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Abstract. We prove general stability theorems for n-dimensional quartic-cubic-quadratic-additive
type functional equations of the form

¢
Zcif(aﬂﬂh + appts 4+ ainxy) =0
i=1

by applying the direct method. These stability theorems can save us much trouble of proving the
stability of relevant solutions repeatedly appearing in the stability problems for various functional
equations.
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1 Introduction

The stability problem for functional equations started with the famous question of Ulam [15]:
Under what conditions does there exist an additive function near an approximately additive
function? In 1941, Hyers [4] gave a partial solution to the question of Ulam under the
assumption that relevant functions are defined on Banach spaces. Indeed, (modified) Hyers’
theorem states that the following statement is true for all € > 0: If a function f satisfies
the inequality ||f(x +y) — f(x) — f(y)]| < € for all x, then there exists an exact additive
function F' and a function K : [0,00) — [0, 00) such that || f(z) — F(z)|| < K(¢) for all z and
;ii% K(g) = 0. In this case, the Cauchy additive functional equation, f(z +y) = f(z) + f(y),

is said to have (or satisfy) the Hyers-Ulam stability.
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When the Hyers’ theorem is true even if we replace ¢ and K (&) by ¢(x) and ®(z), where
@ and @ are functions not depending on f and F' explicitly, the corresponding equation is
said to have (or satisfy) the generalized Hyers-Ulam stability. These terminologies will also
be applied for other functional equations.

Since the Hyers’ paper, a number of mathematicians have extensively investigated the
stability problems for several functional equations (see for example [1, 2, 3, 5, 6, 7, 14] and
the references therein).

Given abelian groups G and G2 and any mapping f : G; — G2, we will set

Af(z,y) = f(z +y) — f(@) = f(y),

Qf(z,y) = flz+y) + flz —y) — 2f(x) — 2f(v),

Cf(z,y) = f2x+y) —3f(x+y) +3f(y) — f(—z+y) —6f(z),

Q'f(x,y) = f2r +y) —4f(x +y) +6f(y) —Af(—z +y) + f(—22 +y) — 24f(x)

for all z,y € G1. In connection with these notations, a mapping f : G; — G2 is said to be
a quartic mapping, a cubic mapping, a quadratic mapping or an additive mapping provided
f satisfies the functional equation Q' f(x,y) =0, Cf(xz,y) =0, Qf(x,y) =0 or Af(z,y) =0
for all z,y € G1, respectively. Those functional equations seem to be familiar to us because
we can easily find out examples for the existence of their solutions. For example, the mapping
f:R = R given by f(x) = az?*, az?, az? or az is a solution of Q' f(z,y) = 0, Cf(x,y) =0,
Qf(x,y) =0or Af(z,y) = 0, respectively.

If a mapping f : G1 — G2 can be represented by the sum of a quartic mapping, a cubic
mapping, a quadratic mapping, and an additive mapping, then we call f a quartic-cubic-
quadratic-additive mapping and vice versa. For example, the mapping f : R — R given by
f(x) = az* + bx® + ca® + dx is a quartic-cubic-quadratic-additive mapping. A functional
equation is said to be a quartic-cubic-quadratic-additive functional equation provided the set
of all of its solutions is the same as the set of all quartic-cubic-quadratic-additive mappings.

Throughout this paper, we assume that V and W are real vector spaces, X a real normed
space, and that Y is a real Banach space if there is no specification. Let Ny be the set of all
nonnegative integers, R the set of all real numbers, and let Q denote the set of all rational
numbers.

In this paper, we prove some general stability theorems that can be easily applied to the
(generalized) Hyers-Ulam stability of a large class of functional equations of the form

Df(.%'l,.%'g, . ,l‘n) =0

which includes quartic-cubic-quadratic-additive functional equations. From now on, for any
given mapping f : V — W, we define Df : V" — W by

¢

Df(x1,22,...,2,) 1= Z cif (anz1 + aigza + -+ + ain®y) (1.1)
i—1

for all x1,22,...,2, € V, where £ and n are fixed integers larger than 1 and ¢;, a;; are fixed
real constants throughout this paper.

Till now, we have followed out a routine and monotonous procedure for studying the
stability problems of the quartic-cubic-quadratic-additive functional equations. However, the
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stability theorems of this paper can save us much trouble of proving the stability of relevant
solutions repeatedly appearing in the stability problems for various functional equations (see
8,9, 10, 12, 13)).

2 Preliminaries

Throughout this section, let V' and W be real vector spaces and let Y be a real Banach space.
Given a mapping f : V — W and a real number a, we will use the following notations:

_ @ fo(x) — folaz) ' fe(@) = fe(ax)

fl(‘x): B —a ) f2($): ad _ a2 )

ar)—a T axr —CL2 X
folz) = Jo( a)3 = afO( )7 fa(z) = Je( a)4 = a2fe( )’ (2.1)
fo(z) == ‘W, fo(z) = JW

for all x € V. We will now introduce some lemmas from [11] in the following Corollaries 2.1,
2.2, 2.3 and 2.4.

Lemma 2.1 ([11, Corollary 3.1]) Given a real constant k > 1, assume that a function ¢ :
V\{0} — [0,00) satisfies either the condition

o)=Y %(l)(kil‘) < o0 (for all z € V\{O}) (2.2)
=0

D(x) := Z k:4i¢<:i> < oo (for all x € V\{0}). (2.3)
=0

Furthermore, suppose f:V —Y is an arbitrary mapping. If a mapping F: V. —'Y satisfies
the inequality

[/ () = F(2)]| < ®(x) (2.4)
for all z € V\{0} as well as the equalities
Fy(kx) = kFy(x), Fy(kx) = kK2 Fy(z),
Fy(kz) = BFy(x),  Fi(ka) = kA Fy(x) 29
for all x € V, then F is the unique mapping with the properties (2.4) and (2.5).

Lemma 2.2 ([11, Corollary 3.2]) Given a real number k > 1, assume that the functions
o, : V\{0} — [0, 00) satisfy each of the following conditions

ka<ki><oo, Zﬁ¢(kx)<oo,
1=0 =0

d(z) := ZM(}?) <oo, U(x):=) %w(l{ix) < 00

d0i:10.20944/preprints201810.0504.v1
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for allz € V\{0} and f : V =Y is an arbitrary mapping. If a mapping F': V — 'Y satisfies
the inequality

If () = F2)]| < &(2) + ¥() (2.6)

for allx € V\{0} as well as the equalities in (2.5) for allx € V, then F' is the unique mapping
satisfying equalities in (2.5) for all x € V' and inequality (2.6) for all x € V\{0}.

Lemma 2.3 ([11, Corollary 3.3]) Given a real number k > 1, assume that the functions
o, : V\{0} — [0, 00) satisfy each of the following conditions

Zk%p(m) < o0, Zﬁ(z)(k ) < 00,
=0 1=0

5 o - 2, % i o — 1 i

P(z) := z;k: ¢><k> <oo, U(z):= Z (k') < oo
forallz € V\{0} and f : V — Y is an arbitrary mapping. If a mapping F : V —'Y satisfies
the inequality (2.6) for all x € V\{0} as well as the equalities in (2.5) for all xz € V', then F

is the unique mapping satisfying the equalities in (2.5) for all x € V' and inequality (2.6) for
all z € V\{0}.

Lemma 2.4 ([11, Corollary 3.4]) Assume that k > 1 is a real number and the functions
o, : V\{0} — [0, 00) satisfy each of the following conditions

D k%p(l“:) < 00, 3 %qb(kia:) < 00,
=0 ]

5 o - 3i (T i ,_ — 1 i

d(z) == Z;k ¢<k> <oo, U(z):= Z Tt (k'z) < oo
for all x € V\{0}. In addition, suppose f : V — Y is an arbitrary mapping. If a mapping
F :V =Y satisfies the inequality (2.6) for all x € V\{0} as well as the equalities in (2.5)

for all x € V, then F is the unique mapping satisfying the equalities in (2.5) for all x € V
and inequality (2.6) for all z € V\{0}.

3 Main results

In this section, we assume that V is a real vector space and Y is a real Banach space if
there is no specification. In the following theorems, we prove that there exists only one exact
solution near every approximate solution to D f(x1,x2,...,2,) = 0.

Theorem 3.1 Given a real constant a with |a] > 1, assume that the functions p,v : V\{0} —
[0,00) satisfy the conditions

i /L(aig;) < oo and i V(aiq,') < 00 (3.1)

d0i:10.20944/preprints201810.0504.v1
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5
for all x € V\{0} and a function ¢ : (V\{0})" — [0,00) satisfies the condition
2 p(atzy, a'x, ... a'xy)
> : < o0 (3.2)
= el
for all x1,xa,... 2, € V\{0}. If a mapping f : V =Y satisfies f(0) =0,
er(a%) — (@® + a") fe(az) + a® fe(2)]| < (=), 5.3
| fola®z) — (a + a®) fo(az) + a fo(2)|| < v(z) '
for all x € V\{0}, and if f moreover satisfies the inequality
||Df(:l)1,l’2,...,1§n)“ SSO(I’l,iEQ,...,IL‘n) (34)
for all x1,xa,...,x, € V\{0}, then there exists a unique mapping F : V —'Y such that
DF(z1,x2,...,25) =0 (3.5)
for all x1,x9,...,x, € V\{0}, and
Fi(ax) = aFy(z), Fy(ax) = a®Fy(x),
(3.6)
F3(az) = a®F3(x), Fy(az) = a*Fy(x)
for all x € V, and such that
o0 |a2i+2 _ 1|u(aim) |a2i+2 _ 1|V(aia?)
—F < , - 3.7
1f () (@)] < ; ( % — a2||a¥i+4 + a® — af|al33 (3.7)

for all z € V\{0}.

Proof. First, we define the mappings J,,f : V — Y by

_ fila™e) | fsamx) | foa™s) ")

a4m a3m a2m a™

Im f ()
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for all z € V and m € Ny. It then follows from (2.1) and (3.3) that
[Jm f(x) = Tt f ()]

m-+i—1
< D W@ = Jinf @)l
m+Il—1 fe(ai"_lx) _ a2fe(ai$) fe(ai+2$) _ anB(ain)
;ﬂ a%i(a* — a?) o a%it4(at — a?)
fola™'x) —afola’z)  fola'?z) — af,(a )
+ a3 (a3 — a) B a3 3 (a3 — a)
a'fela’s) = fe(@™a)  a'fo(a'a) — fe(a" )
a2i(a — a?) B a2+2(at — a?)
a’fola'x) = fola'z)  aPfo(a"t'x) — fola' )
at(a® — a) B atl(ad — a)
miil fe(a22) — (a® + a*) fo(a™iz) + abfo(a’a)
= ;ﬂ - aiti (gt — a2)

fo(aiT2z) — (a + a®) fo(a™x) + a'f,(a'x)
a3 3(a3 — a)

fe(a"2z) — (a® + a*) fe(a''a) 4 a® fe(a'z)
a2 +2 (g% — q2)

fo(a™22) — (a + a®) fo(a' i) + a* f,(a'z)
atl(a3 — a)

m+l—1 <‘a2i+2 —1|p(aiz) . |a2i+2 — 1’V(aix)>

_l’_

+

. - 3.8
= lal4i+|qt — 2] |ait3]a3 — g (38)
for all x € V\{0}.

In view of (3.1) and (3.8) and since |a| > 1, the sequence {J,,, f(z)} is a Cauchy sequence
for all x € V\{0}. Since Y is complete and f(0) = 0, the sequence {J,,f(x)} converges for

all x € V. Hence, we can define a mapping F': V — Y by
Ma@+ﬁw@+ﬁw®+ﬁmm> 59)

a4m a3m a2m am

F(z):= lim J,f(z)= lim (
m— 00 m— 00
forall z € V.
If we replace z with oz in the second inequality of (3.3) and divide the resulting in-
equality by |a|™, then we get

fO(am+2x)

am+2

v(a™z)

= afm

fol@ i) i fofa"a)

2 2, 4
a — (a*+a”) s o

for all z € V\{0} and m € N. In view of the second inequalities of (3.1), this implies that
fola™x)

lim =——= converges for all z € V (3.10)

m—00 a™

d0i:10.20944/preprints201810.0504.v1
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because of our hypothesis that f(0) = 0. Analogously, by the first inequalities of (3.1) and
(3.3), we get

lim w converges for all x € V. (3.11)
m—oo a

By (2.1), (3.9), (3.10) and (3.11), we have
Foe) — Tim <f3<c;:m> . fl(a::w) B A0

m—00
Fe(z) = lim fala") +f2(a ) = lim Jela™z)
m—o0 aim a?m m—oo  @2m

im 7}‘},(&"‘1‘)

)

(3.12)

forall z € V.
In view of (2.1) and (3.12), we easily obtain

Fi(x) = a3FO(a:§ = Folar) _ oy, fola™z)
a’ —a m—00 a™
for all x € V. Hence, we get
L fo(am+1x) B
Fi(az) = n}gnoo = aF(z)
forall x € V.
Moreover, we obtain
a*F.(z) — F.(ax) . fe(a™x)
Falw) = a* — a? - n%gnoo S a2m
for each z € V. Thus, we obtain
T fe(aerlx) _ 2
Fs(ax) = %gnoo =4 Fy(z)
for all z € V.
Similarly, using (2.1), (3.10) and (3.12), we have
Fy(z) = Fy(az) — aFy,(x) _0

ad —a

for every x € V. Thus, we have F3(ax) = a®F3(z) for all z € V.
Furthermore, by (2.1), (3.11) and (3.12), we obtain

ax) — a*F.(z
Fif) = =

for all x € V. Therefore, it holds that Fy(ax) = a*Fy(z) for all z € V.

d0i:10.20944/preprints201810.0504.v1
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Now, it follows from (1.1), (2.1) and (3.9) that

DF(ajlaan"'v:L'n)

l
= Z ¢iF (a1 + aipza + -+ + ainy)
=1
V4
oy fa(a™(anwy + -+ aimzy))  f3(a™(@inz + -+ ain®n))
B mgnoo Z Ci adm + adm

+

fo(a™(anz1 + -+ ainxy))  fr(a™(anz + - + ainzn))
a2m + am

V4
i ( fela™  anar + - + ainen)) = @ fe(a™ (@ + - - + aipin))
= E :Cl aim(ah — g2)

=1
1, (am—l—l(aﬂml 4t ainl'n) — afo( aﬂm +---+ aml'n))
adm (a3 — )

+ z
a4fe (am(ailxl +-+ ain$n)) fe ( m+1 (ainwy + -+ amxn))
(
) —
(

a’m (gl — a2)

afo(a™(anm1 + -+ + aman)) — fo(a™ Hanwr + - + amﬂﬁn)))

a™(a3 — a)

C bm Dfc(a™ a2y, ...,a™ 1 ay,) — a?Dfe(a™wy, ..., a™zy,)
= m am(ad — )
Df, (am+1x1, R am+1xn) —aDf, (am:cl, ... ,amxn)
a’m (a3 — a)
a*Df, (amml, e amajn) - Df. (am“xl, e amen)

a2m(a4 _ (12)

a3Dfo(am$1, ... ,am:vn) — Dfo(am+1x1, ey am+1azn)>

a™(a® — a)

for all z1,x9,...,z, € V\{0}.
Hence, in view of (3.2) and (3.4), we have
|DF(x1,x2,...,2,)|

(1+ |a|™ 4+ |a*™ + |aP™ ) g (@™ g, a™ g, ... a™ ey
ot — o

< lim

-~ m—oo

N (’a‘Z + ‘a’m+2 4 ‘a‘2m+4 4 ‘a|3m+4)¢e(amx1’ B .7amxn)
oot —
=0
for all x1,z9,...,2, € V\{0}, where p.(z1,...,2,) := %(@(ajl, coy ) Fo(—x1, —:cn)),

e., DF(x1,22,...,2,) = 0 for all z1,x9,...,z, € V\{0}. Moreover, if we put m = 0 and
let I — oo in (3.8), then we obtain the inequality (3.7).
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We note that the equalities
Fi(lalz) = |a|Fi(z), Fy(lalz) = |a]*Fa(z),
Fs(lalz) = |a]*F5(2), Fy(lalz) = |a|*Fy(z)
are true in view of (3.6). (When a < 0, we have

SFo(—ax) — Fo(—a? °F, — F,(a?
F1(]a\x):F1(—ax):a ol azg—a()( a:z:):_a O(ajg_ao(a x),

since Fy, is odd. By the definition of F (see (2.1)) and since we already showed that Fj(az) =
aFy(z) for all x € V, we further get

Fi(la|lz) = —Fi(az) = —aFy(z) = |a|Fi(z)

and so on.)
On account of Lemma 2.1 with k = |a|, the mapping F' : V' — Y is the unique mapping
satisfying the equalities in (3.6) and the inequality (3.7), since the inequality

> 2i+2 j 242 ;
If(x) — F(z)| < Z la 2 1‘#((1%) la i+2 _ 1‘1/(61%)
3 la* — a?||a|¥+4 a® — al|al3+3
o . i
pla'z) v(a'x)
= -+ :
Z;Qﬁ—ww a2 — 1[[aff
<

> Lok
=0

holds for all z € V\{0}, where k := |a| and ¢(z) := —— (u(z) + p(—z) + v(z) +v(-2)). O

la®—1]

In the following theorem, let V and Y be a real vector space and a real Banach space,
respectively.

