

1 *Type of the Paper (Article.)*

2 **Cyclone Evacuation Route Identification Using GIS for Coastal Communities in**
3 **Mirzaganj Union, Patuakhali, Bangladesh**

4 **Maruf Billah ^{1*}, Sraboni Sarker ² and Mehedi Ahmed Ansary ²**

5 ¹ Graduate student, Institute of Water and Flood Management, BUET, Dhaka, Bangladesh;
6 marufbillah413@gmail.com

7 ² Undergraduate student, Faculty of Disaster Management, PSTU, Patuakhali, Bangladesh;
8 srabonisarker8829@gmail.com

9 ² Professor, Department of Civil Engineering, BUET, Dhaka, Bangladesh; ansary@ce.buet.ac.bd

10

11 * Correspondence: marufbillah413@gmail.com; Tel.: +88-017-614-28534

12

13 **Abstract:** Evacuation is the primary and most important preparedness initiative to save people from
14 the devastating effects of a cyclone. For proper evacuation, a route is specifically chosen that will play
15 a role during cyclones. In this study, Geographic information system has been applied for evacuation
16 route planning for Mirzaganj Union, Patuakhali, Bangladesh. The study is based on questionnaire
17 surveys; direct observation and literature review on the existing sheltering system and develops an
18 evacuation route using the shortest distance analysis. This study provides us an idea how we can
19 manage our population to find out suitable nearby shelters and the limitations that we should focused
20 on. The result shows that only 12% of the total population gets shelter opportunity with the existing
21 official shelter capacity by identifying evacuation route with the shortest distance and the shortest
22 time needed. Shortest distance and time have been calculated for each cyclone shelters. If we consider
23 the low vulnerable infrastructures as shelter, 75% of the total population can be accommodated. This
24 study demonstrates the utilization of an ideal evacuation route planning in the coastal parts of
25 Bangladesh.

26 **Keywords:** Cyclone, Cyclone Shelter, Evacuation, Network Analysis, Bangladesh

27

28 **1. Introduction**

29 Different natural disasters, such as cyclones, droughts, and floods are increasing globally in
30 recent years [1], [2]. Cyclones are considered as the world's leading natural disasters that even exceed
31 the effects of earthquakes [3]–[6]. Bangladesh is the most vulnerable area to cyclones because of its
32 geographical location at the triangular shaped head of the Bay of Bengal [7], due to its high
33 population density and the absence of effective coastal protection systems. In the pre-monsoon
34 (April–May) or post-monsoon (October–November) seasons, at least one major tropical cyclone hit
35 the Bangladesh coastal region each year [8], [9]. Approximately one-tenth of global tropical cyclones
36 occur in the Bay of Bengal [10]. About one-sixth of the total cyclones developing in the Bay of Bengal
37 make landfall on the coastal parts of Bangladesh [11]. If a cyclone occurs in tropical regions, it is
38 known as a tropical cyclone. Cyclones occurring elsewhere are known as extra-tropical cyclones [12],
39 [13].

40 Existing literature shows that several devastating cyclones have struck Bangladesh in 1822, 1876,
41 1961, 1965, 1970, 1991 and 2007 [4], [14]. Among the 64 districts of Bangladesh, 19 are located in
42 the coastal areas. The population of this area is near about 36.8 million and more than half of the
43 population (52%) are poor and about 41% is under the age of 15 [15]. In spite of the poverty and being
44 the most vulnerable to different kinds of coastal disasters, with their traditional indigenous
45 knowledge and perceptions, these coastal people are coping with different kinds of disasters and
46 passing their lives with relentless struggle [16]. Two destructive cyclones occurred in 1970 and 1991,
47 with more than 500000 and 140000 causalities, respectively. However, in the last 20 years, Bangladesh
48 has been able to reduce deaths and injuries from the cyclones. For example, the recent major cyclones
49 like Sidr of 2007 and Aila of 2009 caused 3406 and 190 deaths only, about a 100-fold reduction of lives
50 compared to the deadliest 1970 and 1991 cyclones [17]–[20].

51 As controlling the occurrence of natural disasters is almost impossible, the loss of life and
52 property from these disasters can be minimized or prevented if proper precautions and preventive
53 initiatives are taken timely. For saving human lives the fictitious solutions is to build the habitation
54 above the surge level and construct them strong enough to resist high wind speed and the surges
55 [21]. Nevertheless, the majority of coastal residents are living under poverty level in poorly
56 constructed houses that are vulnerable to cyclone [22]. Existing literatures shows the importance of
57 constructing raised platforms, reinforcement of homestead structures, overall cyclone proof houses
58 in reducing casualties [23]. Besides, focus has been given on infrastructures stability and different
59 infrastructures types to respond to cyclone like temple shaped house and elevated houses [24].
60 Locations and pattern of settlements are the most important factor to decrease vulnerability of the
61 coastal people. Scattered settlements in the coastal areas are more susceptible to cyclone [25]. In the
62 recent past, GIS and RS technology have increased the accessibility in the cyclone occurrence stage in
63 order to develop map and assess the vulnerability of lives and infrastructures of cyclone-prone areas
64 [26], [27]. In developing countries it is badly in need to develop good quality and quantity GIS
65 database for evacuation management. GIS and RS technology can contribute the management
66 process in other hazard prone area like drought, storm surge, flood, land slide, salinity intrusion. So,
67 there is a scope to work with the application of GIS and RS in disaster management especially in the
68 country like Bangladesh.

69 The next solution is evacuation of the coastal people to the high ground above the surge level
70 [21]. Evacuation is considered as the primary preparedness action against any large-scale disasters
71 like the cyclone. An early warning system also plays a valuable role in the evacuation of vulnerable
72 people during the occurrence of the disasters along with minimizing the loss [28]. The effective early
73 warning system provided by the government in advance of Cyclone Sidr, Aila, Mohasen, Komen,
74 Roanu, Mora in 2007, 2009, 2013, 2015, 2016 and 2017 enabled successful evacuation of coastal
75 communities that resulted in fewer than expected deaths. Besides the early warning systems,
76 different activities like construction of cyclone shelters, embankment, and timely evacuation have
77 contributed to decreasing the death rates in the coastal areas [20], [29]. In spite of the improvements
78 in early warning systems, pre-cyclone evacuation remains a challenge [28]. Some factors like
79 illiteracy, lack of awareness, structural vulnerability and communication problems including poor
80 road networks are the obstacles that hamper the evacuation system. Instead of moving to cyclone
81 shelters, people in coastal areas still believe in a wait-and-see approach [30]–[32]. On the other hand,

82 access to road network, distance of cyclone shelters from the homestead, and access to cyclone
83 shelters are the factors that influence the evacuation decision [33].

84 Cyclone shelters play an important role during the evacuation. It has been estimated that around
85 1.5 million people have been evacuated by CPP (Cyclone Preparedness) volunteers to the multi-
86 purpose cyclone shelters (MPCS) when Cyclone Sidr hit the coastal parts of Bangladesh in 2007 [34],
87 [35]. Before the destructive cyclone of 2007, Bangladesh had only 1500 cyclone shelters in the coastal
88 districts as the infrastructural support during cyclone. After Sidr, Bangladesh Government has
89 constructed around 2000 new cyclone shelters for the population of the coastal belt. The World Bank
90 surveyed and further estimated that there is still a need for 5500 new MPCS (Multi-Purpose Cyclone
91 Shelter) facilities for the purpose of a disaster management strategy [34], [36]. GIS-based map has
92 been produced to know about the coverage area of a shelter and need for new shelters [37].

93 Despite of completing these initiatives, the evacuation route to cyclone shelters from any
94 community remains a challenge and is not well defined. People living in the coastal areas are not
95 aware of the appropriate evacuation plan and route during cyclones. They can't take the decision
96 during cyclones in which shelter they should go and which shelter is within their reachable distance.
97 It is common that computing shortest paths over a network is an important task for evacuation. With
98 the development of geographic information systems (GIS) technology, network and transportation
99 analyses within a GIS environment have become a common practice in many application areas.
100 Different factors like easy accessibility of the community people to the shelter with maximum
101 walking distance for an individual is restricted to 2.25 kilometers, covering the entire population of
102 the region by producing safe zones and evacuation zones, suitability of the shelters for other
103 community activities are needed to follow [38], [39]. There exists digitized road map including road
104 class, distance and shortest optimum route [40]. Many network flow model including logistics
105 coordination model has been built for identifying optimal lane-based evacuation routing plans in a
106 complex road network by using mixed-integer programming solver [41]–[43]. There exist gaps in the
107 above papers for identifying the shortest distance analysis which is needed during an evacuation
108 process. In the reviewed papers, shortest distance have been analyzed in a map for a vast area without
109 presenting numerical values of the distance from evacuation point to the shelters. Even how many
110 people could be evacuated from each point has not been defined. As Bangladesh is a cyclone prone
111 country, proper evacuation route is a need to reduce the number of affected people. This paper
112 presents an evacuation route planning for Mirjaganj union of Patuakhali, Bangladesh using the
113 shortest distance analysis for each shelter as well as shelter capacity analysis.

114 **2. Materials and Methods**

115 The research is based on both secondary and primary data collected through household
116 questionnaire survey. The total sample size for the household questionnaire survey has been
117 considered 3220 households. In questionnaire survey about different variables have been used to
118 analysis the existing structural condition against cyclone hazard in which they live in. Different
119 variables have been discussed in details in table 2. After collecting the data, ArcGIS10.1 and Microsoft
120 excel have been used to analyze the collected data. ArcGIS10.1 has been used in developing maps,
121 geographic data analysis, editing, data management, and geo-processing activities and also been
122 used in finding the closest shelter facility location, origin-destination (O-D) distance generation and

123 location allocation. A realistic evacuation planning with the shortest route to shelters has been
 124 proposed in this study and has been validated using field data.

125 *2.1 Study Area*

126 Figure 1(a) shows the past records of cyclones that hit Bangladesh. Among the Unions of
 127 Patuakhali district, Mirzaganj Union is one of the most vulnerable unions to cyclone hazard. Area of
 128 Mirzaganj Union is 34 square km, located in between 22°13' and 22°29' north latitudes and in between
 129 90°08' and 90°19' east longitudes. Total amount of road is near about 90 kilometers, among these
 130 paved roads are 20 km, herring bond roads are 10 km and earthen roads are 70km. There are
 131 7secondary schools, 23primary schools, and 16madrasa. Main source of income is agriculture with
 132 8527 acres of cultivable land. Due to the geographical location that union has been severely affected
 133 by 2007 cyclone Sidr and 2009 Aila. Figure 1(b) shows the location of the union.

134

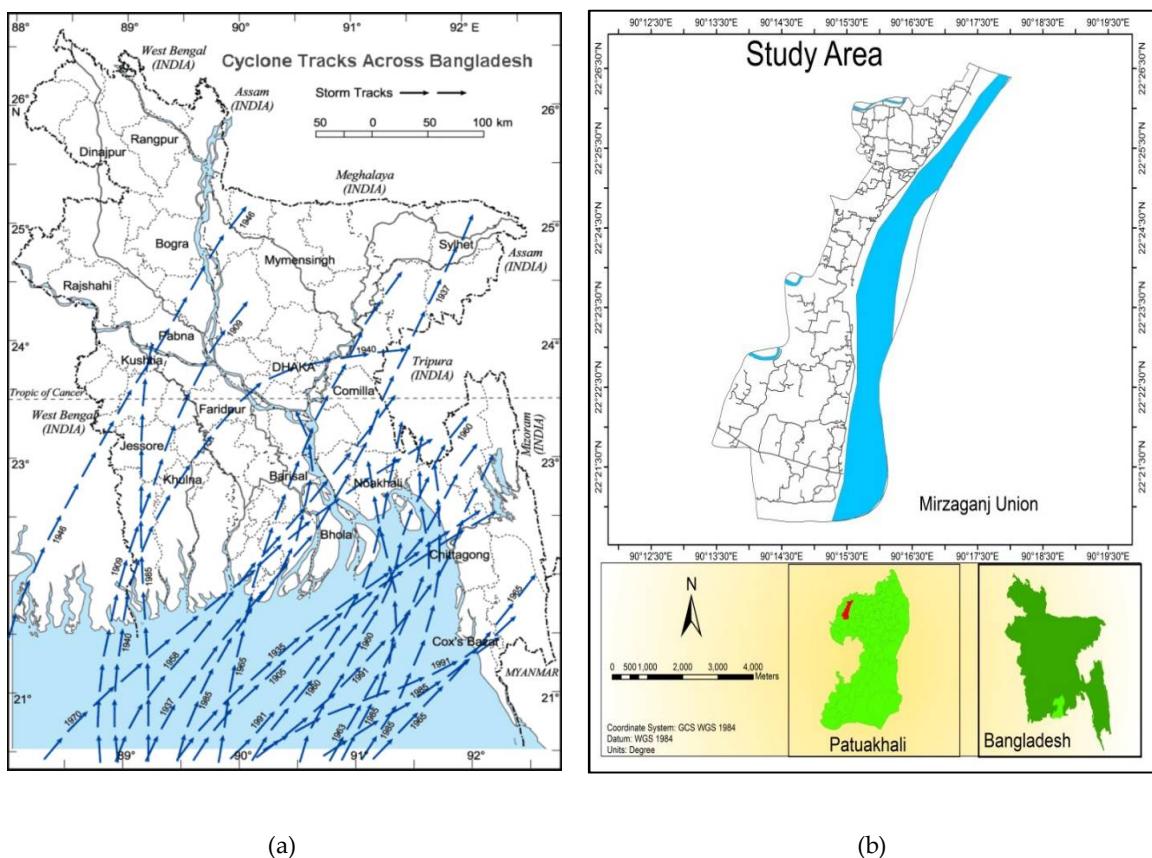


Figure1: (a) Cyclone Tracks in Bangladesh and (b) Study Area (Mirzaganj Union)

135 **3. Results and Discussion**

136 Mirzaganj union is bounded by the Payra River on the south and east, the Srimanta River on the
 137 west as can be seen in Figure 1(b).According to the Jatiyo Batayon, and there are 11 villages in this
 138 union. Total population is 22100. Among them male is 11073 (50.10%), female is 11027 (49.89%). After
 139 surveying 3220 households, it has been found that average 7 people live each in household. The
 140 literacy rate of the union is 70% including 13033 voters. Most of the people are farmers and small
 141 shopkeepers.

142 *3.1 Condition of the Existing Cyclone Shelters and Infrastructures*

143 In Mirzaganj area there are only two usable cyclone shelters (Figure 2). The shelters are designed
 144 to withstand a wind speed of 260 km/hour and placed on a higher ground to avoid the effect of the
 145 maximum expected surge level. Shelters have been constructed with the required facilities (Table 1).
 146 The shelters buildings are primarily used as schools. Shelters are designed in such a way that both
 147 human and livestock can take refuge there.

(a)

(b)

148 **Figure 2:** (a) Cyclone Shelter no 1; (b) Cyclone Shelter no 2.149 **Table 1:** Details about Existing Cyclone Shelters

Different Attributes	Cyclone Shelter no 1	Cyclone Shelter no 2
Name	Vazna Monoharkhali Govt. Primary School cum Cyclone Shelter	Vikakhali Govt. Primary School cum Cyclone Shelter
Location	5 minutes walking time from Mirzaganj ferry ghat	5 minutes walking time from Vikakhali ferry ghat
Date completion	January, 2018	February, 2014
Type of Shelter	LGED type 3	
Source of Fund	GoB and World Bank	
Structure	<ul style="list-style-type: none"> Three storied building Open ground-floor structure to avoid flooding from the storm surges Open first floor with tube-well facilities is kept for cattle with ramp to move on it. Second floor with room and bathroom facilities for human shelter 	


Capacity	1300
Total Room	In total 6 rooms, 4 large size rooms and 2 extra rooms with attached bathroom for pregnant women and children.
Facilities:	<ul style="list-style-type: none"> • Total 4 bathrooms (2 attached) • Two motors for drinking water • Four tube-wells • 4 water tanks capacity with 2000 liters • 4 water tanks capacity with 7000 liters (especially in cyclone shelter no 1) • Solar system is installed • Rain water harvesting system (especially in cyclone shelter no 1)

Livestock	200
Capacity	

150 *Source: Field Survey, May 2018.*

151 The official capacity of each cyclone shelter is 1300 people. A large amount of people (about
 152 19000) have to stay at their own place due to lack of space in the shelters. That's why a survey has
 153 been conducted on the condition of households and their vulnerability to test if they can withstand
 154 cyclone or not. The survey has been conducted through a semi-structured questionnaire to measure
 155 the vulnerability of the existing households. Table 2 presents the criteria used in the questionnaire to
 156 assess the vulnerability of the infrastructures. Scoring has been done depending on the criteria. There
 157 are individual houses, schools, mosques and others structures of the assessed infrastructures, some
 158 of which are shown in Figure 3.

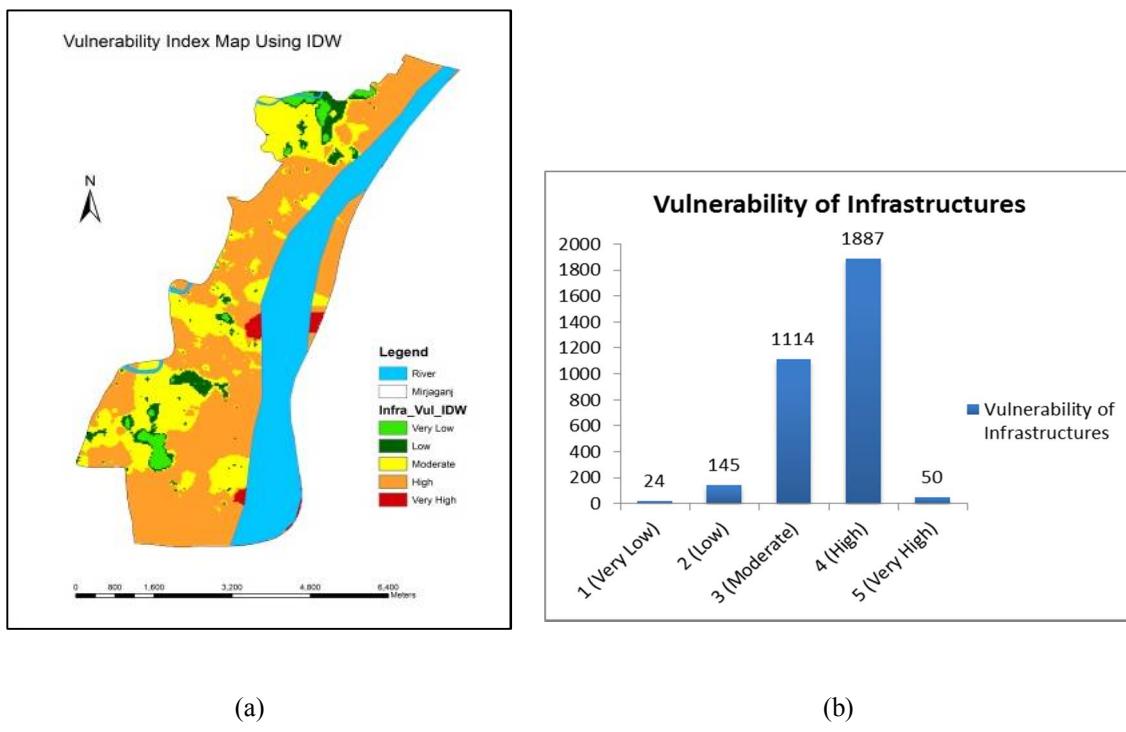
159

(a)

(b)

(c)

160

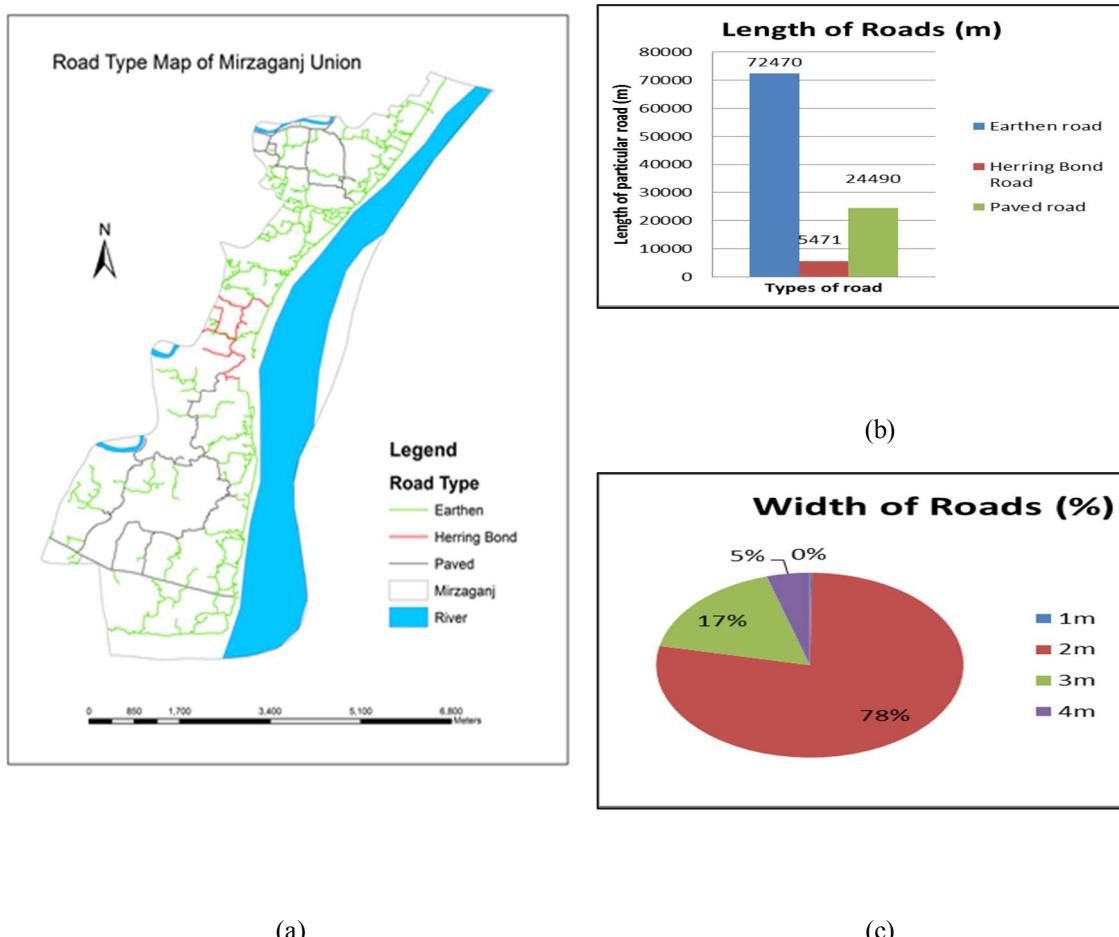

Figure3: (a) Homestead; (b) Mosque and Madrasa and (c) School161 **Table 2:** Infrastructure Vulnerability Scoring

Criteria	Sub-Criteria	Score
Width of the house is perpendicular to nearest river's length	Yes	1
	No	4
House is in the safe distance from the biggest trees	Yes	1
	No	4
There is sufficient amount of trees around the house	Yes	1
	No	4
Which type of house that is?	Concrete	1
	Tin	5
Size of house(floor area)	Square	1
	Rectangular or L shape	4
Plinth level	4'	1
	Less than 4'	4
Ridge level	High	1
	Low	4
Wall	Concrete	1
	Wood	3
	Tin	5
'J' hook presence	Yes	1
	No	5
Post of house	Concrete	1

	Bamboo	2
	Wood	3
The thickness of tin	Above 0.35 mm	2
	Less than 0.35 mm	5
Window	Size above 4'*4'	2
	Less than 4'*4'	5
Door	Size above 3.6'*6.6'	1
	Less than 3.6'*6.6'	4

162 *Analysis has been based on criteria collected from "Construction Manual on Shelters for Cyclone-
 163 Prone Coastal Areas of Bangladesh" proposed by Disaster Management Bureau (DMB) of the
 164 Ministry of and Disaster Management and Relief (MODMR) and the Bangladesh University of
 165 Engineering & Technology (BUET).

166 Figure 4(a) shows the vulnerability map of the studied union. Figure 4(b) indicates that among
 167 3220 surveyed infrastructures 24 are with very low vulnerability (1%), 145 are with low vulnerability
 168 (4%), 1114 are with moderate vulnerability (35%), 1887 are with high vulnerability (59%) and 50 are
 169 with very high vulnerability (1%). It also shows that about 5% households are with low to very low
 170 vulnerable to cyclone and 95% households are not strong enough to withstand cyclone.

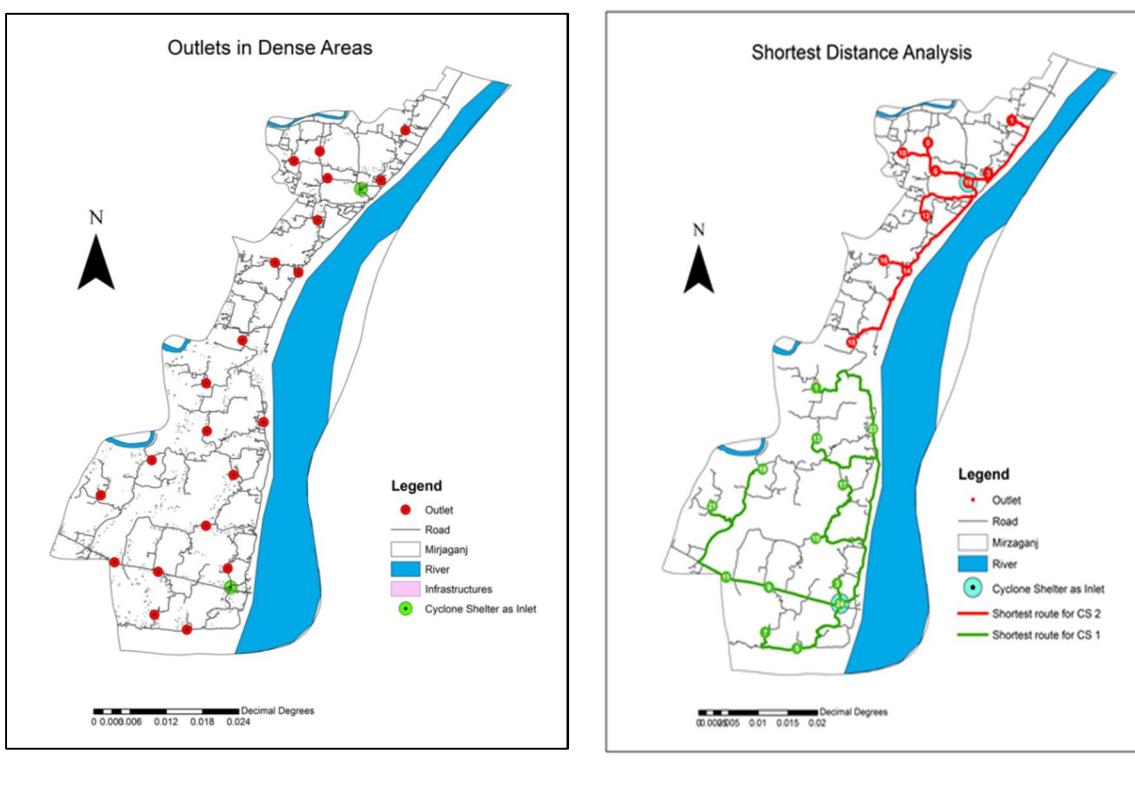


171 **Figure 4:** (a) Map of vulnerability of infrastructures; (b) Infrastructures with various vulnerability
 172 ranges.

173 *3.2 Existing Road Network System*

174 Network Analysis in GIS is based on graph theory and topology. It is often used to find solutions
 175 to transportation problems by using either vector or raster models to represent the real world. The
 176 vector-based model appears to be more suited to analysis of precisely defined paths such as roads
 177 and rivers [44]. For a proper evacuation, a good road infrastructure is needed. Road network in
 178 coastal villages are still in rudimentary stage and path to the cyclone shelters remain unsafe prior to
 179 the landfall of cyclone because of excessive rainfall, high wind velocity, flooded terrain and tidal
 180 waves. Most of the time, roads are damaged by storm surge and make an obstacle for community
 181 people from going to safer places.

182 Figure 5(a) presents the map of road types of Mirzaganj Union. In this map three types of roads
 183 (earthen road, herring bond road, and paved road) have been shown. In Figure 5, three types of roads
 184 and lengths of the particular roads are presented. Among those 72.47 kilometers are earthen road
 185 (71%), 24.49 kilometers are paved roads (24%) and 5.4 kilometers are herring bond roads (5%). It can
 186 be clearly seen that half of the total road is of earthen type and is the most vulnerable during a cyclone.
 187 For this reason during a cyclone earthen road may be a snag for community people for evacuation.
 188 Besides width of roads play an important role during evacuation. Wider roads allow more people to
 189 evacuate than congested roads.

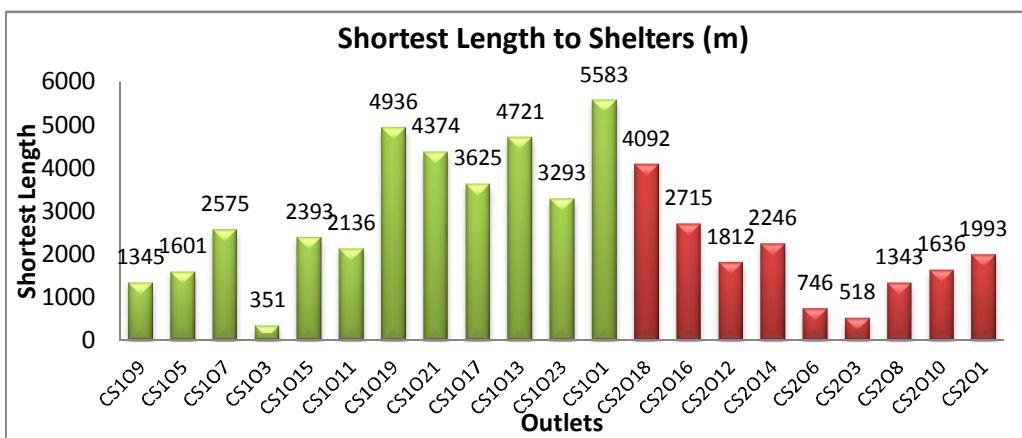


190 **Figure 5:** (a) Road types of the Union; (b) Length of Roads in meters; (c) Width of Roads in
 191 percentages.

192 3.3 Evacuation Route Analysis

193 It has been already mentioned that there is no delineated evacuation plan in this union. While
 194 warning system of Bangladesh is improving day by day but evacuation remains as a challenge
 195 because of lack of government plan. If there is a shortest route earmarked for every dense area, people
 196 will be able to reach to the cyclone shelters properly. Before analyzing the shortest distance we have
 197 considered cyclone shelters as inlet where people will take refuge and in every dense area we
 198 assumed a point as outlet from where maximum people can gather and evacuate to the shelters. In
 199 this study, based on the accessibility to shelters and distance from the main roads, 21 evacuation
 200 points (outlets) are marked around the study area. These outlets are situated at or near to the
 201 significant roads.

