acid Cycle Intermediates Based on Titanium Dioxide. *Astrobiology* **2011**, *11* (8), 815–824.

1633 (197) Li, Y.; Xu, X.; Li, Y.; Ding, C.; Wu, J.; Lu, A.; Ding, H.; Qin, S.; Wang, C. Absolute Band Structure
1634 Determination on Naturally Occurring Rutile with Complex Chemistry: Implications for Mineral
1635 Photocatalysis on Both Earth and Mars. *Appl. Surf. Sci.* **2018**, *439*, 660–671.

1636 (198) Ehrenfreund, P.; Bernstein, M. P.; Dworkin, J. P.; Sandford, S. A.; Allamandola, L. J. The Photostability
1637 of Amino Acids in Space. *Astrophys. J.* **2001**, *550*, L95–L99.

1638 (199) McBride, M.; Kung, K.-H. Complexation of Glyphosate and Related Ligands with Iron (III). *Soil Sci. Soc.*
1639 *Am. J.* **1989**, *53* (6), 1668.

1640 (200) Yusenko, K.; Fox, S.; Guni, P.; Strasdeit, H. Model Studies on the Formation and Reactions of Solid
1641 Glycine Complexes at the Coasts of a Primordial Salty Ocean. *Zeitschrift für Anorg. und Allg. Chemie* **2008**,
1642 *634* (12–13), 2347–2354.

1643 (201) Bada, J. L. Racemization of Amino Acids in Nature. *Interdiscip. Sci. Rev.* **1982**, *7* (1), 30–46.

1644 (202) Kavitha, V.; Palanivelu, K. Degradation of 2-Chlorophenol by Fenton and Photo-Fenton Processes—A
1645 Comparative Study. *J. Environ. Sci. Heal. Part A* **2003**, *38* (7), 1215–1231.

1646 (203) Zuo, Y.; Hoigne, J. Formation of Hydrogen Peroxide and Depletion of Oxalic Acid in Atmospheric Water
1647 by Photolysis of Iron(III)-Oxalato Complexes. *Environ. Sci. Technol.* **1992**, *26* (5), 1014–1022.

1648 (204) Gu, B.; Schmitt, J.; Chen, Z.; Liang, L.; McCarthy, J. F. Adsorption and Desorption of Natural Organic
1649 Matter on Iron Oxide: Mechanisms and Models. *Environ. Sci. Technol.* **1994**, *28* (1), 38–46.

1650 (205) Williams, K. M.; Smith, G. G. A Critical Evaluation of the Application of Amino Acid Racemization to
1651 Geochronology and Geothermometry. *Orig. Life* **1977**, *8* (2), 91–144.

1652 (206) Möhlmann, D. Adsorption Water-Related Potential Chemical and Biological Processes in the Upper
1653 Martian Surface. *Astrobiology* **2005**, *5* (6), 770–777.

1654 (207) Franchi, M.; Gallori, E. Origin, Persistence and Biological Activity of Genetic Material in Prebiotic
1655 Habitats. *Orig. life Evol. Biosph.* **2004**, *34* (1–2), 133–141.

1656 (208) Otroshchenko, V. A.; Vasilyeva, N. V. Formation of RNA Oligonucleotides over the Mineral Surface
1657 Preliminary Irradiated with UV Light. *React. Kinet. Catal. Lett.* **2009**, *97*, 151–156.

1658 (209) Horneck, G.; Reitz, G.; Rettberg, P.; Schuber, M.; Kochan, H.; Möhlmann, D.; Richter, L.; Seidltz, H. A
1659 Ground-Based Program for Exobiological Experiments on the International Space Station. *Planet. Space
1660 Sci.* **2000**, *48* (5), 507–513.

1661 (210) Schuerger, A. C.; Mancinelli, R. L.; Kern, R. G.; Rothschild, L. J.; McKay, C. P. Survival of Endospores of
1662 *Bacillus Subtilis* on Spacecraft Surfaces under Simulated Martian Environments: Implications for the
1663 Forward Contamination of Mars. *Icarus* **2003**, *165* (2), 253–276.

1664 (211) Schuerger, A. C.; Richards, J. T.; Newcombe, D. A.; Venkateswaran, K. Rapid Inactivation of Seven
1665 *Bacillus* Spp. under Simulated Mars UV Irradiation. *Icarus* **2006**, *181* (1), 52–62.

1666 (212) Nir, E.; Kleinermanns, K.; Grace, L.; de Vries, M. S. On the Photochemistry of Purine Nucleobases. *J.
1667 Phys. Chem. A* **2001**, *105* (21), 5106–5110.

1668 (213) Ravanat, J.-L.; Douki, T.; Cadet, J. Direct and Indirect Effects of UV Radiation on DNA and Its
1669 Components. *J. Photochem. Photobiol. B Biol.* **2001**, *63* (1–3), 88–102.

1670 (214) Barbatti, M.; Aquino, A. J. A.; Szymczak, J. J.; Nachtigallová, D.; Hobza, P.; Lischka, H. Relaxation
1671 Mechanisms of UV-Photoexcited DNA and RNA Nucleobases. *Proc. Natl. Acad. Sci.* **2010**, *107* (50), 21453–
1672 21458.

1673 (215) Pavlov, A. K.; Blinov, A. V.; Konstantinov, A. N. Sterilization of Martian Surface by Cosmic Radiation.
1674 *Planet. Space Sci.* **2002**, *50* (7–8), 669–673.

1675 (216) Clark, B. C. Chemical and Physical Microenvironments at the Viking Landing Sites. *J. Mol. Evol.* **1979**, *14*
1676 (1–3), 13–31.

