Abstract
Imperatorin is a chemical compound belong to Linear furan coumarins. Imperatorin is attracting considerable attention because of its anti-tumor, antibacterial, anti-inflammatory, anticoagulant and inhibition of myocardial hypetrophy and other pharmacological efficacy. However, imperatorin has limited water solubility and preferable lipid solubility, we decided to design and synthesize imperatorin lipid microsphere, to optimize preparation conditions. The aim was to develop and formulate imperatorin lipid microsphere through nano emulsion technology and apply the response surface-central composite design to optimize the imperatorin lipid microsphere formulation. Influence of content of amount of egg lecithin(A), amount of poloxamer188(B), soybean oil for injection accounted for the total percentage of oil phase(C) were investigated. Integrated effect of dependent variables including particle size(Y1), polydispersity index(Y2), Zeta potentials(Y3), drug loading(Y4), encapsulation efficiency(Y5). Data of overall desirabiities were fitted to a second-order polynomial equation, through which three dimensional response surface graphs were described. Optimum experimental conditions were calculated by Design-Expert 8.06. Results indicated that the optimum preparation conditions were as follows: egg lecithin amount 1.39 g, poloxamer188 amount 0.21 g, soybean oil for injection amount 10.57%. Preparation of imperatorin lipid microsphere according to the optimum experimental conditions resulted in an overall desirability of 0.7286, while the particele size (168±0.54) nm, polydispersity index (PDI) (0.138±0.02), Zeta potentials (−43.5±0.5) mV, drug loading (0.833±0.27) mg·mL−1, encapsulation efficiency (90±1.27)%. The difference between observed and predicted values of the overall desirability of the optimum formulation was in range from 2.4% to 4.3%. Subsequently, using the Scanning electron microscopy to observe the micromorphology of imperatorin lipid microsphere, the result shows that round globular of relatively uniform and sizes within 200nm.The proliferation study of imperatorin lipid microsphere on MDA-MB-231 was investigated by MTT method. Furthermore, pharmacokinetics in Sprague Dawley rats were evaluated using orbital bleeding. A sensitive and reliable liquid chromatography with High Performance Liquid Chromatography (HPLC) method was established and validated for the quantification of imperatorin in rat plasma samples. The data were calculated by DAS (Drug and statistics) pharmacokinetic software version3.2.6 (China). Results demonstrated that imperatorin lipid microsphere can significantly enhance the bioavailability of imperatorin and can significantly inhibit MDA-MB-231 cell proliferating. In conclusion, our results suggersted that the response surface-central composite design is suitable for the optimized lipid microspere formulation. Imperatorin Lipid microsphere can improve the bioavailability of imperatorin and inhibit the proliferation of MDA-MB-231 than that of imperatorin.