Theorem 3.2 Given a real constant a with |a| > 1, assume that the functions p, v : V\{0} —
[0,00) satisfy the conditions

Z\ T < > < oo and Z|a\4z ( ) < 00 (3.13)
for all x € V\{0} and a function ¢ : (V\{0})" — [0,00) satisfies the condition
Z|a|42 <x1’x2 ..,a:z) < 0o (3.14)

for all x1,x9,...,x, € V\{0}. If a mapping f : V — Y satisfies f(0) = 0, inequalities in
(3.3) for all z € V\{0}, and if f satisfies inequality (3.4) for all x1,x2,...,x, € V\{0}, then
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there exists a unique mapping F : V —'Y satisfying (3.5) for all x1,x2,...,z, € V\{0} and
(3.6) for allz € V, and such that

o ’a4i—a2i‘ T |a3i—ai| T
||f($) - F($)” < ( |a4 _ CL2| K aitl + |CL3 _ a| v ait1 (315)

=0

for all z € V\{0}.
Proof. First, we define the mappings J,,f : V — Y by

O o R C P A R Oy
a a a a

for all x € V and m € Ny. It then follows from (2.1) and (3.3) that

H']mf(x) - Jm+lf(x)“
m-+i—1

< Y (@) = T f(@)]

m—{z—lril
= > a“h(ji) +a3if3<cfi) +a2if2<:i> + a"fl(;.)
_a4¢+4f4<6fﬂ> _a3z‘+3f3<ai1> _a2i+2f2<ail> _aiﬂfl(aiﬁl)H

1 " 4i 02795 (a2 A ar 6p(_ T

< o — 2] Z a’\ fe| i (a” +a%)fe S ) tatel o
2
S GCORERECHIED)
1 m-+i—1 ' 2
8 (52 () (52

, 2
(0 5) s () <ot 55 )|

m+l—1 45 2 3i i
la® — a®| x |a®t — a'| x
= Z ( lat — 2] P T + a3 — a DS (3.16)

i=m

for all x € V\{0} and I,m € Ny.
On account of (3.13) and (3.16), the sequence {J,,f(z)} is a Cauchy sequence for all
x € V\{0}. Since Y is complete and f(0) = 0, the sequence {J,f(x)} converges for all
x € V. Hence, we can define a mapping F' : V — Y by
F(z) = lim Jyf(z)

m—o0

= lim <a4mf4 <aicn> +a®™ f3 (;;) +a®" f <agin> +a™ fr (;)) (3.17)
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for all z € V. Moreover, if we put m = 0 and let [ — oo in (3.16), we obtain the inequality
(3.15).
As we saw in the proof of the previous theorem, it follows from (3.3) and (3.13) that

lim a®"f, (33) and lim a'™f, <$> converge for all x € V. (3.18)
a™ a™

m—o0 m—r0o0

By (2.1) and (3.18), we get
Fy(z) = lim (a?’mfg(x) +a™fy <x>> = lim a3mfo<x>,
m—00 am™ a™ m—00 a™
F.(z) = lim <a4mf4<$> +a2mf2<“">> = lim a4mfe<x)
m—00 a™ a™ m—00 a™

forall z € V.
In view of (2.1), (3.18) and (3.19), we have

(3.19)

Fl(a:) _ a3Fo(x) — FO(CLI) -0

ad —a

for each x € V. Therefore, it holds that Fj(az) = aFi(z) for any x € V. Analogously,
it follows from (2.1), (3.18) and (3.19) that Fy(z) = 0 for every x € V. Thus, we have
Fy(az) = a®Fy(x) for all z € V.

Similarly, using (2.1), (3.18) and (3.19), we obtain

F,(ax) — aF,(x . m T

for all z € V. Hence, we easily see that F3(azx) = a®>F3(x) for any z € V. Moreover, similarly
as the case of F3, we obtain

F4(£L‘) _ Fe(ax)4_ a2F6(x) = lim a4mfe<a:fn)

a* — a? m—sco

and Fy(ax) = a*Fy(z) for any z € V.
Now, using (1.1), (2.1) and (3.17), we have

DF(xy,x9,...,2y)
J4
= Y ciF(anm1 + aipxa + - + Qinn)

i=1
¢ X X
. 4 1 n
= lim [a™ E cifa a1 — + -+ Qin——
m—00 — a a
1=

4
3 1 Tn
+a mzcz’f:i((lz‘lam 4 —l—amam>
i=1

¢
2 1 Tn
+a mzcz’f2<ai1am + e —i—amam>
i=1
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J4
1 T Ty
= lim a4mg ¢ a; 4+ da;
M0 "\ a4 — g2 fe il am—1 moam—1

a* —a a a
a™ 3 T Tn, T Tn,
+a3_a(a Dfo<w,...,w)—Dfo<am_1,...,am_1>>]

for all x1,x9,...,x, € V\{0}. Hence, by (3.4) and (3.14), we obtain
|DF(z1,22,...,2n)]|

- jal*™ +la*™ |al>™ + |a|™ 1 Tn
< lim [( o — a2 + @ —al Pe\ gm—1'"" " gm—1

m—00
‘a|4m+2 4 ‘a|2m+4 |a’3m+l 4 |a’m+3 1 Tn
* la* — a?| + |a3 — al Pelgm = gm

(p(z1,... an) + @(—21,..., —2p)).

N[ =

for all x1,z9,...,2, € V\{0}, where p.(z1,...,2,) :=
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Thus, it holds that DF(x1,za,...,x,) = 0 for all z1,z9,...,z, € V\{0}.
As we see in the proof of Theorem 3.1, we notice that
Fi(lalz) = |a|Fi(z),  Fy(lalz) = |a]*Fa(2),
Fy(lalz) = [aPF3(z),  Fu(lalz) = a|*Fy(z)

forall x € V.
According to Lemma 2.1, the mapping F' : V — Y satisfying equalities in (3.6) and
inequality (3.15) is determined uniquely, since

> |a4z'_a2i’ T ‘a:ﬁ_ai‘ T
[f(z) = F(o)]| < Z<|a4_a2’l‘ sl i a3 — qf Y\ gt

=0

= |a¥| x x
< L@ d () ()
<

o)

1=0

for all x € V\{0}, where k := |a|] and ¢(z) := Wl_a'( (Z) +p(=2) +v(E) +v(=2)). O

We assume again that V is a real vector space and Y is a real Banach space if there is no
specification.