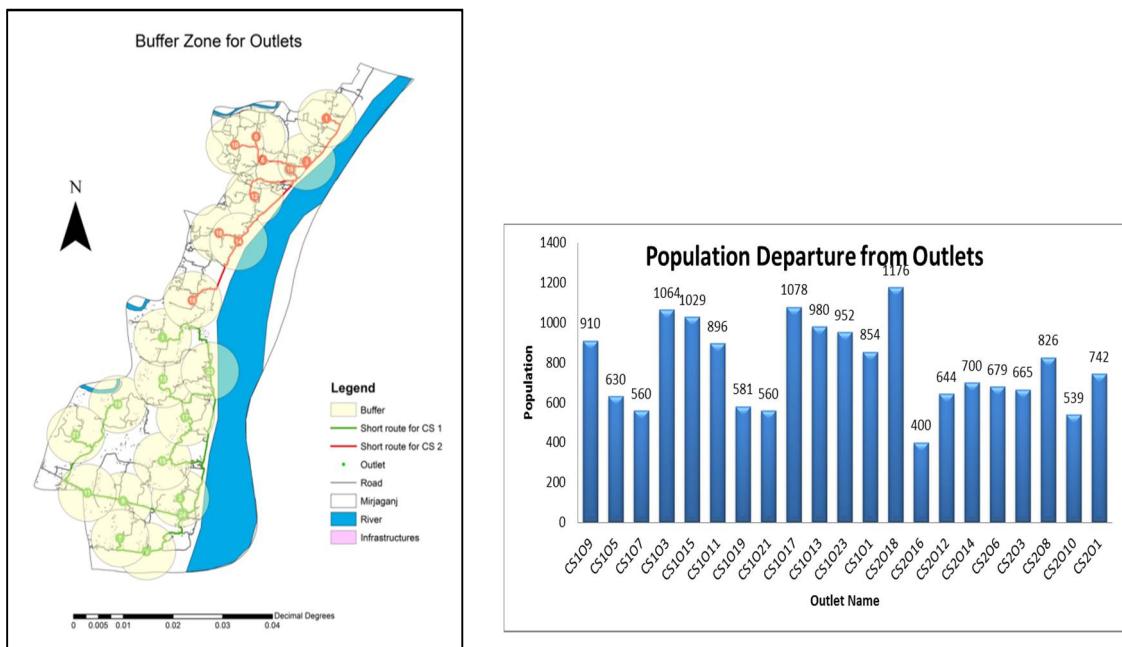
202 Figure 6(a) shows the outlets in the densely populated areas from where maximum people can
 203 be evacuated to the shelters and 6(b) shows the shortest distance from every outlet to the nearest
 204 shelter. From every outlet to inlet shortest distance has been analyzed using Network Analysis Tool
 205 in ArcGIS 10. As there are two inlets, the total outlets are divided into two areas as can be seen in
 206 Figure 6. Green colored routes are presented as the shortest distances to cyclone shelter no 1 and red
 207 colored routes are presented as the shortest distances to cyclone shelter no 2.



208 **Figure 6:** Outlets and Inlets in Mirzaganj Union (a), Shortest Distance Analysis of Mirzaganj Union
 209 (b)

210

211 Figure 7 presents the shortest distances from the different outlets to the shelters. The
 212 shortest distances for shelter no 1 are colored with green and the shortest distances for shelter 2 are
 213 colored with red. For shelter no 1, the shortest distance is 351 meters from outlet which is marked as
 214 CS1O3 (which means, CS1 is Cyclone shelter 1 and O3 is outlet 3) and for shelters no 2, the shortest
 215 distance is 518 meters from outlet which is marked as CS2O3.

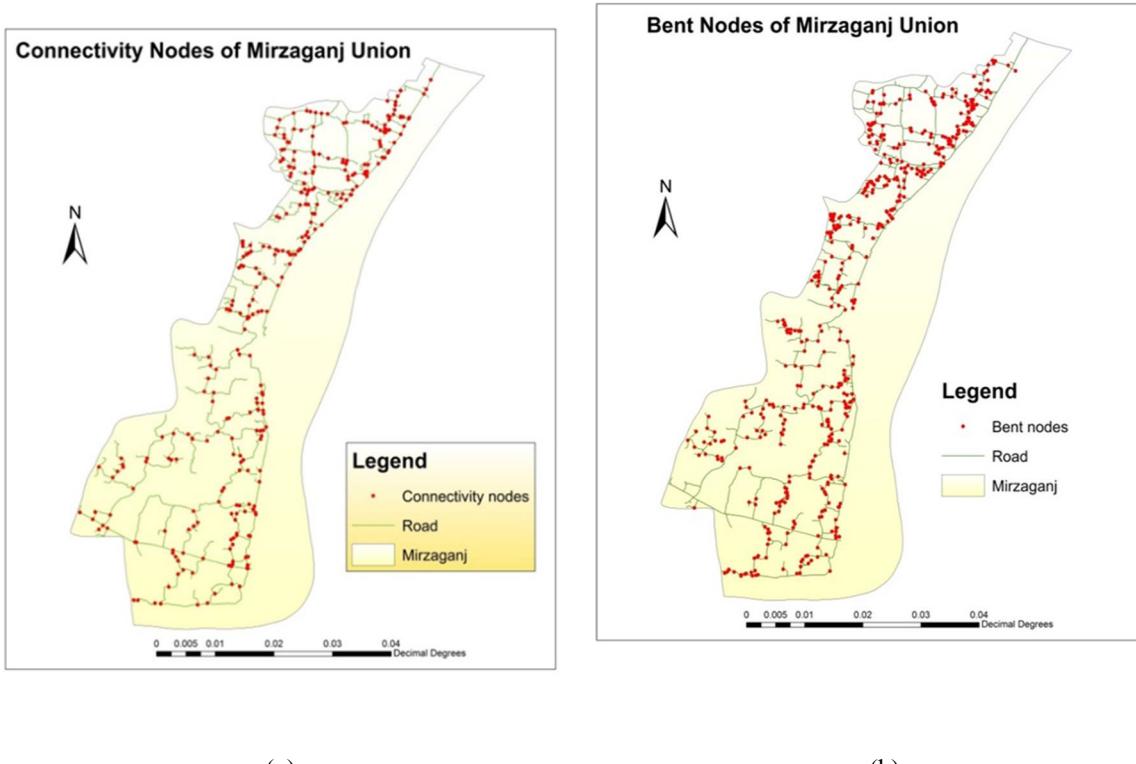

216 In Figure 8 buffer zones have been developed keeping the outlets as the centers with 600
 217 m radius to assume how many people are covered for evacuation. It shows that 16465 people (based
 218 on field survey) can be evacuated to shelters, which is 70% of total population. Time is also an
 219 important factor for real time evacuation. The shortest distance along with the shortest time can be
 220 the best solution for assuming how much time it will take to move to the shelters through the shortest
 221 distance from each outlet. However, from the field survey we have found that during cyclone
 222 different types of factors like connectivity nodes and bent nodes may affect the travel time.

223

224

Figure 7: Shortest length to Shelters

(a)


(b)

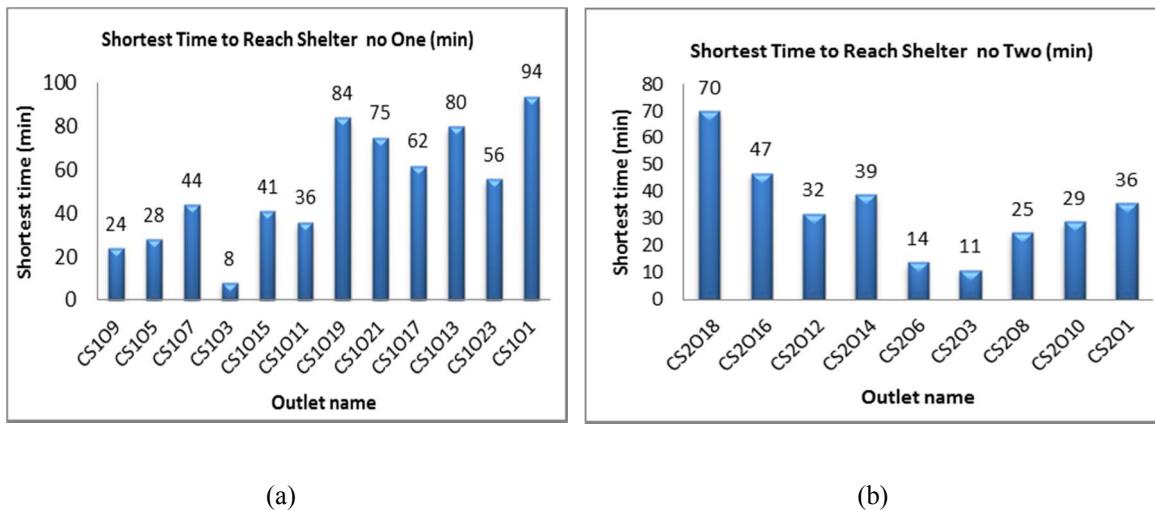
225

Figure 8: Buffer Zones for Outlets (a), People departing from each Outlet in Bar Chart (b).

226 Figure 9 shows the various bent nodes and connectivity nodes of the road network that
 227 cause delays. The placement of bent nodes and connectivity nodes are put in those places from where
 228 people would take turn to other roads and where roads have crossed each other.

229 In Table 3, we have developed a map of bent node network in which we have assumed 2
 230 seconds delay for the bent nodes and in the map of connectivity node network we have assumed 4
 231 seconds delay for the connectivity node for every shortest length to shelter. In Table 3, walking
 232 distance has been assumed 3.6 kilometers per hour or 60 meters per minute.

233 **Figure 9:** Connectivity Nodes Map (a) and Bent Nodes Map (b)


234 **Table 3:** Shortest Time Analysis considering factors

SL No.	Outlet name	Shortest length (m)	Walking speed= 60 m/min*	Shortest time without bents (min)	Time consuming for bent node (s)	Time consuming for connectivity node (s)	Total time consumed due to the bents (min)	Final shortest time (min)
01	CS1O9	1345	60	22.40	15*2= 30	9*4= 36	1.1	24
02	CS1O5	1601	60	26.70	14*2= 28	5*4= 20	0.80	28
03	CS1O7	2575	60	42.91	13*2= 26	5*4= 20	0.77	44

04	CS1O3	351	60	5.85	21*2= 42	14*4= 56	1.63	8
05	CS1O15	2393	60	39.88	25*2=50	8*4= 32	1.37	41
06	CS1O11	2136	60	35.60	1*2= 2	6*4= 24	0.43	36
07	CS1O19	4936	60	82.26	17*2= 34	10*4= 40	1.23	84
08	CS1O21	4374	60	72.90	18*2= 36	17*4= 68	1.73	75
09	CS1O17	3625	60	60.41	18*2= 36	8*4= 32	1.13	62
10	CS1O13	4721	60	78.70	16*2= 32	14*4= 56	1.47	80
11	CS1O23	3293	60	54.88	18*2= 36	14*4= 56	1.53	56
12	CS1O1	5583	60	93.05	19*2= 38	9*4= 36	1.23	94
13	CS2O18	4092	60	68.20	26*2= 52	15*4= 60	1.87	70
14	CS2O16	2715	60	45.25	28*2= 56	15*4= 60	1.93	47
15	CS2O12	1812	60	30.20	25*2= 50	13*4= 52	1.7	32
16	CS2O14	2246	60	37.40	19*2= 38	19*4= 76	1.9	39
17	CS2O6	746	60	12.40	18*2= 36	7*4= 28	1.1	14
18	CS2O3	518	60	8.60	38*2= 76	17*4= 68	2.4	11
19	CS2O8	1343	60	22.38	22*2= 44	20*4= 80	2.1	25
20	CS2O10	1636	60	27.30	17*2= 34	12*4= 36	1.17	29
21	CS2O1	1993	60	33.20	34*2= 68	25*4= 100	2.8	36

235 *Walking speed 3.6 km/h or 60 m/min [45].

236 Figure 10 shows time to reach to the shelters from the outlets using the shortest routes
 237 considering bents along the path for the two shelters.

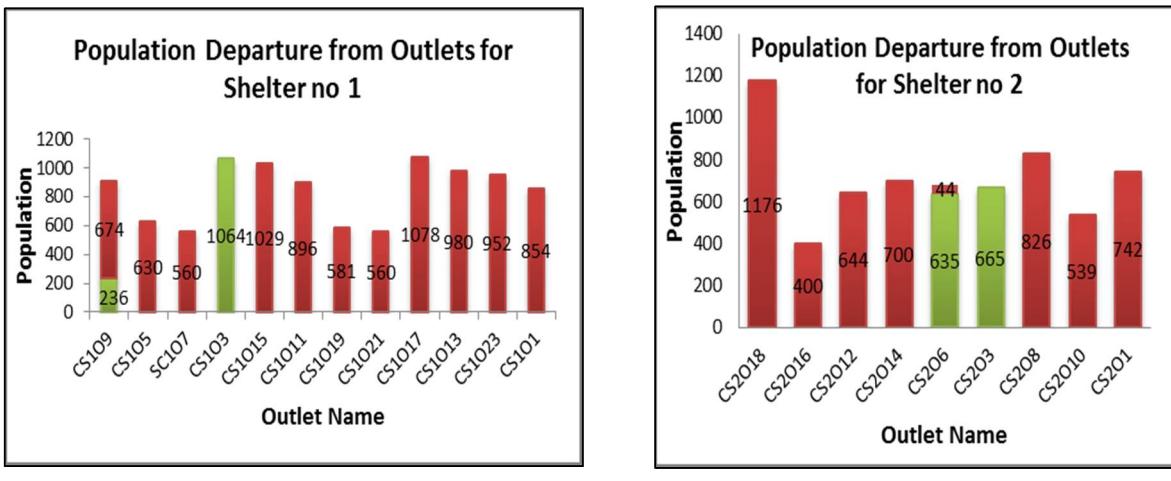
(a)

(b)

238

Figure10: Shortest Time (minutes) from each Outlet

239

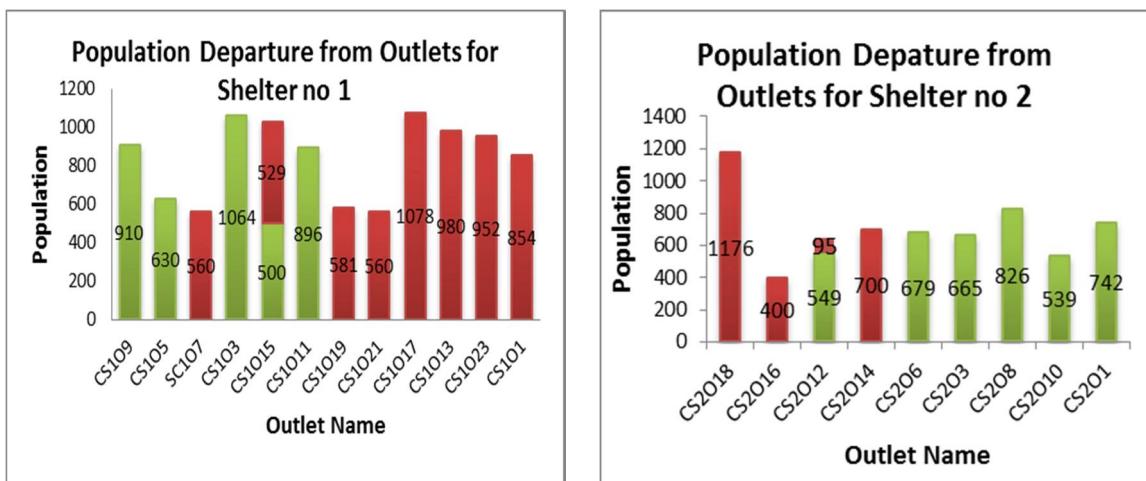

It has already been mentioned that 1300 people can take shelter in each cyclone shelter. In reality about 4000 people take shelter in each of them and there is always overcrowding as reported by LGED (2014). Maximum 8000 people can use two shelters. On the basis of these data, two scenarios (with 1300 capacity and with 4000 capacity) have been developed to show how many people can be safe from cyclone by taking asylum in the shelters separately.

244

Figure 11 shows population departure from different outlets for the shelters (having 1300 capacity). In this figure, Green color represents the outlets from where people will be able to take refuge to the shelters since the time for evacuation from these outlets are the shortest. On the other hand, Red color represents the outlets from where people will be unable to take refuge to the shelters since the time for evacuation from these outlets are relatively high that means the shelters will be fully occupied before the people from these outlets reach the shelters.

250

Figure 11(a) shows the number of people departing from each outlet that cover the capacity (1300 people) of the cyclone shelter number one. It is observed that 1064 people can depart from outlet CS103 and only 236 people can depart from outlet CS109 to fully occupy shelter one. Similarly for Figure11(b), it is observed that 665 people can depart from outlet CS203 and only 635 people can depart from outlet CS206 to fully occupy shelter number two.



