

1 Type of the Paper: Article
2
3

4 Reproductive toxicity of 4-octylphenol induced 5 mitochondria-mediated apoptosis in male mouse- 6 specific niche cells

7
8 Mingtian Zhang^{1,†}, Hyun Jung Park^{1,†}, Kwonho Hong¹, Chankyu Park¹, Hyuk Song^{1,*}
9
10

11 ¹ Department of Stem Cell and Regenerative Biology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul
12 05029, Republic of Korea
13

14
15 † These authors contributed equally to this work

16 *Correspondence: Prof. Hyuk Song, Department of Stem Cell and Regenerative Technology, Konkuk
17 University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea; Tel: +82-2-450-0562; e-mail:
18 songh@konkuk.ac.kr

19
20 **Abstract**

21 The toxic effects of 4-octylphenol (4-OP) have been studied in species such as mouse and fish; however,
22 the toxic effects of 4-OP in male specific niche cells has not been researched. In this study, we
23 investigated the molecular mechanism of toxicity of 4-OP in mouse TM4 Sertoli cells. TM4 cells were
24 treated with four concentrations (0, 10, 30, and 50 μ M/mL) of 4-OP at time points 24, 48, and 72 h. Cell
25 viability and apoptosis assay was conducted following exposure. 4-OP significantly decreased cell
26 viability in a concentration- and time-dependent manner, and increased apoptosis. Quantitative PCR
27 analysis showed that Bad, Bax, and Bak mRNA expression levels were higher in exposed cells than in
28 the control, but Bcl-2 expression was decreased. Western blotting revealed that 4-OP induced activities
29 of caspase-3 and phosphorylation of Bad in a concentration- and time-dependent manner. Additionally,
30 cytochrome C protein did not colocalize with mitochondria marker dye by 24 h. Cytochrome c protein
31 expression increased in a time-dependent manner with 50 μ M/mL. These results suggest that 4-OP
32 induces mitochondria-mediated apoptosis by regulation of Bcl-2 family proteins and caspase-3
33 activation in male Sertoli cells.

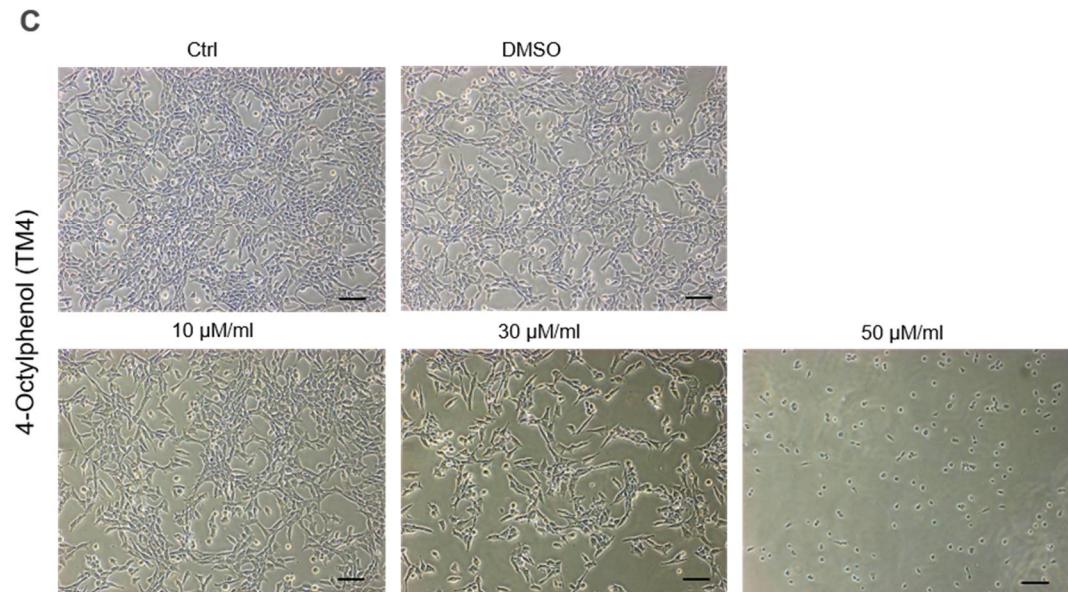
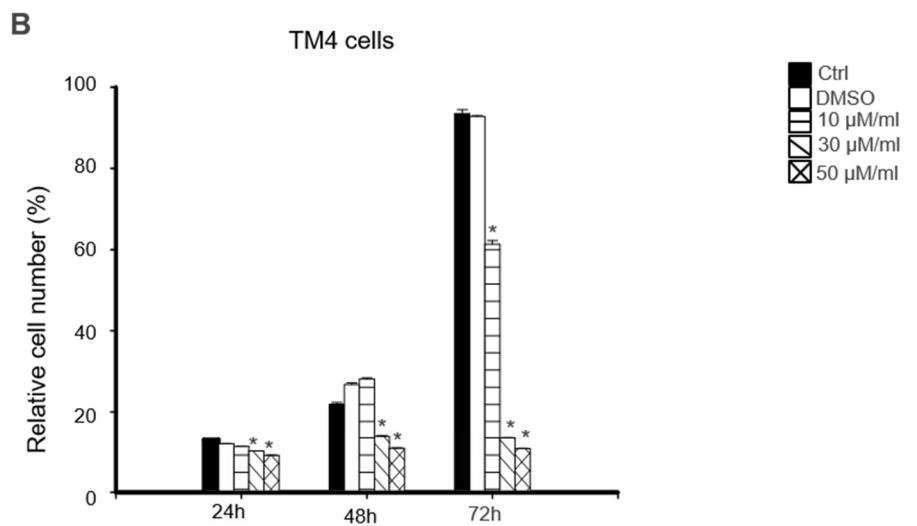
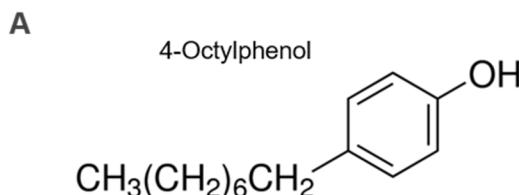
34
35
36 **Keywords:** 4-octylphenol, Male Sertoli cells, Reproductive toxicity, Apoptosis, Mitochondria
37

38 **1. Introduction**

39 4-Octylphenol (4-OP), one of many long-chain alkylphenols (APs), has been reported to cause
40 environmental contamination through its use by industries worldwide to optimize the manufacturing
41 of common products such as lubricants, plastics, cosmetics, and detergents [1]. APs are accumulated in
42 the human body via ingestion, inhalation, and dermal absorption, and have even been found in
43 maternal blood plasma, amniotic fluid [2], and breast milk [3].

44 Several studies have reported that 4-OP is a typical endocrine disruptor with estrogenic action, and
45 environmental exposure to endocrine disrupting chemicals (EDCs) has adverse effects on the human
46 reproductive system [4]. It has been reported that long-term 4-tert-octylphenol (OP) exposure in bank
47 voles resulted from disturbed androgen and estrogen synthesis and action (20850518). In addition, a
48 study of mice leydig cells exposed to 4-OP showed a decrease in the secretion of
49 dehydroepiandrosterone, androstenedione, and testosterone, and reactive oxygen species
50 overproduction [5]. Similarly, juvenile mouse exposure to OP inhibited steroidogenesis by decreasing
51 the expression of steroidogenic enzymes in the testes [6]. Subcutaneous injections of 80 mg OP in an oil
52 vehicle 3 times weekly decreased sperm production in adult male rats [7], and the number of mitotic
53 germ cells and pre-spermatogonia was reduced in human fetal gonads during a 3-week culture period
54 with 4-OP treatment [8]. In females, the proliferation of uterine luminal, glandular, and stromal cells,
55 and vaginal epithelial cells were increased in adult ovariectomized rats following subcutaneous
56 injection of OP [9].

57 Fetal exposure to the weak estrogenicity of OP enhanced the induction of mammary carcinomas in
58 rats [10]. Early neonatal exposure to 4-OP (50 mg/kg) by oral gavage caused delayed sexual maturation
59 and decreased ventral prostate weight [11].




60 Apoptosis is a common form of programmed cell death that causes morphological changes including
61 cell shrinkage, nuclear fragmentation, and chromatin condensation [12]. Cellular apoptosis is regulated
62 by two typical activation mechanisms: the intrinsic pathway and the extrinsic pathway [13].
63 Apoptosis via the intrinsic pathway can be induced by the release of cytochrome c from mitochondria
64 and a change in the level of pro-apoptotic Bcl-2 family proteins such as Bax [14]. Among APs, 4-
65 nonylphenol induced thymocyte apoptosis via the intrinsic pathway, including caspase-3 activation
66 and mitochondrial depolarization [15]. It is well-known that Sertoli cells are necessary for the
67 progression of germ cells into sperm in male testes. The damage of Sertoli cells caused by
68 environmental toxicants can negatively affect spermatogenesis.

69 Although many studies have reported the toxic effects of OP in reproductive organs and various cells,
70 the molecular mechanism of 4-OP in the niche of male germ cells has not been studied in detail.
71 Therefore, the present study examined the molecular mechanism underlying 4-OP mediated toxic
72 effects in TM4 sertoli cells.

73

74 **2. Results**75 **2.1. Effect of 4-OP on viability of TM4 cells**

76 Figure 1A illustrates the chemical structure of 4-OP. We determined the cytotoxic effects of 4-OP on
77 the cell proliferation of TM4 sertoli cells. MTT assay was done at 24, 48, and 72 h. TM4 cells were treated
78 with the concentrations of 4-OP (10, 30, 50, and 100 μ M/mL). As shown in Figure 1B, cell viability
79 significantly decreased when cells were exposed to the lowest concentration of 4-OP (10 μ M/mL) for 72
80 h, although cell viability was only slightly affected when the cells were exposed to the same amount for
81 24 and 48 h. Notably, marked decrease in cell viability was observed following incubation with 4-OP at
82 concentrations of 30 and 50 μ M/mL at 24, 48, and 72 h (Fig. 1B). The morphological change observed 72
83 h after treatment was dose dependent. 4-OP induced dose-dependent apoptotic cell death on TM4 cells.
84 Cell shrinkage and cytoplasm condensation appeared in 30 and 50 μ M/mL of 4-OP treatment (Fig. 1C).
85

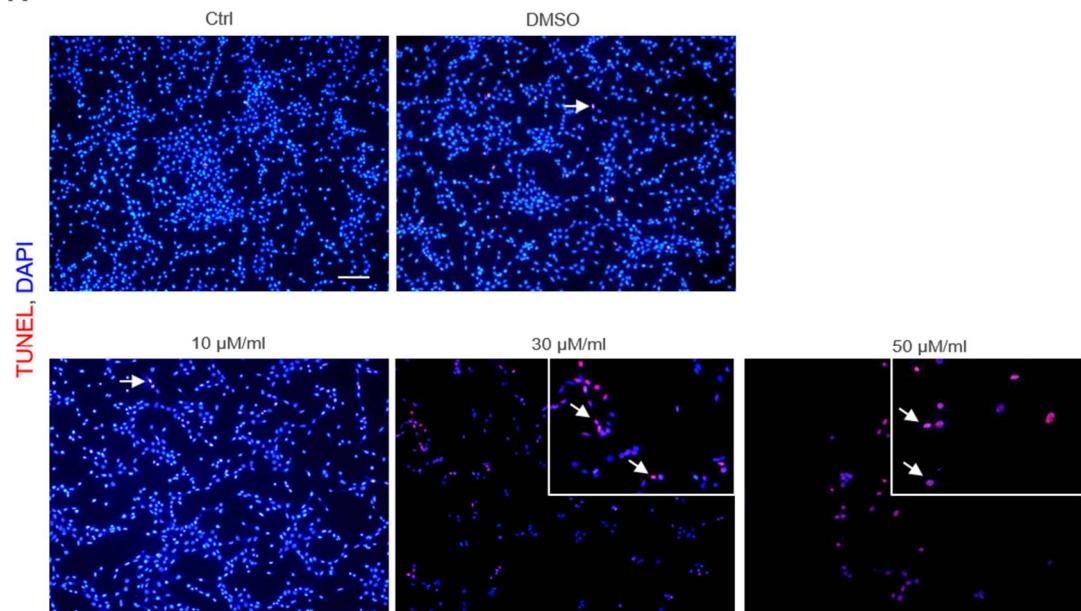
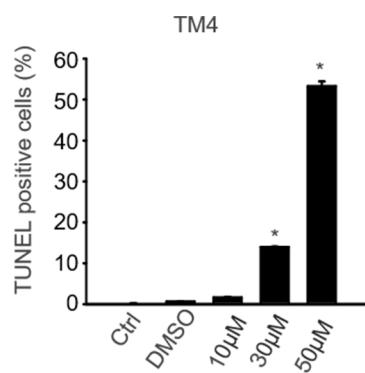



Figure 1. Cytotoxic effects of 4-OP on mouse TM4 Sertoli cells. (A) Chemical structure of 4-OP after treated with increasing doses of 4-OP (0, 10, 30, and 50 μ M/mL) at different time points (24, 48, and 72 h), (B) TM4 cell viability was measured by MTT assay. Results are represented as mean \pm SD from 3 determinations per condition repeated 4 times. P<0.05, compared with the control. (C) Morphological changes of TM4 cells were photographed under an inverted microscope after treatment with indicated concentration of 4-OP (0, 10, 30, and 50 μ M/mL) for 72 h. Scale bars = 100 μ m.

94 **2.2. Effects of 4- OP on apoptosis of TM4 cells**

95 Cell apoptosis was examined using a TUNEL assay to quantify cellular death. As shown in Figure
96 3, 4-OP significantly increased the number of TUNEL-positive cells in a dose-dependent manner (0, 30,
97 and 50 μ M/mL). In particular, 30 and 50 μ M/mL of 4-OP markedly increased TUNEL-positive TM4 cells
98 (Fig. 2A). The data indicated that TUNEL-positive rates of TM4 and control were 13.95 ± 0.14 and
99 53.29 ± 1.13 , respectively (Fig. 2B).

100

A**B**101
102

103 **Figure 2. 4-OP-induced cell death in the TM4 cells by TUNEL assay.** (A) Detection of in situ DNA
104 breaks by TUNEL assay. Cells were exposed to 0, 10, 30, and 50 μ M/mL 4-OP for 24 h, the TUNEL
105 positive cells (arrow) increased dose-dependently in the 4-OP-treated TM4 cells. Bar represents
106 100 μ m. (B) Graph representing average number of TUNEL-positive cells in each group. The
107 percentage of TUNEL positive cells in each case were counted and the cumulative data from 3
108 independent experiments in shown here as mean \pm SD (n =3, *p < 0.05 significantly different from
109 control).

110
111

112 **2.3. 4-OP induces the expression of pro-apoptotic gene and protein TM4 cells**

113 To understand the apoptotic effect of 4-OP signaling in detail, we further analyzed several
114 apoptosis-associated molecules. The expression levels of Bax, Bad, Bcl-2, and Bak, mRNAs that play
115 essential roles in modulating apoptosis, were analyzed. Bax, Bad, and Bak mRNA levels in TM4 cells
116 treated with 4-OP increased in dose-dependent manner (Fig. 3). Bad and
117 Bax mRNA levels in TM4 cells treated with 4-OP increased in a dose-dependent manner (Fig. 3A and
118 B). In addition, the expression level of Bak significantly increased in TM4 cells treated with 50 μ M/mL
119 of 4-OP, when compared with the control, and decreased Bcl-2 levels were observed in TM4 cells treated
120 with 30 and 50 μ M/mL of 4-OP (Fig. 3C and D). Since caspase-3 activation is considered a hallmark of
121 the apoptotic process, activation of caspase-3 by 4-OP was confirmed by western blot analysis to
122 confirm whether pro-apoptotic protein is involved in this apoptosis induction (Fig. 4). Caspase-3
123 activity was significantly increased in 4-OP exposed TM4 cells in a dose-dependent manner (Fig. 4A).
124 Consistently, 50 μ M of 4-OP treatment increased the level of cleaved caspase-3, the active form of
125 caspase-3, in TM4 cells 24 h after treatment, but total caspase-3 was not elevated at all time points when
126 compared with the 0 h control (Fig. 4B). Based on our QPCR result, we examined the effect of 4-OP on
127 the phosphorylation of Bad and found remarkable detection of Bad phosphorylation in TM4 cells after
128 exposure to 4-OP in a dose-dependent manner (Fig. 4C). We found that 50 μ M/mL 4-OP also induced
129 Bad phosphorylation of TM4 cells at 24 and 48 h, when compared with the control (Fig. 4D). For
130 normalization, total Bad protein levels were determined with Bad antibody, which reacted with both
131 the phosphorylated and non-phosphorylated Bad.

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

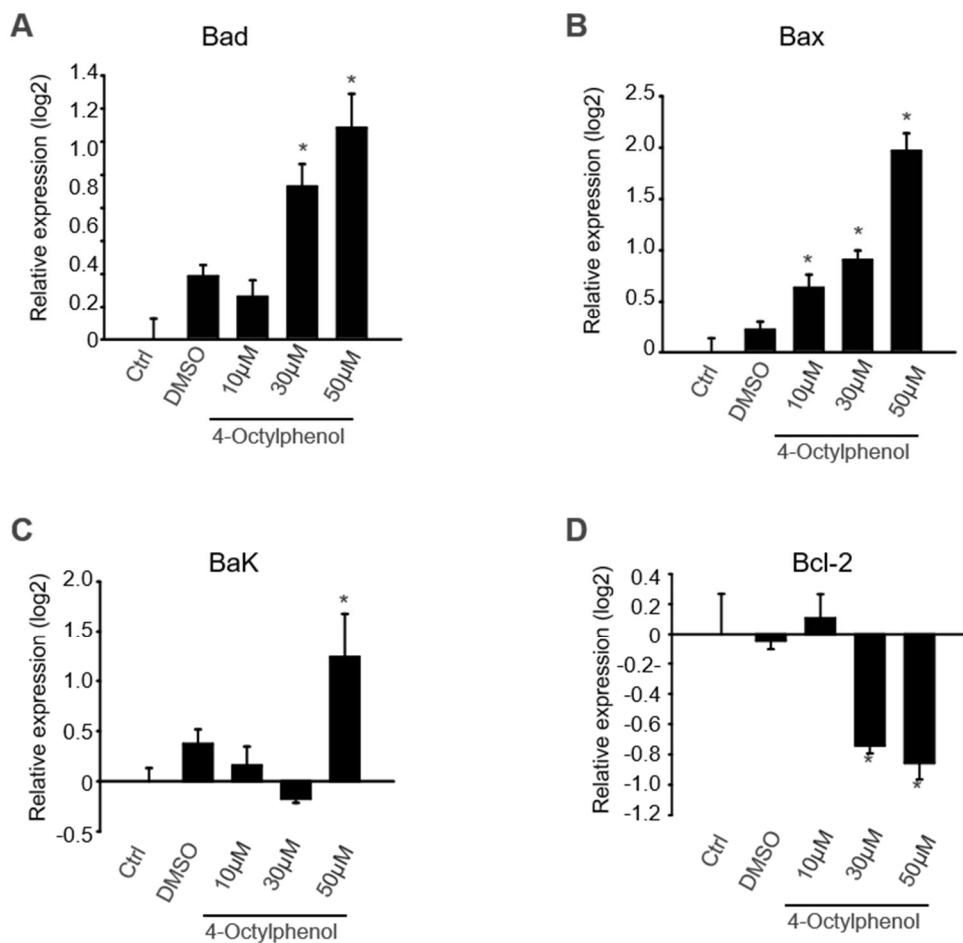
150

151

152

153

154


155

156

157

158

159

Figure 3. mRNA expression of anti- and pro-apoptotic genes in 4-OP-exposed TM4 cells. The mRNA levels of Bad (A), Bax (B), Bak (C), and Bcl-2 (D) were examined by QPCR on 4-OP exposed TM4 cells in a dose dependent manner (0, 10, 30, and 50 μ M/mL 4-OP). Data shows significant difference of 4-OP exposed cells compared to the control group. Results are represented as mean \pm SD from 3 determinations per condition repeated 4 times. (n=4, *p < 0.05).

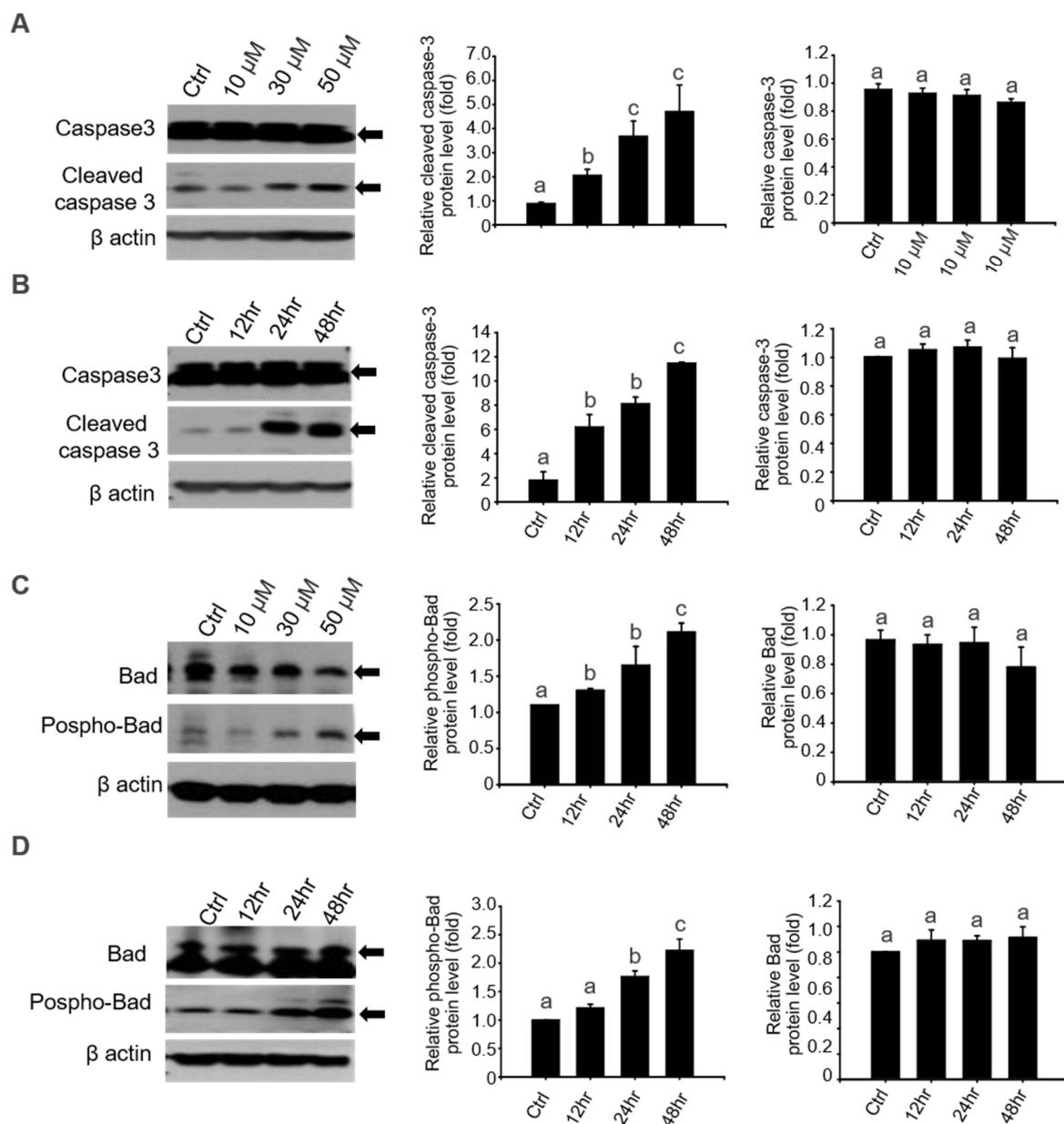
160
161

162 **Figure 3. mRNA expression of anti- and pro-apoptotic genes in 4-OP-exposed TM4 cells.** The mRNA
163 levels of Bad (A), Bax (B), Bak (C), and Bcl-2 (D) were examined by QPCR on 4-OP exposed TM4 cells
164 in a dose dependent manner (0, 10, 30, and 50 μ M/mL 4-OP). Data shows significant difference of 4-OP
165 exposed cells compared to the control group. Results are represented as mean \pm SD from 3
166 determinations per condition repeated 4 times. (n=4, *p < 0.05).

167
168

169
170

171
172


173
174

175
176

177
178

179
180

181
182

183
184

185 **Figure 4. The expression of pro-apoptotic protein in 4-OP-exposed TM4 cells.** 4-OP increased the
 186 expression of cleaved caspase-3 in 4-OP-exposed TM4 cells. (A) After treatment with different
 187 concentrations of 4-OP (0, 10, 30, and 50 μ M/mL) for 24 h. (B) TM4 cells were treated with 50 μ M/mL
 188 4-OP, respectively, at different time points (0, 24, and 48 h). The expression levels of cleaved caspase-3,
 189 caspase-3 and β -actin were examined by western blot. (C) After treatment with different concentrations
 190 (0, 10, 30, and 50 μ M/mL) for 24 h and (D) different time points (0, 24, and 48 h) of 4-OP. The expression
 191 level of phospho-Bad, Bad, and β -actin were examined by western blot. Bar graphs represent the
 192 relative density of each band normalized to β -actin or the no active form of each protein. Values
 193 represent the mean \pm SD of 3 independent experiments (n=3, *p < 0.05 compared with the controls).

194
195
196

197 **2.4. 4-OP induces cytochrome c release from mitochondria in TM4 cells**

198 We determined whether the mitochondria pathway is involved in TM4 apoptosis induced by 4-OP.
199 Generally, cytochrome c release from mitochondria has been proposed to be a critical event that initiates
200 apoptosis in mammals [16]. We examine whether 4-OP induced the release of cytochrome c from
201 mitochondria to the cytosol. The cellular localization of cytochrome c protein was examined by confocal
202 immunofluorescence microscopy in TM4 cells. Labeling was done with MitoTracker, a red fluorescent
203 dye that targets mitochondria. The results showed an apparent difference in the levels of cytochrome c
204 between the treatment and control groups at 24 h post treatment. The pattern of cytochrome c
205 immunofluorescence and mitochondrial dye showed complete colocalization in the untreated controls
206 as overlapping red and green pixels seen as yellow in the TM4 cells (Fig. 5A). In contrast, the pattern of
207 staining observed after treatment with 4-OP revealed that mitochondria were stained with red
208 MitoTracker dye but were no longer colocalized with cytochrome c in the TM4 cells (Fig. 5B). In addition,
209 western blot analysis indicated that 4-OP significantly increased the expression level of cytochrome c
210 (Fig. 5C).

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

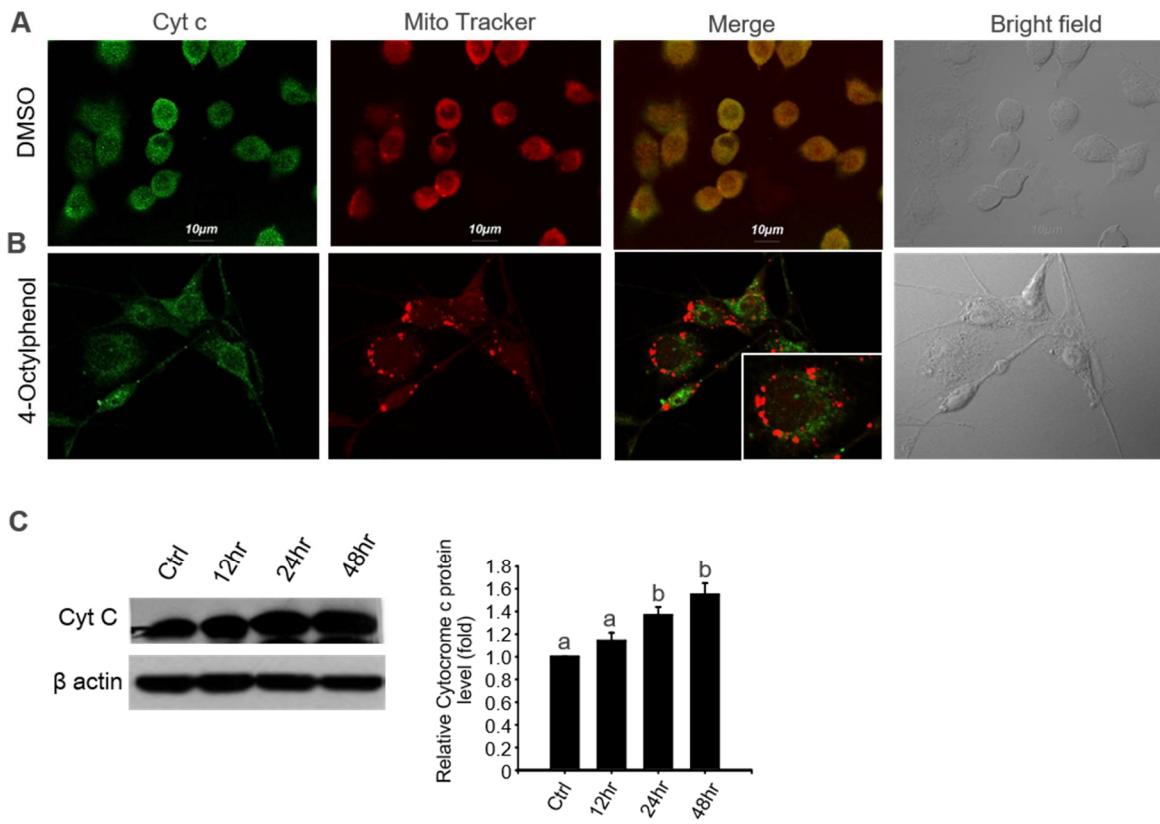
236

237

238

239

240


241

242

243

244

245

246
247
248

249 **Figure 5. 4-OP induces cytochrome c release in TM4 cells in a time-dependent manner.** (A) Effect of
250 4-OP on cytochrome c expression in TM4 cells. After treatment with 50 μ M/mL 4-OP for 24 h, cells were
251 stained with Mito Tracker red (Mito Red) dye followed by immunostaining for cytochrome c and
252 observed under a confocal microscope. Scale bars = 10 μ m. (B) Cytochrome c was examined by western
253 blot on 50 μ M/mL 4-OP-exposed TM4 cells in time-dependent manner (0, 10, 30, and 50 μ M/mL). Bar
254 graphs represent the relative density of each band normalized to β -actin. Values represent the mean \pm
255 SD of 3 independent experiments (n=3, *p < 0.05 compared with the controls).

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272 **3. Discussion**

273 Our results suggested that 4-OP was toxic to TM4 cells. In addition, we found that 4-OP could induce
274 TM4 cell apoptosis, which was verified by TUNEL analysis. Qian et al similarly reported that OP
275 decreased viability and increased apoptosis in concentration- and time-dependent manner in cultured
276 Sertoli cells derived from Sprague-Dawley rats; however, 30 μ M/mL OP did not affect the proliferation
277 of Sertoli cells, in contrast to our TM4 cell viability results [17]. Another study reported that OP had a
278 toxic effect on spermatogenic cells or Sertoli cells in rats [18].

279 4-OP induces apoptosis through various molecular mechanisms, such as the induction of apoptotic
280 proteins and gene expression. There is much research showing that the Bcl-2 family plays an important
281 role in the regulation of both pro- and anti-apoptotic signals in healthy and stressed cells. Anti-
282 apoptosis proteins in the Bcl-2 family include Bcl-X_L, BCL-w, and Bcl-2, and these proteins appear to
283 directly or indirectly preserve the integrity of the outer mitochondrial membrane, thereby preventing
284 cytochrome c release and cell death initiation. In contrast, Bax, Bak, and Bad are pro-apoptotic proteins
285 that mediate mitochondrial outer membrane permeabilization (MOMP) during apoptosis [19, 20].

286 In this study, Bad, Bax, and Bak gene expression was markedly higher in 4-OP-exposed TM4 cells
287 than in the control group. Results also showed that 4-OP induced activities of caspase-3 and
288 phosphorylation of Bad in TM4 cells. These findings not only help us understand the anti-proliferation
289 and apoptosis effect of 4-OP, but also improve our understanding of apoptotic signaling pathways.
290 According to previous research, caspases are crucial mediators of apoptosis. In particular, caspase-3
291 has been extensively studied as a protease that activates cell death, catalyzing the specific cleavage of
292 many proteins, and is dependent on mitochondria cytochrome c release function [20]. Caspase-3 is
293 indispensable for apoptotic chromatin condensation and DNA fragmentation in all cell types
294 investigated. In addition, a previous study showed Bcl-2, Bax, and caspase-3 activation were involved
295 in the regulation of the PO-induced apoptotic process in cultured rat Sertoli cells, supporting our results
296 [16].

297 Generally, mitochondria play a key role in mediating apoptosis induction by diverse stimuli. The
298 release of cytochrome c from mitochondria and downstream caspase activation are important in
299 regulating apoptosis [21, 22]. Bcl-2 family proteins regulate MOMP and it has been reported that Bax
300 and Bak are also essential for MOMP and both Bax and Bak deficient cells are resistant to cytochrome
301 c release and apoptosis [23]. We found that Bax and Bak expression was increased in TM4 cells with 4-
302 OP treatment; thus, we analyzed the cytochrome c in these cells and found that cytochrome c protein
303 does not colocalize with mitochondria marker dye in exposed cells 24 h after treatment. In addition,
304 cytochrome c protein increased in a time-dependent manner in 50 μ M/mL 4-OP-exposed cells.

305 4-OP is one of many alkylphenol compounds and is a known an environmental pollutant. Moreover,
306 it is a known EDC with estrogenic effects [24]. Multiple studies have shown the impact of 4-OP in the
307 reproductive systems of different species such as frog [25], swine [26], fish [27, 28], and rodent [5, 29].