Theorem 3.3 Given a real constant a with |a| > 1, assume that the functions p,v : V\{0} —
[0,00) satisfy all the conditions

Ml(a\zl =% Z\alu( ><°° Z |a|21 < 0o, Zlall( ><oo (3.20)

for all x € V\{0} and a function ¢ : (V\{0})" — [0,00) satisfies the conditions

oo

oo i i 7
Z@(axl,axg,;--,axn) < oo and ZW <$1 2 xﬂ) < 00 (3.21)

‘a|21 i’ at 7 al

for all x1,xq,...,2, € V\{0}. If a mapping f : V —'Y satisfies f(0) =0 and inequalities of
(3.3) for all x € V\{0} and if [ satisfies inequality (3.4) for all x1,xa,...,x, € V\{0}, then
there exists a unique mapping F : V. — Y satisfying equality (3.5) for all x1,x9,...,2, €
V\{0}, equalities in (3.6) for all x € V', and moreover

q2i+2 _ 1‘ . T
e~ ol = Yo o et S (FE () ) 622
for all z € V\{0}.
Proof. We define the mappings J,,f : V — Y by

D) | ) | B ()

mf( ) T adm ad3m a2m
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for all z € V and m € Ny. By (2.1) and (3.3), we have

[Tm f(x) = T f ()]

m+l—1

< Z | Jif (x) = Jiv1f ()]

_ N |l e —a?feta’)  fela™ ) — oot

= ; a%i(at — a?) - aditd (gt — a2)

fe(a"™ o) —a'fe(a’a)  fe(a™?x) —a'fe(a™a)
B a2i(a4 _ a2) a2i+2(a4 _ a2)
+ fo(ai+1$) - afo(ai:v) . fO(ai+2x) - afo(ai+lx)
a3i(a3 — a) a3i+3(a3 — q)

- 1 m+l—1 fe(GQ . aia:) _ (a2 + a4)fe(ai+1x) 4 aﬁfe(aix)
= ot — a2 Z N aldit+4
=m
fe(a? - aix) — (a® + a*) fo(a"1x) + a®f.(a'x)
+ q2it2
1 mi_l - fo(a? - a'z) — (a+ a®) fo(a™2) + a f,(a')
3 _ 3i+3
’CL (l’ i=m a
2
; a‘x ax " T
—d (f"<ai+1> —(a+ a3)fo<ai+1> +a fo<ai+1>) H
ml—-1 i 2i+2 ml—1 i
platz) |a®*= —1] 1 v(a'z) : x
< Z 1_ 2 Tira . T3 Z 5is +lal'v| =5 (3.23)
2 Tai—a o @—a 2 \fdl a

for all x € V\{0} and for all [, m € Ny.

In view of (3.20) and (3.23), the sequence {J,,f(x)} is a Cauchy sequence for all x €
V\{0}. Since Y is complete and f(0) = 0, the sequence {Jp, f(z)} converges for all x € V.
Hence, we can define a mapping F' : V — Y by

m—00 m—00 adm a3m a?2m

F(z):= lim J,,f(z)= lim <f4(amx) + fala™z) + fao(a™x) +a™f1 (;ﬂ)) (3.24)

forallz e V.
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By (1.1), (2.1) and (3.24), we get

DF(xy,x9,...,2y)

= Y aF(anm + aigwy + - + QinTy)
i=1

B Z <f4 aina™x1 + -+ aipa™w,) | f3(ainamr 4+ aipa™ )
= ¢; lim +

m—00 alm as3m
n felapna™xy +--- + ainamﬂvn) amf, azlﬂfl 4 Ginn
a2m a™
[
—  lim 1 Z ‘fe (ailam+1$1 + ainam+lxn) - a2fe (ailamxl +--+ ainamxn)
T oo gAm at _ g2
=1
¢
folana™ oy + -+ apma™ ayn) — afo(ana™zy + - + ama™y,)
+ lim — E G 3
m—0o0 a” — a

=1

+ lim L Ze: C‘GA‘fe (aina™xy + -+ + apma™zy) — fe(ana™ My + -+ aza™ M ay,)
(4

m—so0 q2Mm 1 at — g2
=
I a™ ZZ: (a3p, (G121 44 GinTa) g auan ..y Finn
+ mgnoo a3 — a - G|l @ Jo am am o\ gm— am—1
=
~ lm Dfc(a™ a2y, ... ,a™ ay,) — a?Dfe(a™x1, ..., a™zy)
T Mmoo a4m(a4 _ a2)
+ lim Dfo(a™Mzy,...,a" M ay) —aDf,(a™x1, ..., a"xy)
m—00 a3m(a3 — a)
+ lim a*Df. (am:pl, . ,ammn) —Df. (am+1331, ey am+1xn)
Moo a2 (ot — a?)

a™ 3 Tn ary aTn
+Tr%gnooa3 CL( Dfo< m"'wwn)_DfO(Wv'“aa?n))

for all x1,x9,...,2, € V\{0}. Hence, by (3.4) and (3.21), we have

“DF(xhx?a e ,xn)H

((1 + |a|m+1 + |a|2m)¢e(am+lx1’am+lx2’“.’am-i-ll,n)

[t = a2

< lim

- m—ooo

(a? + [a|™ 2 + |a*™ ) pe (a™ 1, . . ., a™zy)
et — a2

la|™+3 71 Tn, la]™ axy azxy,
+’a3_a’@e aim""’aim +’a3_a’806 aim""’aim

for any x1, z2,...,x, € V\{0}, where @.(x1,...,z,) := %(go(xl, ceny ) (=21, .., —xn)),