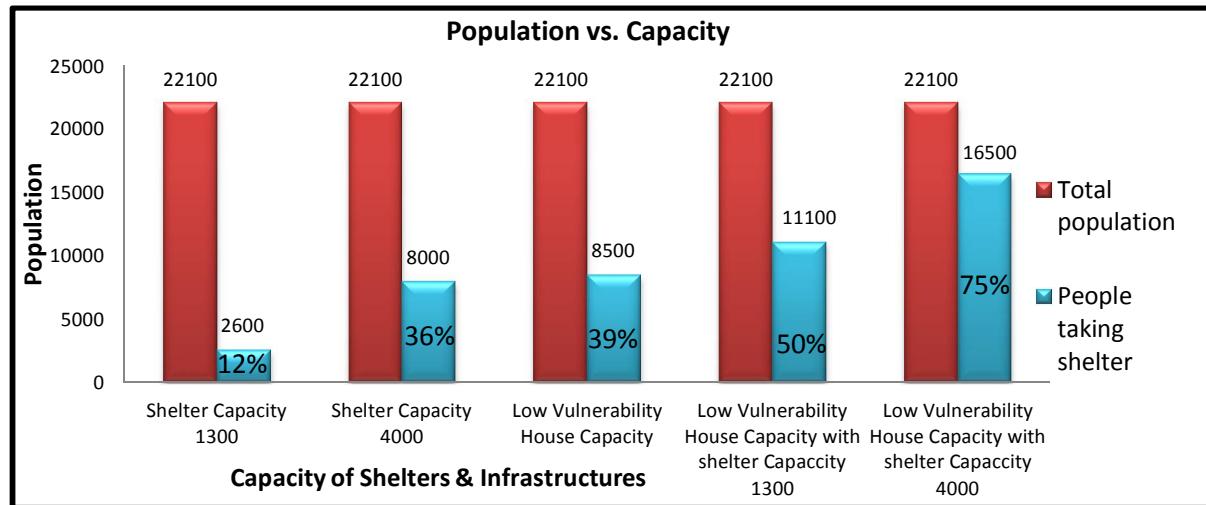
(a)

(b)

255 **Figure11:** Population from outlets that cover (a) Cyclone Shelter number 1; (b) Cyclone Shelter
 256 number 2;when capacity is 1300 people in per shelter.

257 Figure 12 shows population departure from different outlets for the shelters (having 4000
 258 capacity). Figure 12(a) shows the number of people departing from each outlet that cover the capacity
 259 (4000 people) of the cyclone shelter number one. It is observed that 3500 people can depart from outlet
 260 CS1O5, CS1O3, CS1O15, CS1O11 and only 500 people can depart from outlet CS1O9 to fully occupy
 261 shelter one. Similarly for Figure 12(b), it is observed that 3451 people can depart from outlet
 262 CS2O1,CS2O3, CS2O6, CS2O8, CS2O10 and 549 people from CS2O12 to fully occupy shelter number
 263 two.

(a)


(b)

264 **Figure12:** Population from outlets that cover (a) Cyclone Shelter number 1; (b) Cyclone Shelter
 265 number 2; when capacity is 4000people in per shelter.

266 Figure 13 show that having capacity of 1300 people in each cyclone shelters can cover only
 267 12% of the total population of the union. On the other hand, if the capacity is 4000 persons per shelter,
 268 it may cover 36% of the total population union. From Figure 4, it has been seen that about 5% (169

269 infrastructures) of total infrastructures are of low and very low vulnerability that can also be used as
 270 shelter during cyclones. These infrastructures include primary schools, mosque, homesteads (high
 271 plinth level with sturdy construction, as can be seen in Figure 3a). It has been assumed that average
 272 50 persons can take shelter in these low vulnerable infrastructures covering 39% of the total
 273 population. If the capacity of the cyclone shelter has been considered as 1300 then with low
 274 vulnerable infrastructures, the capacity can be increased up to 50% of the total population. And if we
 275 consider maximum capacity of the shelters to be 4000, along with low vulnerable infrastructures the
 276 capacity can be increased up to 75% the total population.

277

278

279 **Figure13:** Population demand versus capacity under various scenarios280 **4. Conclusions**

281 For a developing country like Bangladesh, the death rate due to cyclone is reducing day by
 282 day. The 2007 Cyclone SIDR is not less devastating than the cyclone of 1991 but the death toll has been
 283 reduced due to proper early warning dissemination. It is a clear indication that we are improving
 284 ourselves in disaster management sector. Hence, death rate could be reduced more if the evacuation
 285 has been conducted in a scientific manner. For a proper evacuation, departure route need to be
 286 developed and followed. Interview with people affected by cyclones has showed that the number of
 287 cyclone shelters in the study area is inadequate. The household condition is also vulnerable. The
 288 different existing road types have been considered for the development of evacuation route. More
 289 outlets have been suggested in the dense areas from where more people may go to the shelters.
 290 Analyzing the shortest distance and time from every outlet to shelters, it has been found that if we
 291 consider the shelter capacity to be 1300, only 12% of the total population can be accommodated into
 292 the shelters. If we consider, the shelter capacity to be 4000, only 36% of the total population can be
 293 accommodated into the shelters. If we consider the low vulnerable infrastructures, 75% of the total
 294 population can be accommodated. This study provides us an idea how we can manage our
 295 population to find out suitable nearby shelters. This study can be used as a role model for coastal
 296 belts of Bangladesh for developing a detailed cyclone evacuation plan for the coastal community.

297

298 **References**

299 [1] S. Solomon, D. Qin, M. Manning, K. Averyt, and M. Marquis, *Climate change 2007—the physical*
300 *science basis: Working group I contribution to the fourth assessment report of the IPCC*, vol. 4.
301 Cambridge university press, 2007.

302 [2] M. R. Khan and M. A. Rahman, “Partnership approach to disaster management in Bangladesh:
303 a critical policy assessment,” *Nat. Hazards*, vol. 41, no. 2, pp. 359–378, 2007.

304 [3] T. S. Murty and M. I. El-Sabh, “Mitigating the effects of storm surges generated by tropical
305 cyclones: a proposal,” *Nat. Hazards*, vol. 6, no. 3, pp. 251–273, 1992.

306 [4] S. K. Dube, A. D. Rao, P. C. Sinha, T. S. Murty, and N. Bahulayan, “Storm surge in the Bay of
307 Bengal and Arabian Sea The problem and its prediction,” *Mausam*, vol. 48, no. 2, pp. 283–304,
308 1997.

309 [5] A. Zerger, D. I. Smith, G. J. Hunter, and S. D. Jones, “Riding the storm: a comparison of
310 uncertainty modelling techniques for storm surge risk management,” *Appl. Geogr.*, vol. 22, no. 3,
311 pp. 307–330, 2002.

312 [6] J. Benavente, L. Del Río, F. J. Gracia, and J. A. Martínez-del-Pozo, “Coastal flooding hazard
313 related to storms and coastal evolution in Valdelagran spit (Cadiz Bay Natural Park, SW
314 Spain),” *Cont. Shelf Res.*, vol. 26, no. 9, pp. 1061–1076, 2006.

315 [7] T. S. Murty and V. R. Neralla, “On the recurvature of tropical cyclones and the storm surge
316 problem in Bangladesh,” *Nat. Hazards*, vol. 6, no. 3, pp. 275–279, 1992.

317 [8] D. A. Mooley, “Severe cyclonic storms in the Bay of Bengal, 1877–1977,” *Mon. Weather Rev.*, vol.
318 108, no. 10, pp. 1647–1655, 1980.

319 [9] C. E. Haque, “Atmospheric hazards preparedness in Bangladesh: a study of warning,
320 adjustments and recovery from the April 1991 cyclone,” in *Earthquake and Atmospheric Hazards*,
321 Springer, 1997, pp. 181–202.

322 [10] J. R. Choudhury, “Cyclone shelter and its multipurpose use,” in *Proceedings of the IDNDR*
323 *Aichi/Nagoya International Conference*, 1994, pp. 1–4.

324 [11] D. A. Quadir and A. M. Iqbal, “Tropical cyclones: impacts on coastal livelihoods,” *Gland Int.*
325 *Union Conserv. Nat.*, 2008.

