

1 Article

2

Surface-wave extraction based on morphological 3 diversity of seismic events

4 **Xinming Qiu¹, Chao Wang^{2,*}, Jun Lu³ and Yun Wang⁴**5 ¹ School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing,
6 China7 ² The State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of
8 Sciences, Guiyang, China9 ³ Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of
10 Education, China University of Geosciences (Beijing), Beijing, China

11 * Correspondence: srmn28@163.com; Tel.: +86-156-5268-8034

12

13 **Abstract:** Extraction of high-resolution surface waves is essential in surface-wave survey. Because
14 reflections usually interfere with surface waves on X component in a multicomponent seismic
15 exploration, it is difficult to extract dispersion curves of surface waves. The situation goes more
16 serious when the frequencies and velocities of higher-mode surface waves are close to those of PS-
17 waves. A method for surface-wave extraction is proposed based on the morphological differences
18 between reflections and surface waves. Frequency-domain high-resolution linear Radon transform
19 (LRT) and time-domain high-resolution hyperbolic Radon transform (HRT) are used to represent
20 surface waves and reflections respectively. Then, the sparse representation problem based on the
21 morphological component analysis (MCA) is built and optimally solved to obtain high-fidelity
22 surface waves. An advantage of our method is its ability to extract surface waves when their
23 frequencies and velocities are close to those of reflections. Furthermore, results of synthetic and field
24 examples confirm that the proposed method can attenuate the distortion of surface-wave dispersive
25 energy caused by reflections, which contributes to extracting accurate dispersion curves.26 **Keywords:** Higher-mode surface waves; dispersion curves; morphological component analysis;
27 Radon transform
2829

1. Introduction

30 Seismic surface waves are widely used in crustal and mantle structure studies and engineering
31 prospecting, characterized by small horizontal attenuation, high signal-to-noise ratio and dispersion
32 [1, 2]. Dispersion characteristics of surface waves reflect the near-surface S-wave velocity structure.
33 Dispersion curves of fundamental-mode surface waves are inverted to obtain near-surface S-wave
34 velocity structure for PS-wave static corrections in a seismic exploration [3, 4]. Recently, considering
35 different sensitivity of fundamental- and higher-mode surface waves to elastic properties and
36 thickness of near-surface materials, joint inversion of fundamental- and higher-mode surface waves
37 is of wide-spread interest for less ambiguity and higher accuracy of S-wave velocities in engineering
38 seismic prospecting, ambient seismic noise tomography and microtremor survey [5-8]. To obtain
39 accurate S-wave velocities, extracting accurate dispersion curves of multi-mode surface waves is
40 essential.41 Fundamental-mode surface waves are dominated in vertical-component seismic data while
42 higher-mode surface waves are generally evident on horizontal component or X component in a 2D
43 survey [9]. Disturbed by reflections, it is usually difficult to extract accurate dispersion curves of
44 higher-mode surface waves from X-component seismic data, causing the ambiguity of inverted S-
45 wave velocities. Luo et al. [10] proposed high-resolution LRT to image surface-wave dispersive

46 energy, which improved resolution of phase velocities. But disturbed by body waves or strong noise,
47 the dispersive energy may not be smooth and it is hard to distinguish between different modes,
48 known as “mode kissing” [11]. This phenomenon is vulnerable to mode misidentification [12],
49 resulting in less reliable inversion or even wrong inverted S-wave velocities.

50 To extract dispersion curves, surface waves are extracted on the basis of different characteristics
51 between surface waves and interference waves. Methods of surface-wave suppression are based on
52 single-component processing or multicomponent processing. Methods of single-component
53 processing include f-k filtering, empirical mode decomposition and other transform methods [4, 13-
54 15] while methods of multicomponent processing are polarization filtering and vector median
55 filtering which preserve the vector characteristics and the spectral bandwidth of reflections [16, 17].
56 Pan et al. [18] discriminated the direct waves and reflections using frequency analysis. Performing a
57 hybrid linear-hyperbolic Radon transform, Trad et al. [19] separated surface waves successfully in
58 the signal model which consisted of both surface waves with linear events and reflections with
59 hyperbolic events. But raw data are transformed into the conventional intercept-slowness (τ -p)
60 domain, which is not sparse enough to separate surface waves in consideration of their dispersion
61 characteristics. Using high-resolution LRT, Hu et al. [20] transformed raw data into the frequency-
62 velocity (f-v) domain to implement surface-wave separation. However, it may be difficult to extract
63 surface waves in some cases dispersive energy of higher-mode surface waves also overlaps with that
64 of reflections in the f-v domain and then original surface-wave dispersive energy is distorted. Because
65 the frequencies and velocities of PS-waves are close to those of higher-mode surface waves [16].

66 In this paper, we propose a method of surface-wave extraction to overcome the influence of
67 reflections. The proposed method is based on the morphological differences between reflections and
68 surface waves. We also exploit the advantages of wavefield separation by frequency-domain LRT
69 and time-domain HRT. To implement surface-wave extraction, the sparse representation problem
70 under the framework of MCA is optimally solved.

71 We firstly describe the sparse representation problem and the selected sparse dictionaries,
72 followed by the distortion of surface-wave dispersive energy caused by reflections. Then, we
73 demonstrate the results of surface-wave extraction and picked dispersion curves using tests with
74 synthetic and field shot data.

75 2. Methods

76 2.1. Method of surface-wave extraction in f-v domain

77 High-resolution LRT is used to image surface-wave dispersive energy [10]. Using it, surface
78 waves and reflections on Z component are clearly in different locations of f-v domain when the
79 frequencies and velocities of them are significantly different. Hu et al. [20] extracted surface waves
80 from Z component by a 2D window of the f-v domain.

81 The frequency-domain inverse LRT in the matrix-vector form is [18]:

$$\mathbf{d}(f) = \mathbf{L}(f)\mathbf{m}(f) \quad (1)$$

82 where $\mathbf{d}(f)$ is a vector of size $nx \times 1$ representing the Fourier coefficients of the seismic data at
83 the given frequency f while $\mathbf{m}(f)$ is a vector of size $np \times 1$ representing the Fourier
84 coefficients of Radon panel at the given frequency f . In equation (1), $\mathbf{L}(f)$ is a complex matrix of
85 size $nx \times np$

$$\mathbf{L}(f) = \begin{bmatrix} e^{-i2\pi f x_1/v_1} & e^{-i2\pi f x_1/v_2} & \dots & e^{-i2\pi f x_1/v_{np}} \\ e^{-i2\pi f x_2/v_1} & e^{-i2\pi f x_2/v_2} & \dots & e^{-i2\pi f x_2/v_{np}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f x_{nx}/v_1} & e^{-i2\pi f x_{nx}/v_2} & \dots & e^{-i2\pi f x_{nx}/v_{np}} \end{bmatrix} \quad (2)$$

86 where v_i ($i=1,2,\dots,np$) is the apparent velocity and x_j ($j=1,2,\dots,nx$) is the offset.

87 The frequency-domain high-resolution forward LRT [10, 21] is inverted with a sparse constraint
88 of a priori probability, known as:

$$(\lambda \mathbf{I} + \mathbf{W}_m^{-H} \mathbf{L}^H \mathbf{W}_d^H \mathbf{W}_d \mathbf{L} \mathbf{W}_m^{-1}) \tilde{\mathbf{m}} = \mathbf{W}_m^{-H} \mathbf{L}^H \mathbf{W}_d^H \mathbf{W}_d \mathbf{d} \quad (3)$$

89 where $\tilde{\mathbf{m}} = \mathbf{W}_m \mathbf{m}$. \mathbf{W}_d is a matrix of data weights, a diagonal matrix showing the standard
90 deviation, $\text{diag}(\mathbf{W}_d)_i = |(\mathbf{d} - \mathbf{L}\mathbf{m})_i|^{-1/2}$ while \mathbf{W}_m is a diagonal matrix of Radon coefficients
91 indicating how sparse the coefficients are, $\text{diag}(\mathbf{W}_m)_i = |m_i|^{-1/2}$. \mathbf{I} denotes the identity matrix and
92 the scalar λ is the tradeoff parameter that weights the relative importance of the misfit and the
93 sparsity [22].