=0
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i.e., DF(z1,22,...,2y) = 0 for all z1,z9,...,2, € V\{0}. Moreover, if we put m = 0 and
let [ — oo in (3.23), then we obtain the inequality (3.22).
As we did in the proofs of the previous theorems, on account of (3.3) and (3.20), we can
show that
m m
lim M, lim fola"z) and lim o™ fo(ajn> converge for all x € V.
a

m—oo  q2m m—oo  @3m m—00

In view of (2.1), (3.24) and the last relations, we get

m
Fe(z) = lim Jela™z) x),
m—oo  q2™m
. L fo(amz) y n . (3.25)
o) =l = omm 4o G
for all z € V.
By using (2.1) and (3.25), we get
a’ 1 . x
i) = ad — aFo(x) a3 — aFo(ax) - mlgnoo a"Jo (CLm>7
4
a 1 . fe(a™z)
Fy(z) = mFe(fﬂ) - mFe(al‘) = lim_ —gm
1 a . fola™z)
Fy() = ad — aFO(ax) ol — aFO(x) = S adm
1 2
F4(:L') = a4 ) Fe(ax) — mFe(fL’) =0

for all x € V. Hence, we can verify that Fy(ax) = aFyi(z), Fy(ax) = a’Fy(z), F3(ax) =
a®F3(z) and Fy(ax) = a*Fy(x) for each x € V.
Similarly as in the proof of Theorem 3.1, we can use (3.6) to show that

Fi(lalz) = |a|Fi(),  Fy(lalr) = |af Fy(x),
Fy(lalz) = |a]’F3(z),  Fu(|lalz) = |a|*Fi(=).

Due to Lemma 2.2, the mapping F' : V — Y is the unique mapping satisfying equalities
in (3.6) and inequality (3.7), since it follows from (3.22) that

|a21+2 o 1|

Hf(.%) _F(x)” < Z ’a4 _ag‘ |a|4z+4 _a| Z (‘a|3z+3 +’ ’Z ( f&—l))

2 [ uld'z) + v(a'x) lal® x
= ;( @ — 1l *\a?—u”(am))
< Z(;;w(k@ >+ki¢(;€.)>

1=0

for all z € V\{0}, where we set k := |a|, ¥(x) := |a2711|( () + p(—z) + v(x) + v(—=x)) and
() = g (v(3) + v (3F))- =

In the following theorem, let V' be a real vector space and Y a real Banach space.

d0i:10.20944/preprints201810.0504.v1


http://dx.doi.org/10.20944/preprints201810.0504.v1
http://dx.doi.org/10.3390/math6120282

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 October 2018

17
Theorem 3.4 Assume that the functions p,v : V\{0} — [0, 00) satisfy the conditions
o o T
o
St <o SlaPu( %) <o,
= = 3.26)
~ i (3.
o;
S <o Slo(%) <
=0 i=0
for all x € V\{0} and a function ¢ : (V\{0})™ — [0, 00) satisfies the conditions
> o(a‘zy,alxy,. .. a'xy) p > 9 [x1 T2 Tn 5
; PE < oo an ;]a\ Pl ) < (3.27)

for all x1,xa, ..., 2, € V\{0}. If a mapping f:V — Y satisfies f(0) =0 and the inequality
(3.3) for all x € V\{0} and if f satisfies (3.4) for all x1,xa,...,z, € V\{0}, then there exists
a unique mapping F : V =Y satisfying the equality (3.5) for all x1,xq,...,x, € V\{0}, the
equalities in (3.6) for all z € V, and

]a3 —al 4 Z <|ay32+3 +lal'v <ai+1>> (3.28)

=0

8

for all z € V\{0}.
Proof. We define the mappings J,,f : V — Y by

Imf(x) = f‘lgi:m) + fgfg:a:) + a2mf2<;n> +amf1<;ﬂ)

for all x € V and m € Ny. Then it follows from (2.1) and (3.3) that

[T f(x) = T f ()]

m~+l—1
< Z i f () = Jiy1f ()]
m~+l—1 ; i 2 '
f i i+1 ? 1
= 4(133) o f4(ii+4x) + f3(§ix) o f3(2i+3a:)
e (5) - n(n) o (3) o ()|
1 " fel@? - a'x) = (@ + ) fe(a ) + 0 fo (o)
S m Z: B a a'xr a Z4i+4 a X a a’'xr

CLQJJ axr X
{o(22) () )
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+ 1 mil B fola® - a'z) — (a4 a®) fo(a''z) + a’ fola'z)
m ' a3tt+3
=m

) 2
CCORERECHRCO]

1 m—+l—1 ,LL(CLZQT) T
2i
< a* — a2 > <|a|4i+4 +lal “(az'ﬂ))

i=m

1 I v(a‘z) - x
+ a3 — q Z <|a|3i+3 + |a’Z’/<ai+1>> (3.29)

i=m

for all x € V\{0}.

In view of (3.26) and (3.29), the sequence {J,,f(x)} is a Cauchy sequence for all x €
V\{0}. Since Y is complete and f(0) = 0, the sequence {J,,f(z)} converges for all x € V.
Hence, we can define a mapping F' : V — Y by

F(z):= lim Jpf(z)= lim (fiﬂw) ;. fala”a) +a2mf2<;fn> +amf1<(;fn)> (3.30)

m—oo m—oo a3m

for all z € V. Then, by oddness and evenness of F;, and F¢, it follows from (3.30) that

Fifw) = lim (f‘”’(g,:) famfy (i))

Fo(w) = lim (W +a™" (;;))

for all z € V. Moreover, if we put m = 0 and let [ — oo in (3.29), we obtain inequality
(3.28).
In view of (3.3) and (3.26), it holds that

m m
lim amfo<x>, lim M, lim asze(x>, lim 7¢(2"2)
m m am

m—00 a m—oo a3 m—00 m—oo  agdm
converge for all x € V. Using these facts, we get

a? 1
7_04}7’0(0,32)

3 m
B a . fa(a™x) m T
N a3—an}gnoo< a3m +ath am

1 . fg(am+ll‘) m x
_a3—an}gnoo <a3m+a fl am_1

3
_ a . me T\ @ . m—1 T
a a3—an%gnooa fl(a,m> a3—arr%gnooa fl(am_1>

— mye (L
- n}gnooa fl(a”")
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for all x € V. Therefore, Fi(ax) = aFi(z) for all x € V. By the similar way, we can show
that the equalities in (3.6) hold true for any x € V.
On account of (1.1), (2.1) and (3.30), it holds that

DF(zy,x9,...,2y)

l
= Y ciF(anzy + as + - + Ainy)
i=1

¢
. 1
= Z C; hmoo ((ﬁm'ﬂl (am(aﬂ-’ﬁ 4+ .4 aznmn))
i=1

m—r
1 m
+ a?TnfS (a™(anzy + - + ainzn))

