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1 Introduction

The stability problem for functional equations started with the famous question of Ulam [15]:
Under what conditions does there exist an additive function near an approximately additive
function? In 1941, Hyers [4] gave a partial solution to the question of Ulam under the
assumption that relevant functions are defined on Banach spaces. Indeed, (modified) Hyers’
theorem states that the following statement is true for all ε ≥ 0: If a function f satisfies
the inequality ‖f(x + y) − f(x) − f(y)‖ ≤ ε for all x, then there exists an exact additive
function F and a function K : [0,∞)→ [0,∞) such that ‖f(x)−F (x)‖ ≤ K(ε) for all x and
lim
ε→0

K(ε) = 0. In this case, the Cauchy additive functional equation, f(x+ y) = f(x) + f(y),

is said to have (or satisfy) the Hyers-Ulam stability.
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When the Hyers’ theorem is true even if we replace ε and K(ε) by ϕ(x) and Φ(x), where
ϕ and Φ are functions not depending on f and F explicitly, the corresponding equation is
said to have (or satisfy) the generalized Hyers-Ulam stability. These terminologies will also
be applied for other functional equations.

Since the Hyers’ paper, a number of mathematicians have extensively investigated the
stability problems for several functional equations (see for example [1, 2, 3, 5, 6, 7, 14] and
the references therein).

Given abelian groups G1 and G2 and any mapping f : G1 → G2, we will set

Af(x, y) := f(x+ y)− f(x)− f(y),

Qf(x, y) := f(x+ y) + f(x− y)− 2f(x)− 2f(y),

Cf(x, y) := f(2x+ y)− 3f(x+ y) + 3f(y)− f(−x+ y)− 6f(x),

Q′f(x, y) := f(2x+ y)− 4f(x+ y) + 6f(y)− 4f(−x+ y) + f(−2x+ y)− 24f(x)

for all x, y ∈ G1. In connection with these notations, a mapping f : G1 → G2 is said to be
a quartic mapping, a cubic mapping, a quadratic mapping or an additive mapping provided
f satisfies the functional equation Q′f(x, y) = 0, Cf(x, y) = 0, Qf(x, y) = 0 or Af(x, y) = 0
for all x, y ∈ G1, respectively. Those functional equations seem to be familiar to us because
we can easily find out examples for the existence of their solutions. For example, the mapping
f : R → R given by f(x) = ax4, ax3, ax2 or ax is a solution of Q′f(x, y) = 0, Cf(x, y) = 0,
Qf(x, y) = 0 or Af(x, y) = 0, respectively.

If a mapping f : G1 → G2 can be represented by the sum of a quartic mapping, a cubic
mapping, a quadratic mapping, and an additive mapping, then we call f a quartic-cubic-
quadratic-additive mapping and vice versa. For example, the mapping f : R → R given by
f(x) = ax4 + bx3 + cx2 + dx is a quartic-cubic-quadratic-additive mapping. A functional
equation is said to be a quartic-cubic-quadratic-additive functional equation provided the set
of all of its solutions is the same as the set of all quartic-cubic-quadratic-additive mappings.

Throughout this paper, we assume that V and W are real vector spaces, X a real normed
space, and that Y is a real Banach space if there is no specification. Let N0 be the set of all
nonnegative integers, R the set of all real numbers, and let Q denote the set of all rational
numbers.

In this paper, we prove some general stability theorems that can be easily applied to the
(generalized) Hyers-Ulam stability of a large class of functional equations of the form

Df(x1, x2, . . . , xn) = 0

which includes quartic-cubic-quadratic-additive functional equations. From now on, for any
given mapping f : V →W , we define Df : V n →W by

Df(x1, x2, . . . , xn) :=
∑̀
i=1

cif
(
ai1x1 + ai2x2 + · · ·+ ainxn

)
(1.1)

for all x1, x2, . . . , xn ∈ V , where ` and n are fixed integers larger than 1 and ci, aij are fixed
real constants throughout this paper.

Till now, we have followed out a routine and monotonous procedure for studying the
stability problems of the quartic-cubic-quadratic-additive functional equations. However, the
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stability theorems of this paper can save us much trouble of proving the stability of relevant
solutions repeatedly appearing in the stability problems for various functional equations (see
[8, 9, 10, 12, 13]).

2 Preliminaries

Throughout this section, let V and W be real vector spaces and let Y be a real Banach space.
Given a mapping f : V →W and a real number a, we will use the following notations:

f1(x) :=
a3fo(x)− fo(ax)

a3 − a
, f2(x) :=

a4fe(x)− fe(ax)

a4 − a2
,

f3(x) :=
fo(ax)− afo(x)

a3 − a
, f4(x) :=

fe(ax)− a2fe(x)

a4 − a2
,

fo(x) :=
f(x)− f(−x)

2
, fe(x) :=

f(x) + f(−x)

2

(2.1)

for all x ∈ V . We will now introduce some lemmas from [11] in the following Corollaries 2.1,
2.2, 2.3 and 2.4.

Lemma 2.1 ([11, Corollary 3.1]) Given a real constant k > 1, assume that a function φ :
V \{0} → [0,∞) satisfies either the condition

Φ(x) :=

∞∑
i=0

1

ki
φ(kix) <∞ (for all x ∈ V \{0}) (2.2)

or

Φ(x) :=

∞∑
i=0

k4iφ

(
x

ki

)
<∞ (for all x ∈ V \{0}). (2.3)

Furthermore, suppose f : V → Y is an arbitrary mapping. If a mapping F : V → Y satisfies
the inequality

‖f(x)− F (x)‖ ≤ Φ(x) (2.4)

for all x ∈ V \{0} as well as the equalities

F1(kx) = kF1(x), F2(kx) = k2F2(x),

F3(kx) = k3F3(x), F4(kx) = k4F4(x)
(2.5)

for all x ∈ V , then F is the unique mapping with the properties (2.4) and (2.5).

Lemma 2.2 ([11, Corollary 3.2]) Given a real number k > 1, assume that the functions
φ, ψ : V \{0} → [0,∞) satisfy each of the following conditions

∞∑
i=0

kiψ

(
x

ki

)
<∞,

∞∑
i=0

1

k2i
φ(kix) <∞,

Φ̃(x) :=

∞∑
i=0

kiφ

(
x

ki

)
<∞, Ψ̃(x) :=

∞∑
i=0

1

k2i
ψ(kix) <∞
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for all x ∈ V \{0} and f : V → Y is an arbitrary mapping. If a mapping F : V → Y satisfies
the inequality

‖f(x)− F (x)‖ ≤ Φ̃(x) + Ψ̃(x) (2.6)

for all x ∈ V \{0} as well as the equalities in (2.5) for all x ∈ V , then F is the unique mapping
satisfying equalities in (2.5) for all x ∈ V and inequality (2.6) for all x ∈ V \{0}.

Lemma 2.3 ([11, Corollary 3.3]) Given a real number k > 1, assume that the functions
φ, ψ : V \{0} → [0,∞) satisfy each of the following conditions

∞∑
i=0

k2iψ

(
x

ki

)
<∞,

∞∑
i=0

1

k3i
φ(kix) <∞,

Φ̃(x) :=
∞∑
i=0

k2iφ

(
x

ki

)
<∞, Ψ̃(x) :=

∞∑
i=0

1

k3i
ψ(kix) <∞

for all x ∈ V \{0} and f : V → Y is an arbitrary mapping. If a mapping F : V → Y satisfies
the inequality (2.6) for all x ∈ V \{0} as well as the equalities in (2.5) for all x ∈ V , then F
is the unique mapping satisfying the equalities in (2.5) for all x ∈ V and inequality (2.6) for
all x ∈ V \{0}.

Lemma 2.4 ([11, Corollary 3.4]) Assume that k > 1 is a real number and the functions
φ, ψ : V \{0} → [0,∞) satisfy each of the following conditions

∞∑
i=0

k3iψ

(
x

ki

)
<∞,

∞∑
i=0

1

k4i
φ(kix) <∞,

Φ̃(x) :=
∞∑
i=0

k3iφ

(
x

ki

)
<∞, Ψ̃(x) :=

∞∑
i=0

1

k4i
ψ(kix) <∞

for all x ∈ V \{0}. In addition, suppose f : V → Y is an arbitrary mapping. If a mapping
F : V → Y satisfies the inequality (2.6) for all x ∈ V \{0} as well as the equalities in (2.5)
for all x ∈ V , then F is the unique mapping satisfying the equalities in (2.5) for all x ∈ V
and inequality (2.6) for all x ∈ V \{0}.

3 Main results

In this section, we assume that V is a real vector space and Y is a real Banach space if
there is no specification. In the following theorems, we prove that there exists only one exact
solution near every approximate solution to Df(x1, x2, . . . , xn) = 0.

Theorem 3.1 Given a real constant a with |a| > 1, assume that the functions µ, ν : V \{0} →
[0,∞) satisfy the conditions

∞∑
i=0

µ(aix)

|a|i
<∞ and

∞∑
i=0

ν(aix)

|a|i
<∞ (3.1)
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for all x ∈ V \{0} and a function ϕ : (V \{0})n → [0,∞) satisfies the condition

∞∑
i=0

ϕ(aix1, a
ix2, . . . , a

ixn)

|a|i
<∞ (3.2)

for all x1, x2, . . . , xn ∈ V \{0}. If a mapping f : V → Y satisfies f(0) = 0,

∥∥fe(a2x)− (a2 + a4)fe(ax) + a6fe(x)
∥∥ ≤ µ(x),∥∥fo(a2x)− (a+ a3)fo(ax) + a4fo(x)
∥∥ ≤ ν(x)

(3.3)

for all x ∈ V \{0}, and if f moreover satisfies the inequality

‖Df(x1, x2, . . . , xn)‖ ≤ ϕ(x1, x2, . . . , xn) (3.4)

for all x1, x2, . . . , xn ∈ V \{0}, then there exists a unique mapping F : V → Y such that

DF (x1, x2, . . . , xn) = 0 (3.5)

for all x1, x2, . . . , xn ∈ V \{0}, and

F1(ax) = aF1(x), F2(ax) = a2F2(x),

F3(ax) = a3F3(x), F4(ax) = a4F4(x)
(3.6)

for all x ∈ V , and such that

‖f(x)− F (x)‖ ≤
∞∑
i=0

(
|a2i+2 − 1|µ

(
aix
)

|a4 − a2||a|4i+4
+
|a2i+2 − 1|ν

(
aix
)

|a3 − a||a|3i+3

)
(3.7)

for all x ∈ V \{0}.

Proof. First, we define the mappings Jmf : V → Y by

Jmf(x) :=
f4(a

mx)

a4m
+
f3(a

mx)

a3m
+
f2(a

mx)

a2m
+
f1(a

mx)

am
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for all x ∈ V and m ∈ N0. It then follows from (2.1) and (3.3) that

‖Jmf(x)− Jm+lf(x)‖

≤
m+l−1∑
i=m

‖Jif(x)− Ji+1f(x)‖

=
m+l−1∑
i=m

∥∥∥∥∥fe(ai+1x)− a2fe(aix)

a4i(a4 − a2)
− fe(a

i+2x)− a2fe(ai+1x)

a4i+4(a4 − a2)

+
fo(a

i+1x)− afo(aix)

a3i(a3 − a)
− fo(a

i+2x)− afo(ai+1x)

a3i+3(a3 − a)

+
a4fe(a

ix)− fe(ai+1x)

a2i(a4 − a2)
− a4fe(a

i+1x)− fe(ai+2x)

a2i+2(a4 − a2)

+
a3fo(a

ix)− fo(ai+1x)

ai(a3 − a)
− a3fo(a

i+1x)− fo(ai+2x)

ai+1(a3 − a)

∥∥∥∥∥
=

m+l−1∑
i=m

∥∥∥∥∥− fe(a
i+2x)− (a2 + a4)fe(a

i+1x) + a6fe(a
ix)

a4i+4(a4 − a2)

− fo(a
i+2x)− (a+ a3)fo(a

i+1x) + a4fo(a
ix)

a3i+3(a3 − a)

+
fe(a

i+2x)− (a2 + a4)fe(a
i+1x) + a6fe(a

ix)

a2i+2(a4 − a2)

+
fo(a

i+2x)− (a+ a3)fo(a
i+1x) + a4fo(a

ix)

ai+1(a3 − a)

∥∥∥∥∥
≤

m+l−1∑
i=m

(
|a2i+2 − 1|µ(aix)

|a|4i+4|a4 − a2|
+
|a2i+2 − 1|ν(aix)

|a|3i+3|a3 − a|

)
(3.8)

for all x ∈ V \{0}.
In view of (3.1) and (3.8) and since |a| > 1, the sequence {Jmf(x)} is a Cauchy sequence

for all x ∈ V \{0}. Since Y is complete and f(0) = 0, the sequence {Jmf(x)} converges for
all x ∈ V . Hence, we can define a mapping F : V → Y by

F (x) := lim
m→∞

Jmf(x) = lim
m→∞

(
f4(a

mx)

a4m
+
f3(a

mx)

a3m
+
f2(a

mx)

a2m
+
f1(a

mx)

am

)
(3.9)

for all x ∈ V .
If we replace x with amx in the second inequality of (3.3) and divide the resulting in-

equality by |a|m, then we get∥∥∥∥∥a2 fo(am+2x)

am+2
− (a2 + a4)

fo(a
m+1x)

am+1
+ a4

fo(a
mx)

am

∥∥∥∥∥ ≤ ν(amx)

|a|m

for all x ∈ V \{0} and m ∈ N. In view of the second inequalities of (3.1), this implies that

lim
m→∞

fo(a
mx)

am
converges for all x ∈ V (3.10)
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because of our hypothesis that f(0) = 0. Analogously, by the first inequalities of (3.1) and
(3.3), we get

lim
m→∞

fe(a
mx)

a2m
converges for all x ∈ V . (3.11)

By (2.1), (3.9), (3.10) and (3.11), we have

Fo(x) = lim
m→∞

(
f3(a

mx)

a3m
+
f1(a

mx)

am

)
= lim

m→∞

fo(a
mx)

am
,

Fe(x) = lim
m→∞

(
f4(a

mx)

a4m
+
f2(a

mx)

a2m

)
= lim

m→∞

fe(a
mx)

a2m

(3.12)

for all x ∈ V .

In view of (2.1) and (3.12), we easily obtain

F1(x) =
a3Fo(x)− Fo(ax)

a3 − a
= lim

m→∞

fo(a
mx)

am

for all x ∈ V . Hence, we get

F1(ax) = lim
m→∞

fo(a
m+1x)

am
= aF1(x)

for all x ∈ V .

Moreover, we obtain

F2(x) =
a4Fe(x)− Fe(ax)

a4 − a2
= lim

m→∞

fe(a
mx)

a2m

for each x ∈ V . Thus, we obtain

F2(ax) = lim
m→∞

fe(a
m+1x)

a2m
= a2F2(x)

for all x ∈ V .

Similarly, using (2.1), (3.10) and (3.12), we have

F3(x) =
Fo(ax)− aFo(x)

a3 − a
= 0

for every x ∈ V . Thus, we have F3(ax) = a3F3(x) for all x ∈ V .