94 But it is difficult to extract surface waves correctly from X-component seismic data. Because
95 frequencies and velocities of higher-mode surface waves and PS-waves are close and both of them
96 are generally evident on X component. Disturbed by PS-waves, the dispersive energy is not true for
97 surface waves. So, extracting surface waves in f-v domain is not a perfect method. We propose a
98 method of surface-wave extraction to overcome the influence of reflections based on MCA. High-
99 resolution LRT is one of two transforms and used to represent surface waves.

100 2.2. Sparse representation problem based on MCA

101 MCA is a method for signal separation based on sparse representations [23, 24]. It is assumed
102 that the original signal is a linear mixture of several different parts and for each of them, there exists
103 a dictionary which enables its construction using a sparse representation. Also, the dictionary can
104 only sparsely represent the corresponding part rather than others. For seismic data consisting of
105 surface waves and reflections, there is

$$\mathbf{y} = \mathbf{y}_g + \mathbf{y}_r \quad (4)$$

106 where \mathbf{y} is the seismic data set, \mathbf{y}_g is the surface-wave part and \mathbf{y}_r is the reflection part. We
107 choose \mathbf{D}_g and \mathbf{D}_r as the sparse representation dictionaries of surface waves and reflections
108 respectively, i.e., $\mathbf{y}_g = \mathbf{D}_g \mathbf{z}_g$, $\mathbf{y}_r = \mathbf{D}_r \mathbf{z}_r$. Separation of surface waves and reflections can be
109 formulated as [25]:

$$\underset{\{\mathbf{z}_g, \mathbf{z}_r\}}{\text{argmin}} \frac{1}{2} \left\| \mathbf{y} - \mathbf{D}_g \mathbf{z}_g - \mathbf{D}_r \mathbf{z}_r \right\|_2^2 + \mu (\|\mathbf{z}_g\|_1 + \|\mathbf{z}_r\|_1) \quad (5)$$

110 where \mathbf{z}_g and \mathbf{z}_r are the representation vectors for surface waves and reflections, respectively,
111 and μ is the regularization parameter.

112 Surface waves are generally modeled as broom-like events characterized by low frequency, low
113 velocity and dispersion, and their dispersive energy is around theoretical dispersion curves in the f-
114 v domain [20, 26]. Therefore, frequency-domain high-resolution LRT can sparsely represent surface
115 waves in theory. Reflections are approximated by hyperbolas and time-domain high-resolution HRT

116 can sparsely represent reflections with assumptions that velocities change little horizontally and
 117 reflection interfaces are almost horizontal [27]. We choose frequency-domain high-resolution LRT
 118 and time-domain high-resolution HRT to represent surface waves and reflections respectively. To
 119 match with the matrix definition of sparse representation dictionaries in our sparse representation
 120 problem, the inverse LRT and inverse HRT correspond to the matrix signs \mathbf{D}_g and \mathbf{D}_r
 121 respectively while the forward LRT and forward HRT are respectively the matrices \mathbf{D}_g^+ and \mathbf{D}_r^+ .
 122 The matrices \mathbf{D}_g^+ and \mathbf{D}_r^+ are pseudo inverse of the representation dictionaries, i.e., $\mathbf{z}_g = \mathbf{D}_g^+ \mathbf{y}_g$,
 123 $\mathbf{z}_r = \mathbf{D}_r^+ \mathbf{y}_r$. Put these back into (5) we obtain

$$\underset{\{\mathbf{y}_g, \mathbf{y}_r\}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{y} - \mathbf{y}_g - \mathbf{y}_r\|_2^2 + \mu (\|\mathbf{D}_g^+ \mathbf{y}_g\|_1 + \|\mathbf{D}_r^+ \mathbf{y}_r\|_1) \quad (6)$$

124 which is solved by generalized BCR algorithm [23].

125 Surface waves is extracted by solving equation (6). Different dictionaries are respectively chosen
 126 to represent surface waves and reflections so that the influence of reflections on surface-wave
 127 dispersive energy is reduced.

128 2.2.1. Frequency-domain high-resolution LRT

129 To sparsely represent surface waves, equation (3) is solved to achieve high-resolution LRT in the
 130 spectral bandwidth of surface waves by iteratively reweighted least squares (IRLS) algorithm [28].
 131 The choice of the apparent-velocity range and interval should avoid aliasing [29] for reconstruction;
 132 moreover, the apparent-velocity range includes the phase velocities of surface waves.

133 2.2.2. Time-domain high-resolution HRT

134 Inverse and adjoint HRT in the discrete form can be expressed as [30]:

$$d(t, x) = \sum_v m\left(\tau = \sqrt{t^2 - x^2 / v^2}, v\right) \quad (7)$$

135 and

$$m_{\text{adj}}(\tau, v) = \sum_x d\left(t = \sqrt{\tau^2 + x^2 / v^2}, x\right) \quad (8)$$

136 where $d(t, x)$ are the seismic data in time-offset domain, x indicates the offset, t donates two-
 137 way time, $m(\tau, v)$ are the Radon coefficients, v indicates the root-mean-square velocity of a
 138 reflection, τ donates the time intercept, $m_{\text{adj}}(\tau, v)$ are the low resolution Radon coefficients.
 139 Equations (7) and (8) are represented in matrix-vector form as follows [30]:

$$\mathbf{d} = \mathbf{Lm} \quad (9)$$

$$\mathbf{m}_{\text{adj}} = \mathbf{L}^T \mathbf{d} \quad (10)$$

140 where \mathbf{d} is a vector of size $N \times 1$ whose elements are taken trace-wise from the seismic data ($N = nx \times nt$) and \mathbf{m} is a vector of size $M \times 1$ whose elements are taken velocity-wise from the
 141 Radon coefficients ($M = nv \times n\tau$). nx , nt , nv and $n\tau$ are the number of traces, samples,
 142 velocities and time intercepts respectively. In equation (9) and (10), the operators \mathbf{L} and \mathbf{L}^T are
 143 just represented for the summation algorithms shown in equation (7) and (8) instead of matrices [31].

144 High-resolution forward HRT can be inverted from equation (9) using a sparse constraint
 145 satisfying

$$(\mathbf{W}_m^T \mathbf{W}_m)^{-1} \mathbf{L}^T \mathbf{W}_d^T \mathbf{W}_d \mathbf{Lm} = (\mathbf{W}_m^T \mathbf{W}_m)^{-1} \mathbf{L}^T \mathbf{W}_d^T \mathbf{W}_d \mathbf{d} \quad (11)$$

147 which is solved by a left preconditioned version of conjugate gradient for the normal equations
 148 algorithm [31].

149 The computational cost of applying operators \mathbf{L} and \mathbf{L}^T is controlled by the size of the
 150 Radon domain [32]. To speed up the implementation, time-domain high-resolution forward HRT is
 151 solved in the restricted Radon space [32]

$$(\mathbf{W}_{m_{\mathbb{A}}}^T \mathbf{W}_{m_{\mathbb{A}}})^{-1} \mathbf{L}_{\mathbb{A}}^T \mathbf{W}_d^T \mathbf{W}_d \mathbf{L}_{\mathbb{A}} \mathbf{m}_{\mathbb{A}} = (\mathbf{W}_{m_{\mathbb{A}}}^T \mathbf{W}_{m_{\mathbb{A}}})^{-1} \mathbf{L}_{\mathbb{A}}^T \mathbf{W}_d^T \mathbf{W}_d \mathbf{d} \quad (12)$$

152 where \mathbf{d} should be normalized to unity by dividing the maximum of the seismic data [33]. The
 153 restricted Radon space is defined as

$$\mathbb{A} = \left\{ (\tau, p) : \frac{1}{nx} |\mathbf{m}_{\text{adj}}| > T \right\} \quad (13)$$

154 where T is the threshold satisfying $0 < T < 1$.

155 *2.2.3. Performance of sparse representations using LRT and HRT*

156 We synthesized the surface waves (Figure 1) of the two-horizontal-layer model (Model 1)
 157 described by Table 1 using a staggered-grid finite-difference method. Then we synthesized reflections
 158 (Figure 2) of the three-horizontal-layer model (Model 2) described by Table 2 using ray tracing.
 159 Frequency-domain high-resolution forward LRT and time-domain high-resolution forward HRT are
 160 applied to the surface waves and reflections to get the four panels of the Radon coefficients. Next, we
 161 respectively normalized the Radon coefficients to unity divided by the maximum of each panel and
 162 apply hard threshold to them. Finally, the seismic data were reconstructed by the inverse transforms.
 163 For a Radon panel, the higher threshold amplitude means the fewer Radon coefficients used in the
 164 reconstruction.

165 To confirm the effectiveness of sparse representations for surface waves and reflections, the
 166 reconstruction error is calculated as follows:

$$err = \sum_x E_x^r / \sum_x E_x^0 \quad (14)$$

167 where E_x^r represents the root-mean-square error between reconstruction and original data at the

168 offset x , i.e., $E_x^r = \sqrt{\frac{1}{nt} \sum_t (d(t, x) - \tilde{d}(t, x))^2}$, $\tilde{d}(t, x)$ represent the reconstruction data, and

169 $E_x^0 = \sqrt{\frac{1}{nt} \sum_t (d(t, x))^2}$ represents the root-mean-square value of original data at the offset x , i.e.,

170 $E_x^0 = \sqrt{\frac{1}{nt} \sum_t (d(t, x))^2}$. The reconstruction errors against the threshold amplitude are illustrated

171 in Figure 3. According to Figure 3a, fewer coefficients can be used to similarly reconstruct the surface
 172 waves by frequency-domain high-resolution LRT compared with time-domain high-resolution HRT,
 173 which means the former can represent surface waves more sparsely. On the basis of Figure 3b, time-
 174 domain high-resolution HRT can represent reflections more sparsely than frequency-domain high-
 175 resolution LRT. Comparing the HRT-reconstruction errors shown by dashed lines between Figure 3a
 176 and Figure 3b, time-domain high-resolution HRT leads to a non-sparse representation for surface
 177 waves. Similarly, frequency-domain high-resolution LRT leads to a non-sparse representation for
 178 reflections comparing the LRT-reconstruction errors. Thus, the two transforms (dictionaries) are
 179 significantly different in the sparse representations for surface waves and reflections, which meets
 180 the assumptions of MCA, and it is theoretically feasible to extract the surface waves based on
 181 equation (6).

182

183

Table 1. Parameters of Model 1.

Thickness (m)	Vp (m/s)	Vs (m/s)	Density (kg/m ³)
10	800	200	2000
-	1200	400	2000

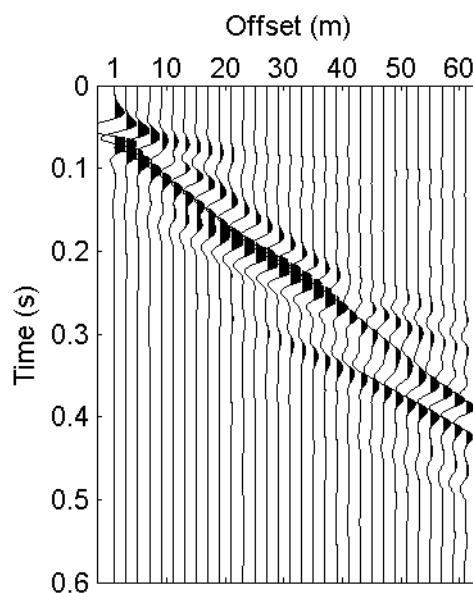
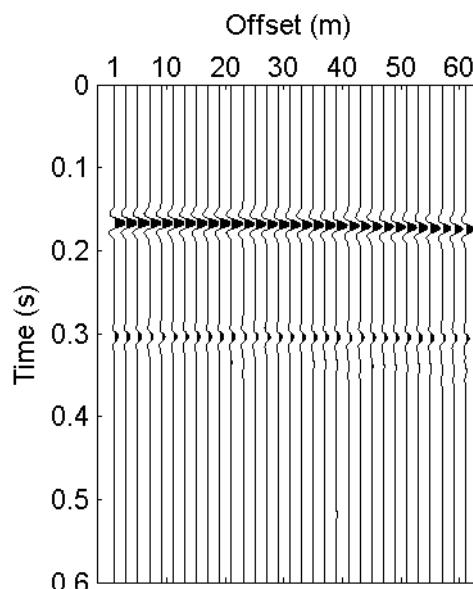

184

Table 2. Parameters of Model 2.

Thickness (m)	Vp (m/s)	Vs (m/s)	Density (kg/m ³)
100	1200	400	2000
150	2200	1320	2250
-	3300	2045	2400


185

186

Figure 1. Synthetic seismic data (mainly surface waves) of Model 1.

187

188

Figure 2. Synthetic reflections of Model 2.

189
190
191 **Figure 3.** Curves of the reconstruction errors of (a) surface waves and (b) reflections against the
192 threshold amplitude.

193 **3. Examples**

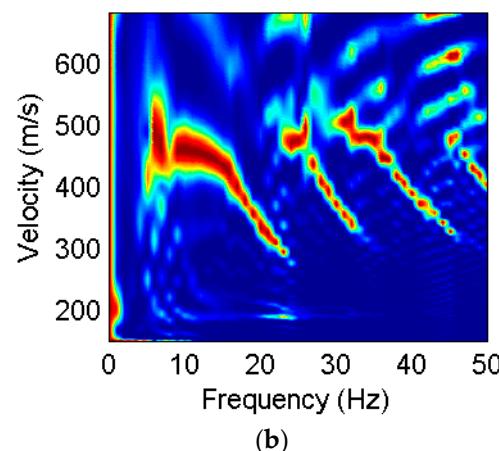
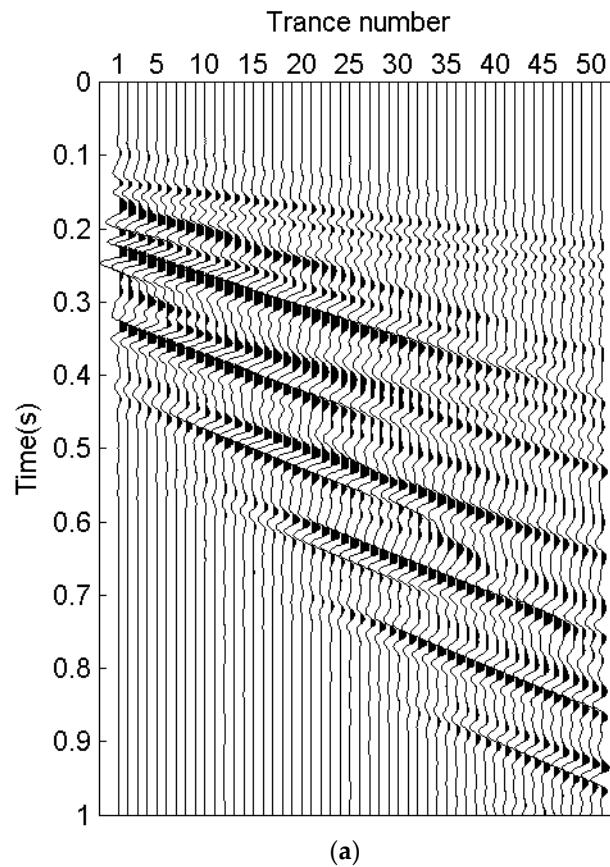
194 **3.1. Synthetic examples**

195 **3.1.1. Distortion of surface-wave dispersive energy caused by reflections**

196 Two layered earth models (Model 3 and Model 4) are given in Table 3 and 4 to display the
197 distortion of surface-wave dispersive energy caused by reflections. The layers of Model 3 are the first
198 two layers of Model 4. A synthetic X-component shot gather (Figure 4a) of the Model 3 is simulated
199 using a staggered-grid finite-difference method with an explosive source located at 3-m depth.
200 Another synthetic X-component shot gather (Figure 5a) of the Model 4 is simulated using the same
201 method and the same forward-simulation parameters. We simulated the records with 51 receivers
202 evenly spaced 2 m in line on the surface and the nearest offset of 40 m. As shown in Figure 4b and
203 5b, the two shot gathers are transformed into the f-v domain by high-resolution LRT.

204 According to the relationship between penetration depths of Rayleigh waves and wavelengths
205 [34], the surface waves of Model 3 and Model 4 can't penetrate into the depth of 100 m so the
206 dispersion characteristics of pure surface waves in Figure 5a should be similar to that in Figure 4a.
207 The surface waves in Figure 4a are not disturbed by the reflections from the deep reflectors. The
208 dispersive energy shown in Figure 4b is continuous and the three branches of dispersion energy are
209 clearly corresponding to the first, second, third higher modes. But the events of higher-mode surface
210 waves in Figure 5a are discontinuous overlapping with the reflections in two-way time of 0.35 s and
211 0.45 s, and it is difficult to discern which higher mode the dispersive energy in frequencies of 25-33
212 Hz and apparent velocities of 470-530 m/s (energy circled in Figure 5b) corresponds to. A comparison
213 of Figure 4b and Figure 5b demonstrates that reflections may disturb the dispersive energy of surface
214 waves. What causes this phenomenon "mode kissing" is the non-negligible effect of the reflections at
215 the range of frequencies and velocities. The picked dispersion curves based on the amplitude and the
216 continuity of dispersive energy are shown in Figure 5c where the second higher mode of frequencies
217 of 25-27 Hz mistakes for the third higher mode. However, the surface-wave dispersive energy on Z-
218 component seismic data is not severely influenced by the reflections from the deep reflectors
219 according to Hu et al. [20].

220 **Table 3.** Parameters of Model 3.



Thickness (m)	V _p (m/s)	V _s (m/s)	Density (kg/m ³)
10	800	200	2000
90	1200	600	2000

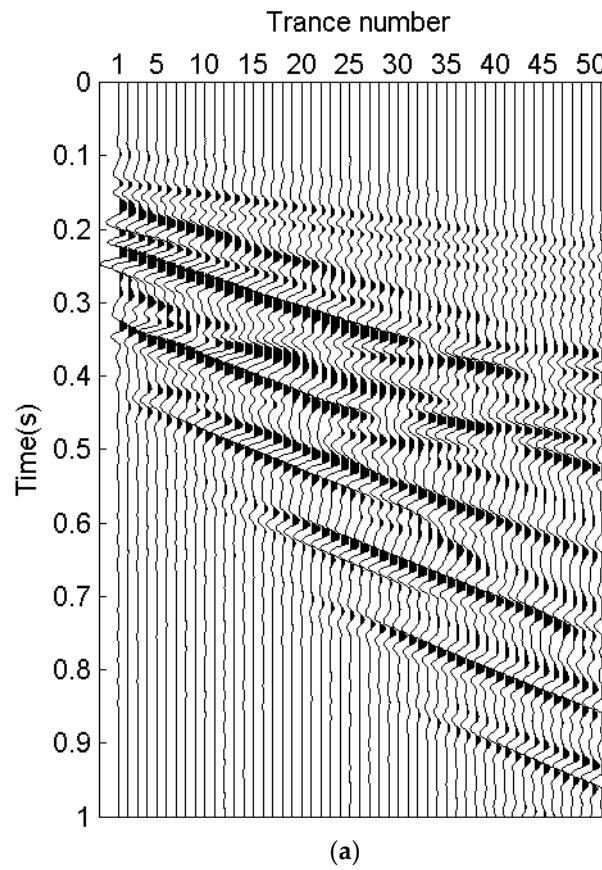
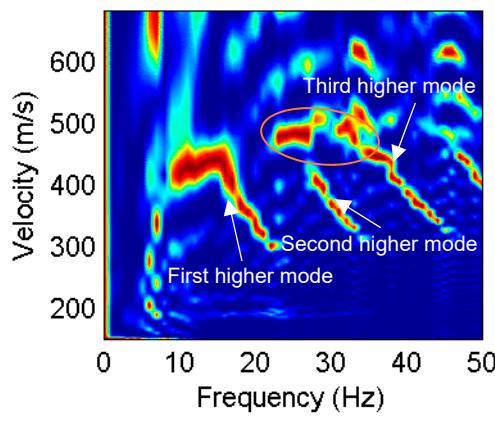
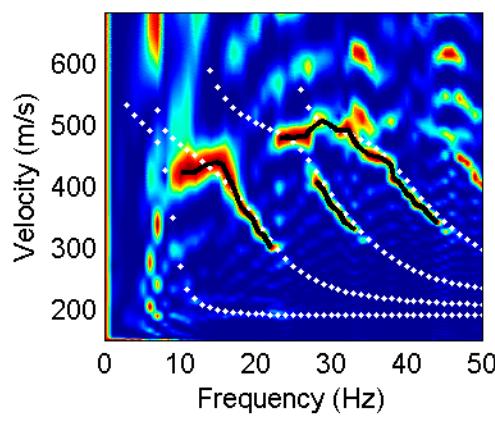

222

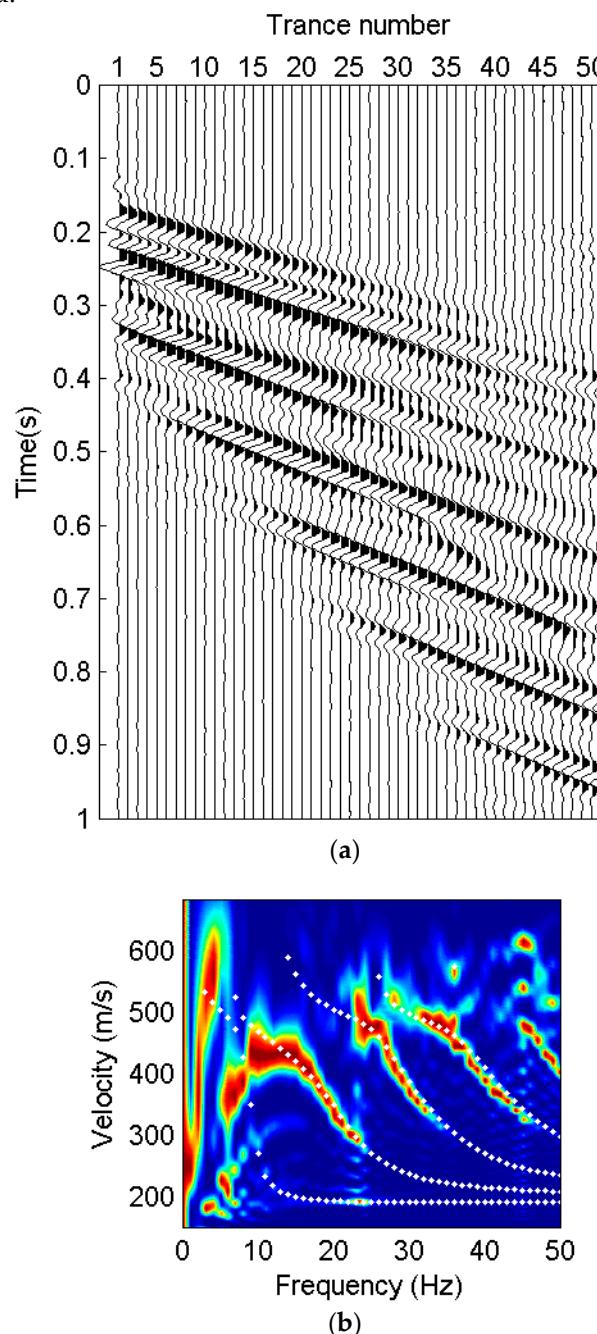
Table 4. Parameters of Model 4.


Thickness (m)	Vp (m/s)	Vs (m/s)	Density (kg/m ³)
10	800	200	2000
90	1200	600	2000
600	2200	1320	2250
-	3300	2045	2400

223

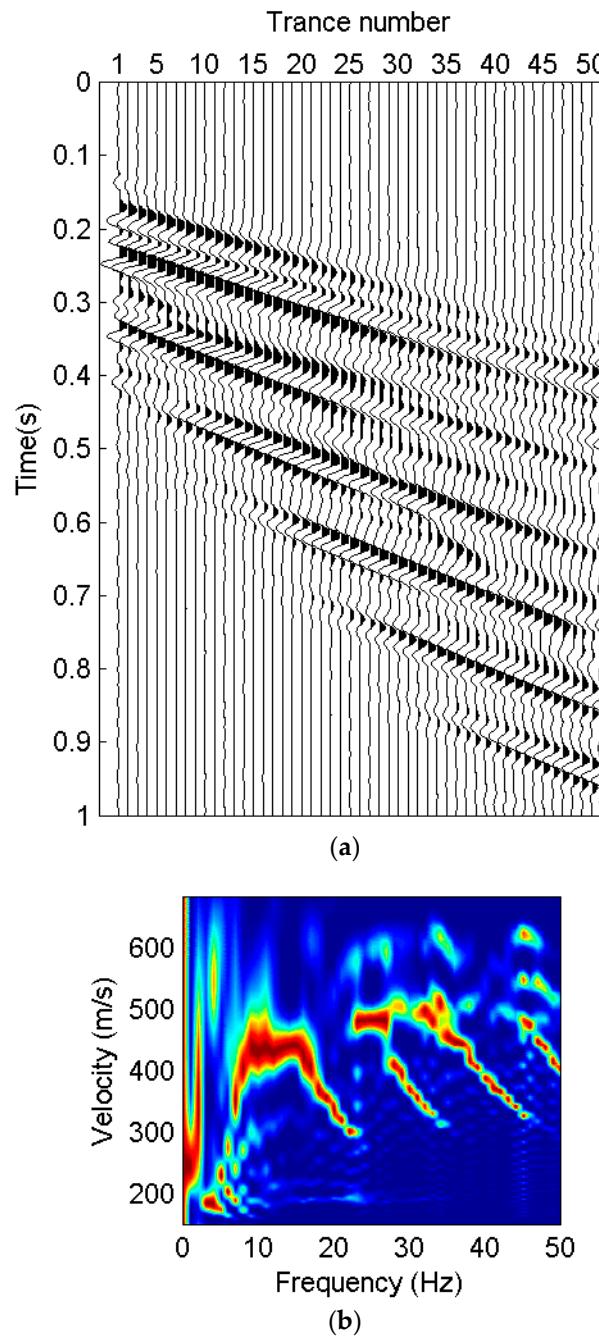

224
225**Figure 4.** (a) A synthetic X-component shot gather of Model 3 and (b) its image of dispersive energy in the f-v domain where the white dotted lines represent the theoretical dispersion curves.

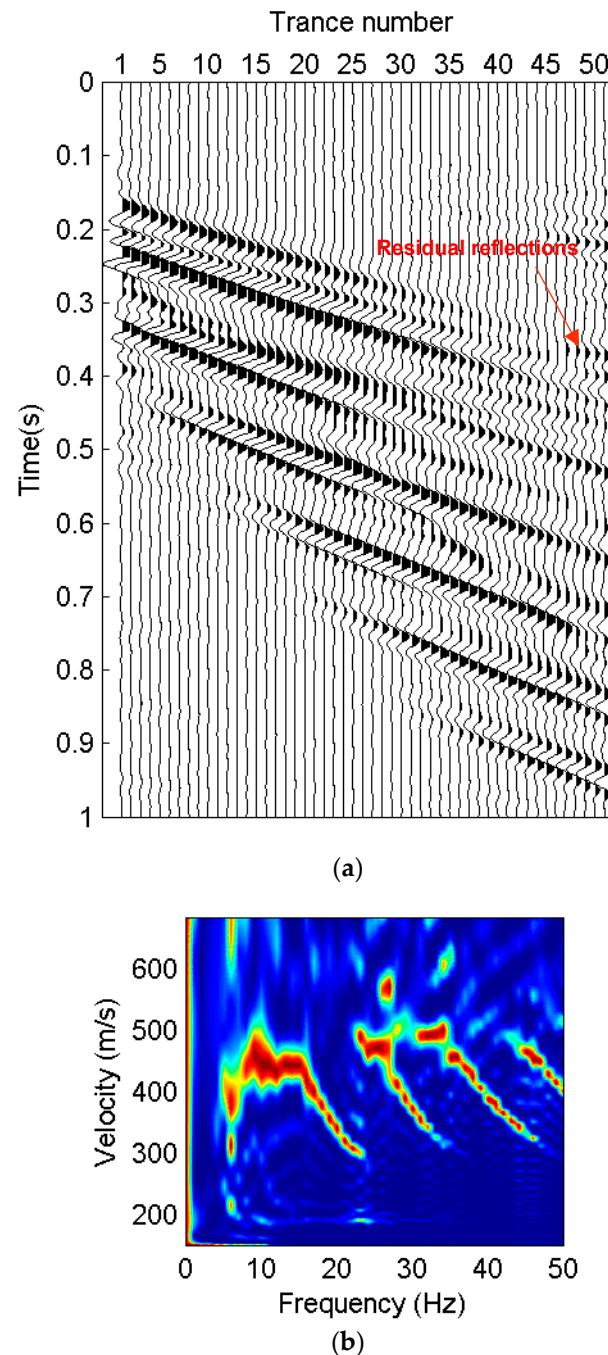
(a)


(b)

(c)

228 3.1.2. Recovery of the surface-wave dispersive energy

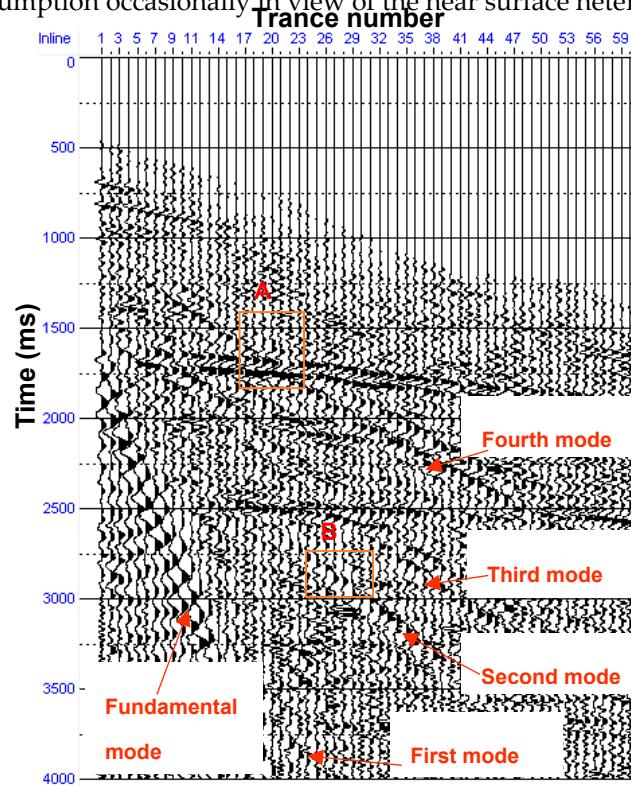

229 The proposed method is applied to the synthetic seismic data shown in Figure 5a to display the
 230 result of surface-wave extraction and the improvement of the surface-wave dispersive energy.
 231 Compared with the dispersive energy of the original seismic data shown in Figure 5b, the dispersive
 232 energy of the surface waves extracted from the data is more continuous in Figure 6. The energy of 25-
 233 27 Hz and 28-33 Hz is separated to two parts corresponding to the second higher mode and the third
 234 higher mode respectively, which means “mode kissing” disappears. Also, the dispersive energy is
 235 close to the theoretical dispersion curves, which implies surface waves are effectively extracted using
 236 the proposed method.


237 **Figure 6.** (a) Result of surface-wave extraction by the proposed method and (b) its image of dispersive
 238 energy in the f-v domain where the white dotted lines represent the theoretical dispersion curves.

239 Furthermore, we compared the proposed method with other methods of surface-wave
 240 extraction to test the superiority of the proposed method. High-resolution LRT is applied to the
 241 original data and a 2D window is used to select and extract surface waves in the f-v domain. In Figure

242 7, the result shows surface waves are mainly extracted but “mode kissing” is not changed. The f-k
243 filtering method is also used to extract surface waves. The result of surface-wave extraction consists
244 of residual reflections in Figure 8a and “mode kissing” is reduced in Figure 8b. But there is also a risk
245 of mode misidentification owing to the discontinuous dispersive energy shown in Figure 8b.

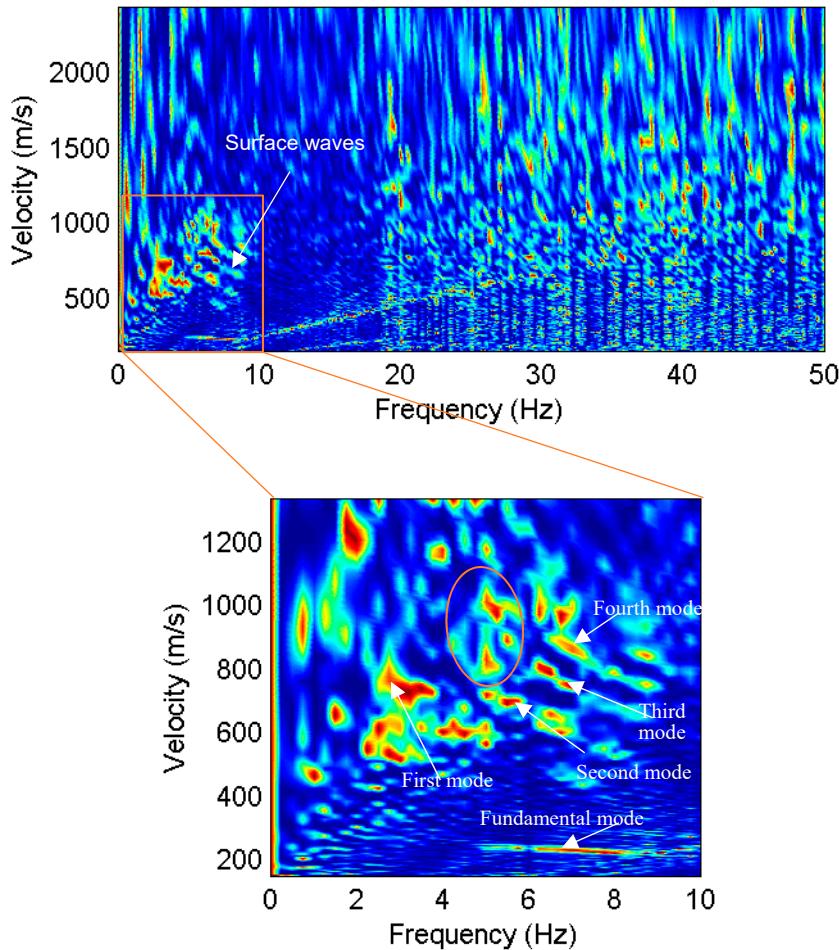
246 **Figure 7.** (a) Result of surface-wave separation by a 2D window of the f-v domain and (b) its image
247 of dispersive energy in the f-v domain.

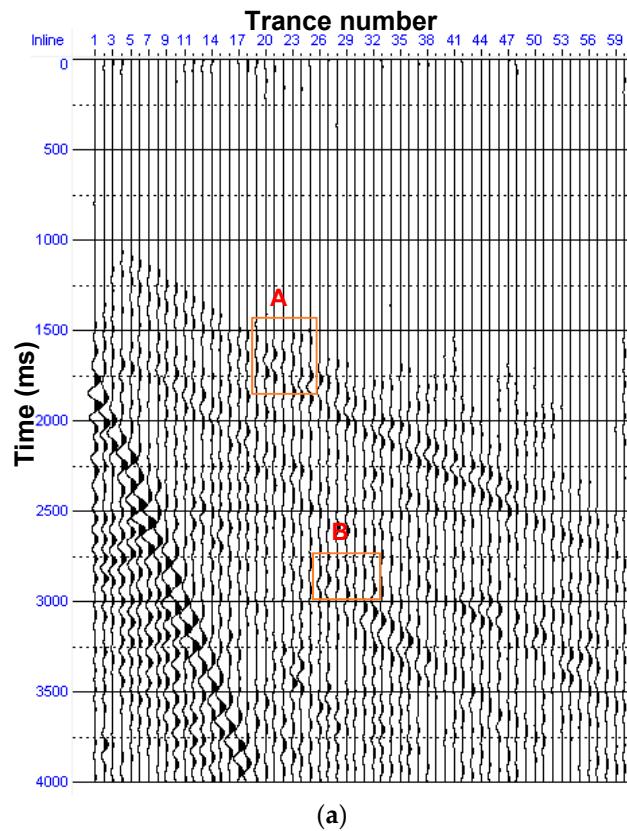


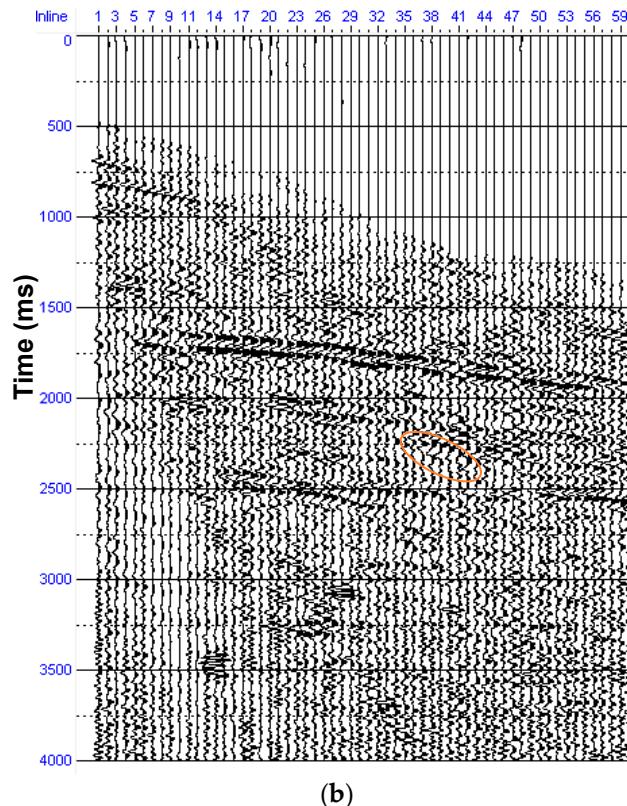
248 **Figure 8.** (a) Result of surface-wave separation by f-k filtering and (b) its image of dispersive energy
 249 in the f-v domain.

250 *3.2. A field example*

251 The X-component field data of 2D3C seismic data shown in Figure 9 were acquired in the
 252 Wangjiatun District, Daqing Oilfield, China, with the sample interval of 4 ms, the geophone interval
 253 of 25 m and the nearest offset of 400 m. It can be seen that several events of higher-mode surface
 254 waves overlap with the reflections. Reflections spread over the f-v domain while surface waves are
 255 mainly at the range of low frequencies and low velocities shown in Figure 10. Several branches of
 256 dispersive energy at frequencies of ~5 Hz and velocities of 800-1000 m/s circled in Figure 10 are so
 257 close to each other resulting in inaccurate phase velocities at those frequencies. By the proposed
 258 method, the extracted surface waves are shown in Figure 11a, where most of surface waves are
 259 extracted, and the rest of the field data are reflections and other noise except for small amount of

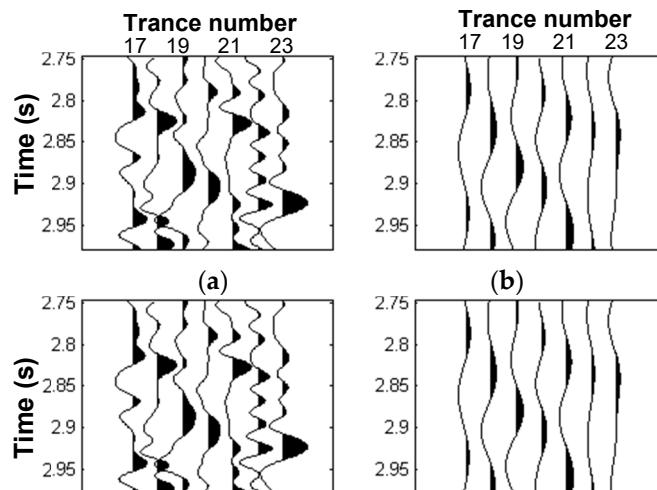

260 surface waves circled in Figure 11b. This is because the morphology of surface waves and reflections
261 may not meet the assumption occasionally in view of the near surface heterogeneity.


262


263 **Figure 9.** X-component field data of 2D3C seismic data acquired in the Wangjiatun District, Daqing
264 Oilfield, China.

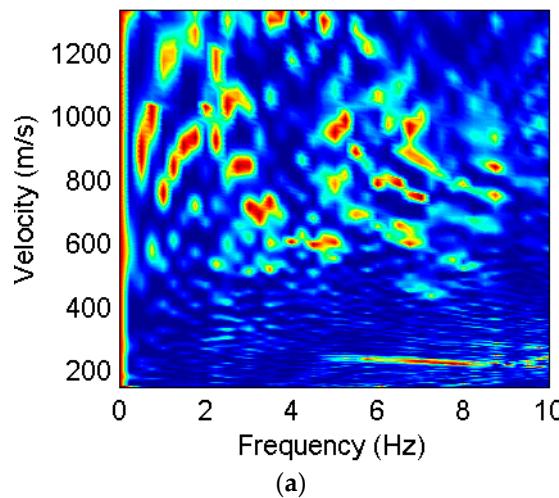
265

Figure 10. Image of dispersive energy of the field data in the f-v domain

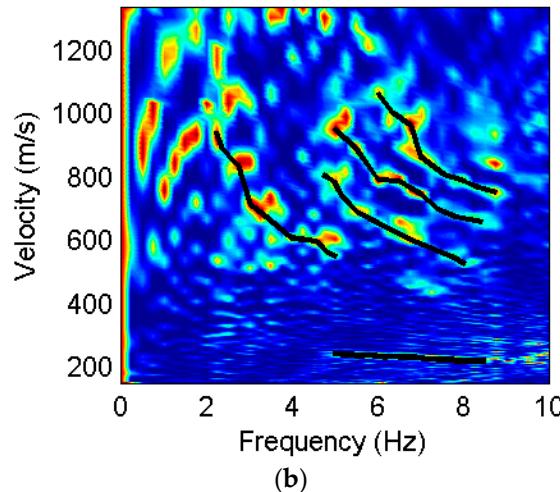


(b)

269 **Figure 11.** (a) Extracted surface waves by the proposed method and (b) the rest of the field data.

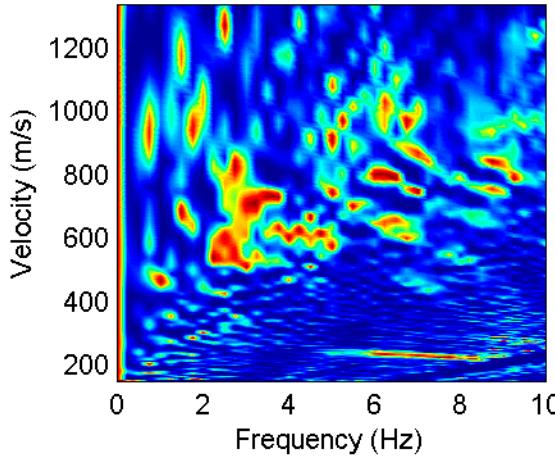

270 To display the effectiveness of surface-wave extraction further, the details of waveform are
 271 compared in Figure 12 where the original field data (Figure 9) and the result of surface-wave
 272 extraction (Figure 11a) in section A and section B are zoomed. For section A, the original data are
 273 dominated by reflections while the surface waves can be easily identified in the result of surface-
 274 wave extraction. For section B, surface waves are more clearly and more continuous after surface-
 275 wave extraction. The image of dispersive energy of the extracted surface waves using the proposed
 276 method is shown in Figure 13a. After surface-wave extraction, the dispersive energy of different
 277 modes is separated and the ambiguity of the phase velocities in Figure 10 is eliminated. As shown in
 278 Figure 13b, we can easily pick dispersion curves from Figure 13a. For comparison, the dispersive
 279 energy of surface waves separated by the f-k filtering method is displayed in Figure 14, where it is
 280 difficult to identify the modes of circled energy. The results of the synthetic example and the field
 281 example demonstrate that surface-wave extraction by the proposed method attenuates the distortion
 282 of the surface-wave dispersive energy caused by reflections, which contributes to extracting accurate
 283 dispersion curves.

284



285
286

Figure 12. Details of waveform of (a) section A in Figure 9, (b) section A in Figure 11a, (c) section B in Figure 9 and (d) section B and Figure 11a.


(a)

(b)

287
288

Figure 13. (a) Image of dispersive energy of the extracted surface waves using the proposed method and (b) dispersion curves picked from Figure 13a.

289

290

Figure 14. Image of dispersive energy of the extracted surface waves by f-k filter.

291 **4. Discussion**

292 The advantage of the method over other methods of surface-wave extraction is clear for X-
293 component seismic data while it is not obvious for Z component. The surface-wave dispersive energy
294 on Z component is not severely influenced by the reflections because surface waves and reflections
295 on Z component are clearly in different locations of f-v domain for Z-component seismic data (Hu et
296 al., 2016) where fundamental-mode surface waves are dominated.

297 The main limitation of the method is that surface waves and reflections may not be separated
298 thoroughly in field data. The main problem is that the morphology of surface waves and reflections
299 may deviate the assumption in view of the near surface heterogeneity. In addition, the reflections are
300 not represented by high-resolution HRT sparsely for steep-reflection interfaces so that the surface-
301 wave dispersive energy can't avoid the influence of reflections. Further research will be conducted to
302 solve the problems.

303 **5. Conclusion**

304 We propose a method to extract surface waves by exploiting the morphological differences
305 between reflections and surface waves on the basis of MCA. The advantage of this method over the
306 previous techniques is that it can extract surface waves in the case where dispersive energy of higher-
307 mode surface waves overlaps with that of reflections in the f-v domain. It may allow one to separate
308 PS-waves and surface waves whose frequencies and velocities are close. Synthetic and field examples
309 demonstrate that: (1) Frequency-domain high-resolution LRT and time-domain high-resolution HRT
310 are significantly different in the sparse representations for surface waves and reflections, which is
311 suitable for wavefield separation; (2) Reflections may disturb the dispersive energy of surface waves,
312 which makes it difficult to extract dispersion curves of surface waves; (3) Surface waves are
313 effectively extracted by the proposed method and the dispersive energy becomes more continuous
314 and less distorted. Also, dispersion curves picked from the dispersive energy are much more accurate
315 in view of the reliable image of surface-wave dispersive energy.

316 **Funding:** This research is financially supported by the National Natural Science Foundation of China (Grant
317 Nos. 41425017, 41504107, 41874166).

318 **Acknowledgments:** The first author appreciates Jianjun Gao and Chunying Yang for their constructive
319 suggestions on Radon transform and its application to dispersion curve extraction.

320 **References**

- 321 1. Xia, J.H.; Miller, R.D.; Park, C.B.; Ivanov, J.; Tian, G.; Chen, C. Utilization of High-Frequency Rayleigh
322 Waves in near-Surface Geophysics. *Leading Edge* **2004**, *23*, 753-759, doi:10.1190/1.1786895.
- 323 2. Zhang, Z.; Chen, Y.; Li, F. Reconstruction of the S-Wave Velocity Structure of Crust and Mantle from
324 Seismic Surface Wave Dispersion in Sichuan-Yunnan Region. *Chinese Journal of Geophysics (in Chinese)*
325 **2008**, *51*, 1114-1122, doi:10.3321/j.issn:0001-5733.2008.04.020.
- 326 3. Yang, C.Y.; Wang, Y.; Lu, J. Application of Rayleigh Waves on Ps-Wave Static Corrections. *Journal of
327 Geophysics & Engineering* **2012**, *9*, 90-97, doi:10.1088/1742-2132/9/1/011.
- 328 4. Meng, X.H.; Guo, L.H. Using Velocity Inversion of Seismic Rayleigh Wave to Compute S-Wave Statics
329 of P-Sv Wave. *Oil Geophysical Prospecting (in Chinese)* **2007**, *42*, 448-453, doi:10.3321/j.issn:1000-
330 7210.2007.04.017.
- 331 5. Luo, Y.H.; Xia, J.H.; Liu, J.P. Joint Inversion of Fundamental and Higher Mode Rayleigh Waves.
332 *Chinese Journal of Geophysics (in Chinese)* **2008**, *51*, 242-249, doi:10.3321/j.issn:0001-5733.2008.01.030.
- 333 6. Xia, J.H.; Miller, R.D.; Park, C.B.; Tian, G. Inversion of High Frequency Surface Waves with
334 Fundamental and Higher Modes. *Journal of Applied Geophysics* **2003**, *52*, 45-57, doi:10.1016/s0926-
335 9851(02)00239-2.
- 336 7. Zhou, X.H.; Lin, J.; Zhang, H.Z.; Jiao, J. Mapping Extraction Dispersion Curves of Multi-Mode

337 Rayleigh Waves in Microtremors. *Chinese Journal of Geophysics (in Chinese)* **2014**, *57*, 2631-2643,
338 doi:10.6038/cjg20140822.

339 8. Kimman, W.P.; Campman, X.; Trampert, J. Characteristics of Seismic Noise: Fundamental and Higher
340 Mode Energy Observed in the Northeast of the Netherlands. *Bulletin of the Seismological Society of
341 America* **2012**, *102*, 1388-1399, doi:10.1785/0120110069.

342 9. Savage, M.K.; Lin, F.C.; Townend, J. Ambient Noise Cross-Correlation Observations of Fundamental
343 and Higher-Mode Rayleigh Wave Propagation Governed by Basement Resonance. *Geophysical
344 Research Letters* **2013**, *40*, 3556-3561, doi:10.1002/grl.50678.

345 10. Luo, Y.H.; Xia, J.H.; Miller, R.D.; Xu, Y.X.; Liu, J.P.; Liu, Q.S. Rayleigh-Wave Dispersive Energy
346 Imaging Using a High-Resolution Linear Radon Transform. *Pure and Applied Geophysics* **2008**, *165*, 903-
347 922, doi:10.1007/s00024-008-0338-4.

348 11. Xia, J.H.; Xu, Y.X.; Luo, Y.H.; Miller, R.D.; Cakir, R.; Zeng, C. Advantages of Using Multichannel
349 Analysis of Love Waves (Malw) to Estimate near-Surface Shear-Wave Velocity. *Surveys in Geophysics*
350 **2012**, *33*, 841-860, doi:10.1007/s10712-012-9174-2.

351 12. Zhang, S.X.; Chan, L.S. Possible Effects of Misidentified Mode Number on Rayleigh Wave Inversion.
352 *Journal of Applied Geophysics* **2003**, *53*, 17-29, doi:10.1016/s0926-9851(03)00014-4.

353 13. Bao, Q.Z.; Gao, J.H.; Chen, W.C. Ridgelet Domain Method of Ground-Roll Suppression. *Chinese
354 Journal of Geophysics* **2007**, *50*, 1041-1047.

355 14. Fang, Y.R.; Shen, F.M.; Qiu, K.N. The New Method of Rayleigh Wave Signal Purification Based on
356 Emd. *Earthquake Engineering & Engineering Dynamics* **2017**, *01*, 64-71.

357 15. Li, J.F.; Li, R.H.; Wang, W.D. Study on the Extraction of Effective Wave Using Analytic Signal Method
358 in Multicomponent Rayleigh Wave Exploration. *Coal Geology & Exploration* **1998**, *26*, 61-64.

359 16. Lu, J.; Yun, W.; Yang, C.Y. Instantaneous Polarization Filtering Focused on Suppression of Surface
360 Waves. *Applied Geophysics* **2010**, *7*, 88-97, doi:10.1007/s11770-010-0001-6.

361 17. Lu, J.; Wang, Y.; Chen, J.Y. Noise Attenuation Based on Wave Vector Characteristics. *Applied Sciences*
362 **2018**, *8*, 672, doi:10.3390/app8050672.

363 18. Pan, D.; Hu, M.; Cui, R.; Li, J. Dispersion Analysis of Rayleigh Surface Waves and Application Based
364 on Radon Transform. *Chinese Journal of Geophysics (in Chinese)* **2010**, *53*, 2760-2766,
365 doi:10.3969/j.issn:0001-5733.2010.11.025.

366 19. Trad, D.; Sacchi, M.D.; Ulrych, T.J. A Hybrid Linear-Hyperbolic Radon Transform. *Journal of Seismic
367 Exploration* **2001**, *9*, 303-318.

368 20. Hu, Y.; Wang, L.M.; Cheng, F.; Luo, Y.H.; Shen, C.; Mi, B.B. Ground-Roll Noise Extraction and
369 Suppression Using High-Resolution Linear Radon Transform. *Journal of Applied Geophysics* **2016**, *128*,
370 8-17, doi:10.1016/j.jappgeo.2016.03.007.

371 21. Sacchi, M.D.; Ulrych, T.J. High-Resolution Velocity Gather and Offset Space Reconstruction.
372 *Geophysics* **1995**, *60*, 1169-1177, doi:10.1190/1.1443845.

373 22. Trad, D.; Ulrych, T.J.; Sacchi, M.D. Latest Views of the Sparse Radon Transform. *Geophysics* **2003**, *68*,
374 386-399, doi:10.1190/1.1543224.

375 23. Starck, J.L.; Elad, M.; Donoho, D.L. Redundant Multiscale Transforms and Their Application for
376 Morphological Component Separation. *Advances in Imaging & Electron Physics* **2004**, *132*, 287-348,
377 doi:10.1016/s1076-5670(04)32006-9.

378 24. Starck, J.L.; Elad, M.; Donoho, D.L. Image Decomposition Via the Combination of Sparse
379 Representations and a Variational Approach. *IEEE Transactions on Image Processing* **2005**, *14*, 1570-

380 1582, doi:10.1109/tip.2005.852206.

381 25. Chen, W.C.; Wang, W.; Gao, J.H.; Jiang, C.F.; Lei, J.L. Sparsity Optimized Separation of Ground-Roll
382 Noise Based on Morphological Diversity of Seismic Waveform Components. *Chinese Journal of
383 Geophysics (in Chinese)* **2013**, *56*, 2771-2782, doi:10.6038/cjg20130825.

384 26. Luo, Y.H.; Xia, J.H.; Miller, R.D.; Xu, Y.X.; Liu, J.P.; Liu, Q.S. Rayleigh-Wave Mode Separation by
385 High-Resolution Linear Radon Transform. *Geophysical Journal International* **2009**, *179*, 254–264,
386 doi:10.1111/j.1365-246x.2009.04277.x

387 27. Jiang, X.X.; Zheng, F.; Jia, H.Q.; Lin, J.; Yang, H.Y. Time-Domain Hyperbolic Radon Transform for
388 Separation of P-P and P-Sv Wavefields. *Studia Geophysica Et Geodaetica* **2016**, *60*, 91-111,
389 doi:10.1007/s11200-015-0735-y.

390 28. Scales, J.A.; Gerztenkorn, A.; Treitel, S. Fast Ip Solution of Large, Sparse, Linear Systems: Application
391 to Seismic Travel Time Tomography. *Journal of Computational Physics* **1988**, *75*, 314-333,
392 doi:10.1016/0021-9991(88)90115-5.

393 29. Turner, G. Aliasing in the Tau-P Transform and the Removal of Spatially Aliased Coherent Noise.
394 *Geophysics* **1990**, *55*, 1496-1503, doi:10.1190/1.1442797

395 30. Ibrahim, A.; Sacchi, M.D. Simultaneous Source Separation Using a Robust Radon Transform.
396 *Geophysics* **2014**, *79*, V1-V11, doi:10.1190/geo2013-0168.1.

397 31. Trad, D.; Ulrych, T.J.; Sacchi, M.D. Accurate Interpolation with High-Resolution Time-Variant Radon
398 Transforms. *Geophysics* **2002**, *67*, 25-26, doi:10.1190/1.1468626.

399 32. Sabbione, J.I.; Sacchi, M.D. Restricted Model Domain Time Radon Transforms. *Geophysics* **2016**, *81*,
400 A17-A21, doi:10.1190/geo2016-0270.1.

401 33. Sabbione, J.I.; Velis, D.R.; Sacchi, M.D. Microseismic Data Denoising via an Apex-Shifted Hyperbolic
402 Radon Transform. In Proceeding of SEG Technical Program Expanded Abstracts, Houston, USA,
403 2013; pp. 2155-2161, doi:10.1190/segam2013-1414.1.

404 34. Chen, X.; Sun, J.Z. An Improved Equivalent Homogenous Half-Space Method and Reverse Fitting
405 Analysis of Rayleigh Wave Dispersion Curves. *Chinese Journal of Geophysics (in Chinese)* **2006**, *49*, 489–
406 498, doi:10.3321/j.issn:0001-5733.2006.02.033.