+a2mf2<“ill“1 ot am:cn)

am

+amfl<ai1$1 + - +aznxn>>

am

1 1
_ : m—+1 m—+1
= n%gn prr 7a4—a2Dfe(a Tlyennr @ ajn)

2
a
— mee (amxl, ey amxn)>
+ lim L LDf (ame a™tly )
m—)ooa?’m a3_a o 17"'7 n
- LDfo(amxl, . ,ammn)
a® —a

for all z1,x9,...,z, € V\{0}.
Using (3.4) and (3.27), we get

HDF(:Uhx?? ) xn)”

1
. +1 +1
< (Wx_awn%(“m 21, 0" 2n)

laf®

Jt = a@afim (o710 n)
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1 m+1 m—+1
+ ’ag — aHa|3mLpe(a Ty, , @ xn)
|al
’ag — aHa|3mgpe(a Ty, a xn)
U T W a1 Tn
|a4—a2|% am’ T gm |a4—a2|<pe gm—17"""" gm—1

|lal3|a|™ x1 T, la|™ x1 Tn,
+ \a3—a\¢e angm )t ]a3—a|@e am—17""" 7 gm=1

for all z1,x9,...,x, € V\{0}, i.e., DF(x1,22,...,2,) =0 for all x1,x9,...,2, € V\{0}. By
a similar way as the previous proofs, we notice that the equalities

= 0

Fi(lalz) = |a|Fi(z), Fy(lalz) = |a]*Fa(z),
Fs(lalz) = |a]*F5(2), Fy(lalz) = |a|*Fy(z)
are true in view of (3.6).

Using Lemma 2.3, we conclude that the mapping F' : V — Y is the unique mapping
satisfying equalities in (3.6) and inequality (3.28), since

1f (=) = ( )l
T 1 = [ v(a‘x ; T
< — ag, Z < o[ +| [ (ai—l-l)) + a3 — qf Z <‘a(,31+3, + |a|zy<ai+1))

z) + v(a'z) 2% 9 x
\a?—uZ( af *‘“’”(zﬂ)*‘““(m))

< g(,:siwkl) (5 ))

for all x € V\{0}, where we set k := |a|, ¥(z) := |a21_1|(u(a:) + p(—z) + v(x) + v(—=x)) and
(@) i= gy (n(3) + n(Z2) +v(2) +v(ZF)- R

Theorem 3.5 Assume that the functions p,v : V\{0} — [0, 00) satisfy all the conditions

Z|“|3Z< ><oo ZM‘QW < 00, Z|a|3’< ><oo Z ‘41 ) < (3.31)

for all x € V\{0} and a function ¢ : (V\{0})™ — [0,00) satisfies the conditions

IN

1

@(aixl,aimw-wai%) - 3i _(T1 T2 Tn,
, < oo and Z|a| S =, =] <o (3.32)

|a|4z prd a® ) at ’

for all x1,xa,...,x, € V\{0}. If a mapping f:V —Y satisfies f(0) = 0 and the inequality
(3.3) for allxz € V\{0} and if f satisfies (3.4) for all x1,x2, ..., x, € V\{0}, then there exists
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a unique mapping F : V. —'Y satisfying the equality (3.5) for all x1,xa,...,x, € V\{0}, the
equalities in (3.6) for allx € V, and

|f(x) — F(x ||_|a4 a2|z<| |41H)+| alp (aﬁl)) Z||a3 (az+1>(3'33)

for all z € V\{0}.

Proof. We define the mappings J,f : V — Y by

for all z € V and m € Ny. It follows from (2.1) and (3.3) that

[T f(2) = T f ()]

m~+l—1

< Z | Ji f () = Jig1 f(2)]|

mjil i i+1
_ Z f4£,jix) B f4icii+4$) +a2if, (;) _a2i+2f2<ail>
o f(> f< ) i f<> g f<+> H
1 m+1—1 fe(QQ-aix) _ (a2 +a4)fe(ai+1x) +a6fe(ai$)
S A — g Z - T
, 2
SECIREREEREN)]
1 3 a’x 3 ax 4 x
a2 | () oG5 ren(Gn)

) 2
—d (f(jfl) ~ (@t ) +

1 m-+l—1 /,L(CLZIL‘) 0 . m—+1—1 |a3i . (Ii
< — ‘ul =
S e 2 e o(am))+ X e

i=m

+a'f,
|V

()]
() o

for all z € V\{0} and I, m € Ny.
On the other hand, by (3.3) and (3.31), we further see that

liin am i, (;), liLn amf, <(;n), liin feiimﬂﬂ) converge for all z € V. (3.35)

In view of (3.31) and (3.34), the sequence {J,,, f(z)} is a Cauchy sequence for all z € V'\{0}.
Since Y is complete and f(0) = 0, the sequence {.J,,f(z)} converges for all z € V. Hence,
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considering (2.1) and (3.35), we can define a mapping F': V — Y by

) . . f4(amx) 3m L
for all x € V. Moreover, if we put m = 0 and let | — oo in (3.34), we obtain inequality
(3.33).
On account of (2.1) and (3.36), the oddness and evenness of F, and F, imply that

m—o00 m—o00 alm

Fo(x) = lim a3mf3<ai> and F.(z) = lim fala™z)

for all x € V. Using these facts, for example, we get

1 a®
F4(.'L’) = mFe(ax) — mFe(fL’)
1 - fala™ ) a? . Ja(a™x)
= lim — lim —————=
at — a2 mSoo adm at — a2 mSo0o gim
_ oy Ja@T2)
= m ——

m—oo  gdm

for all z € V. Therefore, Fy(ax) = a*Fy(x) for all x € V. By the similar way, we can show
that all the equalities in (3.6) hold true for any x € V.
By using (1.1), (2.1) and (3.36), we have

DF(xy,x9,...,2y)
l
= Z CzF azlxl + ajpTy + -+ ainvrn)
=1

¢
= ZC hm (a4mf4( ™an@y + -+ Q)
i=1

3 171 + -+ + AipTy
+a mf3< o >)

1
= Z ¢ lim <)a4mfe (am+1(ai1$1 4+ am:l:n))

m—o0 —a?