326 [12] H. M. Fritz *et al.*, “Hurricane Katrina storm surge distribution and field observations on the
327 Mississippi Barrier Islands,” *Estuar. Coast. Shelf Sci.*, vol. 74, no. 1–2, pp. 12–20, 2007.

328 [13] H. M. Fritz *et al.*, “Hurricane Katrina storm surge reconnaissance,” *J. Geotech. Geoenvironmental*
329 *Eng.*, vol. 134, no. 5, pp. 644–656, 2008.

330 [14] P. Blaikie, T. Cannon, I. Davis, and B. Wisner, *At risk: natural hazards, people’s vulnerability and*
331 *disasters*. Routledge, 2014.

332 [15] R. M. Islam, “Towards institutionalization of global ICZM efforts,” *Integr. Coast. Zone Manag. Res.*
333 *Publ. Serv. Singap.*, vol. 23, 2008.

334 [16] G. A. Parvin, F. Takahashi, and R. Shaw, “Coastal hazards and community-coping methods in
335 Bangladesh,” *J. Coast. Conserv.*, vol. 12, no. 4, pp. 181–193, 2008.

336 [17] A. Ali, "Vulnerability of Bangladesh to climate change and sea level rise through tropical
337 cyclones and storm surges," in *Climate Change Vulnerability and Adaptation in Asia and the Pacific*,
338 Springer, 1996, pp. 171–179.

339 [18] R. Haider, A. A. Rahman, and S. Huq, *Cyclone'91: an environmental and perceptual study*.
340 Bangladesh Centre for Advanced Studies, 1991.

341 [19] B. K. Paul, "Why relatively fewer people died? The case of Bangladesh's Cyclone Sidr," *Nat.*
342 *Hazards*, vol. 50, no. 2, pp. 289–304, 2009.

343 [20] U. Haque, M. Hashizume, K. N. Kolivras, H. J. Overgaard, B. Das, and T. Yamamoto, "Reduced
344 death rates from cyclones in Bangladesh: what more needs to be done?," *Bull. World Health
345 Organ.*, vol. 90, pp. 150–156, 2012.

346 [21] B. Mallick, K. R. Rahaman, and J. Vogt, "Coastal livelihood and physical infrastructure in
347 Bangladesh after cyclone Aila," *Mitig. Adapt. Strateg. Glob. Change*, vol. 16, no. 6, pp. 629–648,
348 2011.

349 [22] B. K. Paul, H. Rashid, M. S. Islam, and L. M. Hunt, "Cyclone evacuation in Bangladesh: tropical
350 cyclones Gorky (1991) vs. Sidr (2007)," *Environ. Hazards*, vol. 9, no. 1, pp. 89–101, 2010.

351 [23] A. U. Ahmed, S. Haq, M. Nasreen, and A. W. R. Hassan, "Climate change and disaster
352 management," *Sect. Inputs Formul. 7th Five Year Plan 2016–2021*, p. 63, 2015.

353 [24] S. K. Paul and J. K. Routray, "Household response to cyclone and induced surge in coastal
354 Bangladesh: coping strategies and explanatory variables," *Nat. Hazards*, vol. 57, no. 2, pp. 477–
355 499, 2011.

356 [25] E. Alam and A. E. Collins, "Cyclone disaster vulnerability and response experiences in coastal
357 Bangladesh," *Disasters*, vol. 34, no. 4, pp. 931–954, 2010.

358 [26] K. U. Chisty, M. K. Islam, and M. R. B. Samad, "An Application of GIS for Cyclone Hazard
359 Modelling and Vulnerability Assessment in Coastal Area, a Case Study at Anawara Upazila in
360 Chittagong, Bangladesh."

361 [27] M. S. Rana, K. Gunasekara, M. K. Hazarika, L. Samarakoon, and M. Siddiquee, "Application of
362 remote sensing and GIS for cyclone disaster management in coastal area: A case study at Barguna
363 district, Bangladesh," *Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.*, vol. 38, no. Part 8, pp.
364 122–126, 2010.

365 [28] A. S. Dhar and M. A. Ansary, "Community-based evaluation for the development of a
366 sustainable disaster early warning system," *J Emerg. Manag.*, vol. 10, 2012.

367 [29] S. S. Ali, M. Rahman, and N. R. Chowdhury, "Bangladesh: a sustainable and disaster resilient
368 future," *Islam. Relief Worldw.-Bangladesh Dhaka Google Sch.*, 2012.

369 [30] C. Bern *et al.*, "Risk factors for mortality in the Bangladesh cyclone of 1991.," *Bull. World Health
370 Organ.*, vol. 71, no. 1, p. 73, 1993.

371 [31] A. M. R. Chowdhury, A. U. Bhuyia, A. Y. Choudhury, and R. Sen, "The Bangladesh cyclone of
372 1991: why so many people died," *Disasters*, vol. 17, no. 4, pp. 291–304, 1993.

373 [32] S. K. Paul and J. K. Routray, "An analysis of the causes of non-responses to cyclone warnings
374 and the use of indigenous knowledge for cyclone forecasting in Bangladesh," in *Climate change*
375 and *disaster risk management*, Springer, 2013, pp. 15–39.

376 [33] S. K. Paul, "Determinants of evacuation response to cyclone warning in coastal areas of
377 Bangladesh: a comparative study," *Orient. Geogr.*, vol. 55, no. 1–2, pp. 57–84, 2014.

378 [34] M. Nataque Mahmood, S. Prasad Dhakal, and R. Keast, "The state of multi-purpose cyclone
379 shelters in Bangladesh," *Facilities*, vol. 32, no. 9/10, pp. 522–532, 2014.

380 [35] B. K. Paul, "Why relatively fewer people died? The case of Bangladesh's Cyclone Sidr," *Nat.*
381 *Hazards*, vol. 50, no. 2, pp. 289–304, 2009.

382 [36] A. S. Islam, S. K. Bala, M. A. Hussain, M. A. Hossain, and M. M. Rahman, "Performance of coastal
383 structures during Cyclone Sidr," *Nat. Hazards Rev.*, vol. 12, no. 3, pp. 111–116, 2010.

384 [37] B. Mallick, "Cyclone shelters and their locational suitability: An empirical analysis from coastal
385 Bangladesh," *Disasters*, vol. 38, no. 3, pp. 654–671, 2014.

386 [38] J. Dalal, P. K. Mohapatra, and G. C. Mitra, "Locating cyclone shelters: a case," *Disaster Prev.*
387 *Manag. Int. J.*, vol. 16, no. 2, pp. 235–244, 2007.

388 [39] B. Gupta, S. Gupta, B. Gupta, and S. Gupta, "ICT Implementation-GIS Application for Disaster
389 Evacuation," *Int. J.*, vol. 3, pp. 176–180.

390 [40] G. J. Devlin, K. McDonnell, and S. Ward, "Timber haulage routing in Ireland: an analysis using
391 GIS and GPS," *J. Transp. Geogr.*, vol. 16, no. 1, pp. 63–72, 2008.

392 [41] T. J. Cova and J. P. Johnson, "A network flow model for lane-based evacuation routing," *Transp.*
393 *Res. Part Policy Pract.*, vol. 37, no. 7, pp. 579–604, 2003.

394 [42] P. Murray-Tuite and H. Mahmassani, "Model of household trip-chain sequencing in emergency
395 evacuation," *Transp. Res. Rec. J. Transp. Res. Board*, no. 1831, pp. 21–29, 2003.

396 [43] W. Yi and L. Özdamar, "A dynamic logistics coordination model for evacuation and support in
397 disaster response activities," *Eur. J. Oper. Res.*, vol. 179, no. 3, pp. 1177–1193, 2007.

398 [44] I. R. Bukholm, A. Husdal, J. M. Nesland, A. Langerød, and G. Bukholm, "Overexpression of
399 cyclin A overrides the effect of p53 alterations in breast cancer patients with long follow-up
400 time," *Breast Cancer Res. Treat.*, vol. 80, no. 2, pp. 199–206, 2003.

401 [45] M. Hasnat, "Optimum route modeling for emergency response during disastrous situation in
402 densely populated urban area," 2016.

403