308 Even though Gregory et al. demonstrated that OP treatment of adult rats does not appear to have a
309 major effect on the male reproductive system at a relevant environmental exposure dose [30], many
310 studies have reported the negative effects of 4-OP in testes or testicular cells. In rodent testes, OP
311 appears to inhibit cAMP formation and steroidogenesis in mLTC-1 leydig tumor cells [31]. In addition,
312 4-OP induced reproductive abnormalities including small testes weight and decreased daily sperm
313 production [32]. Another study reported that administration of 80 mg/kg OP to adult male rats caused
314 shrinkage of the testes and accessory sex organs, and disrupted spermatogenesis. In humans, 4-OP
315 significantly reduced the mitotic index and the number of pre-spermatogonia in cultured fetal gonads
316 [8].

317 The seminiferous tubules in testes are composed of two major cell types, spermatogenic cells and
318 Sertoli cells. It is well-known that Sertoli cells normally control germ cell apoptosis and
319 spermatogenesis, and facilitate the progression of germ cells to spermatozoa through direct contact in
320 seminiferous tubules [33]. For example, Mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite

321 of di-(2-ethylhexyl) phthalate, targets Sertoli cells and makes them dysfunctional, resulting in the rapid
322 induction of testicular germ cell apoptosis [34]. In addition, several models of Sertoli cell injury showed
323 that spermatogenesis is vulnerable to disruption and that targeting critical Sertoli cell functions can
324 lead to rapid and massive germ cell death [35]. Therefore, the apoptosis of Sertoli cells may result from
325 the abnormal effect of 4-OP. Maternal exposure to OP suppressed gonadotropin secretion with decrease
326 in testis size and Sertoli cell number during the fetal life of lamb but there was no effect to development
327 of the reproductive tract in male or female rats, although body weights were significantly decreased
328 [10]. Toxicity of OP has been extensively investigated in other organs as well. For example, OP induced
329 splenocyte apoptosis in rats and mice through Ca²⁺-dependence [36] and OP also had toxic effects on
330 liver in male rats [37]. Therefore, toxicity evaluation of 4-OP in TM4 Sertoli cells is needed to ensure normal
331 sperm production in humans and animals.

332 In summary, our data suggest that 4-OP-induced TM4 cell apoptosis occurs in a time- and dose-
333 dependent manner directly through the mitochondrial apoptotic pathway. Of particular importance is
334 that high dose of 4-OP induced TM4 apoptosis via the down-regulation of Bcl-2; in contrast, Bak, Bad,
335 Bax expression was upregulated with subsequent activation of the caspase-3 pathway. These findings
336 can contribute to understanding the mechanism of 4-OP on the male reproductive system through its
337 action on the TM4 Sertoli cells.

338

339 **4. Materials and Methods**

340

341 **4.1. Cell culture and treatment**

342 Mouse TM4 Sertoli (TM4) cells were purchased from the Korean cell line bank (KCLB 21715, South
343 Korea). The cells were cultured in Dulbecco's Modified Eagle's medium, 10% fetal bovine serum (FBS),
344 and 1% penicillin streptomycin solution, in a humidified atmosphere of 5% CO₂ at 37 °C. 4-OP was
345 purchased from Sigma Aldrich (Sigma-aldrich, St. Louis, MO, USA), and dissolved in dimethyl
346 sulfoxide (DMSO) to make a stock solution. The stock solution was diluted into the cell culture media
347 prior to treatment to prepare the desired concentration.

348

349 **4.2. Cell viability and morphologic analysis**

350 Cell viability was determined using the EZ-Cytotoxicity assay kit (Daeil Lab Services Co, Seoul,
351 Korea, #EZ1000) following the manufacturer's instructions. TM4 cells were seeded in 96-well plates at
352 a density of 5 × 10³ per well in culture medium and incubated for 24 h at 37 °C. After 24 h, medium was
353 replaced with fresh medium containing different concentrations of 4-OP (10, 30, 50, or 100 μM/mL).
354 Cell viability assay was performed at multiple time points (24, 48, and 72 h). Assay reagent was added
355 (10 μL per well) and incubated for 30 min. The incubated plate was read on a spectrophotometer
356 (Sunrise™, TECAN) at a wavelength of 490 nm. Cell images were collected for each dose of 4-OP after
357 72 h.

358

359 **4.3. Apoptosis detection with TUNEL assay**

360 To evaluate cell death by apoptosis, an in situ cell death detection kit, TMR red (Roche, Germany),
361 was used to quantify DNA and chromatin morphogenic features. The procedures were followed
362 according to the manufacturer's guidelines. Cells were cultured on glass slides for 24 h, then exposed to
363 4-OP (10, 30, 50, or 100 μM/mL) for 48 h. Cells grown on coverslips were washed twice with PBS (Sigma-
364 Aldrich) and fixed with 4% paraformaldehyde in PBS for 60 min at 24°C. Following washing with PBS,
365 these cells were incubated in permeabilization solution (0.1% Triton X-100 in 0.1% sodium citrate) for
366 2 min on ice. Samples were incubated in 50 μL TUNEL reaction mixture (Roche, Mannheim, Germany)
367 for 60 min at 37 °C in a humidified chamber and in the dark. An in situ cell death detection kit provided
368 the negative control (label solution without terminal transferase, Roche) for the assay; and
369 preincubation of cells with 10 μg/mL DNase I in 50 mM Tris-HCl, pH 7.4, 1 mM MgCl₂, and 1 mg/mL

370 BSA for 10 min at room temperature to artificially induce DNA strand breaks served as positive control.
371 Samples were incubated with or without 1 μ g/mL 6-diamidino-2-phenylindole (DAPI) in PBS for 10 min
372 and coverslips were applied with mounting solution (Dako, Carpinteria, CA, USA; S3025) and analyzed
373 under fluorescence microscopy (Nikon, Tokyo, Japan).

374

375 **4.4. Isolation of RNA and quantitative PCR**

376 Total RNA was extracted from TM4 cells using a RNeasy Mini Kit (Qiagen, Hilden, Germany) with
377 on-column DNase treatment (Qiagen). Complementary DNA was synthesized from 1 μ g of total RNA
378 using SuperScriptTM III Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA) with the Oligo(dT)30
379 primer according to the manufacturer's instructions. Target gene PCR amplification was carried out for
380 30 cycles of 30 s at 95 °C, 10 s at 57 °C, and 20 s at 72 °C. Primers were designed using Primer3
381 (<http://frodo.wi.mit.edu>). The QPCR was achieved using a total volume of 20 μ L, containing 10 ng of
382 cDNA and 1 pM of each primer, in a reaction buffer containing iQ SYBR Green Supermix (170-8880;
383 Bio-Rad Laboratories). The cycle threshold values were normalized against GAPDH gene expression,
384 a denaturation and polymerase activation step at 94 °C for 1 min and then 40 cycles consisting of 94 °C
385 for 10 s, 57 °C for 10 s, and 72 °C for 20 s. The primers used to detect porcine transcripts are listed in
386 Table 1.