2
a
B mfe( (az‘19€1 +---+ ainazn)))
£ 3m
; @ ai1T1 + -+ -+ QinTy
+ 3 i ( _afo( — )

a3m+1f ani + -+ Qinty
a3 —a’’ am

Df, (am+1x1, e am+1xn)

. 1
= lm ((a4 — a?)gim
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a?

" Gt @y Dl a’”xn)>

' a3m x Tn, a3m+1 x1 Tn
+ lim 3 Df, Toeees T — =3 Df,| —,...,—
m—oo \ a° — a a™™ a™— a’ —a a™ a™

for all z1,x9,...,z, € V\{0}.
By (3.4) and (3.32), together with the last equality, we get

HDF(xl,xg, . ,$n)H =0

for all x1,x9,..., 2, € V\{0}, i.e., DF(z1,22,...,2,) = 0 for all x1,x9,...,2, € V\{0}.
We remark that the equalities

Fi(lalz) = |a|Fi(2),  Fy(lalz) = |af Fy(x),
Fy(lalz) = |a’F3(z),  Fu(|alz) = [a|*Fi(z)

are true in view of (3.6).
Using Lemma 2.4, we conclude that the mapping F' : V — Y is the unique mapping
satisfying equalities in (3.6) and inequality (3.33), since

- s (o) £ )
- H(a 55) |a|3i T |a\3’ "
<

i(k‘h +k:3’¢>< >)

for all x € V\{0}, where we set k := |a|, ¢(z) := 1_1‘ ((2) + p(=2) +v(2) +v(=2)) and
U(@) i= b (o) + pl—2)) =

4 Corollaries

By using Theorems 3.1, 3.2, 3.3, 3.4, and 3.5, we can prove the Hyers-Ulam-Rassias stability
of the functional equation (1.1).

Corollary 4.1 Assume that X is a real normed space, Y is a real Banach space and p, 6, n,
¢ are real constants such that p € {1,2,3,4}, la] > 1, £ >0, 7> 0, and > 0. If a mapping
f: X =Y satisfies f(0) =0 and
[ fe(a®x) = (a® + a*) fe(az) + a® fe(@)|| < nllx|?,
[ fola®x) = (a+ a®) folaz) + a* fo(x)|| < &[|[|”

for all x € X\{0} and if f moreover satisfies the inequality

(4.1)

IDf (@1, @2, an)l| < O(2allP + - + llzal”) (4.2)
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for all x1,xa,...,2, € X\{0}, then there exists a unique mapping F' : X — Y satisfying
(3.5) for all x1,x2,...,x, € X\{0}, and the equalities in (3.6) for all x € X, as well as

T I C) [ i — Szl (43)

ot —lafP|llalP —a?| * {laf* —a[?|[la” —[a]]
for all z € X\{0}.

Proof. If we put ¢(z1,22,...,2n) = 0(||z1]|P + - + ||z, |P) for all z1,22,...,2, € X\{0},
then ¢ satisfies (3.2), (3.14), (3.21), (3.27), and (4.1) whenp < 1,p > 4,1 <p < 2,2 < p < 3,
and 3 < p < 4, respectively.

Therefore, there is a unique mapping F' : X — Y satisfying (3.5) for all z1,za,..., 2, €
X\{0}, the equalities in (3.6) for all x € X, as well as

1)~ F@)|
" ale alé ol
— f <1),
(\aP P T —JaP " Jal=lap [P - Jap JlaPl 1] TP <Y
. ale alé el
for 1 <p<2),
<|a|2 P o —Jap T JaP—lal T JaP - JaP ) JaPla® = 1] (rl<P<2)
. alé alé el
< for 2 < p < 3),
< (\a|p—|a|2 P e —la] T JaP —JaP ) faPla2 —1] r2<P<?d)
" ale e )l
for 3 < p < 4),
<|a|p—|a|2 [ —Jap T JaP —[aF  JaP ] ) el =1 (r3<P<)
. alé ae Nzl
f > 4).
\<\a|p—|a|4 P —Tal? e —JaP  faP —Jal ) JaPl2 =1 P>V
From the above inequalities, we get the desired inequality (4.3). ]

Corollary 4.2 Assume that X is a real normed space, Y is a real Banach space, and that
p, 0, n, & are real constants such that p ¢ {1,2,3,4}, 0 < |a| <1, £ >0, and § > 0. If a
mapping f : X — Y satisfies f(0) = 0 and the inequalities in (4.1) for all x € X\{0}, as well
as if f satisfies the inequality (4.2) for all 1,29, ...,x, € X\{0}, then there exists a unique
mapping F : X — 'Y satisfying (3.5) for all x1,x2,...,x, € X\{0} and the equalities in (3.6)
for all x € X, as well as (4.3) for all x € X\{0}.

Proof. Replacing = by %5 and multiplying B |6 in the first inequality of (4.1), we get

T p

1 +
doco- 25 0(0)o(5) < el

a2

for all z € X\{0}. Analogously, replacing z by -5 and multiplying ﬁ in the second inequality

of (4.1), we have
a+a’ x x
%fo(x)_ —(:4 fo<a> +fo<a2>H < |£‘4

x
a2
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for all z € X\{0}.
Let b= é Then we get the inequalities

[fe(b2) — (6% + b) fe(ba) + O fe(x) || < b?P0On]|a]?,
[fo(B2) — (b+ b%) fo(bx) + b* fo(x) || < bPP0E2]P

for all z € X\{0}. By Corollary 4.1, there exists a unique mapping F' : X — Y satisfying
(3.5) for all 1, z9,...,x, € X\{0}, the equalities in (3.6) for all z € X, as well as

|1 1] *nll|” [ [l ”
[f(z) = F(z)]| <
| 6% — [plP[[[bfP =% [[b]* — [b[7]]]b[P — b]]
_ nll” Ell=(”
la* —lal?[llal? —a?| ~ [la]® = |a[?|[la[? — |al
for all z € X\{0}. O
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