Preprint
Article

The Daily and Hourly Rainfall Data Modeling Using Vector Autoregressive (VAR) with Maximum Likelihood Estimator (MLE) and Bayesian Method (Case Study in Sampean Watershed of Bondowoso, Indonesia)

Altmetrics

Downloads

436

Views

326

Comments

0

Submitted:

13 October 2018

Posted:

15 October 2018

You are already at the latest version

Alerts
Abstract
The hourly and daily rainfall data which is spatially distributed are required as an input for run-off rain model. Furthermore, the run-off rain model is used to detect early flooding. The daily and hourly rainfall data have characteristics that most of data are zero. Therefore we need a model which can capture the phenomenon. A time series model involving location, which is a model that can be developed to approach the daily and hourly rainfall data, we can call Vector Autoregressive (VAR) model. The VAR model allows us for modeling rainfall data in several areas. However, in certain conditions the VAR model often occurs over-parameterization and reduces degrees of freedom. The aim of this study is to compare the VAR model with Maximum Likelihood Estimator (MLE) and Bayesian to hourly and daily rainfall data in SampeanWatershed of Bondowoso. The results showed that the hourly and daily rainfall data are fitted to VAR process of orde 5 and 1 respectively. Based on the AIC and SBC values indicate that the Bayesian is better than the MLE method. The Bayesian is able to predict parameters by producing a smaller variance covariance matrix than the MLE.
Keywords: 
Subject: Computer Science and Mathematics  -   Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated