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Abstract 

 Hepatocellular carcinoma (HCC) is currently the third leading cause of malignancy-related 

mortalities worldwide. Natural killer (NK) cells are involved in the critical role of first line 

immunological defense against cancer development. Defects in NK cell functions are 

recognized as important mechanisms for immune evasion of tumor cells. NK cell function 

appears to be attenuated in HCC, and many previous reports suggested that NK cells play a 

critical role in controlling HCC, suggesting that boosting the activity of dysfunctional NK 

cells can enhance tumor cell killing. However, the detailed mechanisms of NK cell 

dysfunction in tumor microenvironment of HCC remain largely unknown. A better 

understanding of the mechanisms of NK cell dysfunction in HCC will help in the NK cell-

mediated eradication of cancer cells and prolong patient survival. In this review, we describe 

the various mechanisms underlying NK cell dysfunction in HCC. Further, we summarize 

current advances in the approaches to enhance endogenous NK cell function and in adoptive 

NK cell therapies, to cure this difficult-to-treat cancer. 
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1. Introduction 

     Worldwide, hepatocellular carcinoma (HCC) is the third leading cause of cancer-

related mortalities and the sixth most predominant type of malignancy (1). The majority of 

patients with HCC are diagnosed at an advanced stage, contributing to the very low rate of 

five-year survival (2). HCC often develops in patients with a history of chronic hepatitis B 

virus (HBV) and hepatitis C virus (HCV) infections (1). In addition, obesity and diabetes, 

which cause non-alcoholic steatohepatitis (NASH), have become significant risk factors for 

the development of HCC in patients from developed countries, in recent years (1, 3). 

Antiviral therapies for HCV and HBV assist in reducing HCC occurrence (2), but the 

limitations of accessibility to these antivirals in developing countries and a rising incidence of 

NASH, guarantee that HCC is going to remain an impending perplexing disease (2). 

     It is challenging to treat patients with HCC in the advanced stage. The two drugs that 

FDA has approved for treating advanced HCC, as a first line therapy, are sorafenib and 

lenvatinib (4-6). Nevertheless, only a modest survival improvement, as well as the substantial 

adverse effects, underscore the need for new therapeutics (5). After decades of failure of 

immune therapies, immune checkpoint inhibitors have been proven as effective treatments for 

patients with advanced HCC (7, 8). Monoclonal antibodies that are able to block immune 

checkpoint molecules displayed antitumor activity against HCC (8). Clinical trials were 

performed with two checkpoint inhibitors in HCC: the anti-cytotoxic T lymphocyte-

associated antigen 4 (CTLA-4) agent tremelimumab (9) as well as the anti-programmed death 

1 (PD-1) agent nivolumab (10). The latter has shown unprecedented antitumor activity in 

both sorafenib-naive and sorafenib-experienced patients with advanced HCC (10). However, 

the response rate of nivolumab was still below 20 percent (10). Novel approaches that can 

harness antitumor immune response are therefore urgently required for HCC. 
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The liver possesses a uniquely tolerogenic immune environment. The liver contains a 

diverse population of innate lymphocytes, such as NK cells, natural killer T (NKT) cells, as 

well as adaptive lymphocytes like B cells and T cells (11). Immune cells that reside in the 

liver are exposed to numerous antigens through the portal circulation and therefore, 

unfavorable immune responses are easy to be triggered (12, 13). It appears that the liver has 

attained specialized immune tolerance mechanisms to evade the undesirable immune over-

activation (14). The development of chronic infectious disease by HCV or HBV, also appears 

to be related to the liver’s tolerogenic properties (14). Furthermore, immune dysfunction is 

also associated with liver cirrhosis, which is the final outcome of unresolved hepatic 

inflammation and fibrosis (7). 

    HCC represents a classic paradigm of inflammation-associated malignancy, since most 

of the tumors are arising in the context of hepatic inflammation and the resultant fibrosis (15). 

The risk factors of HCC usually provoke a non-resolving inflammatory response 

characterized by infiltration of lymphocytes, macrophages, and immature myeloid cells. 

These immune cells produce various kinds of inflammatory cytokines, resulting in the 

perpetuation of the wound-healing response that ends up with cirrhosis and HCC (15). In the 

early hepatocarcinogenesis, the natural killer (NK) cells have critical functions. NK cells are 

innate lymphocytes that are capable of killing virus-infected or cancer cells (16). 

Deregulation of many NK cell-related genes was identified in the early stages of 

hepatocarcinogenesis in a genetically engineered mouse model of HCC (17), suggesting that 

the disruption of immune surveillance by NK cells denotes the onset of HCC development 

(17). 

     In this review, we will discuss the mechanisms of NK cell dysfunction in patients with 

HCC. Then, we will summarize the recent developments and future directions in HCC 
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management by enhancing the functions of endogenous NK cells and by infusing patients 

with cultured NK cells. 

 

2. Biology of human NK cells 

NK cells originate from the bone marrow, where they develop in a stepwise manner, 

leading to the progressive maturation in their functions and phenotypes (18). NK cells 

mediate cytotoxicity and the cytokine-producing effector functions (19). NK cells are defined 

as CD3−CD56+ cells in humans and CD3−NK1.1+ or CD3−NKp46+ cells in mice (20). In 

humans, two main subsets of NK cells, the CD56bright and the CD56dim NK cells are 

distinguished by their cell surface CD56 levels. Amongst them, the CD56dim NK cells 

constitute approximately 90% of the total NK cells, show mature phenotype, and mediate 

cytolytic reactions. In contrast, the immature CD56bright NK cells constitute 5% to 15% of the 

total NK cells and have been regarded as cytokine producers (21, 22). The most important 

cytolytic targets of NK cells are the abnormal cells having the downregulated expression of 

the major histocompatibility complex (MHC) class I, which is highly expressed on the 

surface of most of the healthy, nucleated cells (23). NK cells can be quickly activated when 

they encounter virus-infected cells or tumor cells, since the loss of MHC class I is a common 

mechanism in these cells to avoid recognition by the cytotoxic T cells (24).  

     Activated NK cells rapidly establish dynamic contacts with the target cells via integrins, 

such as the leukocyte functional antigen-1, followed by the exocytosis of perforins and 

granzymes which perforate the plasma membrane and elicit apoptosis (25). Death-receptor 

pathways involving Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL) are also 

used to kill the target cells. Mature NK cells are not activated when they contact normal cells 

that express MHC class I molecule, which can bind to inhibitory receptors on the surface of 
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NK cells. The inhibitory receptors recruit tyrosine phosphatase to remove the phosphates 

from several signaling proteins or lipids that were generated by the activating receptors (25). 

When a NK cell comes across abnormal cells lacking the MHC class I, inhibitory receptors 

are not engaged, and the killing of the target cells is triggered by the unsuppressed activating 

signals (26). In this manner, NK cell function is regulated by a dynamic balance between 

signals produced from the activating and inhibitory receptors (26).  

     Among the activating receptors of NK cells, FcγRIIIA (CD16) is the only receptor that 

can individually evoke the signal that is sufficient enough to stimulate degranulation after 

crosslinking by monoclonal antibody (27). CD16 binds to the Fc portion of immunoglobulins 

and transmit activating signals in NK cells (28). Once activated by Fc receptors through 

monoclonal antibodies that are bound to target cells, NK cells kill target cells with cytotoxic 

molecules, and secrete cytokines to recruit the adaptive lymphocytes. This is known as the 

antibody-dependent cell cytotoxicity (ADCC) function, which is the primary mechanism of 

action for some monoclonal antibodies (28). All other activating receptors such as the NK 

group 2D (NKG2D), natural cytotoxicity receptors (NCRs), DNAX Accessory Molecule-1 

(DNAM-1), 2B4, and CD2 can only work in combination with each other (26).  

     NK cells have not only cytotoxic function but also immunoregulatory roles that can 

have positive or negative influences on the overall immune responses by modulating the 

function of T cells and dendritic cells (DCs) (20). NK cells secrete proinflammatory 

cytokines and chemokines such as TNF-α, IFN-γ, IL-6, and CCL5 that may contribute to 

innate and adaptive immune responses (20). Furthermore, NK cells respond to a variety of 

cytokines and chemokines from the external environment. Cytokines such as the interleukin 

(IL)-2, IL-12, IL-15, and IL-18 are strong activators of NK cells. These cytokines have been 

applied for NK cell-based immunotherapy against various types of cancers (29). Responding 
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to these cytokines, NK cells secrete cytotoxic molecules such as perforin, granzyme, IFN-γ, 

TNF-α, and other chemokines and cytokines. 

 

3. Intrahepatic NK cells: liver-resident or liver-infiltrating 

Human liver has a large population of NK cells which form between 30% to 50% of 

the intrahepatic lymphocytes (30). This percentage is two to five times the number of 

peripheral NK cells. In humans, NK cells normally exist in the liver sinusoids (31). Previous 

reports have demonstrated that up to 80 percent of intrahepatic NK cells are liver-resident (30, 

32-36). Human liver-resident NK cells are characterized by expression of CXCR6 and CD69, 

have a distinct transcriptional and functional signature, and display memory-like features (37). 

This subset expresses CD49a, and has a narrow killer-cell immunoglobulin-related receptor 

(KIR) profile that indicates a clonal-like expansion (37). These human liver-resident NK cells 

survive for a relatively long duration in the liver and are incapable of recirculation, whereas 

the liver-infiltrating NK cells have the transcriptional characteristics of the peripheral NK 

cells (34). Furthermore, the liver-resident NK cells have been found to have some attributes 

related to the tolerogenic characteristics of the liver (36, 38). Compared to the NK cells found 

in peripheral blood, liver-resident NK cells express the inhibitory receptor natural killer 

group 2 member A (NKG2A), which binds to the human leukocyte antigen (HLA)-E in 

humans, and MHC class I-associated protein Qa-1 in mice. Tolerogenic immune profile of the 

liver may partly be influenced by the expression of NKG2A on the surface of NK cells (39). 

In the liver, NK cells actively interact with other immune cell subsets, hepatocytes, and 

stellate cells. NKT cells, DCs and Kupffer cells can stimulate the activation of NK cell by 

producing various cytokines, such as type I interferon (IFN), IFN-γ, IL-2, IL-12, IL-15, and 

IL-18 (30, 39). On the other hand, certain cells can inhibit the functions of NK cell by 
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producing IL-10 and transforming growth factor-β (TGF-β) (30). Activated NK cells attack 

the cholangiocytes, hepatic stellate cells, and hepatocytes, and carry out a range of essential 

roles in the pathogenesis of liver diseases (30, 39). 

 

4. NK cells in chronic viral hepatitis 

The tolerogenic properties of the liver make it vulnerable to pathogens and sustained 

chronic infection. In fact, several widespread pathogens, including HCV and HBV, 

preferentially attack the liver and cause persistent infections. Co-culture experiments 

demonstrated that NK cells suppress HCV replications by the production of IFN-γ (40). 

Earlier genetic studies on KIRs and HLA in HCV-exposed individuals demonstrated the 

critical function of NK cells in HCV infection (41). This study was the first to show that the 

spontaneous HCV clearance is linked to the KIR2DL3/HLA-C1 genotype (41). In a study 

performed in Korea, a lower frequency of KIR2DS2 was reported among patients with 

chronic HCV infection compared to healthy controls, suggesting that KIR2DS2 might 

facilitate HCV clearance by enhancing the innate immune response (42). 

During chronic HCV infection, NK cells are functionally deviated toward increased 

cytotoxicity and decreased IFN-γ production, by chronic exposure to type I IFNs (43). This 

phenomenon is caused by the increased level of signal transducer and activator of 

transcription 1 (STAT1), and the preferential phosphorylation of STAT1 over STAT4 in NK 

cells by type I IFN (44, 45). As a consequence, NK cells display accentuated cytotoxicity and 

TRAIL upregulation, rather than non-cytolytic IFN-γ production (46, 47).  

Activated NK cells might suppress HBV and contribute to HBV clearance during acute 

HBV infection (48). However, in chronic HBV infection, NK cells are functionally altered 

similar to that in chronic HCV infection. In particular, their capacity for IFN-γ and TNF-α 
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production is reduced, while their cytotoxic activity is maintained and the TRAIL, CD38, and 

Ki-67 expressions are increased (49-51). This deviated NK cell function in chronic HBV 

infection, suppresses the HBV-specific T-cell function (52). This “inflammatory” phenotype 

of the NK cells significantly disappears when the viral DNA titer is reduced after successful 

antiviral therapy (52). The functional alteration of NK cells in HBV infection is caused by the 

immunosuppressive cytokines such as IL-10 and TGF-β (50, 53).   

Chronic liver diseases finally lead to the deposition of extracellular matrix and fibrosis 

(31, 54). At this stage, the human intrahepatic NK cells take an anti-fibrotic role by targeting 

the activated stellate cells, which is the main cell type that deposits the extracellular matrix 

(54). However, it is still not clear whether these anti-fibrotic functions are performed by the 

conventional NK cells or the liver-resident NK cells. 

 

5. NK cell dysfunction in HCC 

    NK cells play critical roles in the surveillance and control of HCC. However, NK cells 

are dysfunctional in the microenvironment of HCC, and various mechanisms seem to be 

involved in their malfunction. 

 

5.1. NK cell dysfunction in HCC: Decreased frequency and defective cytokine secretion 

     As mentioned earlier, NK cells play a critical role in controlling HCC. High frequency 

of NK cells with functional activity, expressing a wide spectrum of activating receptors and 

low amounts of inhibitory receptors, take part in controlling the HCC (55). In addition, the 

density of the infiltrating intratumoral NK cells is positively correlated with the overall 

survival in patients with HCC (55, 56). These results imply that NK cells play an important 

role in the immune-mediated defense against HCC. However, the frequency of NK cells in 
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the tumor regions is lower than that in the non-tumor regions, which would increase the 

chances of the tumor’s evasion of immune surveillance. Previous report studied the immune 

profile of 110 patients with HCC and found that NK cells were abundant in the liver tissues 

of HCC individuals, with higher number of NK cells being detected in non-tumor liver 

tissues, than in the intratumoral regions (57). Consistent with this finding, a recent report 

demonstrated that NK cells were infiltrated in the intratumoral regions of HCC at a lower 

frequency than in the non-tumor liver tissues (34). Most intratumoral NK cells exhibited 

CXCR6+ CD69+ liver-resident phenotype (34). In addition, the intratumoral NK cell 

subgroups (CD56dim or bright) displayed a distorted population ratio, with a considerable drop in 

the number of CD56dim NK cells (57). The functional capacity of intratumoral NK cells is 

also attenuated in the HCC. Figure 1 describes various mechanisms of NK cell dysfunction in 

the tumor microenvironment of HCC. A previous research revealed that the intratumoral NK 

cells have more defective IFN- γ and TNF-α secretion than non-tumor NK cells (56). The 

attenuated cytokine secretion in intratumoral NK cells is mainly caused by the defective 

recognition of tumor cells, or by inhibitory cells surrounding the NK cells, which will be 

discussed in the following sections. In summary, intratumoral NK cells in HCC are 

functionally defective, with relatively low level of cytotoxic potential and cytokine secretion 

ability, as compared to the liver-resident NK cells in non-tumor regions. 

 

5.2. NK cell dysfunction in HCC: Defective recognition of tumor  

     The activating receptors of NK cells are important in tumor immunosurveillance (58). 

NKG2D detects several molecules, such as the cytomegalovirus UL-16 protein (ULBP1-6) 

and polymorphic MHC class I chain-associated molecules (MIC) A/B, which are not 

expressed on normal cells, but are upregulated on stressed cells (58). The role of NKG2D in 
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HCC has also been emphasized by Chu et al. (59). These authors found that, at the end of the 

antiviral therapy, there was a fast down-regulation of NKG2D on peripheral NK cells, in 

individuals who developed HCC immediately after HCV eradication. One recent study 

explained that the intratumoral NK cells have NKG2D downregulation in comparison to NK 

cells in non-tumor liver, leading to the defective recognition of tumor (34).  

     Furthermore, some tumor cells also downregulate NKG2D ligands, or downmodulate 

NKG2D function on effector cells. Among the NKG2D ligands, MICA was highlighted 

because the unidentified locus in the 5' flanking region of MICA was strongly associated with 

HCC occurrence in HCV-infected patients (60). Membrane-bound MICA triggers NK cell-

mediated cytotoxicity. However, some proteases in the tumor microenvironment are known to 

shed the membrane-bound MICA, releasing soluble MICA into the bloodstream. According 

to Jinushi et al., the amount of soluble MICA was high in several patients with HCC, and 

their respective peripheral NK cells had reduced amounts of NKG2D expression and showed 

impaired activation (61). This detrimental function of soluble MICA, enables cancer cells to 

evade the NK cell-mediated immune surveillance (62). Among the MICA-shedding proteases, 

the roles of a disintegrin and metalloproteases 17 (ADAM17), were emphasized recently (62). 

ADAM17 knockdown reduced the soluble MICA levels and increased the membrane-bound 

MICA expression in HCC cells, thereby allowing for the cells to be killed by NK cells 

(Figure 1) (62).  

     The NCR family is type I transmembrane glycoproteins including NKp30 (NCR3), 

NKp44 (NCR2) and NKp46 (NCR1) (26). The NCR3 gene is transcribed and undergoes 

alternative splicing, resulting in production of three major isoforms of the NKp30 protein 

(63). Recent study demonstrated that NKp30-expressing NK cells have a reduced expression 

of NCR3 immunostimulatory splice variants and an increased expression of the inhibitory 
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variant in patients with advanced HCC, leading to defective NKp30-mediated functionality 

(63).  

      

5.3. NK cell dysfunction in HCC: Role of the KIR-HLA complex 

     KIRs are known to inhibit NK cell activation by interacting with diverse MHC class I 

molecules (64). The KIR genes, as well as their cognate HLA genes, illustrate extensive 

polymorphism and produce varied NK cell responses to cancer cells. There are two different 

points that should be considered in the role of KIR-HLA complex in patients with HCC: the 

‘licensing’ of NK cells during maturation, and the control of NK cell activity when stimulated 

by the activating signal (Figure 1). 

     The binding of high-affinity inhibitory KIRs to their HLA cognates exerts a strong 

inhibitory effect on NK cell activation. However, during the maturation of competent NK 

cells, the ‘licensing’ of NK cells occurs, to avoid attacking the self (65). The ‘licensing’ refers 

to a process by which NK cells expressing the inhibitory KIRs for self-HLA, finally obtain a 

higher resting response capacity. Five inhibitory KIRs and their cognate HLA ligands that 

cause the NK cell licensing have been defined till now: KIR3DL1 for the HLA-Bw4 group 

alleles, KIR3DL2 for the HLA-A3/11 alleles, KIR2DL2 and KIR2DL3 for the HLA-C1 

group, and KIR2DL1 for the HLA-C2 group of alleles (66, 67). In line with the ‘licensing’ 

model, an immunogenetic study discovered that the presence of KIR2DL2 and homozygosity 

for HLA-C1 that conferred NK cell licensing, correlated with the prolonged recurrence-free 

survival in patients with HCV-related HCC, after radiofrequency ablation (68). This means 

that the concurrent presence of KIR2DL2 and HLA-C1 is associated with longer time-to-

recurrence, due to the protective effect of NK cells that had attained full functional 

competence after licensing (68). However, for patients with HBV infection, the KIR-HLA 
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types with the high functional maturation of NK cells, which had been ‘licensed’, were 

associated with HCC progression (69). This can be partly explained by the assumption, that 

an enhanced phenotype of NK function might lead to tissue damage as well as constant 

inflammation, which promoted HCC development in patients with chronic HBV infection 

(70). Although not fully defined yet, the progression of HCC is somewhat attributed to the 

dysfunction of NK cells, and the immunogenetic profile of KIR/HLA is linked to the activity 

of NK cells, which affects the prognosis for patients with HCC. 

 

5.4. NK cell dysfunction in HCC: Inhibitory roles of the immunoregulatory cells and the 

immunosuppressive cytokines  

     One mechanism that modulates the function of NK cells is the crosstalk between 

immune cells in the tumor microenvironment (Figure 1). In the liver, multiple cellular 

constituents such as MDSCs, Tregs, macrophages polarized to the immunoregulatory 

phenotype, and immature DCs facilitate the development of cancer by promoting local 

immune tolerance (71). Normally, Tregs infiltrate the HCC, and the HCC stages have 

correlated with their frequencies (72, 73). They impair NK cell responses via membrane-

bound and secreted TGF-β (74, 75). MDSCs are myeloid cells with a potent 

immunosuppressive activity. They accumulate in the intratumoral and stromal lesions of 

various types of cancer, including HCC (76). MDSC-mediated inhibition of NK cells is 

contact dependent via membrane-bound TGF-β on MDSC (77). Furthermore, recent data has 

shown that MDSCs from patients with HCC hamper cytokine production and cytotoxicity by 

autologous NK cells, and the suppression is cell contact dependent and primarily relies on 

NKp30 on the surface of NK cells (78). Tumor-associated macrophages (TAM) are located in 

the stroma of HCC and are polarized toward M2 phenotype (79). TAMs foster tumor cell 
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proliferation and spread in the HCC (79). TAMs are therefore related with the increased 

recurrence of tumor after the surgical resection of HCC (80). The primary role of TAM is 

their cytokine-dependent inhibition of NK cells and other lymphocytes with IL-10 and TGF-β 

(81). The immunosuppressive activity of TGF-β in the inhibition of NK cell cytotoxicity was 

also reported when NK cells are co-cultured with DCs (77). Secretion of IL-6 and IL-10 is 

also involved in DC-mediated NK cell inhibition (82). HCC-associated fibroblasts also 

induce the NK cell dysfunction by producing prostaglandin E2 (PGE2) and indoleamine 2,3-

dioxygenase (IDO) (83).  

 

6. Strategies to boost NK cell function in the HCC microenvironment 

To reverse the malfunction of NK cells in HCC, various strategies were developed. These 

approaches include either endogenous stimulation of the NK cells in patients, or adoptive NK 

cell therapy to the patients. This review will cover both approaches in the following sections 

and table 1. 

 

6.1. Strategies to boost NK cell function in the HCC microenvironment: Current 

treatment options 

     Currently, there are some effective therapies accessible to patients with HCC. The 

curative therapeutic options for HCC include the liver transplantation, radiofrequency 

ablation and surgical resection (1, 84). Radiofrequency ablation and surgical resection may 

have different impacts on the NK cell function. Ohira et al. discovered that the NK cells had a 

lower expression of CD69 and TRAIL after partial hepatectomy in mice. In addition, after 

injecting the Hepa 1-6 cell line, these mice were vulnerable to liver metastases in the 

remaining portion of the liver (85). This observation needs to be validated in humans. In 
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contrast, the radiofrequency ablation was linked to an evident increase in the IFN-γ secretion 

and NK cell cytotoxicity (86). Very recently, transcriptomic analysis and deep 

immunophenotyping were performed with HCC tissues from patients who underwent Y90-

radioembolization (87). The data showed strong immune activation in the tumor 

microenvironment and in the peripheral blood of patients with HCC with sustained response 

to Y90-radioembolization (87). Among the immune cells that were recruited and activated, 

NK cells were the strongest producer of granzyme B, suggesting the critical role of NK cells 

in the control of tumor, after Y90-radioembolization (87). Sorafenib also enhanced the NK 

cell-mediated cytotoxicity by increasing the expression of membrane MICA and reducing the 

levels of soluble MICA from HCC cells (88). Furthermore, through the modulation of the 

crosstalk between NK cells and TAMs, sorafenib strengthened the cellular anticancer effector 

functions (79). In contrast, another group claimed that sorafenib reduces the number and 

cytotoxicity of NK cells against tumor cells in tumor-bearing mice through downregulation of 

CD69 on the surface of NK cells (89), which needs further validation. Cisplatin has recently 

been shown to upregulate an NKG2D ligand, ULBP2, which might consequently enhance the 

NK cell-induced cytotoxicity against HCC cells. This supports a new immunomodulatory 

role for cisplatin in HCC therapy (90).  

 

6.2. Strategies to boost NK cell function in the microenvironment of HCC: Modulating 

ADCC and the function of activating receptors 

   Clinical trials have shown that patients with HCC having a high affinity FcγRIII 

polymorphic variant have better outcome after monoclonal antibody treatment (28). This 

supports the potential advantageous function of ADCC and CD16 in HCC treatment. The 

ADCC of tumor cells by NK cells has been applied in the treatment of various cancers 
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overexpressing unique antigens (28). To directly target HCC cells, antibodies targeting the 

glypican-3 (GPC-3), which is expressed on up to 70% of tumors but not on normal 

hepatocytes, were prepared and tested (91). Humanized anti- GPC-3 antibody, codrituzumab, 

was proven to induce the ADCC. Although the phase I trial for codrituzumab was promising 

(92), the phase II trial for patients with advanced HCC for whom the standard treatment had 

failed, did not show an overall survival benefit (NCT01507168) (93). The efficacy of such 

antibody-based therapies might have been restricted by lower levels of NK cell activation due 

to the shedding of cell surface CD16, or by CD16 polymorphism (28). 

     For activating receptors of NK cells other than CD16, the results are slightly 

complicated. In a recent report, Sheppard et al. showed an unexpected tumor-promoting role 

of NKG2D in a model of inflammation-driven HCC (94). They showed that NKG2D-

sufficient mice displayed an increased tumor growth associated with an increased infiltration 

of cytotoxic CD8+ T cells to the liver and an intensified pro-inflammatory environment, 

which finally caused HCC (94). NKp30, another activating receptor of NK cells, mediated 

the interaction of NK cells with the expanded pool of MDSCs in HCC leading to the 

inhibition of NK cell activity (78). Similarly, another activating receptor, NKp46, was found 

to be upregulated on circulating NK cells in patients with HCC, with a poor prognosis (95). 

Collectively, these data suggest that enhancing the function of activating receptors on NK 

cells might not be beneficial in the control of HCC.  

     In regard to other aspects of NKG2D signaling, the modulation of NKG2D ligands on 

the tumor cells can boost the NK cell activity against HCC cells. Soluble MICA, as 

mentioned earlier, was demonstrated to work as a decoy to prevent anticancer surveillance by 

NK cells, while the upregulation of membrane MICA expression enhances the NK-mediated 

cytotoxicity. Histone deacetylase (HDAC) inhibitors are a new class of anticancer agents for 
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the treatment of various types of cancers including HCC (96). Several groups have reported 

that HDAC inhibitors promote MICA or MICB expression on HCC cells and increase the 

vulnerability of HCC cells to NK cell-mediated lysis (97-99). This suggests that the HDAC 

inhibitors promote the recognition of tumor cells by immune cells, in addition to their direct 

role in proliferation inhibition and apoptosis induction in tumor cells (96). Furthermore, it 

was recently reported that lomofungin, an antifungal drug, drastically decreases the 

enzymatic activity of ADAM17 and enhances the membrane MICA expression in a dose-

dependent manner (100). Another recent report demonstrated that the enhancer of zeste 

homolog 2 (EZH2) functions as a transcriptional suppressor of NKG2D ligands in HCC cells, 

and targeting of EZH2 by small-molecule inhibitors causes killing of HCC cells by NK cells 

in an NKG2D ligand-dependent manner (101). 

 

6.3. Strategies to boost NK cell function in the microenvironment of HCC: Modulating 

the function of inhibitory receptors on NK cells 

     Blocking inhibitory receptors can also provide a robust method to enhance NK cell 

function. A recent clinical trial using the human HLA-haplotype mismatched hematopoietic 

stem cells to treat leukemia, showed efficient NK cell-mediated elimination of the leukemic 

cells (102). This indicates that the unmatched KIR-HLA haplotypes are potent NK cell 

activators, suggesting a rationale of blocking inhibitory KIR of NK cells to kill tumor cells. 

The two IgG4 monoclonal antibodies in clinical advancement that target inhibitory NKG2A 

and KIR2D (such as KIR2DL1-3/S1-2) receptor functions are monalizumab (IPH2201) and 

lirilumab (IPH2101), respectively (103, 104). Lirilumab infusion resulted in rapid decrease in 

the surface KIR2D expression and the inhibition of KIR2D+ NK cell function, although it did 

not show clinical efficacy in multiple myeloma (103, 104). The CD94-NKG2A complex 
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provides another inhibitory stimulus, when it interacts with the non-classical MHC-I, HLA-E, 

on target cells (26). Monalizumab is an antibody which targets the CD94/NKG2A receptor 

and improves the cytolytic action of NK cells in pre-clinical investigation. Earlier researches 

have proposed that HLA-E is differently expressed in HCCs, highlighting the possible use of 

this monoclonal antibody for HCC therapy (105).  

     PD-1, which is a well-known exhaustion marker in T cells, was shown to be expressed 

on the surface of CD56dim NK cells (104). PD-1-expressing NK cells exhibited defective 

antitumor action and cytokine-stimulated proliferation, and such characteristics were reversed 

by blocking the PD-1/PD-L1 activities (106). Nevertheless, NK-cell contribution to the 

antitumor action targeting PD-1 axis in HCC remains to be investigated in future research. 

Another checkpoint molecule, T cell immunoglobulin and immunoreceptor tyrosine-based 

inhibitory motif domain (TIGIT) was recently found to be highly expressed on the exhausted 

tumor-infiltrating NK cells (107). Monoclonal antibody-mediated blockade of TIGIT or 

combined blockade of TIGIT and PD-L1 boosted the antitumor activity of NK cells in mouse 

models of colorectal cancer and efficiently delayed tumor growth (107). TIGIT-mediated NK 

cell exhaustion needs to be confirmed in human and mouse models of HCC. 

 

6.4. Strategies to boost NK cell function in the microenvironment of HCC: Stimulation 

of NK cells with interferons and cytokines 

     After binding of IFNs to their receptors, cellular or extracellular effects are mediated 

through various interferon-stimulated genes (ISGs) with immunoregulatory and antiviral 

effects (108, 109). IFNs are grouped into three main categories, namely type I, type II, and 

type III. Each category of IFNs signals to the host cell by binding to the respective receptor 

complexes (109-111). An experimental treatment for HCC involving the type I and III IFNs 
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in a BNL hepatoma model showed an important role for NK cells in the antitumor action of 

IFNs (112). A phase I clinical trial (NCT01628640) has been initiated for patients with 

advanced HCC, with a recombinant vesicular stomatitis virus expressing the IFN-β, which 

may perform an anticancer activity by stimulating the NK cells (113, 114). 

     IL-15 supports the survival, proliferation, and cytolytic activity of NK cells (34, 115). 

IL-15 is capable of recovering the antitumor function of NK cells hampered by in vitro 

contact with HCC cell lines or cells taken out directly from HCC tissues (34). K562 cells 

transfected with membrane-bound IL-15 and 4-1BB ligand encoding plasmid, can proliferate 

and activate the NK cells for application in HCC immunotherapy (116). Continuous infusions 

of IL-15 in cancer patients is accompanied by a preferential expansion of CD56bright NK cells 

with increased abilities to recognize tumor cells and with enhanced cytokine production and 

cytotoxicity (117). Nevertheless, systemic administration of IL-15 can result in major toxicity, 

which is associated with IFN-γ secretion by NK cells (118). Novel approaches to specifically 

enhance IL-15 signaling in NK cells and reduce the systemic adverse effects will be 

promising immunotherapy areas to focus on. 

  

7. Current status and future direction of adoptive NK cell therapy in HCC 

Adoptive therapy of NK cells requires ex vivo expansion, and in vivo specificity to tumor 

cells, and in vivo maximal activity and persistence (20). The source of NK cells for adoptive 

therapy can be autologous or allogeneic NK cells, stem cell-derived NK cells, and NK cell 

lines such as NK-92 cell line (Figure 2) (7). Transfer of autologous NK cells failed to show 

improved survival outcomes in several types of cancers, because these cells had low efficacy 

and tended to remain in circulation rather than in tumor microenvironment (Figure 2) (119, 

120). Therefore, allogeneic NK cell transfer is recently being widely used in various clinical 
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trials. Most cases of allogeneic NK cell trials have been performed using HLA-haploidentical 

NK cells with or without allogeneic hematopoietic stem cell transplantation (HSCT) (16). 

Adoptive transfer of allogeneic NK cells from KIR-mismatched donors has shown promising 

results in patients with acute myeloid leukemia (AML) (20). KIR-ligand incompatibility 

seems to be critical in efficacy of allogeneic NK cell therapy because the mismatch prevents 

the generation of negative signal and guarantees adequate NK cell activation (Figure 2). 

Allogeneic NK cells are expanded with cytokine stimulation, and T cells should be removed 

before adoptive transfer to avoid graft-versus-host disease (16). 

     Recently, the clinical efficacy of the allogeneic NK cell immunotherapy to treat various 

types of hematologic and solid tumors has also been evaluated by many groups. In HCC, 

there are on-going clinical trials using adoptive NK cell therapies (Table 1). A Chinese group 

recently demonstrated that irreversible electroporation combined with allogeneic NK cell 

transfer significantly increased the median overall survival of patients with stage IV HCC 

(NCT03008343) (121). Allogeneic NK cell transfer trial for preventing HCC recurrence after 

curative resection had been performed in Korea (NCT02008929), although the results are not 

available. Recently, a Korean multicenter group started a new phase 2 clinical trial to 

evaluate the safety and efficacy of allogeneic NK cells therapy after transarterial 

chemoembolization (NCT02854839). In another clinical trial, allogeneic, IL-2-stimulated NK 

cells from liver allografts were intravenously injected to transplant recipients. The safety and 

feasibility of this therapy was demonstrated in the phase I trial (NCT01147380) (122).  

     Genetic modification is another option for redirecting the function of NK cells. Genetic 

manipulation of NK cells has proven to be difficult until recently. Viral transduction was 

reported to be associated with very low expression levels of inserted genes and harmful 

effects on cell viability in NK cells. The recent optimization of viral transduction for efficient 
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gene transfection, have been shown to boost the interaction and activities of tumors and NK 

cells. First, it can be performed to express cytokine transgenes. NK cell function is enhanced 

by forced expression of cytokine transgenes such as IL-15, IL-2, or IL-12 (16). Gene therapy 

with an adenovirus expressing IL-12 against orthotopic HCC in rat model, showed a 

considerable control of tumor growth. Activation of NK cells was the primary antitumor 

mechanism involved (123). Intratumoral gene transfer of IL-12 in the mouse HCC model 

inhibited the spontaneous lung metastasis, neovascularization, and tumor growth (124). Here 

again, the tumor growth inhibition was almost completely dependent on NK cells, and this 

result was confirmed by the depletion of NK cells (124).  

     Chimeric antigen receptor (CAR)-expressing NK cells represent another promising 

modality for genetic modification. Currently, 9 clinical trials are being performed to evaluate 

the safety and efficacy of CAR-NK cells (119). CAR-NK cells are short-lived, and known to 

cause cytokine storms or graft-versus host diseases less frequently than do the CAR-T cells 

(125). NK-92 cell line has been used as a source for adoptive CAR-NK cell therapy due to its 

efficiency in expansion and transduction (126). Very recently, their potential efficacy was 

demonstrated in a preclinical model of HCC by a Chinese group (127). GPC3-specific CAR-

NK-92 cells showed potent antitumor activities only to HCC cells expressing GPC3 molecule, 

reflecting the safety and specificity of CAR-NK cells (127). 
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Conclusions 

     The strong antigen-independent cytotoxicity of NK cells can be applied to various 

types of cancer immunotherapy. The signals required to elicit robust antitumor responses by 

NK cells have not yet been entirely elucidated. The role of NK cells in controlling HCC has 

been underrated. NK cells have been demonstrated to play` critical roles in the immune 

responses against HCC, providing a rationale for developing novel treatment strategies that 

enhance the NK cell response for treating HCC. A more comprehensive understanding of the 

detailed receptor interactions with tumor cells, intracellular signaling, and interactions with 

other immune cells should be reached. This would be critical for evaluating the current efforts 

to establish novel ways to enhance the activity of NK cells against HCC. 
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Table 1. Clinical approaches for targeting NK cells to treat HCC 

Treatment method Developmen
t stage Features Country ClinicalTrials.go

v identifier 
Referenc
e 

Current 
treatment 
options 

Radiofrequency 
ablation Current use 

May enhance the NK 
cell-mediated 
cytotoxicity  

  86 

Y90-
radioembolization  Current use 

May enhance the NK 
cell-mediated 
cytotoxicity  

  87 

Sorafenib Current use 
May enhance the NK 
cell-mediated 
cytotoxicity  

  88 

Cisplatin Current use 
Upregulates an 
NKG2D ligand in 
HCC cells 

  90 

Monoclona
l antibodies 

Codrituzumab 
(anti-GPC-3-
antibody) 

Phase II 

Advanced HCC who 
failed prior systemic 
therapy 
No survival benefit 

Multinationa
l NCT01507168 93 

Cytokines 

Recombinant 
vesicular 
stomatitis virus 
expressing the 
IFN-β 

Phase I Sorafenib-refractory 
or -intolerant HCC USA NCT01628640 

Adoptive 
cell therapy 

Allogeneic NK 
cells Phase II 

Performed after 
transarterial 
chemoembolization 

Korea NCT02854839 

Allogeneic NK 
cells Phase I, II 

Stage IV HCC 
Combined with 
irreversible 
electroporation 
Survival benefit 
demonstrated 

China NCT03008343 126 

Allogeneic NK 
cells Phase I NK cells from liver 

allografts  USA NCT01147380 127 

NK, natural killer cell; HCC, hepatocellular carcinoma; GPC-3, glypican-3; IFN, interferon 
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Figure legend 

Figure 1. Mechanisms of NK cell dysfunction in tumor microenvironment of HCC 

HCC cells inhibit NK cell activity via 1) downregulation of NKG2D ligands and 2) shedding 

of membrane-bound MICA. 3) Soluble MICA works as a decoy to prevent anticancer 

surveillance by NK cells. 4) Inhibitory receptors such as KIRs and NKG2A on the surface of 

NK cells recognize their ligands and suppress NK cell activity. 5) MDSCs inhibit NK cell 

cytotoxicity, via membrane bound TGF-β and the NKp30 receptor on NK cells. 6) TAMs, 7) 

Tregs, 8) DCs, and 9) tumor-associated fibroblasts inhibit NK cells via immunosuppressive 

cytokines. 10) Defective ADCC also occur between tumor cells and NK cells in HCC. 

 

NK, natural killer cell; HCC, hepatocellular carcinoma; MDSC, myeloid-derived suppressor 

cell; TAM, tumor-associated macrophage; Treg, regulatory T cell; MHC-I, major 

histocompatibility complex class 1; TGF-β, transforming growth factor-β; MICA, MHC-I 

polypeptide-related sequence A; KIR, killer cell immunoglobulin-like receptor; ADCC, 

antibody-dependent cell cytotoxicity; PGE2, prostaglandin E2; IDO, indoleamine 2,3-

dioxygenase; NKG2A, natural killer group 2 member A; NKG2D, natural killer group 2 

member D; HLA-E, human leukocyte antigen E; PD-1, programmed death 1; NCR, natural 

cytotoxicity receptor. 

 

Figure 2. Adoptive transfer of NK cells: autologous and allogeneic NK cell transfer 

(A) In autologous NK cell transfer, anti-tumor activity of NK cells might be limited by the 

inhibitory signal transmitted by the complex of matched KIR and self MHC class I molecule.  

(B) In allogeneic NK cell transfer, high cytotoxic responses can be obtained when donor NK 

cells do not express KIRs matching the MHC class I molecules of the tumor cells. KIR–
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ligand incompatibility is critical in efficacy of allogeneic NK cell therapy because the 

mismatch prevents the generation of negative signal and guarantees adequate NK cell 

activation. 

 

NK, natural killer cell; HCC, hepatocellular carcinoma; KIR, killer cell immunoglobulin-like 

receptor; NKG2D, natural killer group 2 member D; MHC-I, major histocompatibility 

complex class 1 

 

Figure 1 
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Figure 2 
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