Furthermore, by (2.1), (3.11) and (3.12), we obtain

F4(x) =
Fe(ax)− a2Fe(x)

a4 − a2
= 0

for all x ∈ V . Therefore, it holds that F4(ax) = a4F4(x) for all x ∈ V .
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Now, it follows from (1.1), (2.1) and (3.9) that

DF (x1, x2, . . . , xn)

=
∑̀
i=1

ciF
(
ai1x1 + ai2x2 + · · ·+ ainxn

)
= lim

m→∞

∑̀
i=1

ci

(
f4
(
am(ai1x1 + · · ·+ ainxn)

)
a4m

+
f3
(
am(ai1x1 + · · ·+ ainxn)

)
a3m

+
f2
(
am(ai1x1 + · · ·+ ainxn)

)
a2m

+
f1
(
am(ai1x1 + · · ·+ ainxn)

)
am

)

= lim
m→∞

∑̀
i=1

ci

(
fe
(
am+1(ai1x1 + · · ·+ ainxn)

)
− a2fe

(
am(ai1x1 + · · ·+ ainxn)

)
a4m(a4 − a2)

+
fo
(
am+1(ai1x1 + · · ·+ ainxn)

)
− afo

(
am(ai1x1 + · · ·+ ainxn)

)
a3m(a3 − a)

+
a4fe

(
am(ai1x1 + · · ·+ ainxn)

)
− fe

(
am+1(ai1x1 + · · ·+ ainxn)

)
a2m(a4 − a2)

+
a3fo

(
am(ai1x1 + · · ·+ ainxn)

)
− fo

(
am+1(ai1x1 + · · ·+ ainxn)

)
am(a3 − a)

)

= lim
m→∞

(
Dfe

(
am+1x1, . . . , a

m+1xn
)
− a2Dfe

(
amx1, . . . , a

mxn
)

a4m(a4 − a2)

+
Dfo

(
am+1x1, . . . , a

m+1xn
)
− aDfo

(
amx1, . . . , a

mxn
)

a3m(a3 − a)

+
a4Dfe

(
amx1, . . . , a

mxn
)
−Dfe

(
am+1x1, . . . , a

m+1xn
)

a2m(a4 − a2)

+
a3Dfo

(
amx1, . . . , a

mxn
)
−Dfo

(
am+1x1, . . . , a

m+1xn
)

am(a3 − a)

)

for all x1, x2, . . . , xn ∈ V \{0}.
Hence, in view of (3.2) and (3.4), we have

‖DF (x1, x2, . . . , xn)‖

≤ lim
m→∞

((
1 + |a|m+1 + |a|2m + |a|3m+1

)
ϕe

(
am+1x1, a

m+1x2, . . . , a
m+1xn

)
|a|4m|a4 − a2|

+

(
|a|2 + |a|m+2 + |a|2m+4 + |a|3m+4

)
ϕe

(
amx1, . . . , a

mxn
)

|a|4m|a4 − a2|

)
= 0

for all x1, x2, . . . , xn ∈ V \{0}, where ϕe(x1, . . . , xn) := 1
2

(
ϕ(x1, . . . , xn) + ϕ(−x1, . . . ,−xn)

)
,

i.e., DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \{0}. Moreover, if we put m = 0 and
let l→∞ in (3.8), then we obtain the inequality (3.7).
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We note that the equalities

F1

(
|a|x

)
= |a|F1(x), F2

(
|a|x

)
= |a|2F2(x),

F3

(
|a|x

)
= |a|3F3(x), F4

(
|a|x

)
= |a|4F4(x)

are true in view of (3.6). (When a < 0, we have

F1

(
|a|x

)
= F1(−ax) =

a3Fo(−ax)− Fo(−a2x)

a3 − a
= −a

3Fo(ax)− Fo(a
2x)

a3 − a
,

since Fo is odd. By the definition of F1 (see (2.1)) and since we already showed that F1(ax) =
aF1(x) for all x ∈ V , we further get

F1

(
|a|x

)
= −F1(ax) = −aF1(x) = |a|F1(x)

and so on.)

On account of Lemma 2.1 with k = |a|, the mapping F : V → Y is the unique mapping
satisfying the equalities in (3.6) and the inequality (3.7), since the inequality

‖f(x)− F (x)‖ ≤
∞∑
i=0

(
|a2i+2 − 1|µ

(
aix
)

|a4 − a2||a|4i+4
+
|a2i+2 − 1|ν

(
aix
)

|a3 − a||a|3i+3

)

≤
∞∑
i=0

(
µ(aix)

|a2 − 1||a|i
+

ν(aix)

|a2 − 1||a|i

)

≤
∞∑
i=0

1

ki
φ(kix)

holds for all x ∈ V \{0}, where k := |a| and φ(x) := 1
|a2−1|(µ(x) +µ(−x) + ν(x) + ν(−x)). �

In the following theorem, let V and Y be a real vector space and a real Banach space,
respectively.

Theorem 3.2 Given a real constant a with |a| > 1, assume that the functions µ, ν : V \{0} →
[0,∞) satisfy the conditions

∞∑
i=0

|a|4iµ
(
x

ai

)
<∞ and

∞∑
i=0

|a|4iν
(
x

ai

)
<∞ (3.13)

for all x ∈ V \{0} and a function ϕ : (V \{0})n → [0,∞) satisfies the condition

∞∑
i=0

|a|4iϕ
(
x1
ai
,
x2
ai
, . . . ,

xn
ai

)
<∞ (3.14)

for all x1, x2, . . . , xn ∈ V \{0}. If a mapping f : V → Y satisfies f(0) = 0, inequalities in
(3.3) for all x ∈ V \{0}, and if f satisfies inequality (3.4) for all x1, x2, . . . , xn ∈ V \{0}, then
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there exists a unique mapping F : V → Y satisfying (3.5) for all x1, x2, . . . , xn ∈ V \{0} and
(3.6) for all x ∈ V , and such that

‖f(x)− F (x)‖ ≤
∞∑
i=0

(
|a4i − a2i|
|a4 − a2|

µ

(
x

ai+1

)
+
|a3i − ai|
|a3 − a|

ν

(
x

ai+1

))
(3.15)

for all x ∈ V \{0}.

Proof. First, we define the mappings Jmf : V → Y by

Jmf(x) := a4mf4

(
x

am

)
+ a3mf3

(
x

am

)
+ a2mf2

(
x

am

)
+ amf1

(
x

am

)
for all x ∈ V and m ∈ N0. It then follows from (2.1) and (3.3) that

‖Jmf(x)− Jm+lf(x)‖

≤
m+l−1∑
i=m

‖Jif(x)− Ji+1f(x)‖

=

m+l−1∑
i=m

∥∥∥∥∥a4if4
(
x

ai

)
+ a3if3

(
x

ai

)
+ a2if2

(
x

ai

)
+ aif1

(
x

ai

)

− a4i+4f4

(
x

ai+1

)
− a3i+3f3

(
x

ai+1

)
− a2i+2f2

(
x

ai+1

)
− ai+1f1

(
x

ai+1

)∥∥∥∥∥
≤ 1

|a4 − a2|

m+l−1∑
i=m

∥∥∥∥∥a4i
(
fe

(
a2x

ai+1

)
− (a2 + a4)fe

(
ax

ai+1

)
+ a6fe

(
x

ai+1

))

− a2i
(
fe

(
a2x

ai+1

)
− (a2 + a4)fe

(
ax

ai+1

)
+ a6fe

(
x

ai+1

))∥∥∥∥∥
+

1

|a3 − a|

m+l−1∑
i=m

∥∥∥∥∥a3i
(
fo

(
a2x

ai+1

)
− (a+ a3)fo

(
ax

ai+1

)
+ a4fo

(
x

ai+1

))

− ai
(
fo

(
a2x

ai+1

)
− (a+ a3)fo

(
ax

ai+1

)
+ a4fo

(
x

ai+1

))∥∥∥∥∥
≤

m+l−1∑
i=m

(
|a4i − a2i|
|a4 − a2|

µ

(
x

ai+1

)
+
|a3i − ai|
|a3 − a|

ν

(
x

ai+1

))
(3.16)

for all x ∈ V \{0} and l,m ∈ N0.
On account of (3.13) and (3.16), the sequence {Jmf(x)} is a Cauchy sequence for all

x ∈ V \{0}. Since Y is complete and f(0) = 0, the sequence {Jmf(x)} converges for all
x ∈ V . Hence, we can define a mapping F : V → Y by

F (x) := lim
m→∞

Jmf(x)

= lim
m→∞

(
a4mf4

(
x

am

)
+ a3mf3

(
x

am

)
+ a2mf2

(
x

am

)
+ amf1

(
x

am

))
(3.17)
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for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (3.16), we obtain the inequality
(3.15).

As we saw in the proof of the previous theorem, it follows from (3.3) and (3.13) that

lim
m→∞

a3mfo

(
x

am

)
and lim

m→∞
a4mfe

(
x

am

)
converge for all x ∈ V . (3.18)

By (2.1) and (3.18), we get

Fo(x) = lim
m→∞

(
a3mf3

(
x

am

)
+ amf1

(
x

am

))
= lim

m→∞
a3mfo

(
x

am

)
,

Fe(x) = lim
m→∞

(
a4mf4

(
x

am

)
+ a2mf2

(
x

am

))
= lim

m→∞
a4mfe

(
x

am

) (3.19)

for all x ∈ V .
In view of (2.1), (3.18) and (3.19), we have

F1(x) =
a3Fo(x)− Fo(ax)

a3 − a
= 0

for each x ∈ V . Therefore, it holds that F1(ax) = aF1(x) for any x ∈ V . Analogously,
it follows from (2.1), (3.18) and (3.19) that F2(x) = 0 for every x ∈ V . Thus, we have
F2(ax) = a2F2(x) for all x ∈ V .

Similarly, using (2.1), (3.18) and (3.19), we obtain

F3(x) =
Fo(ax)− aFo(x)

a3 − a
= lim

m→∞
a3mfo

(
x

am

)
for all x ∈ V . Hence, we easily see that F3(ax) = a3F3(x) for any x ∈ V . Moreover, similarly
as the case of F3, we obtain

F4(x) =
Fe(ax)− a2Fe(x)

a4 − a2
= lim

m→∞
a4mfe

(
x

am

)
and F4(ax) = a4F4(x) for any x ∈ V .

Now, using (1.1), (2.1) and (3.17), we have

DF (x1, x2, . . . , xn)

=
∑̀
i=1

ciF
(
ai1x1 + ai2x2 + · · ·+ ainxn

)
= lim

m→∞

(
a4m

∑̀
i=1

cif4

(
ai1

x1
am

+ · · ·+ ain
xn
am

)

+ a3m
∑̀
i=1

cif3

(
ai1

x1
am

+ · · ·+ ain
xn
am

)

+ a2m
∑̀
i=1

cif2

(
ai1

x1
am

+ · · ·+ ain
xn
am

)
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+ am
∑̀
i=1

cif1

(
ai1

x1
am

+ · · ·+ ain
xn
am

))

= lim
m→∞

[
a4m

∑̀
i=1

ci

(
1

a4 − a2
fe

(
ai1

x1
am−1

+ · · ·+ ain
xn
am−1

)

− a2

a4 − a2
fe

(
ai1

x1
am

+ · · ·+ ain
xn
am

))

+ a3m
∑̀
i=1

ci

(
1

a3 − a
fo

(
ai1

x1
am−1

+ · · ·+ ain
xn
am−1

)

− a

a3 − a
fo

(
ai1

x1
am

+ · · ·+ ain
xn
am

))

+ a2m
∑̀
i=1

ci

(
a4

a4 − a2
fe

(
ai1

x1
am

+ · · ·+ ain
xn
am

)

− 1

a4 − a2
fe

(
ai1

x1
am−1

+ · · ·+ ain
xn
am−1

))

+ am
∑̀
i=1

ci

(
a3

a3 − a
fo

(
ai1

x1
am

+ · · ·+ ain
xn
am

)

− 1

a3 − a
fo

(
ai1

x1
am−1

+ · · ·+ ain
xn
am−1

))]

= lim
m→∞

[
a4m

a4 − a2

(
Dfe

(
x1
am−1

, . . . ,
xn
am−1

)
− a2Dfe

(
x1
am

, . . . ,
xn
am

))

+
a3m

a3 − a

(
Dfo

(
x1
am−1

, . . . ,
xn
am−1

)
− aDfo

(
x1
am

, . . . ,
xn
am

))

+
a2m

a4 − a2

(
a4Dfe

(
x1
am

, . . . ,
xn
am

)
−Dfe

(
x1
am−1

, . . . ,
xn
am−1

))

+
am

a3 − a

(
a3Dfo

(
x1
am

, . . . ,
xn
am

)
−Dfo

(
x1
am−1

, . . . ,
xn
am−1

))]
for all x1, x2, . . . , xn ∈ V \{0}. Hence, by (3.4) and (3.14), we obtain

‖DF (x1, x2, . . . , xn)‖

≤ lim
m→∞

[(
|a|4m + |a|2m

|a4 − a2|
+
|a|3m + |a|m

|a3 − a|

)
ϕe

(
x1
am−1

, . . . ,
xn
am−1

)

+

(
|a|4m+2 + |a|2m+4

|a4 − a2|
+
|a|3m+1 + |a|m+3

|a3 − a|

)
ϕe

(
x1
am

, . . . ,
xn
am

)]
= 0

for all x1, x2, . . . , xn ∈ V \{0}, where ϕe(x1, . . . , xn) := 1
2

(
ϕ(x1, . . . , xn) + ϕ(−x1, . . . ,−xn)

)
.
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Thus, it holds that DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \{0}.
As we see in the proof of Theorem 3.1, we notice that

F1(|a|x) = |a|F1(x), F2(|a|x) = |a|2F2(x),

F3(|a|x) = |a|3F3(x), F4(|a|x) = |a|4F4(x)

for all x ∈ V .
According to Lemma 2.1, the mapping F : V → Y satisfying equalities in (3.6) and

inequality (3.15) is determined uniquely, since

‖f(x)− F (x)‖ ≤
∞∑
i=0

(
|a4i − a2i|
|a4 − a2|

µ

(
x

ai+1

)
+
|a3i − ai|
|a3 − a|

ν

(
x

ai+1

))

≤
∞∑
i=0

|a4i|
|a3 − a|

(
µ

(
x

ai+1

)
+ ν

(
x

ai+1

))

≤
∞∑
i=0

k4iφ

(
x

ki

)
for all x ∈ V \{0}, where k := |a| and φ(x) := 1

|a3−a|
(
µ
(
x
a

)
+ µ

(−x
a

)
+ ν
(
x
a

)
+ ν
(−x

a

))
. �

We assume again that V is a real vector space and Y is a real Banach space if there is no
specification.

Theorem 3.3 Given a real constant a with |a| > 1, assume that the functions µ, ν : V \{0} →
[0,∞) satisfy all the conditions

∞∑
i=0

µ(aix)

|a|2i
<∞,

∞∑
i=0

|a|iµ
(
x

ai

)
<∞,

∞∑
i=0

ν(aix)

|a|2i
<∞,

∞∑
i=0

|a|iν
(
x

ai

)
<∞ (3.20)

for all x ∈ V \{0} and a function ϕ : (V \{0})n → [0,∞) satisfies the conditions

∞∑
i=0

ϕ(aix1, a
ix2, . . . , a

ixn)

|a|2i
<∞ and

∞∑
i=0

|a|iϕ
(
x1
ai
,
x2
ai
, . . . ,

xn
ai

)
<∞ (3.21)

for all x1, x2, . . . , xn ∈ V \{0}. If a mapping f : V → Y satisfies f(0) = 0 and inequalities of
(3.3) for all x ∈ V \{0} and if f satisfies inequality (3.4) for all x1, x2, . . . , xn ∈ V \{0}, then
there exists a unique mapping F : V → Y satisfying equality (3.5) for all x1, x2, . . . , xn ∈
V \{0}, equalities in (3.6) for all x ∈ V , and moreover

‖f(x)− F (x)‖ ≤
∞∑
i=0

µ(aix)

|a4 − a2|
|a2i+2 − 1|
|a|4i+4

+
1

|a3 − a|

∞∑
i=0

(
ν(aix)

|a|3i+3
+ |a|iν

(
x

ai+1

))
(3.22)

for all x ∈ V \{0}.

Proof. We define the mappings Jmf : V → Y by

Jmf(x) :=
f4(a

mx)

a4m
+
f3(a

mx)

a3m
+
f2(a

mx)

a2m
+ amf1

(
x

am

)
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for all x ∈ V and m ∈ N0. By (2.1) and (3.3), we have

‖Jmf(x)− Jm+lf(x)‖

≤
m+l−1∑
i=m

‖Jif(x)− Ji+1f(x)‖

=

m+l−1∑
i=m

∥∥∥∥∥fe(ai+1x)− a2fe(aix)

a4i(a4 − a2)
− fe(a

i+2x)− a2fe(ai+1x)

a4i+4(a4 − a2)

− fe(a
i+1x)− a4fe(aix)

a2i(a4 − a2)
+
fe(a

i+2x)− a4fe(ai+1x)

a2i+2(a4 − a2)

+
fo(a

i+1x)− afo(aix)

a3i(a3 − a)
− fo(a

i+2x)− afo(ai+1x)

a3i+3(a3 − a)

− ai

a3 − a

(
fo

(
ax

ai

)
− a3fo

(
x

ai

))

+
ai+1

a3 − a

(
fo

(
ax

ai+1

)
− a3fo

(
x

ai+1

))∥∥∥∥∥
≤ 1

|a4 − a2|

m+l−1∑
i=m

∥∥∥∥∥− fe(a
2 · aix)− (a2 + a4)fe(a

i+1x) + a6fe(a
ix)

a4i+4

+
fe(a

2 · aix)− (a2 + a4)fe(a
i+1x) + a6fe(a

ix)

a2i+2

∥∥∥∥∥
+

1

|a3 − a|

m+l−1∑
i=m

∥∥∥∥∥− fo(a
2 · aix)− (a+ a3)fo(a

i+1x) + a4fo(a
ix)

a3i+3

− ai
(
fo

(
a2x

ai+1

)
− (a+ a3)fo

(
ax

ai+1

)
+ a4fo

(
x

ai+1

))∥∥∥∥∥
≤

m+l−1∑
i=m

µ(aix)

|a4 − a2|
|a2i+2 − 1|
|a|4i+4

+
1

|a3 − a|

m+l−1∑
i=m

(
ν(aix)

|a|3i+3
+ |a|iν

(
x

ai+1

))
(3.23)

for all x ∈ V \{0} and for all l,m ∈ N0.

In view of (3.20) and (3.23), the sequence {Jmf(x)} is a Cauchy sequence for all x ∈
V \{0}. Since Y is complete and f(0) = 0, the sequence {Jmf(x)} converges for all x ∈ V .
Hence, we can define a mapping F : V → Y by

F (x) := lim
m→∞

Jmf(x) = lim
m→∞

(
f4(a

mx)

a4m
+
f3(a

mx)

a3m
+
f2(a

mx)

a2m
+ amf1

(
x

am

))
(3.24)

for all x ∈ V .

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 October 2018                   doi:10.20944/preprints201810.0504.v1

Peer-reviewed version available at Mathematics 2018, 6, 282; doi:10.3390/math6120282

http://dx.doi.org/10.20944/preprints201810.0504.v1
http://dx.doi.org/10.3390/math6120282


15

By (1.1), (2.1) and (3.24), we get

DF (x1, x2, . . . , xn)

=
∑̀
i=1

ciF (ai1x1 + ai2x2 + · · ·+ ainxn)

=
∑̀
i=1

ci lim
m→∞

(
f4(ai1a

mx1 + · · ·+ aina
mxn)

a4m
+
f3(ai1a

mx1 + · · ·+ aina
mxn)

a3m

+
f2(ai1a

mx1 + · · ·+ aina
mxn)

a2m
+ amf1

(
ai1x1
am

+ · · ·+ ainxn
am

))

= lim
m→∞

1

a4m

∑̀
i=1

ci
fe
(
ai1a

m+1x1 + · · ·+ aina
m+1xn

)
− a2fe

(
ai1a

mx1 + · · ·+ aina
mxn

)
a4 − a2

+ lim
m→∞

1

a3m

∑̀
i=1

ci
fo
(
ai1a

m+1x1 + · · ·+ aina
m+1xn

)
− afo

(
ai1a

mx1 + · · ·+ aina
mxn

)
a3 − a

+ lim
m→∞

1

a2m

∑̀
i=1

ci
a4fe

(
ai1a

mx1 + · · ·+ aina
mxn

)
− fe

(
ai1a

m+1x1 + · · ·+ aina
m+1xn

)
a4 − a2

+ lim
m→∞

am

a3 − a
∑̀
i=1

ci

(
a3fo

(
ai1x1
am

+ · · ·+ ainxn
am

)
− fo

(
ai1x1
am−1

+ · · ·+ ainxn
am−1

))

= lim
m→∞

Dfe
(
am+1x1, . . . , a

m+1xn
)
− a2Dfe

(
amx1, . . . , a

mxn
)

a4m(a4 − a2)

+ lim
m→∞

Dfo
(
am+1x1, . . . , a

m+1xn
)
− aDfo

(
amx1, . . . , a

mxn
)

a3m(a3 − a)

+ lim
m→∞

a4Dfe
(
amx1, . . . , a

mxn
)
−Dfe

(
am+1x1, . . . , a

m+1xn
)

a2m(a4 − a2)

+ lim
m→∞

am

a3 − a

(
a3Dfo

(
x1
am

, . . . ,
xn
am

)
−Dfo

(
ax1
am

, . . . ,
axn
am

))

for all x1, x2, . . . , xn ∈ V \{0}. Hence, by (3.4) and (3.21), we have

‖DF (x1, x2, . . . , xn)‖

≤ lim
m→∞

((
1 + |a|m+1 + |a|2m

)
ϕe

(
am+1x1, a

m+1x2, . . . , a
m+1xn

)
|a|4m|a4 − a2|

+

(
a2 + |a|m+2 + |a|2m+4

)
ϕe

(
amx1, . . . , a

mxn
)

|a|4m|a4 − a2|

+
|a|m+3

|a3 − a|
ϕe

(
x1
am

, . . . ,
xn
am

)
+
|a|m

|a3 − a|
ϕe

(
ax1
am

, . . . ,
axn
am

))
= 0

for any x1, x2, . . . , xn ∈ V \{0}, where ϕe(x1, . . . , xn) := 1
2

(
ϕ(x1, . . . , xn) +ϕ(−x1, . . . ,−xn)

)
,
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i.e., DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \{0}. Moreover, if we put m = 0 and
let l→∞ in (3.23), then we obtain the inequality (3.22).

As we did in the proofs of the previous theorems, on account of (3.3) and (3.20), we can
show that

lim
m→∞

fe(a
mx)

a2m
, lim

m→∞

fo(a
mx)

a3m
and lim

m→∞
amfo

(
x

am

)
converge for all x ∈ V .

In view of (2.1), (3.24) and the last relations, we get

Fe(x) = lim
m→∞

fe(a
mx)

a2m
,

Fo(x) = lim
m→∞

fo(a
mx)

a3m
+ lim

m→∞
amfo

(
x

am

) (3.25)

for all x ∈ V .
By using (2.1) and (3.25), we get

F1(x) =
a3

a3 − a
Fo(x)− 1

a3 − a
Fo(ax) = lim

m→∞
amfo

(
x

am

)
,

F2(x) =
a4

a4 − a2
Fe(x)− 1

a4 − a2
Fe(ax) = lim

m→∞

fe(a
mx)

a2m
,

F3(x) =
1

a3 − a
Fo(ax)− a

a3 − a
Fo(x) = lim

m→∞

fo(a
mx)

a3m
,

F4(x) =
1

a4 − a2
Fe(ax)− a2

a4 − a2
Fe(x) = 0

for all x ∈ V . Hence, we can verify that F1(ax) = aF1(x), F2(ax) = a2F2(x), F3(ax) =
a3F3(x) and F4(ax) = a4F4(x) for each x ∈ V .

Similarly as in the proof of Theorem 3.1, we can use (3.6) to show that

F1(|a|x) = |a|F1(x), F2(|a|x) = |a|2F2(x),

F3(|a|x) = |a|3F3(x), F4(|a|x) = |a|4F4(x).

Due to Lemma 2.2, the mapping F : V → Y is the unique mapping satisfying equalities
in (3.6) and inequality (3.7), since it follows from (3.22) that

‖f(x)− F (x)‖ ≤
∞∑
i=0

µ(aix)

|a4 − a2|
|a2i+2 − 1|
|a|4i+4

+
1

|a3 − a|

∞∑
i=0

(
ν(aix)

|a|3i+3
+ |a|iν

(
x

ai+1

))

≤
∞∑
i=0

(
µ(aix) + ν(aix)

|a2 − 1||a|2i
+

|a|i

|a2 − 1|
ν

(
x

ai+1

))

≤
∞∑
i=0

(
1

k2i
ψ(kix) + kiφ

(
x

ki

))
for all x ∈ V \{0}, where we set k := |a|, ψ(x) := 1

|a2−1|(µ(x) + µ(−x) + ν(x) + ν(−x)) and

φ(x) := 1
|a2−1|

(
ν
(
x
a

)
+ ν
(−x

a

))
. �

In the following theorem, let V be a real vector space and Y a real Banach space.
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Theorem 3.4 Assume that the functions µ, ν : V \{0} → [0,∞) satisfy the conditions

∞∑
i=0

µ(aix)

|a|3i
<∞,

∞∑
i=0

|a|2iµ
(
x

ai

)
<∞,

∞∑
i=0

ν(aix)

|a|3i
<∞,

∞∑
i=0

|a|2iν
(
x

ai

)
<∞

(3.26)

for all x ∈ V \{0} and a function ϕ : (V \{0})n → [0,∞) satisfies the conditions

∞∑
i=0

ϕ(aix1, a
ix2, . . . , a

ixn)

|a|3i
<∞ and

∞∑
i=0

|a|2iϕ
(
x1
ai
,
x2
ai
, . . . ,

xn
ai

)
<∞ (3.27)

for all x1, x2, . . . , xn ∈ V \{0}. If a mapping f : V → Y satisfies f(0) = 0 and the inequality
(3.3) for all x ∈ V \{0} and if f satisfies (3.4) for all x1, x2, . . . , xn ∈ V \{0}, then there exists
a unique mapping F : V → Y satisfying the equality (3.5) for all x1, x2, . . . , xn ∈ V \{0}, the
equalities in (3.6) for all x ∈ V , and

‖f(x)− F (x)‖ ≤ 1

|a4 − a2|

∞∑
i=0

(
µ(aix)

|a|4i+4
+ |a|2iµ

(
x

ai+1

))

+
1

|a3 − a|

∞∑
i=0

(
ν(aix)

|a|3i+3
+ |a|iν

(
x

ai+1

))
(3.28)

for all x ∈ V \{0}.

Proof. We define the mappings Jmf : V → Y by

Jmf(x) :=
f4(a

mx)

a4m
+
f3(a

mx)

a3m
+ a2mf2

(
x

am

)
+ amf1

(
x

am

)
for all x ∈ V and m ∈ N0. Then it follows from (2.1) and (3.3) that

‖Jmf(x)− Jm+lf(x)‖

≤
m+l−1∑
i=m

‖Jif(x)− Ji+1f(x)‖

=

m+l−1∑
i=m

∥∥∥∥∥f4(aix)

a4i
− f4(a

i+1x)

a4i+4
+
f3(a

ix)

a3i
− f3(a

i+1x)

a3i+3

+ a2if2

(
x

ai

)
− a2i+2f2

(
x

ai+1

)
+ aif1

(
x

ai

)
− ai+1f1

(
x

ai+1

)∥∥∥∥∥
≤ 1

|a4 − a2|

m+l−1∑
i=m

∥∥∥∥∥− fe(a
2 · aix)− (a2 + a4)fe(a

i+1x) + a6fe(a
ix)

a4i+4

− a2i
(
fe

(
a2x

ai+1

)
− (a2 + a4)fe

(
ax

ai+1

)
+ a6fe

(
x

ai+1

))∥∥∥∥∥
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+
1

|a3 − a|

m+l−1∑
i=m

∥∥∥∥∥− fo(a
2 · aix)− (a+ a3)fo(a

i+1x) + a4fo(a
ix)

a3i+3

− ai
(
fo

(
a2x

ai+1

)
− (a+ a3)fo

(
ax

ai+1

)
+ a4fo

(
x

ai+1

))∥∥∥∥∥
≤ 1

|a4 − a2|

m+l−1∑
i=m

(
µ(aix)

|a|4i+4
+ |a|2iµ

(
x

ai+1

))

+
1

|a3 − a|

m+l−1∑
i=m

(
ν(aix)

|a|3i+3
+ |a|iν

(
x

ai+1

))
(3.29)

for all x ∈ V \{0}.
In view of (3.26) and (3.29), the sequence {Jmf(x)} is a Cauchy sequence for all x ∈

V \{0}. Since Y is complete and f(0) = 0, the sequence {Jmf(x)} converges for all x ∈ V .
Hence, we can define a mapping F : V → Y by

F (x) := lim
m→∞

Jmf(x) = lim
m→∞

(
f4(a

mx)

a4m
+
f3(a

mx)

a3m
+ a2mf2

(
x

am

)
+ amf1

(
x

am

))
(3.30)

for all x ∈ V . Then, by oddness and evenness of Fo and Fe, it follows from (3.30) that

Fo(x) = lim
m→∞

(
f3(a

mx)

a3m
+ amf1

(
x

am

))
,

Fe(x) = lim
m→∞

(
f4(a

mx)

a4m
+ a2mf2

(
x

am

))
for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (3.29), we obtain inequality
(3.28).

In view of (3.3) and (3.26), it holds that

lim
m→∞

amfo

(
x

am

)
, lim

m→∞

fo(a
mx)

a3m
, lim

m→∞
a2mfe

(
x

am

)
, lim

m→∞

fe(a
mx)

a4m

converge for all x ∈ V . Using these facts, we get

F1(x) =
a3

a3 − a
Fo(x)− 1

a3 − a
Fo(ax)

=
a3

a3 − a
lim

m→∞

(
f3(a

mx)

a3m
+ amf1

(
x

am

))

− 1

a3 − a
lim

m→∞

(
f3(a

m+1x)

a3m
+ amf1

(
x

am−1

))

=
a3

a3 − a
lim

m→∞
amf1

(
x

am

)
− a

a3 − a
lim

m→∞
am−1f1

(
x

am−1

)
= lim

m→∞
amf1

(
x

am

)
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for all x ∈ V . Therefore, F1(ax) = aF1(x) for all x ∈ V . By the similar way, we can show
that the equalities in (3.6) hold true for any x ∈ V .

On account of (1.1), (2.1) and (3.30), it holds that

DF (x1, x2, . . . , xn)

=
∑̀
i=1

ciF (ai1x1 + ai2x2 + · · ·+ ainxn)

=
∑̀
i=1

ci lim
m→∞

(
1

a4m
f4
(
am(ai1x1 + · · ·+ ainxn)

)
+

1

a3m
f3
(
am(ai1x1 + · · ·+ ainxn)

)
+ a2mf2

(
ai1x1 + · · ·+ ainxn

am

)
+ amf1

(
ai1x1 + · · ·+ ainxn

am

))

= lim
m→∞

1

a4m

(
1

a4 − a2
Dfe

(
am+1x1, . . . , a

m+1xn
)

− a2

a4 − a2
Dfe

(
amx1, . . . , a

mxn
))

+ lim
m→∞

1

a3m

(
1

a3 − a
Dfo

(
am+1x1, . . . , a

m+1xn
)

− a

a3 − a
Dfo

(
amx1, . . . , a

mxn
))

+ lim
m→∞

a2m

(
a4

a4 − a2
Dfe

(
x1
am

, . . . ,
xn
am

)

− 1

a4 − a2
Dfe

(
x1
am−1

, . . . ,
xn
am−1

))

+ lim
m→∞

am

(
a3

a3 − a
Dfo

(
x1
am

, . . . ,
xn
am

)

− 1

a3 − a
Dfo

(
x1
am−1

, . . . ,
xn
am−1

))
for all x1, x2, . . . , xn ∈ V \{0}.

Using (3.4) and (3.27), we get

‖DF (x1, x2, . . . , xn)‖

≤ lim
m→∞

(
1

|a4 − a2||a|4m
ϕe

(
am+1x1, . . . , a

m+1xn
)

+
|a|2

|a4 − a2||a|4m
ϕe

(
amx1, . . . , a

mxn
)
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+
1

|a3 − a||a|3m
ϕe

(
am+1x1, . . . , a

m+1xn
)

+
|a|

|a3 − a||a|3m
ϕe

(
amx1, . . . , a

mxn
)

+
|a|4|a|2m

|a4 − a2|
ϕe

(
x1
am

, . . . ,
xn
am

)
+
|a|2m

|a4 − a2|
ϕe

(
x1
am−1

, . . . ,
xn
am−1

)
+
|a|3|a|m

|a3 − a|
ϕe

(
x1
am

, . . . ,
xn
am

)
+
|a|m

|a3 − a|
ϕe

(
x1
am−1

, . . . ,
xn
am−1

))
= 0

for all x1, x2, . . . , xn ∈ V \{0}, i.e., DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \{0}. By
a similar way as the previous proofs, we notice that the equalities

F1

(
|a|x

)
= |a|F1(x), F2

(
|a|x

)
= |a|2F2(x),

F3

(
|a|x

)
= |a|3F3(x), F4

(
|a|x

)
= |a|4F4(x)

are true in view of (3.6).

Using Lemma 2.3, we conclude that the mapping F : V → Y is the unique mapping
satisfying equalities in (3.6) and inequality (3.28), since

‖f(x)− F (x)‖

≤ 1

|a4 − a2|

∞∑
i=0

(
µ(aix)

|a|4i+4
+ |a|2iµ

(
x

ai+1

))
+

1

|a3 − a|

∞∑
i=0

(
ν(aix)

|a|3i+3
+ |a|iν

(
x

ai+1

))

≤ 1

|a2 − 1|

∞∑
i=0

(
µ(aix) + ν(aix)

|a|3i
+ |a|2iµ

(
x

ai+1

)
+ |a|2iν

(
x

ai+1

))

≤
∞∑
i=0

(
1

k3i
ψ(kix) + k2iφ

(
x

ki

))

for all x ∈ V \{0}, where we set k := |a|, ψ(x) := 1
|a2−1|(µ(x) + µ(−x) + ν(x) + ν(−x)) and

φ(x) := 1
|a2−1|

(
µ
(
x
a

)
+ µ

(−x
a

)
+ ν
(
x
a

)
+ ν
(−x

a

))
. �

Theorem 3.5 Assume that the functions µ, ν : V \{0} → [0,∞) satisfy all the conditions

∞∑
i=0

|a|3iµ
(
x

ai

)
<∞,

∞∑
i=0

µ(aix)

|a|4i
<∞,

∞∑
i=0

|a|3iν
(
x

ai

)
<∞,

∞∑
i=0

ν(aix)

|a|4i
<∞ (3.31)

for all x ∈ V \{0} and a function ϕ : (V \{0})n → [0,∞) satisfies the conditions

∞∑
i=0

ϕ(aix1, a
ix2, . . . , a

ixn)

|a|4i
<∞ and

∞∑
i=0

|a|3iϕ
(
x1
ai
,
x2
ai
, . . . ,

xn
ai

)
<∞ (3.32)

for all x1, x2, . . . , xn ∈ V \{0}. If a mapping f : V → Y satisfies f(0) = 0 and the inequality
(3.3) for all x ∈ V \{0} and if f satisfies (3.4) for all x1, x2, . . . , xn ∈ V \{0}, then there exists
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a unique mapping F : V → Y satisfying the equality (3.5) for all x1, x2, . . . , xn ∈ V \{0}, the
equalities in (3.6) for all x ∈ V , and

‖f(x)− F (x)‖ ≤ 1

|a4 − a2|

∞∑
i=0

(
µ(aix)

|a|4(i+1)
+ |a|2iµ

(
x

ai+1

))
+
∞∑
i=0

|a3i − ai|
|a3 − a|

ν

(
x

ai+1

)
(3.33)

for all x ∈ V \{0}.

Proof. We define the mappings Jmf : V → Y by

Jmf(x) :=
f4(a

mx)

a4m
+ a3mf3

(
x

am

)
+ a2mf2

(
x

am

)
+ amf1

(
x

am

)
for all x ∈ V and m ∈ N0. It follows from (2.1) and (3.3) that

‖Jmf(x)− Jm+lf(x)‖

≤
m+l−1∑
i=m

‖Jif(x)− Ji+1f(x)‖

=
m+l−1∑
i=m

∥∥∥∥∥f4(aix)

a4i
− f4(a

i+1x)

a4i+4
+ a2if2

(
x

ai

)
− a2i+2f2

(
x

ai+1

)

+ a3if3

(
x

ai

)
− a3i+3f3

(
x

ai+1

)
+ aif1

(
x

ai

)
− ai+1f1

(
x

ai+1

)∥∥∥∥∥
≤ 1

|a4 − a2|

m+l−1∑
i=m

∥∥∥∥∥− fe(a
2 · aix)− (a2 + a4)fe(a

i+1x) + a6fe(a
ix)

a4i+4

− a2i
(
fe

(
a2x

ai+1

)
− (a2 + a4)fe

(
ax

ai+1

)
+ a6fe

(
x

ai+1

))∥∥∥∥∥
+

1

|a3 − a|

m+l−1∑
i=m

∥∥∥∥∥a3i
(
fo

(
a2x

ai+1

)
− (a+ a3)fo

(
ax

ai+1

)
+ a4fo

(
x

ai+1

))

− ai
(
fo

(
a2x

ai+1

)
− (a+ a3)fo

(
ax

ai+1

)
+ a4fo

(
x

ai+1

))∥∥∥∥∥
≤ 1

|a4 − a2|

m+l−1∑
i=m

(
µ(aix)

|a|4(i+1)
+ |a|2iµ

(
x

ai+1

))
+

m+l−1∑
i=m

|a3i − ai|
|a3 − a|

ν

(
x

ai+1

)
(3.34)

for all x ∈ V \{0} and l,m ∈ N0.

On the other hand, by (3.3) and (3.31), we further see that

lim
m→∞

a3mfo

(
x

am

)
, lim

m→∞
a3mfe

(
x

am

)
, lim

m→∞

fe(a
mx)

a4m
converge for all x ∈ V . (3.35)

In view of (3.31) and (3.34), the sequence {Jmf(x)} is a Cauchy sequence for all x ∈ V \{0}.
Since Y is complete and f(0) = 0, the sequence {Jmf(x)} converges for all x ∈ V . Hence,
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considering (2.1) and (3.35), we can define a mapping F : V → Y by

F (x) := lim
m→∞

Jmf(x) = lim
m→∞

(
f4(a

mx)

a4m
+ a3mf3

(
x

am

))
(3.36)

for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (3.34), we obtain inequality
(3.33).

On account of (2.1) and (3.36), the oddness and evenness of Fo and Fe imply that

Fo(x) = lim
m→∞

a3mf3

(
x

am

)
and Fe(x) = lim

m→∞

f4(a
mx)

a4m

for all x ∈ V . Using these facts, for example, we get

F4(x) =
1

a4 − a2
Fe(ax)− a2

a4 − a2
Fe(x)

=
1

a4 − a2
lim

m→∞

f4(a
m+1x)

a4m
− a2

a4 − a2
lim

m→∞

f4(a
mx)

a4m

= lim
m→∞

f4(a
mx)

a4m

for all x ∈ V . Therefore, F4(ax) = a4F4(x) for all x ∈ V . By the similar way, we can show
that all the equalities in (3.6) hold true for any x ∈ V .

By using (1.1), (2.1) and (3.36), we have

DF (x1, x2, . . . , xn)

=
∑̀
i=1

ciF (ai1x1 + ai2x2 + · · ·+ ainxn)

=
∑̀
i=1

ci lim
m→∞

(
1

a4m
f4
(
am(ai1x1 + · · ·+ ainxn)

)
+ a3mf3

(
ai1x1 + · · ·+ ainxn

am

))

=
∑̀
i=1

ci lim
m→∞

(
1

(a4 − a2)a4m
fe
(
am+1(ai1x1 + · · ·+ ainxn)

)
− a2

(a4 − a2)a4m
fe
(
am(ai1x1 + · · ·+ ainxn)

))
+
∑̀
i=1

ci lim
m→∞

(
a3m

a3 − a
fo

(
ai1x1 + · · ·+ ainxn

am−1

)

− a3m+1

a3 − a
fo

(
ai1x1 + · · ·+ ainxn

am

))

= lim
m→∞

(
1

(a4 − a2)a4m
Dfe

(
am+1x1, . . . , a

m+1xn
)
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− a2

(a4 − a2)a4m
Dfe

(
amx1, . . . , a

mxn
))

+ lim
m→∞

(
a3m

a3 − a
Dfo

(
x1
am−1

, . . . ,
xn
am−1

)
− a3m+1

a3 − a
Dfo

(
x1
am

, . . . ,
xn
am

))

for all x1, x2, . . . , xn ∈ V \{0}.
By (3.4) and (3.32), together with the last equality, we get

‖DF (x1, x2, . . . , xn)‖ = 0

for all x1, x2, . . . , xn ∈ V \{0}, i.e., DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \{0}.
We remark that the equalities

F1(|a|x) = |a|F1(x), F2(|a|x) = |a|2F2(x),

F3(|a|x) = |a|3F3(x), F4(|a|x) = |a|4F4(x)

are true in view of (3.6).
Using Lemma 2.4, we conclude that the mapping F : V → Y is the unique mapping

satisfying equalities in (3.6) and inequality (3.33), since

‖f(x)− F (x)‖ ≤ 1

|a4 − a2|

∞∑
i=0

(
µ(aix)

|a|4(i+1)
+ |a|2iµ

(
x

ai+1

))
+
∞∑
i=0

|a3i − ai|
|a3 − a|

ν

(
x

ai+1

)

≤
∞∑
i=0

(
µ(aix)

|a|4i|a2 − 1|
+
|a|3i

|a2 − 1|
µ

(
x

ai+1

)
+
|a|3i

|a2 − 1|
ν

(
x

ai+1

))

≤
∞∑
i=0

(
1

k4i
ψ(kix) + k3iφ

(
x

ki

))

for all x ∈ V \{0}, where we set k := |a|, φ(x) := 1
|a2−1|

(
µ
(
x
a

)
+ µ

(−x
a

)
+ ν
(
x
a

)
+ ν
(−x

a

))
and

ψ(x) := 1
|a2−1|(µ(x) + µ(−x)). �

4 Corollaries

By using Theorems 3.1, 3.2, 3.3, 3.4, and 3.5, we can prove the Hyers-Ulam-Rassias stability
of the functional equation (1.1).

Corollary 4.1 Assume that X is a real normed space, Y is a real Banach space and p, θ, η,
ξ are real constants such that p 6∈ {1, 2, 3, 4}, |a| > 1, ξ > 0, η > 0, and θ > 0. If a mapping
f : X → Y satisfies f(0) = 0 and∥∥fe(a2x)− (a2 + a4)fe(ax) + a6fe(x)

∥∥ ≤ η‖x‖p,∥∥fo(a2x)− (a+ a3)fo(ax) + a4fo(x)
∥∥ ≤ ξ‖x‖p (4.1)

for all x ∈ X\{0} and if f moreover satisfies the inequality

‖Df(x1, x2, . . . , xn)‖ ≤ θ
(
‖x1‖p + · · ·+ ‖xn‖p

)
(4.2)
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for all x1, x2, . . . , xn ∈ X\{0}, then there exists a unique mapping F : X → Y satisfying
(3.5) for all x1, x2, . . . , xn ∈ X\{0}, and the equalities in (3.6) for all x ∈ X, as well as

‖f(x)− F (x)‖ ≤ η‖x‖p

|a4 − |a|p|||a|p − a2|
+

ξ‖x‖p

||a|3 − |a|p|||a|p − |a||
(4.3)

for all x ∈ X\{0}.

Proof. If we put ϕ(x1, x2, . . . , xn) := θ
(
‖x1‖p + · · ·+ ‖xn‖p

)
for all x1, x2, . . . , xn ∈ X\{0},

then ϕ satisfies (3.2), (3.14), (3.21), (3.27), and (4.1) when p < 1, p > 4, 1 < p < 2, 2 < p < 3,
and 3 < p < 4, respectively.

Therefore, there is a unique mapping F : X → Y satisfying (3.5) for all x1, x2, . . . , xn ∈
X\{0}, the equalities in (3.6) for all x ∈ X, as well as

‖f(x)− F (x)‖

≤



(
η

|a|2 − |a|p
− η

|a|4 − |a|p
+

|a|ξ
|a| − |a|p

− |a|ξ
|a|3 − |a|p

)
‖x‖p

|a|2|a2 − 1|
(for p < 1),(

η

|a|2 − |a|p
− η

|a|4 − |a|p
+

|a|ξ
|a|p − |a|

+
|a|ξ

|a|3 − |a|p

)
‖x‖p

|a|2|a2 − 1|
(for 1 < p < 2),(

η

|a|p − |a|2
+

η

|a|4 − |a|p
+

|a|ξ
|a|p − |a|

+
|a|ξ

|a|3 − |a|p

)
‖x‖p

|a|2|a2 − 1|
(for 2 < p < 3),(

η

|a|p − |a|2
+

η

|a|4 − |a|p
+

|a|ξ
|a|p − |a|3

− |a|ξ
|a|p − |a|

)
‖x‖p

|a|2|a2 − 1|
(for 3 < p < 4),(

η

|a|p − |a|4
− η

|a|p − |a|2
+

|a|ξ
|a|p − |a|3

− |a|ξ
|a|p − |a|

)
‖x‖p

|a|2|a2 − 1|
(for p > 4).

From the above inequalities, we get the desired inequality (4.3). �

Corollary 4.2 Assume that X is a real normed space, Y is a real Banach space, and that
p, θ, η, ξ are real constants such that p 6∈ {1, 2, 3, 4}, 0 < |a| < 1, ξ > 0, and θ > 0. If a
mapping f : X → Y satisfies f(0) = 0 and the inequalities in (4.1) for all x ∈ X\{0}, as well
as if f satisfies the inequality (4.2) for all x1, x2, . . . , xn ∈ X\{0}, then there exists a unique
mapping F : X → Y satisfying (3.5) for all x1, x2, . . . , xn ∈ X\{0} and the equalities in (3.6)
for all x ∈ X, as well as (4.3) for all x ∈ X\{0}.

Proof. Replacing x by x
a2

and multiplying 1
|a|6 in the first inequality of (4.1), we get∥∥∥∥∥ 1

a6
fe(x)− a2 + a4

a6
fe

(
x

a

)
+ fe

(
x

a2

)∥∥∥∥∥ ≤ η

|a|6

∥∥∥∥ xa2
∥∥∥∥p

for all x ∈ X\{0}. Analogously, replacing x by x
a2

and multiplying 1
|a|4 in the second inequality

of (4.1), we have ∥∥∥∥∥ 1

a4
fo(x)− a+ a3

a4
fo

(
x

a

)
+ fo

(
x

a2

)∥∥∥∥∥ ≤ ξ

|a|4

∥∥∥∥ xa2
∥∥∥∥p
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for all x ∈ X\{0}.
Let b = 1

a . Then we get the inequalities∥∥fe(b2x)− (b2 + b4)fe(bx) + b6fe(x)
∥∥ ≤ b2pb6η‖x‖p,∥∥fo(b2x)− (b+ b3)fo(bx) + b4fo(x)
∥∥ ≤ b2pb4ξ‖x‖p

for all x ∈ X\{0}. By Corollary 4.1, there exists a unique mapping F : X → Y satisfying
(3.5) for all x1, x2, . . . , xn ∈ X\{0}, the equalities in (3.6) for all x ∈ X, as well as

‖f(x)− F (x)‖ ≤ |b|2p|b|6η‖x‖p

|b4 − |b|p|||b|p − b2|
+

|b|2p|b|4ξ‖x‖p

||b|3 − |b|p|||b|p − |b||

=
η‖x‖p

|a4 − |a|p|||a|p − a2|
+

ξ‖x‖p

||a|3 − |a|p|||a|p − |a||

for all x ∈ X\{0}. �
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