387

388 **4.5. Western blot analysis**

389 Whole cell lysates were prepared using RIPA buffer (Thermo Fisher Scientific #89900) supplemented
390 with protease inhibitor cocktail (Roche, #1836153). Protein samples containing equal quantities of
391 protein were subjected to 4% to 20% Mini-TGX (Bio-Rad, Hercules, CA, USA; #456-1096) gel
392 electrophoresis and transferred onto polyvinylidene difluoride membranes. Membrane nonspecific
393 binding was blocked by incubation of the membranes in blocking solution (1% bovine serum albumin
394 (BSA) in tris buffered saline (TBS)) for 1 h at 22 °C, and then membranes were incubated overnight at
395 4 °C with a primary antibody diluted in TBST (20 mM Tris-HCl with pH 7.5, 150 mM NaCl, and 0.1%
396 Tween-20). The following primary antibodies were used: phospho-Bad (1:1000 dilution; Cell signaling,
397 #5284T), Bad (1:1000 dilution; Cell Signaling, #9239T), caspase-3 (1:1000 dilution; Cell Signaling, #9665T),
398 cleaved caspase-3 (1:1000 dilution; Cell Signaling, #9661T), cytochrome c (1:1000 dilution; Abcam,
399 #ab76107) and β -actin (1:1000 dilution; Santa Cruz Biotechnology, #sc47778). Membranes were washed
400 in TBST and incubated for 1 h with anti-rabbit and anti-mouse IgG and HRP-linked antibody (1:10000
401 dilutions; Jackson Immuno-Research Laboratories) in TBST. Blots were visualized using Pierce ECL
402 western blotting substrate and HyBlot CL autoradiography film (Denville Scientific, Metuchen, NJ,
403 USA; # E3018).

404

405 **4.6. Immunofluorescence**

406 TM4 cells were seeded on 12 mm glass coverslips (BD Biosciences, Franklin Lakes, NJ) at a density
407 of 2×10^5 cells per coverslip and allowed to attach for 1 d prior to treatment with 10, 30, 50, or 100
408 μ M/mL of 4-OP for 24 h. After washing once with cold PBS, cells were fixed with 4% paraformaldehyde
409 and blocked with 1% BSA in PBS containing 0.2% Triton X-100. Samples were subsequently incubated
410 with mouse anti-cytochrome c antibody (Santa Cruz Biotechnology, sc-13156, 1:200) diluted in blocking
411 solution overnight at 4 °C. After washing 3 times, the samples were incubated with secondary antibody
412 (Alexa Fluor 488 anti-mouse IgG; 1:1000) diluted in blocking buffer (1% BSA in PBS) for 1 h. Then
413 samples were washed once with warm PBS and incubated for 30 min with 100 nM of MitoTracker[®] red
414 CMXRos (M7512, Life Technologies, Carlsbad, CA, U S A) and washed 3 times. Nuclei were
415 counterstained with TO-PRO-3 (Life Technologies) and DAPI (Sigma-Aldrich). Samples were mounted
416 with mounting medium (Sigma-Aldrich) and images were taken under a confocal microscope (Carl
417 Zeis, Oberkochen, Germany; LSM 700).

419 **4.7. Statistical analysis**

420 The SPSS statistical package, version 15.0 for Windows (IBM Corp, Somers, NY, USA) was used for
421 data analysis. All the data were expressed as mean \pm standard error. The differences between controls
422 and experimental samples were evaluated by one-way ANOVA, followed by Tukey's honestly-
423 significant difference test. Significance levels of 0.05 and 0.01 were applied during data analysis using
424 Student's t-test, and different significance levels have been indicated (* P < 0.05). A significance levels
425 of 0.05 was applied during data analysis using ANOVA.

427 **Competing Interests**

428 The authors declare that they have no competing interests.

430 **Acknowledgements**

431 This work was supported by the Science Research Center (2015R1A5A1009701) from the National
432 Research Foundation of Korea, Republic of Korea.

433 **Reference**

1. Ying, G.G. Fate, behavior and effects of surfactants and their degradation products in the environment. *Environ. Int.* 2006, 32, 417-31.
2. Shekhar, S.; Sood, S.; Showkat, S.; Lite, C.; Chandrasekhar, A.; Vairamani, M.; Barathi, S.; Santosh, W. Detection of phenolic endocrine disrupting chemicals (EDCs) from maternal blood plasma and amniotic fluid in Indian population. *Gen. Comp. Endocrinol.* 2017, 241, 100-107.
3. Ademollo, N.; Ferrara, F.; Delise, M.; Fabietti, F.; Funari, E. Nonylphenol and octylphenol in human breast milk. *Environ. Int.* 2008, 34, 984-987.
4. Mendis-Handagama, S.M.; Ariyaratne, H.B. Differentiation of the adult Leydig cell population in the postnatal testis. *Biol. Reprod.* 2001, 65, 660-671.
5. Jambor, T.; Greifova, H.; Kovacik, A.; Kovacikova, E.; Tvrda, E.; Forgacs, Z.; Massanyi, P.; Lukac, N. Parallel. Effect of 4-octylphenol and cyclic adenosine monophosphate (cAMP) alters steroidogenesis, cell viability and ROS production in mice Leydig cells. *Chemosphere.* 2018, 199, 747-754.
6. Kim, S.K.; Kim, J.H.; Lee, H.J.; Yoon, Y.D. Octylphenol reduces the expressions of steroidogenic enzymes and testosterone production in mouse testis. *Environ Toxicol.* 2007, 22, 449-458.
7. Boockfor, F.R.; Blake, C.A. Chronic administration of 4-tert-octylphenol to adult male rats causes shrinkage of the testes and male accessory sex organs, disrupts spermatogenesis, and increases the incidence of sperm deformities. *Biol. Reprod.* 1997, 57, 267-277.
8. Bendsen, E.; Laursen, S.; Olesen, C.; Westergaard, L.; Andersen, C.; Byskov, A. Effect of 4-octylphenol on germ cell number in cultured human fetal gonads. *Hum Reprod.* 2001, 16, 236-243.
9. Katsuda, S.; Yoshida, M.; Isagawa, S.; Asagawa, K.; Kuroda, H.; Watanabe, T.; Ando, J.; Takahashi, M.; Maekawa, A. Dose- and treatment duration-related effects of p-tert-octylphenol on female rats. *Reprod Toxicol.* 2000, 14, 119-126.
10. Kawaguchi, H.; Miyoshi, N.; Miyamoto, Y.; Souda, M.; Umekita, Y.; Yasuda, N.; Yoshida, H. Effects of fetal exposure to 4-n-octylphenol on mammary tumorigenesis in rats. *In Vivo.* 2010, 24, 463-470.
11. Nagao, T.; Yoshimura, S.; Saito, Y.; Nakagomi, M.; Usumi, K.; Ono, H. Reproductive effects in male and female rats from neonatal exposure to p-octylphenol. *Reprod. Toxicol.* 2001, 15, 683-692.
12. Bär, P. R. Apoptosis--the cell's silent exit. *Life. Sci.* 1996, 595, 369-78.
13. Böhm, I.; Schild, H. Apoptosis: the complex scenario for a silent cell death. *Mol Imaging. Biol.* 2003, 5, 2-14.
14. Edlich, F. BCL-2 proteins and apoptosis: Recent insights and unknowns. *Biochem. Biophys. Res. Commun.* 2018, 500, 26-34.

