Preprint
Article

Deep Learning: A Review

This version is not peer-reviewed.

Submitted:

06 October 2018

Posted:

10 October 2018

You are already at the latest version

Abstract
Deep learning is an emerging area of machine learning (ML) research. It comprises multiple hidden layers of artificial neural networks. The deep learn- ing methodology applies nonlinear transformations and model abstractions of high level in large databases. The recent advancements in deep learning architec- tures within numerous fields have already provided significant contributions in artificial intelligence. This article presents a state of the art survey on the contri- butions and the novel applications of deep learning. The following review chron- ologically presents how and in what major applications deep learning algorithms have been utilized. Furthermore, the superior and beneficial of the deep learning methodology and its hierarchy in layers and nonlinear operations are presented and compared with the more conventional algorithms in the common applica- tions. The state of the art survey further provides a general overview on the novel concept and the ever-increasing advantages and popularity of deep learning.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1516

Views

1463

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated