Because only two variables are needed to characterize a simple thermodynamic system in equilibrium, any such system is constrained on a 2D manifold. Of particular interest are the exact 1-forms on the cotangent space of that manifold, since the integral of exact 1-forms is path-independent, a crucial property satisfied by state variables such as internal energy dE and entropy dS. Our prior work [1] shows that given an appropriate language of vector calculus, a machine can re-discover the Maxwell equations and the incompressible Navier-Stokes equations from data. In this paper, We enhance this language by including differential forms and show that machines can re-discover the equation for entropy dS given data. Since entropy appears in various fields of science in different guises, a potential extension of this work is to use the machinery developed in this paper to let machines discover the expressions for entropy from data in fields other than classical thermodynamics.
Keywords:
Subject: Physical Sciences - Thermodynamics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.