468 15. Yao, G.; Yang, L.; Hu, Y.; Liang, J.; Liang, J.; Hou, Y. Nonylphenol-induced thymocyte apoptosis
469 involved caspase-3 activation and mitochondrial depolarization. *Mol. Immunol.* 2006, 43, 915-926.

470 16. Li, K.; Li, Y.; Shelton, J.M.; Richardson, J.A.; Spencer, E.; Chen, Z.J.; Wang, X.; Williams, R.S.
471 Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. *Cell.*
472 2000, 12, 101, 389-399.

473 17. Qian, J.; Bian, Q.; Cui, L.; Chen, J.; Song, L.; Wang, X. Octylphenol induces apoptosis in cultured
474 rat Sertoli cells. *Toxicol. Lett.* 2006, 166, 178-186.

475 18. Raychoudhury, S.S.; Blake, C.A.; Millette, C.F. Toxic effects of octylphenol on cultured rat
476 spermatogenic cells and Sertoli cells. *Toxicol. Appl. Pharmacol.* 1999, 157, 192-202.

477 19. Theodorakis, P.; Lomonosova, E.; Chinnadurai, G. Critical requirement of BAX for manifestation
478 of apoptosis induced by multiple stimuli in human epithelial cancer cells. *Cancer. Res.* 2002, 62,
479 3373-3376.

480 20. Lindsten, T.; Ross, A.J.; King, A.; Zong, W.X.; Rathmell, J.C.; Shiels, H.A.; Ulrich, E.; Waymire, K.G.;
481 Mahar, P.; Frauwrith, K.; Chen, Y.; Wei, M.; Eng, V.M.; Adelman, D.M.; Simon, M.C.; Ma, A.;
482 Golden, J.A.; Evan, G.; Korsmeyer, S.J.; MacGregor, G.R.; Thompson, C.B. The combined functions
483 of proapoptotic Bcl-2 family members bak and bax are essential for normal development of
484 multiple tissues. *Mol Cell.* 2000, 6, 1389-1399.

485 21. Green, D.R.; Kroemer, G. The pathophysiology of mitochondrial cell death. *Science.* 2004, 305, 626-
486 629.22.

487 22. Jiang, X.; Wang, X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to
488 Apaf-1. *J. Biol. Chem.* 2000, 275, 1199-1203.

489 23. Wei, M.C.; Zong, W.X.; Cheng, E.H.; Lindsten, T.; Panoutsakopoulou, V.; Ross, A.J.; Roth, K.A.;
490 MacGregor, G.R.; Thompson, C.B.; Korsmeyer, S.J. Proapoptotic BAX and BAK: a requisite
491 gateway to mitochondrial dysfunction and death. *Science.* 2001, 292, 727-730.

492 24. Nimrod, A.C.; Benson, W.H. Environmental estrogenic effects of alkylphenol ethoxylates. *Crit.
493 Rev. Toxicol.* 1996, 26, 335-364.

494 25. Li, X.; Liu, J.; Zhang, Y. Octylphenol induced gene expression in testes of Frog, *Rana chensinensis*.
495 *Ecotoxicol. Environ. Saf.* 2016, 128, 75-82.

496 26. Gralén, B.; Visalvethaya, W.; Ljungvall, K.; Tantasuparuk, W.; Norrgren, L.; Magnusson, U. Sows
497 exposed to octylphenol in early gestation: no estrogenic effects in male piglets, but increased rate
498 of stillbirth. *Theriogenology.* 2012, 78, 1494-1499.

499 27. Genovese, G.; Da Cuña, R.; Towle, D.W.; Maggese, M.C.; Lo Nstro, F. Early expression of zona
500 pellucida proteins under octylphenol exposure in *Cichlasoma dimerus* (Perciformes, Cichlidae).
501 *Aquat Toxicol.* 2011, 101, 175-185.

502 28. Rey Vázquez, G.; Meijide, F.J.; Da Cuña, R.H.; Lo Nstro, F.L.; Piazza, Y.G.; Babay, P.A.; Trudeau,
503 V.L.; Maggese, M.C.; Guerrero, G.A. Exposure to waterborne 4-tert-octylphenol induces
504 vitellogenin synthesis and disrupts testis morphology in the South American freshwater fish
505 *Cichlasoma dimerus* (Teleostei, Perciformes). *Comp Biochem. Physiol. C Toxicol. Pharmacol.* 2009,
506 150, 298-306.

507 29. Othman, A.I.; El-Missiry, M.A.; Koriem, K.M.; El-Sayed, A.A. Alfa-lipoic acid protects testosterone
508 secretion pathway and sperm quality against 4-tert-octylphenol induced reproductive toxicity.
509 *Ecotoxicol Environ Saf.* 2012, 81, 76-83.

510 30. Gregory, M.; Lacroix, A.; Haddad, S.; Devine, P.; Charbonneau, M.; Tardif, R.; Krishnan, K.; Cooke,
511 G.M.; Schrader, T.; Cyr, D.G. Effects of chronic exposure to octylphenol on the male rat
512 reproductive system. *J. Toxicol. Environ. Health A.* 2009, 72, 1553-1560.

513 31. Nikula, H.; Talonpoika, T.; Kaleva, M.; Toppari, J. Inhibition of hCG-stimulated steroidogenesis in
514 cultured mouse Leydig tumor cells by bisphenol A and octylphenols. *Toxicol. Appl. Pharmacol.*
515 1999, 151, 166-173.

516 32. Bian, Q.; Qian, J.; Xu, L.; Chen, J.; Song, L.; Wang, X. The toxic effects of 4-tert-octylphenol on the

517 reproductive system of male rats. *Food. Chem. Toxicol.* 2006, 44, 1355-1361.

518 33. Griswold, M.D. The central role of Sertoli cells in spermatogenesis. *Semin. Cell. Dev. Biol.* 1998, 9,
519 411-416.

520 34. Boekelheide, K. Mechanisms of toxic damage to spermatogenesis. *J. Natl. Cancer. Inst. Monogr.*
521 2005, 34, 6-8.

522 35. Boekelheide, K.; Fleming, S.L.; Johnson, K.J.; Patel, S.R.; Schoenfeld, H.A. Role of Sertoli cells in
523 injury-associated testicular germ cell apoptosis. *Proc. Soc. Exp. Biol. Med.* 2000, 225, 105-115.

524 36. Nair-Menon, J.U.; Campbell, G.T.; Blake, C.A. Toxic effects of octylphenol on cultured rat and
525 murine splenocytes. *Toxicol. Appl. Pharmacol.* 1996, 139, 437-444.

526 37. Zumbado, M.; Boada, L.D.; Torres, S.; Monterde, J.G.; Díaz-Chico, B.N.; Afonso, J.L.; Cabrera, J.J.;
527 Blanco, A. Evaluation of acute hepatotoxic effects exerted by environmental estrogens
528 nonylphenol and 4-octylphenol in immature male rats. *Toxicology*. 2002, 175, 49-62.

529