1677 (217) Gerakines, P. A.; Hudson, R. L.; Moore, M. H.; Bell, J.-L. In Situ Measurements of the Radiation Stability
1678 of Amino Acids at 15–140 K. *Icarus* **2012**, *220* (2), 647–659.

1679 (218) López-Esquivel Kranksith, L.; Negrón-Mendoza, A.; Mosqueira, F. G.; Ramos-Bernal, S. Radiation-
1680 Induced Reactions of Amino Acids Adsorbed on Solid Surfaces. *Nucl. Instruments Methods Phys. Res. Sect.
1681 A Accel. Spectrometers, Detect. Assoc. Equip.* **2010**, *619* (1–3), 51–54.

1682 (219) Guzmán, A.; Negrón-Mendoza, A.; Ramos-Bernal, S. Behavior of Adenine in Na-Montmorillonite
1683 Exposed to Gamma Radiation: Implications to Chemical Evolution Studies. *Cell. Mol. Biol. (Noisy-le-
1684 Grand, France)* **2002**, *48* (5), 525–528.

1685 (220) Góbi, S.; Förstel, M.; Maksyutenko, P.; Kaiser, R. I. A Reflectron Time-of-Flight Mass Spectrometric Study
1686 on the Degradation Pathways of Glycine on Mars in the Presence of Perchlorates and Ionizing Radiation.
1687 *Astrophys. J.* **2017**, *835* (2), 241.

1688 (221) Schoonen, M.; Smirnov, A.; Cohn, C. A Perspective on the Role of Minerals in Prebiotic Synthesis.
1689 *AMBIO A J. Hum. Environ.* **2004**, *33* (8), 539–551.

1690 (222) Gallori, E.; Biondi, E.; Franchi, M. Mineral Surfaces as a Cradle of Primordial Genetic Material. In *Life in
1691 the Universe*; Seckbach, J., Chela-Flores, J., Owen, T., Raulin, F., Eds.; Cellular Origin and Life in Extreme
1692 Habitats and Astrobiology; Springer Netherlands, 2004; Vol. 7, pp 145–148.

1693 (223) Keppler, F.; Vigano, I.; McLeod, A.; Ott, U.; Frücht, M.; Röckmann, T. Ultraviolet-Radiation-Induced
1694 Methane Emissions from Meteorites and the Martian Atmosphere. *Nature* **2012**, *486*, 93–96.

1695 (224) Okabe, H. *Photochemistry of Small Molecules*, Vol. 431.; Wiley: New York, 1978.

1696 (225) Shemansky, D. E. CO₂ Extinction Coefficient 1700–3000 Å. *J. Chem. Phys.* **1972**, *56*, 1582–1587.

1697 (226) Karaiskou, A.; Vallance, C.; Papadakis, V.; Vardavas, I. M.; Rakitzis, T. P. Absolute Absorption Cross-
1698 Section Measurements of CO₂ in the Ultraviolet from 200 to 206 nm at 295 and 373 K. *Chem. Phys. Lett.*
1699 **2004**, *400* (1–3), 30–34.

1700 (227) Vesela, A.; Wilhelm, J. The Role of Carbon Dioxide in Free Radical Reactions in Organism. *Physiol. Res.*
1701 **2002**, *51* (4), 335–340.

1702 (228) Ehlmann, B. L.; Mustard, J. F. An In-Situ Record of Major Environmental Transitions on Early Mars at
1703 Northeast Syrtis Major. *Geophys. Res. Lett.* **2012**, *39* (11), L11202.

1704 (229) Goudge, T. A.; Mustard, J. F.; Head, J. W.; Fassett, C. I.; Wiseman, S. M. Assessing the Mineralogy of the
1705 Watershed and Fan Deposits of the Jezero Crater Paleolake System, Mars. *J. Geophys. Res. Planets* **2015**,
1706 *120* (4), 775–808.

1707 (230) Salvatore, M. R.; Goudge, T. A.; Bramble, M. S.; Edwards, C. S.; Bandfield, J. L.; Amador, E. S.; Mustard,
1708 J. F.; Christensen, P. R. Bulk Mineralogy of the NE Syrtis and Jezero Crater Regions of Mars Derived
1709 through Thermal Infrared Spectral Analyses. *Icarus* **2018**, *301*, 76–96.

1710 (231) Bridges, J. C.; Loizeau, D.; Sefton-Nash, E.; Vago, J.; Williams, R. M. E.; Balme, M.; Turner, S. M. R.;
1711 Fawdon, P.; Davis, J. M. Selection and Characterization of the ExoMars 2020 Rover Landing Sites. In *48th*
1712 *Lunar and Planetary Science Conference*; 2017.

1713 (232) Amiri, S.; McGrath, M.; Al Awadhi, M.; Almatroushi, H.; Sharaf, O.; AlDhafri, S.; AlRais, A.; Wali, M.;
1714 AlShamsi, Z.; AlQasim, I.; et al. Emirates Mars Mission (EMM) 2020 Overview. In *42nd COSPAR*
1715 *Scientific Assembly*; 2018.

1716 (233) Jiang, X.; Yang, B.; Li, S. Overview of China's 2020 Mars Mission Design and Navigation. *Astrodynamic*
1717 **2018**, *2* (1), 1–11.

1718 (234) Haider, S. A.; Bhardwaj, A.; Shanmugam, M.; Goyal, S. K.; Sheel, V.; Pabari, J.; Prasad Karanam, D.
1719 Indian Mars and Venus Missions: Science and Exploration. In *42nd COSPAR Scientific Assembly*; 2018.

1720 (235) Campagnola, S.; Yam, C. H.; Tsuda, Y.; Ogawa, N.; Kawakatsu, Y. Mission Analysis for the Martian
1721 Moons Explorer (MMX) Mission. *Acta Astronaut.* **2018**, *146*, 409–417.